

ASX & Media Release 08 June 2018

ASX Symbol ARL

Ardea Resources Limited

Suite 2 / 45 Ord St West Perth WA 6005

PO Box 1433 West Perth WA 6872

Telephone

+61 8 6244 5136

Email ardea@ardearesources.com.au

Website

www.ardearesources.com.au

Directors

Katina Law *Chair*

Brett Clark Managing Director & CEO

Ian Buchhorn Technical Executive Director

Wayne Bramwell Non-Executive Director

Issued Capital

Fully Paid Ordinary Shares 104,990,413

Unlisted options exercisable at \$0.25 12,310,022

Directors/Employee Performance Rights 2,990,000

ABN 30 614 289 342

High-Grade Cobalt and Nickel Results Underpin DFS Advancement at Goongarrie

- In-fill drilling confirms near-surface, high-grade cobalt and nickel mineralisation at Patricia Anne orebody
- Results include the following:
 - o AGSR0055 42 m at 0.16 % Co, 1.43 % Ni and 46 g/t Sc from 2 m¹
 - o AGSR0059 26 m at 0.18 % Co, 1.13 % Ni and 36 g/t Sc from 12 m¹
 - AGSR0061 42 m at 0.15 % Co, 0.86 % Ni and 35 g/t Sc from 8 m¹ including 14 m at 0.25 % Co, 1.01 % Ni and 46 g/t Sc from 10 m²
- Excellent results show lateral continuity of mineralisation at Patricia Anne, a hallmark of goethitic laterite deposits like Goongarrie
- The high-grade Patricia Anne orebody is earmarked as the start-up deposit at Goongarrie, providing rapid payback opportunities
- Significant scandium mineralisation evident from surface providing potential additional by-product benefits within the cobalt-nickel zones
- The sonic drill rig used to provide "run-of-mine"-grade samples suitable for future pilot-plant testing
- Drill result interpretation from Elsie Tynan, Elsie North, Pamela West and Canegrass expected shortly
- The ongoing 80x40m infill drilling is part of early-stage DFS work for Goongarrie, following the successful PFS

¹ Calculated using a 0.50 % nickel cut-off, 2 m minimum intercept, and 4 m maximum internal waste

² Calculated using a 0.08 % cobalt cut-off, 2 m minimum intercept, and 4 m maximum internal waste.

Ardea Resources Limited ("Ardea" or "the Company") is pleased to announce outstanding infill drilling results from the Patricia Anne deposit which has confirmed the near-surface, high-grade nature of the cobalt and nickel mineralisation with consistent scandium credit. The infill drilling program is part of the DFS program which has followed on from the recently announced Goongarrie Nickel Cobalt Project PFS.

Patricia Anne has been outlined as the starting deposit when Ardea commences production at Goongarrie. The high-grade and low strip ratio of Patricia Anne will offer Ardea a robust early capital payback in the initial years of mine life.

Continuity of mineralisation at Patricia Anne ensures predictability and accuracy for mine scheduling which significantly diminishes operational start-up risk at Goongarrie.

The drilling has also confirmed extensive, near-surface scandium mineralisation both overlying and within the cobalt-nickel zone. Current metallurgical programs indicate a scandium credit ranging from 30-100g/t with extractions exceeding 90% which provides a significant benefit to project cashflow.

Additionally, the current GNCP DFS drilling has confirmed significant neutraliser carbonate and kaolin clay within Tertiary-aged channel sands overlying the cobalt-nickel mineralisation. The ability to source an onsite neutraliser supply has the potential to provide significant cost benefits to the project. Metallurgical evaluation is continuing using wide diameter diamond drill core.

Commenting on the successful drill results, Ardea Managing Director Brett Clark stated this was a significant step forward for the early-stage DFS program. "We are extremely pleased with the results received from Patricia Anne, as they confirm both the reliable continuity of the mineralisation whilst offering an exceptional orebody to begin mining at Goongarrie. With such high-grades demonstrated at surface, this will ensure the financial fundamentals of the project remain extremely positive and will allow Ardea to ensure rapid payback of initial start-up costs. The identification of scandium and potential onsite neutraliser source gives Ardea further encouragement as we continue with the various DFS workstreams."

About the Patricia Anne orebody

Patricia Anne is one of the constituent lateritic orebodies that contributes to the reserves defined at the Goongarrie Nickel Cobalt Project. It is located at the northern end of the Goongarrie South area and is one of the 13 defined deposits modelled for mining at Goongarrie (see Appendix 1).

The Patricia Anne deposit measures approximately 1,400 metres by 300 metres and is characterised by near-surface, high-grade, flat-lying mineralisation with minimal overburden. These characteristics are ideal for commencement of mining, so start-up Pits 1 & 2 of the Goongarrie Nickel Cobalt Project mining schedule will be located at Patricia Anne.

Drill results from Patricia Anne

Ardea's recent drilling shows conclusively that laterally continuous, shallow high-grade cobalt and nickel laterite mineralisation is located at Patricia Anne.

Continuity of mineralisation is strong between drill holes (Figures 2-4). This is a hallmark of the Goongarrie Project in particular and of 'goethite' style (yellow-brown) laterite nickel-cobalt deposits in general (yellow-brown "limonite" of tropical laterites). It contrasts sharply with the more nontronitic clay style (green "saprolite" of tropical laterite) deposits which can exhibit marked variation between holes and are more difficult to mine and process.

Remodelling of the current orebody to understand the scandium resource is underway including a rework of the full KNP resource. A scandium JORC 2012 resource will be defined using the results of the current drill programs over the coming months.

Some of the shallow high-grade mineralisation is illustrated by recent results, which include:

6671440 mN section	
AGSR0054	 14 m at 0.27 % cobalt, 1.18 % nickel and 21 g/t scandium from 6 m³ <i>including</i> 6 m at 0.59 % cobalt, 1.95 % nickel and 27 g/t scandium from 8 m⁴
AGSR0055	42 m at 0.16 % cobalt, 1.43 % nickel and 46 g/t scandium from 2 m ³ including 34 m at 0.19 % cobalt, 1.60% nickel and 50 g/t scandium from 8 m ⁵
6670960 mN section	
AGSR0059 and	26 m at 0.18 % cobalt, 1.13 % nickel and 36 g/t scandium from 12 m ³ 12 m at 57 g/t scandium from surface ⁵
AGSR0058	 38 m at 0.04 % cobalt and 1.08 % nickel and 46 g/t scandium from 6 m³ <i>including</i> 2m at 0.11 % cobalt, 1.21 % nickel and 50 g/t scandium from 30 m⁴
and	6 m at 567 g/t scandium from surface⁵
6670880 mN section	
AGSR0061	42 m at 0.15 % cobalt, 0.86 % nickel and 35 g/t scandium from 8 m ³ including 14m at 0.25 % cobalt, 1.01 % nickel and 46 g/t scandium from 10 m ⁴
and	8 m at 100 g/t scandium from surface ⁵

All defined intercepts from the Patricia Anne drill program are listed in Appendix 3.

Scandium by-product potential at Goongarrie

As can be seen above the nickel and cobalt results were supported by scandium mineralisation from surface. Scandium grades are modest but are of a grade sufficient for recovery through a modification to the flowsheet defined in the PFS, with no impact on cobalt and nickel recovery.

Ardea is buoyed by the potential for scandium be a high value by-product at Goongarrie.

³ Calculated using a 0.50 % nickel cut-off, 2 m minimum intercept, and 4 m maximum internal waste.

⁴ Calculated using a 0.08 % cobalt cut-off, 2 m minimum intercept, and 4 m maximum internal waste.

⁵ Calculated using a 50 g/t scandium cut-off, 2 m minimum intercept, and 4 m maximum internal waste.

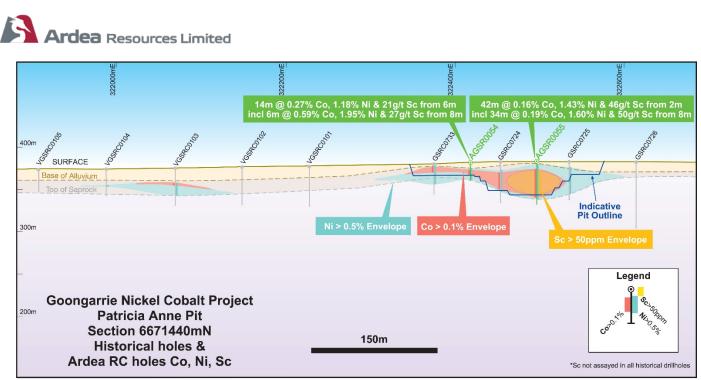


Figure 1 – The 6671440mN cross section of the Patricia Anne orebody, showing nickel, cobalt, and scandium shells.

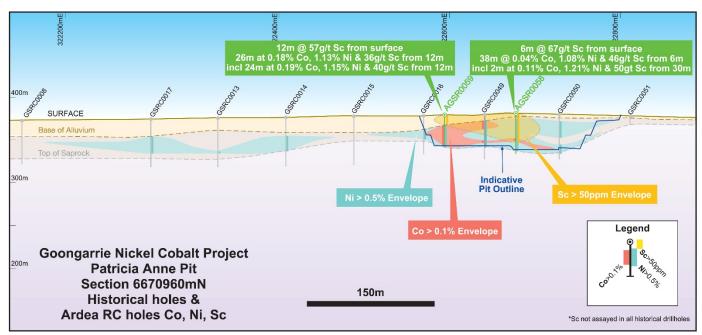


Figure 2 – The 6670960mN cross section of the Patricia Anne orebody, showing nickel, cobalt, and scandium shells..

Other metals at Patricia Anne

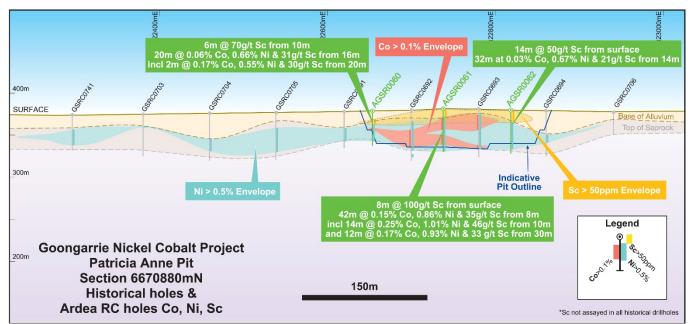
The current drilling has also highlighted other by-product metals. In particular, anomalous levels of chromium, vanadium, aluminium and gold (see Appendix 5) are distributed throughout the profile:

- Aluminium is abundant in many sections and the precipitation of aluminium sulphate or high purity alumina (HPA) for battery or sapphire glass manufacture is under metallurgical evaluation as part of the variability program
- Chromium and vanadium are evident at low- to medium-levels, however their extraction as a byproduct is being investigated

• Gold is present in highly anomalous numbers in some areas. Though not expected to be extracted using the Goongarrie flowsheet, Ardea will use the geological knowledge as part of the adjacent Bardoc Tectonic Zone (BTZ) gold project exploration.

Ongoing drill program at Goongarrie

This first phase of RC drilling at Goongarrie (3,700m of drilling in 96 drill holes) is now complete. Data collected from this program will bring specific areas of the future open pit mine down to a 40mE x 80mN drilling density.


The second phase of drilling (199 drill holes for over 7,600m) is underway and is bringing the drilling density down to 40mE x 40mN in specific areas.

The ongoing drill program is designed to:

- Upgrade resources and reserves through higher density drilling. This will allow better accuracy and greater confidence in defining mining schedules for the planned Goongarrie mine.
- Provide continuing core samples for variability testing of mineralised zones. This will ensure that variations of the main style of mineralisation will perform to the same high standard or higher as that tested to date. This will also provide greater confidence for mine scheduling.
- Provide sample for production of cobalt sulphate and nickel sulphate marketing samples. Production of high-quality cobalt sulphate and nickel sulphate is required for appraisal for potential off-takers and strategic partners. There has been strong interest from several parties to receive such samples as soon as possible.

The sonic drill rig used for bulk core sampling is capable of coherent sample recovery from very loose or soft materials like that at Goongarrie.

Announcements are pending for drilling results at the Elsie Tynan and Elsie North orebodies as well as Pamela West orebody at Goongarrie South, and the Canegrass deposits further south in the Big Four area (see Appendix 1 for locations). Results are showing continuity of high-grade mineralisation as expected, and will be released upon completion of quality assurance programs, data processing, analysis, interpretation and modelling.

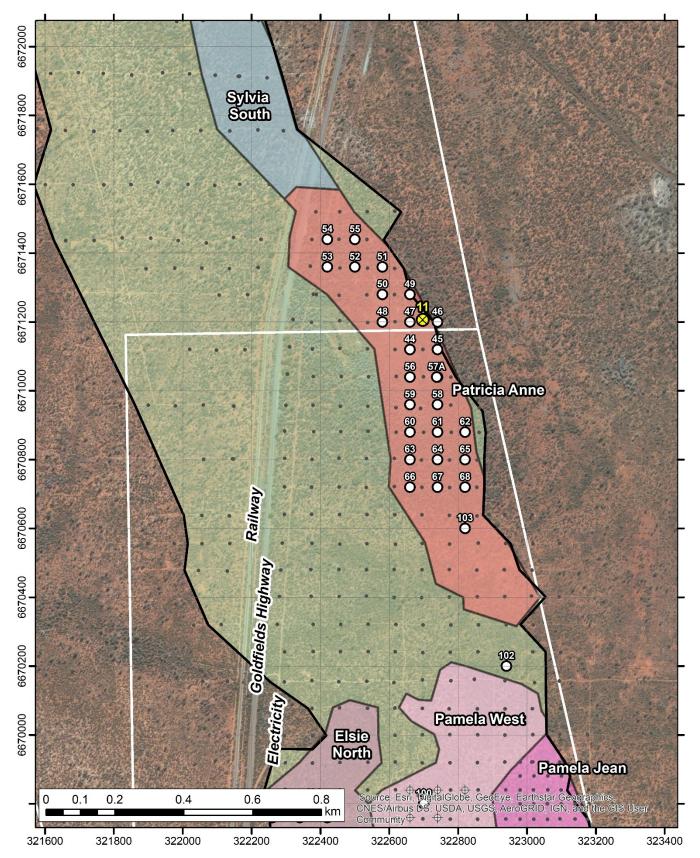


Figure 4 – Location of new RC drilling (white dots, abbreviated hole number) and diamond drilling (yellow crossed dot, abbreviated hole number) at Patricia Anne. Dark dots show historic drill collars. Deposits are marked by significant cobalt and nickel mineralisation and are encased within the overall nickel envelope (green, nominally Ni>0.5%). See Appendix 1 for the depiction of all orebodies at Goongarrie.

For further information regarding Ardea, please visit www.ardearesources.com.au or contact:

Ardea Resources:

Mr Brett Clark Managing Director & CEO, Ardea Resources Limited Tel +61 8 6244 5136

Compliance Statement (JORC 2012)

A competent person's statement for the purposes of Listing Rule 5.22 has previously been announced by the Company for:

1. Kalgoorlie Nickel Project on 21 October 2013 and 31 June 2014, October 2016, 2016 Heron Resources Annual Report and 6 January 2017;

2. KNP Cobalt Zone Study on 6 January 2017

The Company confirms that it is not aware of any new information or data that materially affects information included in previous announcements, and all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. All projects will be subject to new work programs following the listing of Ardea, notably drilling, metallurgy and JORC Code 2012 resource estimation as applicable.

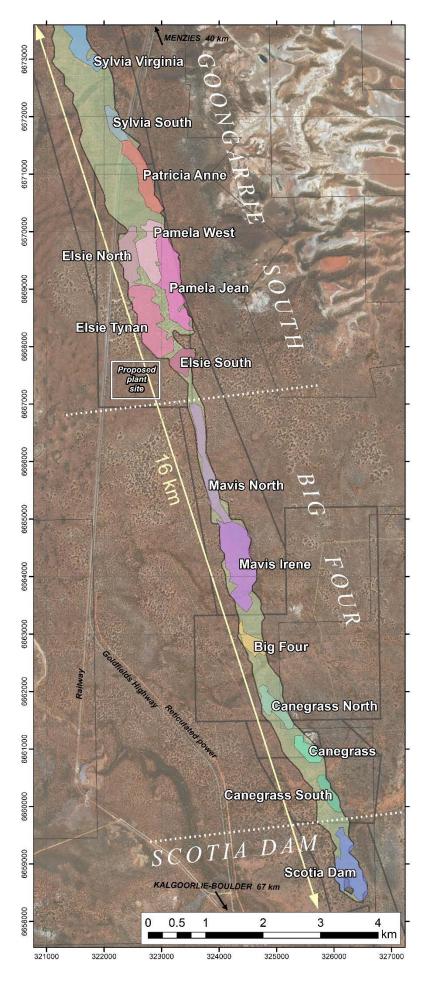
The information in this report that relates to KNP Exploration Results is based on information originally compiled by previous and current full time employees of Heron Resources Limited and after February 2017 employees of Ardea Resource Limited. The Exploration Results and data collection processes have been reviewed, verified and re-interpreted by Mr Ian Buchhorn who is a Member of the Australasian Institute of Mining and Metallurgy and currently a director of Ardea Resources Limited. Mr Buchhorn has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the exploration Results, Mineral Resources and Ore Reserves'. Mr Buchhorn consents to the inclusion in this report of the matters based on his information in the form and context that it appears.

The exploration and industry benchmarking summaries are based on information reviewed by Dr Matthew Painter, who is a Member of the Australian Institute of Geoscientists. Dr Painter is a full-time employee and a director of Ardea Resources Limited and has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Painter has reviewed this press release and consents to the inclusion in this report of the information in the form and context in which it appears.

CAUTIONARY NOTE REGARDING FORWARD-LOOKING INFORMATION

This news release contains forward-looking statements and forward-looking information within the meaning of applicable Australian securities laws, which are based on expectations, estimates and projections as of the date of this news release.

This forward-looking information includes, or may be based upon, without limitation, estimates, forecasts and statements as to management's expectations with respect to, among other things, the timing and ability to complete the Ardea spin-out, the timing and amount of funding required to execute the Company's exploration, development and business plans, capital and exploration expenditures, the effect on the Company of any changes to existing legislation or policy, government regulation of mining operations, the length of time required to obtain permits, certifications and approvals, the success of exploration, development and mining activities, the geology of the Company's properties, environmental risks, the availability of labour, the focus of the Company in the future, demand and market outlook for precious metals and the prices thereof, progress in development of mineral properties, the Company's ability to raise funding privately or on a public market in the future, the Company's future growth, results of operations, performance, and business prospects and opportunities. Wherever possible, words such as "anticipate", "believe", "expect", "intend", "may" and similar expressions have been used to identify such forward-looking information. Forward-looking information is based on the opinions and estimates of management at the date the information is given, and on information available to management at such time. Forward-looking information involves significant risks, uncertainties, assumptions and other factors that could cause actual results, performance or achievements to differ materially from the results discussed or implied in the forward-looking information. These factors, including, but not limited to, the ability to complete the Ardea spin-out on the basis of the proposed terms and timing or at all, fluctuations in currency markets, fluctuations in commodity prices, the ability of the Company to access sufficient capital on favourable terms or at all, changes in national and local government legislation, taxation, controls, regulations, political or economic developments in Australia or other countries in which the Company does business or may carry on business in the future, operational or technical difficulties in connection with exploration or development activities, employee relations, the speculative nature of mineral exploration and development, obtaining necessary licenses and permits, diminishing quantities and grades of mineral reserves, contests over title to properties, especially title to undeveloped properties, the inherent risks involved in the exploration and development of mineral properties, the uncertainties involved in interpreting drill results and other geological data, environmental hazards, industrial accidents, unusual or unexpected formations, pressures, cave-ins and flooding, limitations of insurance coverage and the possibility of project cost overruns or unanticipated costs and expenses, and should be considered carefully. Many of these uncertainties and contingencies can affect the Company's actual results and could cause actual results to differ materially from those expressed or implied in any forward-looking statements made by, or on behalf of, the Company. Prospective investors should not place undue reliance on any forward-looking information.


Although the forward-looking information contained in this news release is based upon what management believes, or believed at the time, to be reasonable assumptions, the Company cannot assure prospective purchasers that actual results will be consistent with such forward-looking information, as there may be other factors that cause results not to be as anticipated, estimated or intended, and neither the Company nor any other person assumes responsibility for the accuracy and completeness of any such forward-looking information. The Company does not undertake, and assumes no obligation, to update or revise any such forward-looking statements or forward-looking information contained herein to reflect new events or circumstances, except as may be required by law.

No stock exchange, regulation services provider, securities commission or other regulatory authority has approved or disapproved the information contained in this news release.

Appendix 1 – Constituent deposits and orebodies of the Goongarrie Nickel Cobalt Project

Deposits of the Goongarrie Nickel Cobalt Project, from Sylvia Virginia in the north to Scotia Dam in the south, a distance of 16 km. Active mining tenements are outlined in black.

Deposits are marked by significant cobalt and nickel mineralisation and are encased within the overall nickel envelope (green, Ni>0.5%).

Appendix 2 – Pit schedule diagram for Goongarrie South

Pit scheduling identifies Patricia Anne for the first two pits of the Goongarrie Nickel Cobalt Project.

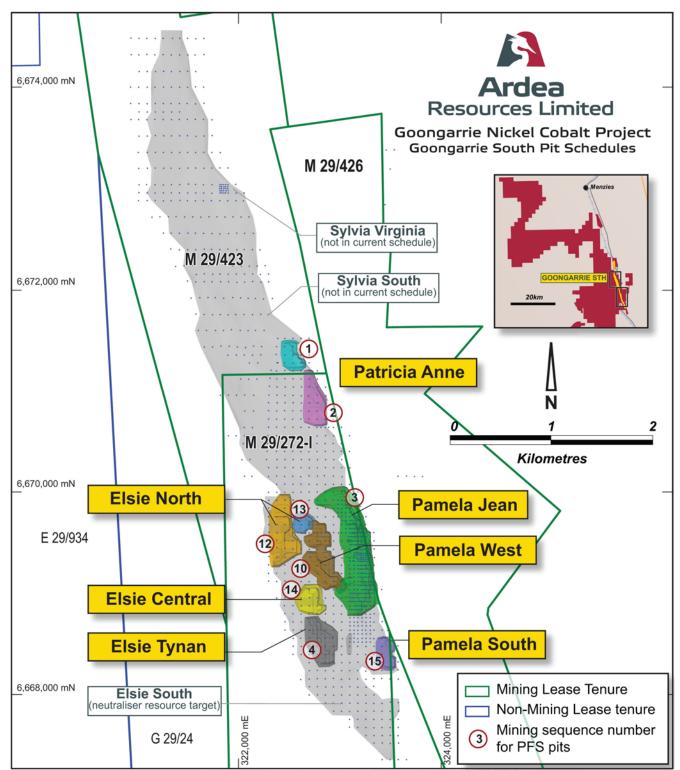


Figure 2 – Pit schedules for the Goongarrie South part of the Goongarrie Nickel Cobalt Project

Appendix 3 – Collar location data

New drill holes by Ardea Resources

Drill hole	Туре	Depth (m)	Tenement	Grid	Easting (mE)	Northing (mN)	RL (mASL)	Twin hole	Dip (°)	Azimuth
AGSD0011	DD	28	M29/00423	MGA94_51	322697	6671206	382	GSRC0718	-90	000
AGSR0044	RC	23	M29/00272	MGA94_51	322660	6671120	382		-90	000
AGSR0045	RC	26	M29/00272	MGA94_51	322740	6671120	381		-90	000
AGSR0046	RC	17	M29/00423	MGA94_51	322740	6671200	381		-90	000
AGSR0047	RC	32	M29/00423	MGA94_51	322660	6671200	383		-90	000
AGSR0048	RC	23	M29/00423	MGA94_51	322580	6671200	383		-90	000
AGSR0049	RC	26	M29/00423	MGA94_51	322660	6671280	383		-90	000
AGSR0050	RC	30	M29/00423	MGA94_51	322580	6671280	385		-90	000
AGSR0051	RC	61	M29/00423	MGA94_51	322580	6671360	384		-90	000
AGSR0052	RC	47	M29/00423	MGA94_51	322500	6671360	385		-90	000
AGSR0053	RC	32	M29/00423	MGA94_51	322420	6671360	383		-90	000
AGSR0054	RC	21	M29/00423	MGA94_51	322420	6671440	381		-90	000
AGSR0055	RC	50	M29/00423	MGA94_51	322500	6671440	382		-90	000
AGSR0056	RC	23	M29/00272	MGA94_51	322660	6671040	382		-90	000
AGSR0057	RC	2	M29/00272	MGA94_51	322740	6671040	381		-90	000
AGSR0057A	RC	44	M29/00272	MGA94_51	322738	6671040	381		-90	000
AGSR0058	RC	47	M29/00272	MGA94_51	322740	6670960	380		-90	000
AGSR0059	RC	38	M29/00272	MGA94_51	322660	6670960	380		-90	000
AGSR0060	RC	41	M29/00272	MGA94_51	322660	6670880	379		-90	000
AGSR0061	RC	50	M29/00272	MGA94_51	322740	6670880	380		-90	000
AGSR0062	RC	51	M29/00272	MGA94_51	322820	6670880	379		-90	000
AGSR0063	RC	36	M29/00272	MGA94_51	322660	6670800	377		-90	000
AGSR0064	RC	52	M29/00272	MGA94_51	322740	6670800	378		-90	000
AGSR0065	RC	56	M29/00272	MGA94_51	322820	6670800	378		-90	000
AGSR0066	RC	35	M29/00272	MGA94_51	322660	6670720	376		-90	000
AGSR0067	RC	46	M29/00272	MGA94_51	322740	6670720	377		-90	000
AGSR0068	RC	55	M29/00272	MGA94_51	322820	6670720	377		-90	000
AGSR0102	RC	48	M29/00272	MGA94_51	322940	6670200	375		-90	000
AGSR0103	RC	56	M29/00272	MGA94_51	322820	6670600	375		-90	000

Appendix 4 – Assay results from Goongarrie South

All assays from recent drilling program at Patricia Anne, Goongarrie South.

Abbreviations used: Co – cobalt, Ni – nickel, Sc – scandium, Cr – chromium, V – vanadium, Au – gold, m – metre, g/t – grams per tonne, ppm – parts per million, ppb – parts per billion, b.d. – below detection.

Hole	From (m)	To (m)	Sample number	Co (%)	Ni (%)	Sc (g/t)	Cr (ppm)	V (ppm)	Au (ppb)
AGSD0011	0	2	AR005194	0.01	0.527	30	12400	100	24
AGSD0011	2	4	AR005195	0.152	1.18	40	12900	200	8
AGSD0011	4	6	AR005196	0.03	0.669	20	6610	100	3
AGSD0011	6	8	AR005197	0.018	0.915	10	3410	b.d.	3
AGSD0011	8	10	AR005198	0.017	0.724	10	2990	b.d.	10
AGSD0011	10	12	AR005199	0.015	0.392	b.d.	2740	b.d.	15
AGSD0011	12	14	AR005200	0.059	0.717	10	6780	b.d.	5
AGSD0011	14	15.5	AR005201	0.03	0.353	10	3220	b.d.	4
AGSD0011	15.5	16.3	AR005202	0.007	0.38	10	5730	100	9
AGSD0011	17.5	18.1	AR005204	0.008	0.214	b.d.	2040	b.d.	6
AGSD0011	19	20.3	AR005205	0.03	0.43	10	4380	b.d.	9
AGSD0011	20.7	21.8	AR005206	0.033	0.626	10	5790	b.d.	3
AGSD0011	21.8	24	AR005207	0.077	1.45	40	19000	100	b.d
AGSD0011	24	26	AR005208 AR005209	0.058	0.927	10	5870	b.d.	2
AGSD0011	26	28		0.064	0.906	20	3980	b.d.	1
AGSR0044 AGSR0044	0	2	AR001204 AR001205	0.009	0.3	90 80	18300 15800	100	78 108
AGSR0044	4	6	AR001205 AR001206		0.204	70	14100	100	43
AGSR0044	6	8	AR001200 AR001207	0.015	0.508	50	9820	b.d.	43
AGSR0044	8	10	AR001207 AR001208	0.048	0.559	60	16200	100	44
AGSR0044	10	12	AR001208 AR001209	0.303	0.968	50	14900	b.d.	63
AGSR0044	10	12	AR001209 AR001210	0.303	0.908	20	5640	b.d.	40
AGSR0044	12	14	AR001210 AR001211	0.114	1.08	20	8970	b.d.	40
AGSR0044	14	18	AR001211 AR001213	0.12	0.738	20	4870	b.d.	7
AGSR0044	18	20	AR001213	0.057	0.738	20	7450	b.d.	16
AGSR0044	20	20	AR001214	0.052	0.627	10	4310	b.d.	23
AGSR0044	20	23	AR001215	0.002	0.685	10	5400	b.d.	9
AGSR0045	0	23	AR001210	0.023	0.195	b.d.	3610	b.d.	23
AGSR0045	2	4	AR001218	0.021	0.312	10	13300	100	3
AGSR0045	4	6	AR001210	0.027	0.337	10	8780	200	1
AGSR0045	6	8	AR001220	0.006	0.179	b.d.	4130	b.d.	3
AGSR0045	8	10	AR001221	0.012	0.212	b.d.	6390	b.d.	1
AGSR0045	10	12	AR001223	0.02	0.241	b.d.	8570	b.d.	2
AGSR0045	12	14	AR001224	0.014	0.204	10	6730	b.d.	1
AGSR0045	14	16	AR001225	0.013	0.218	b.d.	7760	b.d.	4
AGSR0045	16	18	AR001226	0.021	0.342	10	8090	b.d.	4
AGSR0045	18	20	AR001227	0.015	0.416	b.d.	7450	b.d.	5
AGSR0045	20	22	AR001228	0.01	0.286	10	8100	b.d.	6
AGSR0045	22	24	AR001229	0.027	0.408	10	8340	b.d.	2
AGSR0045	24	26	AR001230	0.015	0.397	20	10300	b.d.	2
AGSR0046	0	2	AR001231	0.018	0.185	b.d.	2710	100	31
AGSR0046	2	4	AR001233	0.044	0.343	40	6060	300	9
AGSR0046	4	6	AR001234	0.03	0.318	30	11400	200	6
AGSR0046	6	8	AR001235	0.025	0.231	10	9190	100	4
AGSR0046	8	10	AR001236	0.018	0.207	10	7680	b.d.	3
AGSR0046	10	12	AR001237	0.016	0.2	10	5910	b.d.	2
AGSR0046	12	14	AR001238	0.014	0.194	10	5230	b.d.	2
AGSR0046	14	16	AR001239	0.014	0.187	10	4730	b.d.	2
AGSR0046	16	17	AR001240	0.014	0.189	b.d.	4680	b.d.	2
AGSR0047	0	2	AR001241	0.005	0.458	20	6160	b.d.	138
AGSR0047	2	4	AR001243	0.034	1.09	40	16900	100	6
AGSR0047	4	6	AR001244	0.043	1.33	40	22700	100	11
AGSR0047	6	8	AR001245	0.132	1.41	30	20800	100	8
AGSR0047	8	10	AR001246	0.065	0.763	10	8400	b.d.	11
AGSR0047 AGSR0047	10	12	AR001247	0.023	0.556	10	7020	b.d.	19 9
	12 14	14 16	AR001248 AR001249	0.024		10 b.d.	8560	b.d.	4
AGSR0047 AGSR0047	14	20	AR001249 AR001250	0.018	0.461	10.u.	6300	b.d.	4
AGSR0047 AGSR0047			AR001250 AR001251	0.048		<u> </u>	3690 7540	b.d. b.d.	4
AGSR0047 AGSR0047	16 20	18 22	AR001251 AR001253	0.057	0.804	10 10	3330	b.d. b.d.	4
AGSR0047 AGSR0047	20	22	AR001253 AR001254	0.024	0.685	10	3330	b.d. b.d.	2
AGSR0047 AGSR0047	22	24	AR001254 AR001255	0.024	0.659	10	4950	b.d. b.d.	2
AGSR0047 AGSR0047	24	20	AR001255 AR001256	0.036	0.734	10	4950	b.d. b.d.	7
AGSR0047 AGSR0047	20	30	AR001256 AR001257	0.031	0.734	20	5200	b.d.	3
AGSR0047 AGSR0047	30	30	AR001257	0.072	0.63	20	3480	b.d.	2
AGSR0047 AGSR0048	0	2	AR001258	0.037	0.529	60	11000	b.d.	30
AGSR0048	2	4	AR001237	0.027	0.327	100	16900	100	5
AGSR0048	4	6	AR001200	0.012	0.37	70	14600	100	21
AGSR0048	6	8	AR001261	0.013	0.408	40	13600	100	17
AGSR0048	8	10	AR001203	0.331	0.400	40	19600	100	20
AGSR0048	10	12	AR001204	0.148	1.09	30	17800	b.d.	14
AGSR0048	12	14	AR001205	0.041	0.563	10	6390	b.d.	4
AGSR0048	14	16	AR001200	0.041	0.653	10	6320	b.d.	3
AGSR0048	14	18	AR001207 AR001268	0.042	0.033	10	5240	b.d.	6
AGSR0048	18	20	AR001200	0.043	0.567	10	6230	b.d.	18
AGSR0048	20	20	AR001209 AR001270	0.043	0.708	10	7720	b.d.	76
AGSR0048	20	22	AR001270 AR001271	0.041	0.483	10	5260	b.d.	18
	L 22	_ <u>∠</u> ⊃	_ MNUU12/1	0.040					
AGSR0048	0	2	AR001273	0.017	0.325	10	4480	100	12

Hole	From (m)	To (m)	Sample number	Co (%)	Ni (%)	Sc (g/t)	Cr (ppm)	V (ppm)	Au (ppb
AGSR0049	4	6	AR001275	0.01	0.271	10	5570	b.d.	3
AGSR0049	6	8	AR001276	0.01	0.274	10	5410	b.d.	4
AGSR0049	8	10	AR001277	0.008	0.134	b.d.	3640	b.d.	5
AGSR0049	10	12	AR001278	0.004	0.066	b.d.	1830	b.d.	7
AGSR0049	12	14	AR001279	0.004	0.07	b.d.	1670	b.d.	3
AGSR0049	14	16	AR001280	0.008	0.156	b.d.	3470	b.d.	361
AGSR0049	16	18	AR001281	0.014	0.217	10	3550	b.d.	10
AGSR0049	18	20	AR001283	0.018	0.265	10	4480	b.d.	9
AGSR0049	20	22	AR001284	0.023	0.412	b.d.	4640	b.d.	62
AGSR0049 AGSR0049	22 24	24 26	AR001285 AR001286	0.018	0.448	10 10	5710 7360	b.d. b.d.	325 39
AGSR0049 AGSR0050	0	20	AR001280 AR001287	0.003	0.422	50	10700	100	71
AGSR0050	2	4	AR001287	0.003	0.345	80	23800	100	39
AGSR0050	4	6	AR001200	0.003	0.626	80	18000	100	45
AGSR0050	6	8	AR001207	0.015	0.647	30	12500	b.d.	20
AGSR0050	8	10	AR001291	0.02	0.982	30	9870	100	11
AGSR0050	10	12	AR001293	0.024	1.15	40	14100	100	20
AGSR0050	12	14	AR001294	0.069	0.932	50	14500	100	7
AGSR0050	14	16	AR001295	0.233	0.832	50	13500	100	4
AGSR0050	16	18	AR001296	0.448	1.07	60	16700	100	2
AGSR0050	18	20	AR001297	0.152	1.24	30	10300	b.d.	11
AGSR0050	20	22	AR001298	0.039	0.631	10	5110	b.d.	26
AGSR0050	22	24	AR001299	0.024	0.359	10	4530	b.d.	10
AGSR0050	24	26	AR001300	0.034	0.39	10	4710	b.d.	2
AGSR0050	26	28	AR001301	0.014	0.345	10	5380	b.d.	2
AGSR0050	28	30	AR001303	0.018	0.434	10	5370	b.d.	7
AGSR0051	0	2	AR001304	0.01	0.327	70	9680	100	59
AGSR0051	2	4	AR001305	0.014	0.331	70	17200	100	33
AGSR0051	4	6	AR001306	0.023	0.524	70	11700	100	34
AGSR0051	6	8	AR001307	0.042	0.832	50	16100	100	4
AGSR0051	8	10	AR001308	0.074	1.09	50	19200	100	2
AGSR0051	10	12	AR001309	0.115	1.3	50	20100	100	2
AGSR0051	12	14	AR001310	0.059	0.996	20	10400	b.d.	3
AGSR0051	14	16	AR001311	0.02	0.498	10	4480	b.d.	5
AGSR0051	16	18	AR001313	0.019	0.661	10	6110	b.d.	12
AGSR0051	18	20	AR001314	0.021	0.512	10	4670	b.d.	14
AGSR0051	20	22	AR001315	0.026	0.667	20	5810	b.d.	14
AGSR0051	22	24	AR001316	0.028	0.829	20	8740	b.d.	33
AGSR0051	24	26	AR001317	0.02	0.576	20	5690	b.d.	54
AGSR0051	26	28	AR001318	0.023	0.872	20	10500	b.d.	14
AGSR0051	28	30	AR001319	0.039	1.19	20	12200	100	28
AGSR0051	30	32	AR001320	0.029	1.01	20	10100	b.d.	68
AGSR0051	32	34	AR001321	0.014	0.411	10	2990	b.d.	18
AGSR0051	34	36	AR001323	0.028	0.833	10	8210	b.d.	39
AGSR0051	36	38	AR001324	0.016	0.775	b.d.	10900	b.d.	13
AGSR0051	38	40	AR001325	0.017	0.682	10	6410	b.d.	10
AGSR0051	40	42	AR001326	0.02	0.531	10	5010	b.d.	27
AGSR0051	42	44	AR001327	0.018	0.584	10	6040	b.d.	46
AGSR0051	44	46	AR001328	0.011	0.289	b.d.	1720	b.d.	27
AGSR0051	46	48	AR001329	0.011	0.268	b.d.	1490	b.d.	9
AGSR0051	48	50	AR001330	0.011	0.252	b.d.	4650	b.d.	5
AGSR0051	50	52	AR001331	0.01	0.233	b.d.	5300	b.d.	4
AGSR0051	52	54	AR001333	0.009	0.232	b.d.	1760	b.d.	4
AGSR0051	54	56	AR001334	0.01	0.247	b.d.	1380	b.d.	5
AGSR0051 AGSR0051	56 58	58 60	AR001335 AR001336	0.008	0.235	b.d. b.d.	3910 2970	b.d.	14 5
AGSR0051 AGSR0051	58 60	60	AR001336 AR001337	0.007	0.163	D.a. 10	3490	b.d. b.d.	4
AGSR0051	0	2	AR001337 AR001338	0.009	0.173	70	10400	200	4
AGSR0052	2	4	AR001338 AR001339	0.009	0.253	60	14500	100	56
AGSR0052	4	6	AR001339 AR001340	0.003	0.217	50	8640	b.d.	86
AGSR0052	6	8	AR001340 AR001341	0.014	0.321	60	10700	100	112
AGSR0052	8	10	AR001341	0.014	0.607	70	8900	100	38
AGSR0052	10	12	AR001343 AR001344	0.017	0.817	40	6250	b.d.	55
AGSR0052	10	12	AR001344 AR001345	0.023	1.01	40 b.d.	6050	100	21
AGSR0052	14	16	AR001345	0.089	1.47	50	12500	100	5
AGSR0052	16	18	AR001340	0.073	1.38	50	11900	b.d.	24
AGSR0052	18	20	AR001347	0.073	1.15	50	19400	b.d.	30
AGSR0052	20	22	AR001349	0.093	0.782	40	25900	b.d.	17
AGSR0052	22	24	AR001350	0.229	1.26	50	20600	b.d.	23
AGSR0052	24	26	AR001351	0.218	1.36	40	15800	b.d.	16
AGSR0052	26	28	AR001353	0.18	1.17	40	16100	b.d.	9
AGSR0052	28	30	AR001354	0.103	0.749	20	7810	b.d.	6
AGSR0052	30	32	AR001355	0.059	0.567	10	6180	b.d.	7
AGSR0052	32	34	AR001355	0.069	0.701	20	7640	b.d.	6
AGSR0052	34	36	AR001357	0.049	0.625	20	5950	b.d.	6
AGSR0052	36	38	AR001357	0.047	0.342	10	2590	b.d.	2
				0.012	0.254	10	2330	b.d.	19
	38	40							
AGSR0052 AGSR0052 AGSR0052	38 40	40 42	AR001359 AR001360	0.011	0.263	10	2520	b.d.	43

Hole	From	То	Sample	Со	Ni	Sc	Cr	V	Au
AGSR0052	(m) 44	(m) 46	AR001363	(%) 0.013	(%) 0.308	(g/t) b.d.	(ppm) 2460	(ppm) b.d.	(ppb) 56
AGSR0052	46	47	AR001364	0.013	0.293	b.d.	2380	b.d.	42
AGSR0053	0	2	AR001365	0.106	0.587	20	20500	100	127
AGSR0053	2	4	AR001366	0.09	0.537	20	16500	b.d.	102
AGSR0053 AGSR0053	4	6 8	AR001367 AR001368	0.094	0.58	20 10	17200 14500	100 b.d.	53 9
AGSR0053	8	10	AR001369	0.195	0.938	10	15200	b.d.	9
AGSR0053	10	12	AR001370	0.046	0.549	10	11400	b.d.	11
AGSR0053	12	14	AR001371	0.018	0.462	20	8190	b.d.	52
AGSR0053 AGSR0053	14 16	16 18	AR001373 AR001374	0.02	0.363	10 10	6610 7590	b.d. b.d.	122 52
AGSR0053	18	20	AR001374	0.020	0.392	10	6500	b.d.	18
AGSR0053	20	22	AR001376	0.024	0.485	10	8710	b.d.	33
AGSR0053	22	24	AR001377	0.027	0.49	20	8690	b.d.	11
AGSR0053 AGSR0053	24 26	26 28	AR001378 AR001379	0.026	0.599	10 20	8710 6310	b.d. b.d.	6 21
AGSR0053	28	30	AR001377	0.023	0.808	10	8440	b.d.	5
AGSR0053	30	32	AR001381	0.03	0.763	10	6860	b.d.	8
AGSR0054	0	2	AR001383	0.022	0.444	30	13600	100	64
AGSR0054 AGSR0054	2	4	AR001384 AR001385	0.02	0.428	30 30	11500 10000	100 b.d.	118 27
AGSR0054	6	8	AR001385 AR001386	0.030	0.401	30	11600	100	4
AGSR0054	8	10	AR001387	0.29	1.32	30	13000	100	5
AGSR0054	10	12	AR001388	0.957	2.94	30	13800	100	3
AGSR0054	12	14	AR001389	0.527	1.6	20	7070	b.d.	11
AGSR0054 AGSR0054	14 16	16 18	AR001390 AR001391	0.048	0.589	20 10	6510 7760	b.d. b.d.	35 21
AGSR0054 AGSR0054	10	20	AR001391 AR001393	0.016	0.524	10	7590	b.d.	146
AGSR0054	20	21	AR001394	0.006	0.303	10	2920	b.d.	39
AGSR0055	0	2	AR001395	0.006	0.405	10	6800	100	65
AGSR0055	2	4	AR001396	0.023	0.715	30	6730	100	39
AGSR0055 AGSR0055	4	6 8	AR001397 AR001398	0.033	0.62	20 40	7540 11000	100 200	78 15
AGSR0055	8	10	AR001398 AR001399	0.037	1.19	40	12300	200	15
AGSR0055	10	12	AR001400	0.142	1.46	50	13800	200	2
AGSR0055	12	14	AR001401	0.141	1.48	50	14900	200	20
AGSR0055	14	16	AR001403	0.142	1.68	50	14900	100	7
AGSR0055 AGSR0055	16 18	18 20	AR001404 AR001405	0.152 0.151	1.7 1.83	50 50	14300 12700	100 100	7
AGSR0055	20	20	AR001405	0.151	1.76	50	15000	100	2
AGSR0055	22	24	AR001407	0.142	1.65	60	15100	100	3
AGSR0055	24	26	AR001408	0.145	1.77	60	17400	100	2
AGSR0055	26	28	AR001409	0.157	1.78	50	19000	100	b.d
AGSR0055 AGSR0055	28 30	30 32	AR001410 AR001411	0.152	1.78 1.83	60 60	17500 14900	100 200	b.d 1
AGSR0055	30	34	AR001411 AR001413	0.163	1.03	60	16500	200	2
AGSR0055	34	36	AR001414	0.184	1.4	40	13000	100	11
AGSR0055	36	38	AR001415	0.299	1.59	50	12200	100	4
AGSR0055	38	40	AR001416	0.49	1.47	40	9350	100	3
AGSR0055 AGSR0055	40	42	AR001417 AR001418	0.315	1.2 0.61	30 20	9420 5350	100 100	4 21
AGSR0055	44	46	AR001410	0.033	0.297	10	2060	b.d.	6
AGSR0055	46	48	AR001420	0.013	0.254	10	4680	b.d.	10
AGSR0055	48	50	AR001421	0.015	0.286	10	3610	b.d.	14
AGSR0056 AGSR0056	0	2	AR001423 AR001424	0.008	0.119 0.287	50 60	8210 12800	300 100	104 31
AGSR0056	4	6	AR001424 AR001425	0.007	0.207	70	10200	100	52
AGSR0056	6	8	AR001426	0.171	0.391	70	7130	100	38
AGSR0056	8	10	AR001427	0.202	0.562	90	13000	100	11
AGSR0056	10	12	AR001428	0.208	1.11	40	15500	100	12
AGSR0056 AGSR0056	12 14	14 16	AR001429 AR001430	0.048	0.476	10 10	6060 4270	b.d. b.d.	5
AGSR0056	16	18	AR001430	0.032	0.356	10	4400	b.d.	25
AGSR0056	18	20	AR001433	0.013	0.332	10	5560	b.d.	9
AGSR0056	20	22	AR001434	0.022	0.519	10	7020	b.d.	6
AGSR0056 AGSR0057	22	23 2	AR001435 AR001436	0.017	0.371 0.21	10 20	5280 4060	b.d. 100	27 70
AGSR0057A	0	2	AR001430	0.018	0.21	30	8300	100	82
AGSR0057A	2	4	AR001438	0.084	0.866	60	15400	200	10
AGSR0057A	4	6	AR001439	0.053	0.827	50	14400	200	29
AGSR0057A	6	8	AR001440	0.022	1.26	60 50	25400	200	5
AGSR0057A AGSR0057A	8 10	10 12	AR001441 AR001443	0.022	0.744 0.862	50 60	11700 11800	200 100	6
AGSR0057A	12	14	AR001443	0.010	0.941	70	12500	200	5
AGSR0057A	14	16	AR001445	0.023	0.848	60	10600	100	5
AGSR0057A	16	18	AR001446	0.025	0.971	60	10200	100	3
AGSR0057A AGSR0057A	18 20	20 22	AR001447 AR001448	0.024	0.969	60 60	11000 12400	100 100	4
AGSR0057A	20	22	AR001448 AR001449	0.025	0.944	60	12400	100	7
AGSR0057A	24	26	AR001450	0.028	0.971	50	11700	100	9
AGSR0057A	26	28	AR001451	0.027	0.856	50	13400	100	b.d
AGSR0057A	28	30	AR001453	0.048	1.15	50	18300	200	8
AGSR0057A AGSR0057A	30 32	32 34	AR001454 AR001455	0.532	1.8 1.63	50 20	14900 19800	200 200	1 b.d
AGSR0057A	34	36	AR001455 AR001456	0.137	1.03	40	14900	100	3
AGSR0057A	36	38	AR001457	0.035	0.718	10	6340	b.d.	2
AGSR0057A	38	40	AR001458	0.034	0.694	10	5940	b.d.	3
AGSR0057A	40	42	AR001459	0.015	0.476	b.d.	4750	b.d.	6
AGSR0057A AGSR0058	42	44 2	AR001460 AR001461	0.015	0.333 0.201	b.d. 60	4670 7120	b.d. 200	21 158
AGSR0058	2	4	AR001461	0.004	0.201	70	7950	200	101
AGSR0058	4	6	AR001464	0.007	0.465	70	6690	100	102
AGSR0058	6	8	AR001465	0.01	0.97	60	8720	100	19
AGSR0058	8	10	AR001466	0.011	1.04	40	8880	100	15

Hole	From (m)	To (m)	Sample number	Co (%)	Ni (%)	Sc (g/t)	Cr (ppm)	V (ppm)	Au (ppb
AGSR0058	10	12	AR001467	0.013	1.02	50	8930	200	11
AGSR0058	12	14	AR001468	0.014	1.28	50	14800	100	6
AGSR0058	14	16	AR001469	0.018	1.37	50	16400	200	5
AGSR0058	16	18	AR001470	0.017	1.15	40	14900	200	5
AGSR0058	18	20	AR001471	0.015	0.959	60	12300	200	6
AGSR0058	20	22	AR001473	0.016	1.25	70	16300	200	1
AGSR0058	22	24	AR001474	0.015	1.17	60	12300	200	4
AGSR0058	24	26	AR001475	0.021	1.26	60	14100	200	1
AGSR0058	26	28	AR001476	0.025	1.24	60	16300	100	4
AGSR0058	28	30	AR001477	0.04	1.12	50	18900	100	1
AGSR0058	30	32	AR001478	0.112	1.21	50	16100	100	1
AGSR0058	32	34	AR001479	0.081	1.21	50	15600	100	1
AGSR0058	36	38	AR001480	0.068	0.827	30	7320	100	9
AGSR0058	34	36	AR001481	0.053	0.698	10	5530	b.d.	16
AGSR0058	38	40	AR001483	0.066	0.894	30	8180	100	37
AGSR0058	40	42	AR001484	0.066	0.885	30	8280	100	18
AGSR0058	42	44	AR001485	0.057	0.869	30	9360	100	67
AGSR0058	44	46	AR001486	0.018	0.321	b.d.	3120	b.d.	24
AGSR0058	46	40	AR001400	0.017	0.321	b.d.	2360	b.d.	10
AGSR0050	0	2	AR001487	0.004	0.272	50	10800	400	31
AGSR0059	2	4	AR001488	0.004	0.213	60	9840	200	16
AGSR0059	4	6	AR001490	0.03	0.304	50	7750	100	41
AGSR0059	6	8	AR001491	0.013	0.268	80	8690	100	14
AGSR0059	8	10	AR001493	0.029	0.332	50	5410	100	3
AGSR0059	10	12	AR001494	0.03	0.443	50	9950	100	2
AGSR0059	12	14	AR001495	0.28	0.598	30	8920	b.d.	5
AGSR0059	14	16	AR001496	0.298	0.755	40	8700	100	4
AGSR0059	16	18	AR001497	0.387	0.894	40	9160	100	5
AGSR0059	18	20	AR001498	0.077	0.408	50	8650	200	15
AGSR0059	20	22	AR001499	0.155	1.23	50	9490	100	1
AGSR0059	22	24	AR001500	0.132	1.35	40	10200	100	1
AGSR0059	24	26	AR001501	0.15	1.36	40	11900	100	b.d
AGSR0059	26	28	AR001502	0.186	1.46	50	11400	b.d.	b.d
AGSR0059	28	30	AR001503	0.205	1.7	30	12100	b.d.	1
AGSR0059	30	32	AR001504	0.189	1.7	50	12400	100	5
AGSR0059	32	34	AR001505	0.14	1.32	30	8880	b.d.	1
AGSR0059	34	36	AR001506	0.113	1.06	30	7450	b.d.	2
AGSR0059	36	38	AR001508	0.078	0.837	b.d.	5140	b.d.	3
AGSR0060	0	2	AR001509	0.005	0.088	30	8260	300	7
AGSR0060	2	4	AR001510	0.008	0.116	30	8170	300	19
AGSR0060	4	6	AR001511	0.009	0.108	30	8930	400	21
AGSR0060	6	8	AR001512	0.008	0.085	30	11900	600	2
AGSR0060	8	10	AR001512	0.008	0.109	30	12100	300	b.d
AGSR0060	10	12	AR001514	0.013	0.172	50	11100	200	b.d
AGSR0060	12	14	AR001514	0.013	0.245	80	8510	100	2
AGSR0000	14	16	AR001515	0.023	0.245	80	6260	100	4
AGSR0000	14	18	AR001518	0.030	0.619	40	80200	100	4
		20							4
AGSR0060	18 20	20	AR001519 AR001520	0.041	0.567	40 30	6880	100	4
AGSR0060		22	AR001520 AR001521	0.172	0.552		5510 6990	100	4
AGSR0060	22				0.56	40		100	
AGSR0060	24	26	AR001522	0.056	0.58	40	7170	100	4
AGSR0060	26	28	AR001523	0.052	0.729	40	9670	100	4
AGSR0060	28	30	AR001524	0.035	0.917	30	9870	100	18
AGSR0060	30	32	AR001525	0.055	0.747	20	5000	b.d.	6
AGSR0060	32	34	AR001526	0.047	0.765	40	9750	100	3
AGSR0060	34	36	AR001528	0.029	0.562	b.d.	2640	b.d.	5
AGSR0060	36	38	AR001529	0.014	0.33	b.d.	1140	b.d.	2
AGSR0060	38	40	AR001530	0.012	0.314	b.d.	1190	b.d.	1
AGSR0060	40	41	AR001531	0.022	0.389	b.d.	2470	b.d.	3
AGSR0061	0	2	AR001532	0.003	0.244	60	6710	100	129
AGSR0061	2	4	AR001533	0.004	0.327	100	9920	100	106
AGSR0061	4	6	AR001534	0.004	0.428	140	11100	200	80
AGSR0061	6	8	AR001535	0.006	0.403	100	14500	200	96
AGSR0061	8	10	AR001536	0.038	0.657	60	13500	200	11
AGSR0061	10	12	AR001538	0.125	1.03	50	11200	100	5
AGSR0061	12	14	AR001539	0.482	1.06	50	9550	100	3
AGSR0061	14	16	AR001540	0.071	0.84	60	12300	100	2
AGSR0061	16	18	AR001541	0.077	0.908	40	9900	100	1
AGSR0061	18	20	AR001542	0.571	1.31	40	8560	100	1
AGSR0061	20	22	AR001543	0.265	1.01	40	10100	100	8
AGSR0061	20	24	AR001543	0.203	0.884	40	10000	100	11
AGSR0001	22	24	AR001544	0.055	1.08	50	15500	100	2
AGSR0061	24	28	AR001545 AR001546	0.055	1.08	40	14700	100	5
AGSR0061	20	30	AR001546 AR001548	0.051	0.923	40 50	12000	100	5
AGSR0061		30 32	AR001548 AR001549						
	30	32 34		0.275	1.17	50	10700	100	10
AGSR0061	32		AR001550	0.206	1.36	50	13400	100	
AGSR0061	34	36	AR001551	0.152	1.09	40	11700	100	7
AGSR0061	36	38	AR001552	0.144	0.764	20	5850	b.d.	5
AGSR0061	38	40	AR001553	0.123	0.644	20	4710	b.d.	8
AGSR0061	40	42	AR001554	0.1	0.538	20	3900	b.d.	7
AGSR0061	42	44	AR001555	0.068	0.527	20	5300	b.d.	19
AGSR0061	44	46	AR001556	0.025	0.282	10	3070	b.d.	2
AGSR0061	46	48	AR001558	0.033	0.369	b.d.	4180	b.d.	10
AGSR0061	48	50	AR001559	0.028	0.555	b.d.	3100	b.d.	2
AGSR0062	0	2	AR001560	0.009	0.218	60	10000	300	54
AGSR0062	2	4	AR001561	0.012	0.28	60	12300	400	6
AGSR0062	4	6	AR001562	0.009	0.331	80	16000	400	5
AGSR0062	6	8	AR001562	0.007	0.346	50	14700	300	6
	8	10	AR001563	0.007	0.165	20	5510	100	4
ACSBUUE2			AR001564 AR001565	0.006			7170	100	4
AGSR0062	10				0.155	30	11/0	100	5
AGSR0062	10	12				FO			
AGSR0062 AGSR0062	12	14	AR001566	0.011	0.365	50	17700	200	5
						50 40 40			

Hole	From	То	Sample	Со	Ni	Sc	Cr	V	Au
AGSR0062	(m) 20	(m) 22	AR001571	(%) 0.03	(%) 0.647	(g/t) 20	(ppm) 5340	(ppm) b.d.	(ppb) 2
AGSR0002 AGSR0062	20	24	AR001571	0.03	0.047	20	8780	100	b.d
AGSR0062	24	26	AR001573	0.017	0.564	20	8090	b.d.	1
AGSR0062	26	28	AR001574	0.028	0.668	20	7980	b.d.	8
AGSR0062 AGSR0062	28 30	30 32	AR001575 AR001576	0.034	0.782	10 30	6660 17000	100 b.d.	3
AGSR0062	32	34	AR001578	0.033	0.62	30	19100	b.d.	1
AGSR0062	34	36	AR001579	0.026	0.709	20	9950	b.d.	2
AGSR0062	36	38	AR001580	0.019	0.455	20	7420	100	3
AGSR0062 AGSR0062	38 40	40	AR001581 AR001582	0.018	0.55	20 b.d.	8560 7090	100 b.d.	b.d b.d
AGSR0062	40	42	AR001582 AR001583	0.025	0.397	20	6030	100	b.d
AGSR0062	44	46	AR001584	0.037	0.713	20	4950	b.d.	1
AGSR0062	46	48	AR001585	0.02	0.494	b.d.	4940	b.d.	19
AGSR0062 AGSR0062	48 50	50 51	AR001586 AR001588	0.014 0.013	0.286	b.d. b.d.	3390 4020	b.d. b.d.	35 2
AGSR0062 AGSR0063	0	2	AR001588 AR001589	0.013	0.220	40	9020	400	30
AGSR0063	2	4	AR001590	0.002	0.031	10	2450	100	35
AGSR0063	4	6	AR001591	0.002	0.016	b.d.	935	b.d.	15
AGSR0063	6	8	AR001592	0.001	0.014	b.d.	1240	b.d.	2
AGSR0063	8	10 12	AR001593	0.01	0.048	b.d.	7610	200 400	1
AGSR0063 AGSR0063	10 12	12	AR001594 AR001595	0.015	0.066	30 30	21700 42300	500	1
AGSR0063	14	16	AR001596	0.01	0.137	40	44000	200	5
AGSR0063	16	18	AR001598	0.012	0.203	70	33000	100	3
AGSR0063	18	20	AR001599	0.023	0.369	50	16100	100	4
AGSR0063	20	22	AR001600	0.129	0.616	50	11400	100	5
AGSR0063 AGSR0063	22 24	24 26	AR001601 AR001602	0.207	0.823	40 50	11100 13600	b.d. b.d.	2
AGSR0063	24	28	AR001602 AR001603	0.104	0.788	30	11500	100	5
AGSR0063	28	30	AR001604	0.094	0.834	20	11100	100	8
AGSR0063	30	32	AR001605	0.065	0.705	30	9920	b.d.	14
AGSR0063	32	34	AR001606	0.061	0.613	20	8590	b.d.	10
AGSR0063 AGSR0064	34 0	36 2	AR001608 AR001609	0.035	0.455	10 50	5590 10900	b.d. 600	37 44
AGSR0004 AGSR0064	2	4	AR001609 AR001610	0.003	0.033	30	9400	800	44
AGSR0064	4	6	AR001611	0.003	0.03	20	8990	900	25
AGSR0064	6	8	AR001612	0.002	0.035	20	7490	1000	11
AGSR0064	8	10	AR001613	0.005	0.104	40	14600	800	6
AGSR0064	10	12	AR001614	0.005	0.32	60	21300	200	4
AGSR0064 AGSR0064	12 14	14 16	AR001615 AR001616	0.006	0.32	60 60	13300 10500	200	6
AGSR0064	16	18	AR001618	0.019	0.665	60	12600	200	6
AGSR0064	18	20	AR001619	0.036	0.737	50	11200	200	3
AGSR0064	20	22	AR001620	0.028	0.681	60	12600	200	6
AGSR0064	22	24	AR001621	0.03	0.695	50	11700	200	4
AGSR0064 AGSR0064	24 26	26 28	AR001622 AR001623	0.034	0.996	50 50	13100 13300	200	4
AGSR0064	28	30	AR001623	0.041	1.05	60	15900	b.d.	2
AGSR0064	30	32	AR001625	0.05	0.881	40	17200	b.d.	7
AGSR0064	32	34	AR001626	0.048	0.673	40	12900	b.d.	1
AGSR0064	34 36	36 38	AR001628 AR001629	0.096	0.784	40 50	12100 12000	b.d. 100	3
AGSR0064 AGSR0064	38	40	AR001629 AR001630	0.425	1.20	50	14900	100	5
AGSR0064	40	42	AR001631	0.107	0.991	50	18000	200	6
AGSR0064	42	44	AR001632	0.075	1.2	40	17100	b.d.	7
AGSR0064	44	46	AR001633	0.058	1.23	50	19800	200	2
AGSR0064 AGSR0064	46 48	48 50	AR001634 AR001635	0.047	1.12 0.58	50 20	20400 9860	200	3 61
AGSR0004	50	52	AR001035	0.027	0.515	40	9430	100	5
AGSR0065	0	2	AR001638	0.014	0.269	80	9880	200	129
AGSR0065	2	4	AR001639	0.022	0.399	70	6810	200	48
AGSR0065	4	6	AR001640	0.096	0.48	50	9870	200	74
AGSR0065 AGSR0065	6 8	8 10	AR001641 AR001642	0.052	0.536	50 50	11500 9440	200	13 19
AGSR0065	10	12	AR001642	0.023	0.759	70	10500	300	9
AGSR0065	12	14	AR001644	0.021	0.687	60	11000	300	6
AGSR0065	14	16	AR001645	0.023	0.647	70	10900	200	7
AGSR0065 AGSR0065	16 18	18 20	AR001646 AR001648	0.086	0.929	70 60	12600 12300	200	4
AGSR0005 AGSR0065	20	20	AR001648 AR001649	0.14	0.636	50	12300	200	3
AGSR0065	22	24	AR001650	0.106	0.642	50	11300	200	5
AGSR0065	24	26	AR001651	0.065	0.761	60	13100	200	9
AGSR0065	26	28	AR001652	0.053	0.674	50	13200	200	157
AGSR0065 AGSR0065	28 30	30 32	AR001653 AR001654	0.067	0.778	60 40	12800 10600	300 200	20
AGSR0005 AGSR0065	30	34	AR001654	0.173	0.720	40 50	14000	300	3
AGSR0065	34	36	AR001656	0.104	0.843	50	17600	300	5
AGSR0065	36	38	AR001658	0.131	1.02	40	18000	200	5
AGSR0065	38	40	AR001659	0.145	1.17	40	22100	200	3
AGSR0065 AGSR0065	40 42	42	AR001660 AR001661	0.088	0.903	20 20	13200 6440	b.d. b.d.	18 6
AGSR0065	42	44	AR001661 AR001662	0.073	0.723	20 b.d.	4370	b.d.	2
AGSR0065	46	48	AR001663	0.049	0.482	b.d.	3660	b.d.	21
AGSR0065	48	50	AR001664	0.013	0.268	b.d.	3110	b.d.	187
AGSR0065	50	52	AR001665	0.023	0.341	b.d.	3900	b.d.	42
AGSR0065	52	54	AR001666	0.026	0.383	b.d.	4510	b.d.	266
AGSR0065 AGSR0066	54 0	56 2	AR001668 AR001669	0.031	0.387	b.d. 10	3670 2190	b.d. 100	38 36
AGSR0066	2	4	AR001670	0.006	0.075	50	5770	400	9
AGSR0066	4	6	AR001671	0.04	0.227	50	6310	500	4
AGSR0066	6	8	AR001672	0.021	0.174	20	3810	200	3
AGSR0066	8	10	AR001673	0.02	0.181	20	6240	100	1 4
AGSR0066	10	12	AR001674	0.017	0.265	30	7690	100	4

Hole	From (m)	To (m)	Sample number	Co (%)	Ni (%)	Sc (g/t)	Cr (ppm)	V (ppm)	Au (ppb
AGSR0066	12	14	AR001675	0.006	0.157	b.d.	3590	b.d.	11
AGSR0066	14	16	AR001676	0.008	0.458	20	3270	b.d.	12
AGSR0066	16	18	AR001678	0.017	0.619	30	4830	b.d.	9
AGSR0066	18	20	AR001679	0.037	1.12	30	5250	b.d.	3
AGSR0066	20	22	AR001680	0.035	0.893	10	4050	b.d.	21
AGSR0066	22	24	AR001681	0.024	0.522	10	2620	b.d.	10
AGSR0066	24	26	AR001682	0.016	0.321	b.d.	1530	b.d.	23
AGSR0066	26	28	AR001683	0.026	0.622	20	3800	100	14
AGSR0066	28	30	AR001684	0.044	0.554	10	2900	100	12
AGSR0066	30	32	AR001685	0.045	0.352	b.d.	1250	b.d.	6
AGSR0066	32	34 35	AR001686 AR001688	0.047	0.389	b.d.	1680 1510	b.d.	6
AGSR0066 AGSR0067	0	2	AR001088 AR001689	0.041	0.339	b.d. 30	7920	b.d. 400	21
AGSR0007 AGSR0067	2	4	AR001089 AR001690	0.007	0.156	30	10200	300	12
AGSR0007	4	6	AR001691	0.017	0.165	40	13800	300	3
AGSR0007	6	8	AR001692	0.027	0.25	70	16100	300	2
AGSR0067	8	10	AR001693	0.021	0.262	50	9730	b.d.	4
AGSR0067	10	12	AR001694	0.017	0.289	40	9470	100	2
AGSR0067	12	14	AR001695	0.015	0.223	50	9090	100	2
AGSR0067	14	16	AR001696	0.024	0.414	50	9710	100	4
AGSR0067	16	18	AR001698	0.022	0.39	60	9710	100	1
AGSR0067	18	20	AR001699	0.016	0.341	60	9370	100	5
AGSR0067	20	22	AR001700	0.012	0.262	40	5960	100	4
AGSR0067	22	24	AR001701	0.014	0.421	40	7570	100	12
AGSR0067	24	26	AR001702	0.019	0.543	40	12100	100	4
AGSR0067	26	28	AR001703	0.017	0.413	40	12100	100	7
AGSR0067	28	30	AR001704	0.01	0.296	30	6210	b.d.	11
AGSR0067	30	32	AR001705	0.021	0.542	30	6420	b.d.	8
AGSR0067	32	34	AR001706	0.032	0.75	30	6430	b.d.	6
AGSR0067 AGSR0067	34	36	AR001708 AR001709	0.028	0.621	20	6560	b.d.	8
AGSR0067 AGSR0067	36	38 40	AR001709 AR001710	0.02	0.465	20 20	4260 3620	b.d. b.d.	5
AGSR0067 AGSR0067	40	40	AR001710 AR001711	0.087	0.649	30	3620 5990	b.d.	4
AGSR0007 AGSR0067	40	42	AR001711	0.053	0.789	b.d.	4440	b.d.	13
AGSR0007 AGSR0067	42	44	AR001712 AR001713	0.033	0.554	b.d.	2470	b.d.	10
AGSR0068	0	2	AR001714	0.006	0.183	100	10900	300	22
AGSR0068	2	4	AR001715	0.005	0.256	90	10200	200	166
AGSR0068	4	6	AR001716	0.006	0.24	110	8940	200	107
AGSR0068	6	8	AR001718	0.007	0.335	100	12900	200	35
AGSR0068	8	10	AR001719	0.013	0.545	70	11100	200	8
AGSR0068	10	12	AR001720	0.044	0.715	50	11700	100	8
AGSR0068	12	14	AR001721	0.023	0.428	50	7640	100	37
AGSR0068	14	16	AR001722	0.021	0.418	60	7650	100	16
AGSR0068	16	18	AR001723	0.023	0.482	60	10000	100	51
AGSR0068	18	20	AR001724	0.02	0.57	60	11600	200	27
AGSR0068	20	22	AR001725	0.019	0.589	60	11800	200	19
AGSR0068 AGSR0068	22 24	24 26	AR001726 AR001728	0.018	0.641	60 60	12600	200	11 9
AGSR0008	24	20	AR001728	0.069	0.948	60	12600 13000	200	7
AGSR0068	28	30	AR001731	0.157	0.933	60	12600	100	5
AGSR0068	30	32	AR001732	0.086	0.735	50	11400	100	11
AGSR0068	32	34	AR001733	0.091	0.882	50	11900	100	8
AGSR0068	34	36	AR001734	0.095	1.04	50	11200	100	4
AGSR0068	36	38	AR001735	0.179	1.31	40	10400	100	3
AGSR0068	38	40	AR001736	0.227	1.47	50	9770	100	3
AGSR0068	40	42	AR001738	0.146	1.31	50	11700	100	8
AGSR0068	42	44	AR001739	0.117	1.31	30	11900	b.d.	4
AGSR0068	44	46	AR001740	0.037	0.676	20	5630	b.d.	18
AGSR0068	46	48	AR001741	0.009	0.297	10	3370	b.d.	21
AGSR0068	48	50	AR001742	0.025	0.367	20	5250	b.d.	38
AGSR0068	50	52	AR001743	0.009	0.343	b.d.	1040	b.d.	24
AGSR0068	52	54	AR001744	0.017	0.547	b.d.	2500 2550	b.d.	74
AGSR0068 AGSR0102	54 0	55 2	AR001745 AR002646	0.017	0.52	b.d. 10	2550 650	b.d. 100	66 3
AGSR0102 AGSR0102	2	4	AR002646 AR002648	0.002	0.015	20	845	200	1
AGSR0102 AGSR0102	4	6	AR002648 AR002649	0.003	0.016	30	3010	700	1
AGSR0102	6	8	AR002650	0.002	0.014	20	2330	600	4
AGSR0102	8	10	AR002651	0.002	0.027	10	890	b.d.	1
AGSR0102	10	12	AR002652	0.001	0.018	10	655	b.d.	b.d
AGSR0102	12	14	AR002653	0.001	0.019	b.d.	595	b.d.	b.d
AGSR0102	14	16	AR002654	0.001	0.022	b.d.	560	b.d.	b.d
AGSR0102	16	18	AR002655	0.001	0.027	10	505	b.d.	b.d
AGSR0102	18	20	AR002656	0.002	0.065	10	2160	100	1
AGSR0102	20	22	AR002658	0.019	0.313	40	7950	500	b.d
AGSR0102	22	24	AR002659	0.031	0.434	20	6860	300	2
AGSR0102	24	26	AR002660	0.044	0.533	30	8840	300	2
AGSR0102	26	28	AR002661	0.044	0.606	10	12600	100	1
AGSR0102	28	30	AR002662	0.023	0.334	20	14800	100	1
AGSR0102	30	32	AR002663	0.026	0.344	10	15000	100	1 b.d
AGSR0102 AGSR0102	32 34	34 36	AR002664 AR002665	0.029	0.409	20 20	14200 10000	100 b.d.	b.d
AGSR0102 AGSR0102	34	36 38	AR002665 AR002666	0.02	0.341 0.385	10	8140	b.d. b.d.	1
AGSR0102 AGSR0102	30	38 40	AR002668	0.024	0.385	10	6960	100	b.d
AGSR0102 AGSR0102	40	40	AR002668	0.037	0.477	10	8970	100	D.u
AGSR0102 AGSR0102	40	42	AR002669 AR002670	0.028	0.651	20	12100	100	1
AGSR0102 AGSR0102	42	44	AR002670 AR002671	0.029	0.651	20	7920	100	2
AGSR0102 AGSR0102	44	40	AR002672	0.031	0.797	30	16100	100	2
AGSR0102	0	2	AR002072 AR002673	0.003	0.054	20	2100	200	29
AGSR0103	2	4	AR002673 AR002674	0.003	0.034	20	2490	200	6
AGSR0103	4	6	AR002074 AR002675	0.007	0.046	20	2010	200	1
AGSR0103	6	8	AR002075	0.004	0.040	10	3660	300	1
AGSR0103	8	10	AR002678	0.003	0.043	20	6060	600	5
AGSR0103	10	12	AR002679	0.008	0.033	10	7960	700	11

Hole	From (m)	To (m)	Sample number	Co (%)	Ni (%)	Sc (g/t)	Cr (ppm)	V (ppm)	Au (ppb)
AGSR0103	14	16	AR002681	0.006	0.129	30	18200	700	b.d
AGSR0103	16	18	AR002682	0.008	0.194	50	28100	700	1
AGSR0103	18	20	AR002683	0.009	0.418	100	32400	400	1
AGSR0103	20	22	AR002684	0.008	0.707	110	38300	300	1
AGSR0103	22	24	AR002685	0.01	0.553	90	28500	200	2
AGSR0103	24	26	AR002686	0.015	0.405	90	16800	300	2
AGSR0103	26	28	AR002688	0.016	0.504	50	12600	200	4
AGSR0103	28	30	AR002689	0.013	0.514	50	15300	200	6
AGSR0103	30	32	AR002690	0.017	0.546	50	17900	200	7
AGSR0103	32	34	AR002691	0.017	0.498	50	16600	200	7
AGSR0103	34	36	AR002692	0.015	0.449	40	13200	100	6
AGSR0103	36	38	AR002693	0.015	0.393	30	10100	100	5
AGSR0103	38	40	AR002694	0.018	0.448	30	9960	100	4
AGSR0103	40	42	AR002695	0.022	0.47	30	9020	100	3
AGSR0103	42	44	AR002696	0.024	0.71	40	13300	100	1
AGSR0103	44	46	AR002698	0.027	0.623	40	11300	100	2
AGSR0103	46	48	AR002699	0.245	0.896	40	9400	100	1
AGSR0103	48	50	AR002700	0.183	1.06	40	10300	100	1
AGSR0103	50	52	AR002701	0.183	1.07	30	8210	100	3
AGSR0103	52	54	AR002702	0.133	0.994	40	14500	100	1
AGSR0103	54	56	AR002703	0.121	1.47	40	18500	100	2

Appendix 5 – Collated intercepts, Goongarrie South

Parameters used to define nickel, cobalt, and scandium intercepts at Goongarrie South

Parameter	Nickel	Cobalt	Scandium
Minimum cut-off	0.50 % Ni	0.10 % Co	50 g/t Sc
Minimum intercept thickness	2 m	2 m	2 m
Maximum internal waste thickness	4 m	4 m	4 m

Nickel, cobalt, and scandium intercepts from new drilling at Goongarrie South

All newly defined cobalt intercepts at Goongarrie South (calculated both from new data and historic data) were calculated using the following parameters:

- Intercepts based on nickel distributions were first calculated using 0.50 % nickel minimum cut-off, 2 m minimum intercept, and 4 m internal waste. Such parameters define broad intercepts that may be cobalt bearing or cobalt poor. Intercepts are considered of interest where cobalt values exceed 0.08%.
- Intercepts based on cobalt distributions are then calculated using a 0.10 % cobalt minimum cut-off, 2 m minimum intercept, and 4 m internal waste. All significant cobalt intercepts are hosted within the broader nickel-based intercepts and tend to define higher-grade, shorter intercepts.
- Where core loss was an issue, and where the thickness of core loss was less than the internal waste thickness, grades in zones of core loss were taken as the weighted average of the intervals immediately above and below the core loss interval in question. This provides grade distributions downhole that are consistent with mineralised zones, where cobalt and nickel grades are observed to change gradually rather than randomly downhole. By defining zones of core loss as being of a value between the interval above and the interval below, a similarly smooth transition in grades downhole is achieved. This method of estimated grade in zones of core loss is therefore considered the most suitable means of defining grade in such zones at Goongarrie South.
- Where an interval of core loss, through calculation, marked the beginning or end of a mineralised interval, this core loss interval was not included in that mineralisation interval.

Scandium intercepts were defined by using a 50g/t scandium minimum cut-off, a 2 m minimum intercept, and a 4 m internal waste. Scandium intercept distributions do not show a consistent relationship to cobalt and nickel mineralisation and are usually in the shallow subsurface.

Drill Hole	Interval	Ni Intercept		Co Intercept	Sc intercept
AGSD0011	0 – 14 m	14 m at 0.04 % Co and 0.73 % Ni from surface	including	2 m at 0.15 % Co and 1.18 % Ni from 2 m	
	20 – 28 m	7.3 m at 0.06 % Co and 1.03 % Ni from 20.7 m			
AGSR0044	0 – 12 m				12 m at 67 g/t Sc from surface
	6 – 23 m	17 m at 0.09 % Co and 0.77 % Ni from 6 m	including	6 m at 0.18 % Co and 1.00 % Ni from 10 m	
AGSR0047	2 – 32 m	30 m at 0.05 % Co and 0.80 % Ni from 2 m	including	2 m at 0.13 % Co and 1.41 % Ni from 6 m	
AGSR0048	0 – 6 m	2 m at 0.03 % Co and 0.53 % Ni from surface			6 m at 77 g/t Sc from surface
	8 – 22 m	14 m at 0.10 % Co and 0.70 % Ni from 8 m	including	4 m at 0.24 % Co and 0.99 % Ni from 8 m	
AGSR0050	0 – 6 m				6 m at 70 g/t Sc from surface
	4 – 22 m	18 m at 0.11 % Co and 0.90 % Ni from 4 m	including	6 m at 0.28 % Co and 1.05 % Ni from 14 m	6 m at 53 g/t Sc from 12 m
AGSR0051	0 – 12 m				12 m at 60 g/t Sc from surface
	4 – 44 m	40 m at 0.03 % Co and 0.77 % Ni from 4 m	including	2 m at 0.12 % Co and 1.30 % Ni from 10 m	
AGSR0052	8 – 36 m	28 m at 0.09 % Co and 0.98 % Ni from 8 m	including	8 m at 0.18 % Co and 1.14 % Ni from 22 m	
AGSR0053	0 – 12 m	12 m at 0.10 % Co and 0.61 % Ni from surface	including	2 m at 0.11 % Co and 0.59 % Ni from surface	
			and	2 m at 0.20 % Co and 0.94 % Ni from 8 m	
	24 – 32 m	8 m at 0.03 % Co and 0.65 % Ni from 24 m			
AGSR0054	6 – 20 m	14 m at 0.27 % Co and 1.18 % Ni from 6 m	including	6 m at 0.59 % Co and 1.95 % Ni from 8 m	
AGSR0055	2 – 44 m	42 m at 0.16 % Co and 1.43 % Ni from 2 m	including	34 m at 0.19 % Co and 1.60 % Ni from 8 m	28 m at 53 g/t Sc from 10 m
AGSR0056	0 – 10 m				10 m at 68 g/t Sc from surface
	8 – 22 m	14 m at 0.08 % Co and 0.56 % Ni from 8 m		6 m at 0.19 % Co and 0.69 % Ni from 6 m	
AGSR0057A	2 – 40 m	38 m at 0.07 % Co and 1.03 % Ni from 2 m	including	6 m at 0.27 % Co and 1.61 % Ni from 30 m	30 m at 57 g/t Sc from 2 m
AGSR0058	0 – 34 m				34 m at 56 g/t Sc from surface
	6 – 44 m	38 m at 0.04 % Co and 1.08 % Ni from 6 m	including	2 m at 0.11 % Co and 1.21 % Ni from 30 m	
AGSR0059	0 – 12 m				12 m at 57 g/t Sc from surface
	12 – 38 m	26 m at 0.18 % Co and 1.13 % Ni from 12 m	including	24 m at 0.19 % Co and 1.15 % Ni from 12 m	
AGSR0060	10 – 16 m				6 m at 70 g/t Sc from 10 m
	16 – 32 m	20 m at 0.06 % Co and 0.66 % Ni from 16 m	including	2 m at 0.17 % Co and 0.55 % Ni from 20 m	
AGSR0061	0 – 16 m				16 m at 78 g/t Sc from surface
	8 – 50 m	42 m at 0.15 % Co and 0.86 % Ni from 8 m		14 m at 0.25 % Co and 1.01 % Ni from 10 m	
			and	12 m at 0.17 % Co and 0.93 % Ni from 30 m	
AGSR0062	0 – 14 m				14 m at 50 g/t Sc from surface
	14 – 46 m	32 m at 0.03 % Co and 0.67 % Ni from 14 m			

Drill Hole	Interval	Ni Intercept		Co Intercept	Sc intercept
AGSR0063	16 – 26 m				10 m at 52 g/t Sc from 16 m
	20 – 34 m	14 m at 0.12 % Co and 0.73 % Ni from 20 m	including	8 m at 0.15 % Co and 0.74 % Ni from 20 m	
AGSR0064	0 – 2 m				2 m at 50 g/t Sc from surface
	10 – 30 m				20 m at 56 g/t Sc from 10 m
	16 – 52 m	36 m at 0.08 % Co and 0.90 % Ni from 16 m	including	6 m at 0.23 % Co and 1.14 % Ni from 36 m	
AGSR0065	0 – 36 m				36 m at 58 g/t Sc from surface
	6 – 46 m	40 m at 0.09 % Co and 0.76 % Ni from 6 m		6 m at 0.13 % Co and 0.69 % Ni from 18 m 16 m at 0.12 % Co and 0.86 % Ni from 30 m	
AGSR0066	2 – 6 m				4 m at 50 g/t Sc from 2 m
	16 – 30 m	14 m at 0.03 % Co and 0.66 % Ni from 16 m			
AGSR0067	6 – 20 m				14 m at 54 g/t Sc from 6 m
	24 – 46 m	22 m at 0.03 % Co and 0.57 % Ni from 24 m			
AGSR0068	0 – 42 m	4 m at 0.03 % Co and 0.63 % Ni from 8 m			42 m at 64 g/t Sc from surface
	18 – 46 m	28 m at 0.10 % Co and 0.94 % Ni from 18 m	including	4 m at 0.17 % Co and 0.94 % Ni from 26 m	
			and	8 m at 0.17 % Co and 1.35 % Ni from 36 m	
AGSR0069	0 – 2 m				2 m at 50 g/t Sc from 6 m

Appendix 6 – JORC Code, 2012 Edition, Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques Note: Due to the similarity of the deposit styles, procedures and estimations used this table represents the combined methods for all Ardea Resources (ARL) Cobalt and Nickel Laterite Resources. Where data not collected by ARL has been used in the resource calculations, variances in techniques are noted.	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 All holes were sampled "in-principle" on a 2 metre down hole interval basis, with exceptions being made due to visual geological/mineralogical breaks, and end of hole final-lengths. All sampling lengths were recorded in ARL's standard core-sampling record spreadsheets. Sample condition, sample recovery and sample size were recorded for all drill-core samples collected by ARL. The drill spacing was designed to augment historic drilling, bringing drill densities down from 80mE x 80mN to 40mE x 80mN. The drilling will also contribute to provide material for the purpose of metallurgical sampling and production of production of pilot marketing samples of cobalt sulphate and nickel sulphate. Industry standard practice was used in the processing of samples for assay, with 2m intervals of RC chips collected in green plastic bags. As the drilling was within a 2012 JORC-compliant Indicated Ni-Co resource, prior knowledge of the resource peculiarities contributes and assists significantly to current interpretation of mineralisation. Assay of samples utilised standard laboratory techniques with standard ICP-AES undertaken on 50 gram samples for Au, Pt and Pd, and lithium borate fused-bead XRF analysis used for the remaining multi-element suite. Further details of lab processing techniques are found in Quality of assay data and laboratory tests below.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	In this most recent program, Ardea drilled the Goongarrie South deposit with 43 diamond drill holes on a varying MGA94 z51 northing grid-spacing of 80m at several localities (see Figure 2). Holes were vertical (-90 degree dip), designed to optimally intersect the sub-horizontal mineralisation. RC drilling was performed with a face sampling hammer (bit diameter between 4½ and 5 ¼ inches) and samples were collected by either a cone (majority) or riffle splitter using 2 metre composites. Sample condition, sample recovery and sample size were recorded for all drill samples collected by ARL.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC chip sample recovery was recorded by visual estimation of the reject sample, expressed as a percentage recovery. Overall estimated recovery was approximately 80%, which is considered to be acceptable for nickel-cobalt laterite deposits. RC Chip sample condition recorded using a three code system, D=Dry, M=Moist, W=Wet. A small proportion of samples were moist or wet (11.5%), with the majority of these being associated with soft goethite clays, where water injection has been used to improve drill recovery. Measures taken to ensure maximum RC sample recoveries included maintaining a clean cyclone and drilling equipment, using water injection at times of reduced air circulation, as well as regular communication with the drillers and slowing drill advance rates when variable to poor ground conditions are encountered.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drilling was undertaken for metallurgical purposes, and twinning comparison with previous historic RC holes. The level of logging detail utilised supports this type of review and was as follows: Visual geological logging was completed for all drilling both at the time of drilling (using standard Ardea laterite logging codes), and later over relevant met-sample intervals with a metallurgical-logging perspective. Geochemistry from historic data was used together with logging data to validate logged geological horizons. Nickel laterite profiles contain geochemically very distinct horizons and represent a sound validation tool against visual logging. The major part of the logging system was developed by Heron Resources Limited specifically for the KNP and was designed to facilitate future geo-metallurgical studies. It has been customised by Ardea Resources Limited as considered appropriate for recent developments. Planned drill hole target lengths were adjusted by the geologist during drilling. The geologist also oversaw all sampling and drilling on 1 metre intervals. The logging system was developed by Heron Resources Limited specifically for the KNP and was been retained for reference. Visual geological logging was completed for all RC drilling on 1 metre intervals. The logging system was developed by Heron Resources Limited specifically for the KNP and was designed to facilitate future geo-metallurgical studies. Logging was performed at the time of drilling, and planned drill hole target lengths adjusted by the geologist during drilling. The geologist during drilling. The geologist during drilling. The logging system was developed by Heron Resources Limited specifically for the KNP and was designed to facilitate future geo-metallurgical studies. Logging was performed at the time of drilling, and planned drill hole target lengths adjusted by the geologist during drilling. The geologist also oversaw all sampling and drilling practices. A mixture of ARL employees and contract geologists su

Criteria	JORC Code explanation	Commentary
		 A small selection of representative chips were also collected for every 1 metre interval and stored in chip-trays for future reference. Only drilling contractors with previous nickel laterite experience and suitable rigs were used. The geological legend used by ARL is a qualitative legend designed to capture the key physical and metallurgical features of the nickel-cobalt laterite mineralisation. Logging captured the colour, regolith unit and mineralisation style, often accompanied by the logging of protolith, estimated percentage of free silica, texture, grain size and alteration. Logging correlated well with the geochemical algorithm developed by Heron Resources Limited for the Yerilla Nickel Project for material type prediction from multi-element assay data.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 2 metre (and rarely 1 metre) composite samples were recovered using a 15:1 rig mounted cone splitter or trailer mounted riffle splitter during drilling into a calico sample bag. Sample target weight was between 2 and 3kg. In the case of wet clay samples, grab samples taken from sample return pile, initially into a calico sample bag. Wet samples stored separately from other samples in plastic bags and riffle splitt once dry. QAQC was employed. A standard, blank or duplicate sample was inserted into the sample stream 10 metres on a rotating basis. Standards were either quantified industry standards, or standards made from homogenised bulk samples of the mineralisation being drilled (in the case of the Yerilla project). Every 30th sample a duplicate sample was taken using the same sample sub sample technique as the original sub sample. Sample sizes are appropriate for the nature of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 All Ardea samples were submitted to Kalgoorlie ALS laboratories and transported to ALS Perth, where they were pulverised. Analysis at ALS Perth was by ICP utilising a 50g charge (lab method PGM-ICP24) for PGM suite elements (Au, Pt, Pd). Additional analysis was undertaken by sending subsamples to ALS Brisbane where analysis by silicate fusion / XRF analysis (lab method ME-XRF12n) for multiple grade attributes for laterite ores (Al2O3, As, BaO, CaO, Cl, Co, Cr2O3, Cu, Fe2O3, Ga, K2O, MgO, MnO, Na2O, Ni, P2O5, Pb, Sc, SiO2, SO3, SrO, TiO2, V2O5, Zn, ZrO2). Fusion / XRF analysis is an industry standard method used to analyse nickel laterite ores and ALS is a reputable commercial laboratory with extensive experience in assaying nickel laterite samples from numerous Western Australian nickel laterite deposits. ALS routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. Ardea also inserted QAQC samples into the sample stream at a 1 in 10 frequency, alternating between blanks (industrial sands) and standard reference materials. Additionally, a review was conducted for geochemical consistency between historically expected data, recent data, and geochemical values that would be expected in a nickel laterite profile. All of the QAQC data has been statistically assessed. There were rare but explainable inconsistencies in the returning results from standards submitted, and it has been determined that levels of accuracy and precision relating to the samples are acceptable.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All Ardea samples were submitted to Kalgoorlie ALS laboratories and transported to ALS Perth, where they were pulverised. Analysis at ALS Perth was by ICP utilising a 50g charge (lab method PGM-ICP24) for PGM suite elements (Au, Pt, Pd). Additional analysis was undertaken by sending subsamples to ALS Brisbane where analysis by silicate fusion / XRF analysis (lab method ME-XRF12n) for multiple grade attributes for laterite ores (Al2O3, As, BaO, CaO, CI, Co, Cr2O3, Cu, Fe2O3, Ga, K2O, MgO, MnO, Na2O, Ni, P2O5, Pb, Sc, SiO2, SO3, SrO, TiO2, V2O5, Zn, ZrO2). Fusion / XRF analysis is an industry standard method used to analyse nickel laterite ores and ALS is a reputable commercial laboratory with extensive experience in assaying nickel laterite samples from numerous Western Australian nickel laterite deposits. ALS routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. Ardea also inserted OAQC samples into the sample stream at a 1 in 20 frequency, alternating between duplicates splits, blanks (industrial sands) and standard reference materials. Additionally, a review was conducted for geochemical consistency between historically expected data, recent data, and geochemical values that would be expected in a nickel laterite profile. All of the QAQC data has been statistically assessed. There were some inconsistencies in the returning results from standards submitted, relating to the XRF analysis suite. This has been thoroughly investigated with the conclusion that either some standards were not correctly identified and recorded on submission, or time/external influence has had an impact on some of the quality of the values

Criteria	JORC Code explanation	Commentary
		standards, as figures reported for the relevant errant standards were significantly different to the normal recognisable standard values. Ardea has undertaken its own further in-house review of QAQC results of the ALS routine standards, 100% of which returned within acceptable QAQC limits. This fact combined with the fact that the data is demonstrably consistent and repeated for expected Ni/Co values within the lateritic ore profiles of both reported areas and is also consistent with nearby abundant historic drilling data, has meant that the results are considered to be acceptable and suitable for reporting.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill holes are to be surveyed using an RTK DGPS system with either a 3 or 7 digit accuracy. The coordinates are stored in the exploration database referenced to the MGA Zone 51 Datum GDA94. All holes drilled as part of the Goongarrie South program were vertical. No holes were down-hole surveyed except at EOH. The sub-horizontal orientation of the mineralisation, combined with the soft nature of host material resulted in minimal deviation of vertical diamond drill holes. The grid system for all models is GDA94. Where historic data or mine grid data has been used it has been transformed into GDA94 from its original source grid via the appropriate transformation. Both original and transformed data is stored in the digital database. A DGPS pickup up of drill collar locations is considered sufficiently accurate for reporting of resources, but is not suitable for mine planning and reserves.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The drill spacing was designed to augment historic drilling, bringing drill densities down from 80mE x 80mN to 40mE x 80mN. The program to date is part of a broader program. All proposed drilling has been completed at Elsie South only. Drilling continues at all other deposits. Given the homogeneity of this style of orebody, the spacing is, for bulk-scale metallurgical work and probable mining techniques, considered sufficient. Sample compositing has not been applied to the newly collected data.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 All drill holes in this program were vertical and give a true width of the regolith layers and mineralisation within the modelled resource. On a local scale, there is some geological variability in the northern most drill line (6669600mN) due to a probable shear structure. However, this local variability is not considered to be significant for the project overall, but will have local effects on mining and scheduling later in the project life. As the detailed shape of the orebody has already been well defined by an abundance of nearby resource drill holes (including the northern section) it is no bias is expected to be introduced from data pertaining to these drill holes with reference to mineralised structures.
Sample security	The measures taken to ensure sample security.	 All samples were collected and accounted for by ARL employees/consultants during drilling. All samples were bagged into calico plastic bags and closed with cable ties. Samples were transported to Kalgoorlie from logging site by ARL employees/ consultants and submitted directly to ALS Kalgoorlie. The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were submitted to the laboratory. Any discrepancies between sample submissions and samples received were routinely followed up and accounted for.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 ARL has periodically conducted internal reviews of sampling techniques relating to resultant exploration datasets, and larger scale reviews capturing the data from multiple drilling programmes within the KNP. Internal reviews of the exploration data included the following: Unsurveyed drill hole collars (less than 1% of collars). Drill Holes with overlapping intervals (0%). Drill Holes with no logging data (less than 2% of holes). Sample logging intervals beyond end of hole depths (0%). Samples with no assay data (from 0 to <5% for any given project, usually related to issues with sample recovery from difficult ground conditions, mechanical issues with drill rig, damage to sample in transport or sample preparation). Assay grade ranges. Collar coordinate ranges Valid hole orientation data. The ALS Laboratory was visited by ARL staff in 2016, and the laboratory processes and procedures were reviewed at this time and determined to be robust.

Section 2 - Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and	• Type, reference name/number, location and	The tenement on which the Goongarrie South drilling was undertaken is M29/272.
land tenure status	 ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of roporting along with any known impodiments 	 The tenement and land tenure status for the KNP prospect areas containing continuous cobalt rich laterite mineralisation is summarised in Table 3 following and in the Ardea Prospectus, section 9 "Solicitor's Report on Tenements".
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The Goongarrie South deposit was initially discovered by Heron Resources Ltd and subsequently drilled by Vale Inco Limited in a Joint Venture. Much historic assessment of the Black Range Project was undertaken by Heron Resources Limited.
Geology	• Deposit type, geological setting and style of mineralisation.	 The KNP nickel-cobalt laterite mineralisation developed during the weathering and near surface enrichment of Archaean-aged olivine-cumulate ultramafic units. The mineralisation is usually within 60 metres of surface and can be further subdivided on mineralogical and metallurgical characteristics into upper iron-rich material and lower magnesium-rich material based on the ratios of iron to magnesium. The deposits are analogous to many weathered ultramafic-hosted nickel-cobalt deposits both within Australia and world-wide. Cobalt-rich mineralisation is typically best developed in iron-rich material in regions of deep weathering in close proximity to major shear zones or transfer shear structures and to a lesser extent as thin zones along the interface of ferruginous and saprolite boundaries at shallower depths proximal to shear structures. The Cobalt Zone is associated with a distinctive geo-metallurgical type defined as "Clay Upper Pyrolusitic". Mineralogy is goethite, gibbsite and pyrolusite (strictly "asbolite" or "cobaltian wad"). The Cobalt Zones typically occur as sub-horizontal bodies at a palaeo-water table within the KNP (late stage supergene enrichment). This material is particularly well developed at Goongarrie South.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevatior above sea level in metres) of the drill hole collal dip and azimuth of the hole down hole length and interception depth hole length. 	
Drill hole Information	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All assay data relating to the metals of interest at Goongarrie South, namely cobalt, nickel, Sc, and chromium, are listed in "Appendix 2 – Assay results". Other elements were assayed but have not been reported here. They are of use and of interest from a scientific and metallurgical perspective, but are not considered material and their exclusion does not detract from the understanding of this report.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Most drill hole samples have been collected over 2m down hole intervals. All newly defined cobalt and nickel intercepts at Goongarrie South were calculated using the following parameters: Intercepts based on nickel distributions were first calculated using 0.50 % nickel minimum cut-off, 2 m minimum intercept, and 4 m internal waste. Such parameters define broad intercepts that may be cobalt bearing or cobalt poor. Intercepts are considered of interest where cobalt values exceed 0.08%. Intercepts based on cobalt distributions are then calculated using a 0.10 % cobalt minimum cut-off, 2 m minimum intercept, and 4 m internal waste. All significant coball intercepts are then calculated using a 0.10 % cobalt intercepts are hosted within the broader nickel-based intercepts and tend to define higher-grade, shorter intercepts. Where core loss was an issue, and where the thickness of core loss was less than the internal waste thickness, grades in zones of core loss were taken as the weighted average of the intervals immediately above and below the core loss interval in question. This provides grade distributions downhole that are consistent with mineralised zones, where cobalt and nickel grades are observed to change gradually rather than randomly downhole. By defining zones of core loss as being of a value between the interval above and the interval below, a similarly smooth transition in grades downhole is achieved. This method of estimated grade in zones of core loss is therefore considered the most suitable means of defining grade in such zones at Goongarrie South. Where an interval of core loss, through calculation, marked the beginning or end of a mineralised interval, this core loss interval was not included in that mineralisation

Criteria	JORC Code explanation	Commentary
		 interval. Sc intercepts were defined by using a 50g/t Sc minimum cut-off, a 2 m minimum intercept, and a 4 m internal waste. Sc intercept distributions do not show a consistent relationship to cobalt and nickel mineralisation and are usually in the shallow subsurface. Assay compositing techniques were not used in this assessment. No metal equivalent calculations have been used in this assessment.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The nickel-cobalt laterite mineralisation at Goongarrie South has a strong global sub- horizontal orientation. All drill holes are vertical. All drill holes intersect the mineralisation at approximately 90° to its orientation
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Maps and sections of the cobalt and nickel mineralisation are shown within the report. Every drill hole on every section drilled is shown.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Not applicable to this report. All results are report either in the text or in the associated appendices. Examples of high-grade mineralisation are labelled as such.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other data are, at this stage, known to be either beneficial or deleterious to recovery of the metals reported. Uncertainties surrounding the possibility of recovery of the metals of interest are noted prominently in the report.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further drilling is likely to be undertaken at Goongarrie South but has not yet been defined. Further drilling could include infill drilling as well as extension of lines to the north and south as appropriate. Metallurgical assessment of all metals of interest at Goongarrie South will be undertaken during the Pre-Feasibility Study (PFS) which has commenced on the KNP Cobalt Zone.