

STRICKLAND PROJECT UPDATE: DRILLING INTERSECTS 9m @ 3.3g/t GOLD WITHIN BROADER MINERALISED ZONE AT T6 PROSPECT

HIGHLIGHTS:

- Aircore drilling at T6 has intersected four bedrock gold prospects from 1.5km to 3.5km in strike length, with several prospects remaining open along mineralised structures
- T6 has produced the best drill intercept to date from the Strickland Gold Project of 56m @ 0.8g/t (from surface to EOH), including 24m @ 1.6g/t and 9m @ 3.3g/t
- > Drilling at T6a has confirmed the primary gold-bearing horizon, with multiple drill intersections, over a 1.5km strike length
- > Drilling at T2 is complete (results due July) and drilling at T1 underway

Arrow Minerals Limited (**Arrow** or the **Company**) is pleased to announce the maiden aircore drilling programme over the T6 Prospect at the Strickland Gold Project (**Project**) has intersected bedrock gold mineralisation in multiple adjacent drill lines across four bedrock anomalies, ranging from 1.5km to 3.5km in strike length (*Figure 2*). The T6a Prospect remains open to the west and T6b is open to the south.

A total of 394 holes for 7,937m (average hole depth of 20m) were drilled on a 400m x 80m spacing. Drilling at T6a has produced the best gold drill intercepts to date from the Project, including:

- 56m @ 0.8g/t from 0m to EOH, including
 24m @ 1.6g/t and 9m @ 3.3g/t (BARAC0477);
- 34m @ 0.3g/t from 0m, including 6m @ 0.6g/t and **3m @ 0.9g/t** (BARAC0457); and
- 45m @ 0.4g/t from 6m, including 8m @ 0.9g/t and 1m @ 2.1g/t (BARRC025)¹.

Arrow has confirmed the gold bearing horizon at T6a as a siliceous sulfidic unit within the lower BIF (*Figure 3*). The mineralised unit has a true width of

Figure 1: Strickland Gold Project location map

around 50m and has been confirmed through drilling over a strike length of 1.5kms. The T6b Prospect has a similar mineralised horizon, potentially structurally offset, with a strike length of 1.5kms.

These intercepts demonstrate the potential for substantial mineralisation at T6 and the identified host horizon provides a mappable unit which will be targeted by infill drilling to test the strike and depth extent of gold mineralisation.

¹ Previously announced on 24 January 2018.

Figure 3: T6 Prospect – section A-AA showing significant gold intersections

Arrow Minerals Limited

Multiple Bedrock Gold Anomalies Defined at T6 Prospect

2018 Aircore Drilling Programme

Arrow has completed a major aircore drilling programme at the T6 Prospect, designed to test the extent of a 4.2km x 1.3km gold-in-soil anomaly, define underlying geology and potential structural controls, and delineate bedrock gold anomalism at the base of weathering (saprolite/bedrock interface). A total of 394 holes for 7,937m (average hole depth of 20m) were drilled on a 400m x 80m spacing with some holes closed in to 40m spacing where there was limited saprolite development.

The aircore drilling programme has delineated four gold in bed rock anomalies:

- T6a 1.5km x 300m gold-in-bedrock anomaly hosted within a BIF-ultramafic-sediment package adjacent to a felsic porphyry intrusion;
- T6b 1.7km x 300m gold-in-bedrock anomaly hosted around narrow BIFs within a felsic and ultramafic volcanic package;
- T6c 3.5km x 300m gold-in-bedrock anomaly located along a major shear bend at the contact of felsic and lamprophyre intrusions and ultramafic volcanics; and
- T6d 3km x 100-500m wide gold-in-bedrock anomaly located along several splays off a major project scale shear and a mineralised porphyry intrusion.

Similar to the T8 Prospect, the gold-in-soil anomaly at T6 has proven to be largely in-situ, directly overlying bedrock mineralisation. The drill programme has also significantly enhanced the understanding of the geological setting and structural controls on mineralisation. Massive quartz breccias, disseminated sulphides and quartz carbonate sulphide veins were intersected in the drilling with abundant felsic, dacitic and lamprophyre intrusions.

All of the aircore holes were assayed using 3m composite samples. Some of the better results include:

- > 56m @ 0.8g/t from 0m to EOH, including 24m @ 1.6g/t and 9m @ 3.3g/t (BARAC0477);
- > 34m @ 0.3g/t from 0m, including 6m @ 0.6g/t and **3m @ 0.9g/t** (BARAC0457); and
- > 27m @ 0.1g/t from 11m, including 3m @ 0.7g/t (BARAC0705).

End of hole multielement analysis returned multiple zones of As-Sb-Bi-Mo-Te-W anomalism (>10x crustal abundance) in proximity to interpreted key structures. These pathfinder elements are indicative of orogenic gold systems and indicate a highly fertile mineralisation system.

Arrow has now confirmed the gold bearing horizon at T6a with holes targeting an internal siliceous sulfidic unit within the lower BIF sequence. The mineralised unit has a true width of around 50m and has been confirmed, with 400m line spacing drilling, over a strike length of 1.5 kms at T6a. Drilling in late 2017 also intersected the mineralised unit, with hole BARRC025 intersecting 45m @ 0.4g/t, including 8m @ 0.9g/t and 1m @ 2.1g/t. A similar mineralised horizon, potentially structurally offset, has been confirmed at T6b, which is also 1.5kms in strike length.

These intercepts confirm the potential for substantial gold mineralisation at T6 and the identified host horizon provides a mappable unit which can be easily targeted by in-fill drilling to test the horizon along strike and at depth.

Following the current aircore drilling programme at the T8, T6, T2 and T1 Prospects, expected to be completed in June 2018, Arrow will commence a close spaced in-fill aircore drilling programme in 3Q 2018. The in-fill programme at the T6 Prospect will include 100m x 20m spaced drill holes over areas of defined bedrock gold mineralisation.

Commenting on the drill results from T6, Arrow's Managing Director, Mr Steven Michael, said:

"In May 2018, Arrow announced its first strike-extensive, drill tested, bedrock gold anomaly at the T8 Prospect, with a footprint of 1.8km x 400m. Drilling at the T6 Prospect has now confirmed four bedrock gold anomalies of equal or greater size than T8. In addition, the mineralised horizon identified at T6a and T6b provides a target unit to be drilled in 3Q 2018.

Arrow is nearing completion of the first major drill programme ever undertaken at the Strickland Gold Project and results to date indicate the presence of a highly fertile system with the potential to host substantial gold mineralisation. This drill programme is being completed over four prospects within a portfolio of 14 prospects. In addition, Arrow has recently undertaken first-pass soil sampling over new tenements to the south of T14 and around T4, which we expect will add new gold targets to the portfolio.

With over \$5 million in cash, receivables and listed investments, Arrow is in a strong financial position. The Company has sufficient funds to continue to drill and aggressively explore the 100%-owned Strickland Gold Project."

Drilling at T2 Prospect Complete

Arrow has completed wide-spaced aircore drilling at the T2 Prospect located in the Mt Elvire Greenstone Belt. The T2 prospect is defined by a 5.5km x 2.5km gold-in-soil anomaly.

A total of 213 holes were drilled for 3,539m (average hole depth 16m) on a nominal 400m x 80m spacing over the majority of the western side of the South Elvire Greenstone Belt (*Figure 4*).

Closer spaced drilling 200m x 40m was completed in proximity to Arrow's 2017 drill holes (*see announcement on 14 September 2017*), which included:

- 48m @ 0.7g/t from 27m, including 21m @ 1.1g/t (BARRC007)
- 34m @ 0.5g/t from 32m, including 1m @ 2.9g/t (BARDD02)

The geological setting at T2 is largely a north plunging synclinal keel comprised of mafic/ultramafic volcanics overlain by calcsilicates, BIF and minor sediments with minor felsic intrusions. The core of the syncline is thrusted and intruded by a felsic porphyry with abundant quartz veining. The fringes of the greenstone belt comprise multiple pulses of

Figure 4: T2 Prospect – completed aircore drilling programme over gold-in-soil anomaly

quartz carbonate sulphide veining which appears to be associated with mineralisation and surface gold-in-soil anomalism.

All samples have been delivered to the lab with results expected in July 2018.

Drilling at T1 Underway

Aircore drilling has now commenced at the T1 Prospect, with a total of 420 holes planned. Drilling will consist of 400m x 40m spaced holes over the majority of the prospect (*Figure 5*). Closer spaced drilling (200m x 40m) will be undertaken in proximity to Arrow's 2017 drill holes (*see announcement on 14 September 2017*), which included results of **15m @ 1.5g/t** from 12m, including **3m @ 6.7g/t** (BARAC0168).

Drilling at the T1 Prospect is expected to be completed by the end of June with results in August.

Figure 5: T1 Prospect – planned aircore drilling programme over gold-in-soil anomaly

For further information visit www.arrowminerals.com.au or contact:

Arrow Minerals Limited

Mr Steven Michael *Managing Director* E: <u>info@arrowminerals.com.au</u>

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Dean Tuck who is a Member of the Australian Institute of Geoscientists. Mr Tuck is a full time employee of Arrow and has more than five years' experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves". Mr Tuck consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Additionally, Mr Tuck confirms that the entity is not aware of any new information or data that materially affects the information contained in the ASX releases referred to in this report.

Hole_ID	Dip	Azimuth	Easting	Northing	RL (m)	EOH (m)
BARAC0318	-90	0	787243	6687402	477	51
BARAC0319	-90	0	787323	6687402	471	47
BARAC0320	-90	0	787401	6687399	468	19
BARAC0321	-90	0	787482	6687403	466	32
BARAC0322	-90	0	787565	6687405	466	26
BARAC0323	-90	0	787644	6687403	462	37
BARAC0324	-90	0	787729	6687402	460	42
BARAC0325	-90	0	787795	6687405	461	46
BARAC0326	-90	0	787886	6687394	457	33
BARAC0327	-90	0	787597	6687400	464	28
BARAC0328	-90	0	788043	6687404	459	37
BARAC0329	-90	0	788126	6687406	457	16
BARAC0330	-90	0	788196	6687402	461	3
BARAC0331	-90	0	788282	6687402	453	3
BARAC0332	-90	0	788365	6687403	454	12
BARAC0333	-90	0	788439	6687406	453	13
BARAC0334	-90	0	788523	6687399	452	26
BARAC0335	-90	0	788595	6687399	453	15
BARAC0336	-90	0	788682	6687399	453	17
BARAC0337	-90	0	788761	6687400	455	10
BARAC0338	-90	0	788839	6687402	453	23
BARAC0339	-90	0	788921	6687399	453	19
BARAC0340	-90	0	789007	6687402	449	31
BARAC0341	-90	0	789082	6687405	450	6
BARAC0342	-90	0	789160	6687404	449	8
BARAC0343	-90	0	789241	6687402	450	18
BARAC0344	-90	0	789308	6687408	449	7
BARAC0345	-90	0	789403	6687404	453	10
BARAC0346	-90	0	789482	6687403	455	23
BARAC0347	-90	0	789569	6687569	455	13
BARAC0348	-90	0	789635	6687402	458	5
BARAC0349	-90	0	787414	6686993	474	19
BARAC0350	-90	0	787480	6686998	468	16
BARAC0351	-90	0	787564	6687001	470	8
BARAC0352	-90	0	787642	6686998	465	31
BARAC0353	-90	0	787726	6687005	462	40
BARAC0354	-90	0	787805	6687004	460	18
BARAC0355	-90	0	787882	6687002	454	26
BARAC0356	-90	0	787961	6687000	457	23
BARAC0357	-90	0	788042	6687001	455	26
BARAC0358	-90	0	788121	6687000	456	34
BARAC0359	-90	0	788205	6686998	461	13
BARAC0360	-90	0	788281	6687003	457	4
BARAC0361	-90	0	788360	6687000	456	4

0

788438

6687001

457

-90

Appendix A – Aircore drill collar locations over T8 Prospect (MGA94/Zone 51)

BARAC0362

12

Hole_ID	Dip	Azimuth	Easting	Northing	RL (m)	EOH (m)
BARAC0363	-90	0	788600	6687003	457	43
BARAC0364	-90	0	788761	6687001	457	35
BARAC0365	-90	0	788924	6686991	456	40
BARAC0366	-90	0	789081	6687003	455	16
BARAC0367	-90	0	789246	6687003	455	15
BARAC0368	-90	0	789404	6686999	455	14
BARAC0369	-90	0	210401	6687005	451	14
BARAC0370	-90	0	210562	6687009	456	15
BARAC0371	-90	0	210642	6687014	457	15
BARAC0372	-90	0	210726	6687020	458	20
BARAC0373	-90	0	789400	6687795	456	6
BARAC0374	-90	0	789320	6687803	454	6
BARAC0375	-90	0	789242	6687812	455	9
BARAC0376	-90	0	789157	6687801	452	8
BARAC0377	-90	0	789073	6687800	454	18
BARAC0378	-90	0	789000	6687798	451	27
BARAC0379	-90	0	788916	6687805	453	17
BARAC0380	-90	0	788839	6687803	453	22
BARAC0381	-90	0	788758	6687796	453	12
BARAC0382	-90	0	788680	6687797	451	15
BARAC0383	-90	0	788601	6687797	449	23
BARAC0384	-90	0	788522	6687798	452	22
BARAC0385	-90	0	788438	6687800	454	23
BARAC0386	-90	0	788361	6687804	451	29
BARAC0387	-90	0	788274	6687799	451	23
BARAC0388	-90	0	788199	6687801	450	7
BARAC0389	-90	0	788118	6687800	452	4
BARAC0390	-90	0	788041	6687803	451	28
BARAC0391	-90	0	787961	6687806	452	18
BARAC0392	-90	0	787879	6687801	455	19
BARAC0393	-90	0	787789	6687800	453	15
BARAC0394	-90	0	787721	6687802	457	22
BARAC0395	-90	0	787639	6687802	463	24
BARAC0396	-90	0	/8/5/0	6687801	466	5
BARAC0397	-90	0	/8/480	6687804	464	8
BARAC0398	-90	0	/8/39/	6687800	460	24
BARAC0399	-90	0	/8/320	6687800	464	40
BARAC0400	-90	0	787239	6687803	470	42
BARAC0401	-90	0	789035	6688212	475	19
BARAC0402	-90	0	788918	6688199	442	22
	-90	U	788842	0088204	449	14
	-90	U	/88/58	0088199	446	11
	-90	U	700604	0088198	44/	3
	-90	U	788530	688202	440	1/
	-90	U	788442	088203	447	3
BARAC0408	-90	U	/88443	6688203	443	20

Hole_ID	Dip	Azimuth	Easting	Northing	RL (m)	EOH (m)
BARAC0409	-90	0	788361	6688205	449	23
BARAC0410	-90	0	788280	6688203	449	28
BARAC0411	-90	0	788200	6688203	447	30
BARAC0412	-90	0	788122	6688200	449	19
BARAC0413	-90	0	788043	6688202	451	19
BARAC0414	-90	0	787959	6688203	456	21
BARAC0415	-90	0	787876	6688204	453	29
BARAC0416	-90	0	787800	6688202	455	21
BARAC0417	-90	0	787719	6688203	454	10
BARAC0418	-90	0	787641	6688202	454	12
BARAC0419	-90	0	787559	6688200	451	11
BARAC0420	-90	0	787479	6688204	454	6
BARAC0421	-90	0	787400	6688207	455	14
BARAC0422	-90	0	787319	6688204	455	36
BARAC0423	-90	0	787241	6688209	453	30
BARAC0424	-90	0	787160	6688204	453	40
BARAC0425	-90	0	787077	6688206	458	34
BARAC0426	-90	0	787001	6688205	466	35
BARAC0427	-90	0	786916	6688201	458	26
BARAC0428	-90	0	786838	6688201	457	28
BARAC0429	-90	0	786760	6688201	457	53
BARAC0430	-90	0	786678	6688198	458	18
BARAC0431	-90	0	786593	6688201	452	45
BARAC0432	-90	0	210644	6688619	467	30
BARAC0433	-90	0	210480	6688611	459	22
BARAC0434	-90	0	210325	6688598	455	2
BARAC0435	-90	0	789560	6688600	454	21
BARAC0436	-90	0	789400	6688597	453	23
BARAC0437	-90	0	789241	6688595	455	36
BARAC0438	-90	0	789078	6688597	456	16
BARAC0439	-90	0	788921	6688598	451	15
BARAC0440	-90	0	788761	6688595	449	8
BARAC0441	-90	0	788677	6688595	448	15
BARAC0442	-90	0	788601	6688595	449	29
BARAC0443	-90	0	788534	6688603	450	23
BARAC0444	-90	0	788433	6688600	446	43
BARAC0445	-90	0	788369	6688600	448	20
BARAC0446	-90	0	788283	6688601	443	23
BARAC0447	-90	0	788040	6688596	445	34
	-90	U	/8/883	6688600	448	35
	-90	U	18/123		447	5
	-90	U	/8/56U	0088003	445	15
	-90	0	10/395		447	3 10
	-90	U	787242		445	10
	-90	U	78/081	0088001	449	33
BARAC0454	-90	U	786915	6688600	450	11

Hole_ID	Dip	Azimuth	Easting	Northing	RL (m)	EOH (m)
BARAC0455	-90	0	786794	6688605	457	45
BARAC0456	-90	0	786641	6688602	449	39
BARAC0457	-90	0	786522	6688602	456	55
BARAC0458	-90	0	788199	6688599	459	8
BARAC0459	-90	0	788378	6689000	448	32
BARAC0460	-90	0	788306	6689002	444	21
BARAC0461	-90	0	788224	6688998	446	16
BARAC0462	-90	0	788143	6689003	447	6
BARAC0463	-90	0	788079	6688999	442	12
BARAC0464	-90	0	787980	6688998	443	19
BARAC0465	-90	0	787898	6688999	444	31
BARAC0466	-90	0	787819	6688998	443	18
BARAC0467	-90	0	787747	6688989	439	30
BARAC0468	-90	0	787650	6689000	446	12
BARAC0469	-90	0	787521	6689006	447	12
BARAC0470	-90	0	787366	6689008	447	2
BARAC0471	-90	0	787205	6689001	446	11
BARAC0472	-90	0	787042	6689001	449	6
BARAC0473	-90	0	786887	6689006	449	8
BARAC0474	-90	0	786726	6689002	452	9
BARAC0475	-90	0	786623	6688998	457	38
BARAC0476	-90	0	786561	6689000	458	40
BARAC0477	-90	0	786507	6689003	457	56
BARAC0478	-90	0	789629	6689398	464	24
BARAC0479	-90	0	789480	6689398	471	10
BARAC0480	-90	0	789339	6689391	458	4
BARAC0481	-90	0	789157	6689396	455	6
BARAC0482	-90	0	789002	6689395	456	6
BARAC0483	-90	0	788840	6689400	453	3
BARAC0484	-90	0	788682	6689395	452	3
BARAC0485	-90	0	788523	6689398	448	4
BARAC0486	-90	0	788360	6689404	451	12
BARAC0487	-90	0	788281	6689390	447	20
BARAC0488	-90	0	788200	6689392	446	11
BARAC0489	-90	0	788122	6689392	445	50
BARAC0490	-90	0	788042	6689399	445	20
BARAC0491	-90	0	787966	6689409	442	24
BARAC0492	-90	0	787884	6689402	444	32
BARAC0493	-90	0	787812	6689405	442	23
BARAC0494	-90	0	787560	6689393	441	15
BARAC0495	-90	0	787720	6689400	444	24
BARAC0496	-90	0	787640	6689390	444	13
BARAC0497	-90	0	/87482	6689397	448	12
BARAC0498	-90	0	/87400	6689396	443	15
BARAC0499	-90	0	787322	6689399	443	28
BARAC0500	-90	0	787243	6689402	444	23

Hole_ID	Dip	Azimuth	Easting	Northing	RL (m)	EOH (m)
BARAC0501	-90	0	787160	6689406	445	7
BARAC0502	-90	0	787085	6689406	447	5
BARAC0503	-90	0	787004	6689404	449	7
BARAC0504	-90	0	786923	6689403	452	13
BARAC0505	-90	0	786843	6689401	453	16
BARAC0506	-90	0	786762	6689401	453	45
BARAC0507	-90	0	786679	6689407	451	51
BARAC0508	-90	0	786600	6689402	455	48
BARAC0509	-90	0	788363	6689803	451	25
BARAC0510	-90	0	788278	6689797	447	28
BARAC0511	-90	0	788200	6689797	450	33
BARAC0512	-90	0	788125	6689795	446	13
BARAC0513	-90	0	788039	6689800	447	28
BARAC0514	-90	0	787962	6689798	446	29
BARAC0515	-90	0	787882	6689799	445	20
BARAC0516	-90	0	787800	6689798	446	24
BARAC0517	-90	0	787721	6689797	446	23
BARAC0518	-90	0	787640	6689794	443	18
BARAC0519	-90	0	787560	6689797	444	18
BARAC0520	-90	0	787475	6689805	442	11
BARAC0521	-90	0	787395	6689804	441	13
BARAC0522	-90	0	787319	6689803	438	14
BARAC0523	-90	0	787248	6689801	444	20
BARAC0524	-90	0	787161	6689802	443	18
BARAC0525	-90	0	787080	6689802	443	10
BARAC0526	-90	0	786998	6689804	444	18
BARAC0527	-90	0	786919	6689802	446	20
BARAC0528	-90	0	786839	6689801	444	6
BARAC0529	-90	0	786758	6689803	442	18
BARAC0530	-90	0	786683	6689797	446	32
BARAC0531	-90	0	786522	6689802	445	42
BARAC0532	-90	0	786363	6689800	447	55
BARAC0533	-90	0	786197	6689801	455	56
BARAC0534	-90	0	789559	6686193	459	22
BARAC0535	-90	0	789476	6686216	457	19
BARAC0536	-90	0	789395	668619	461	33
BARAC0537	-90	0	789329	6686199	459	17
BARAC0538	-90	0	789236	6686203	460	14
BARAC0539	-90	0	789158	6686213	460	6
BARAC0540	-90	0	/89086	6686195	459	5
BARAC0541	-90	0	/89000	6686186	462	5
BARAC0542	-90	0	/88913	6686201	460	3
BARAC0543	-90	U	/88850	6686212	462	3
BARAC0544	-90	U	/88/62	6686199	462	3
BARAC0545	-90	U	/88679	6686204	465	15
BARAC0546	-90	0	788598	6686200	462	28

Hole_ID	Dip	Azimuth	Easting	Northing	RL (m)	EOH (m)
BARAC0547	-90	0	788519	6686202	462	32
BARAC0548	-90	0	788434	6686205	460	10
BARAC0549	-90	0	788355	6686204	462	3
BARAC0550	-90	0	788272	6686201	461	9
BARAC0551	-90	0	788204	6686199	462	3
BARAC0552	-90	0	788113	6686207	460	19
BARAC0553	-90	0	788035	6686197	464	21
BARAC0554	-90	0	787959	6686199	461	8
BARAC0555	-90	0	787884	6686199	464	6
BARAC0556	-90	0	787800	6686203	467	6
BARAC0557	-90	0	787712	6686208	466	3
BARAC0558	-90	0	787642	6686206	465	3
BARAC0559	-90	0	787552	6686198	471	15
BARAC0560	-90	0	787473	6686197	465	22
BARAC0561	-90	0	787395	6686203	465	23
BARAC0562	-90	0	787321	6686206	463	3
BARAC0563	-90	0	789559	6686602	459	22
BARAC0564	-90	0	789481	6686595	460	26
BARAC0565	-90	0	789412	6686601	456	25
BARAC0566	-90	0	789324	6686617	457	22
BARAC0567	-90	0	789238	6686603	457	33
BARAC0568	-90	0	789155	6686608	453	14
BARAC0569	-90	0	789080	6686598	455	12
BARAC0570	-90	0	789003	6686595	455	12
BARAC0571	-90	0	788926	6686594	457	8
BARAC0572	-90	0	788845	6686598	455	27
BARAC0573	-90	0	788755	6686596	457	15
BARAC0574	-90	0	788677	6686603	455	23
BARAC0575	-90	0	788602	6686602	456	14
BARAC0576	-90	0	788524	6686599	457	16
BARAC0577	-90	0	788435	6686604	457	4
BARAC0578	-90	0	788361	6686599	457	7
BARAC0579	-90	0	788278	6686606	457	8
BARAC0580	-90	0	788202	6686596	455	7
BARAC0581	-90	0	788125	6686602	457	12
BARAC0582	-90	0	788039	6686601	465	39
BARAC0583	-90	0	/8/959	6686600	461	47
BARAC0584	-90	0	787887	6686593	460	59
BARAC0585	-90	0	/8/804	6686600	461	/
BARAC0586	-90	0	/8/721	6686603	464	11
BARACU587	-90	U	/8/639	6686602	469	25
BARAC0588	-90	U	/8/924	6686597	459	39
BARACU589	-90	U	/8/99/	6686601	458	38
BARAC0590	-90	U	/880/9	6686600	457	9
BARAC0591	-90	U	/88158	6686600	456	19
BARAC0592	-90	0	/88237	6686598	454	13

Hole_ID	Dip	Azimuth	Easting	Northing	RL (m)	EOH (m)
BARAC0593	-90	0	788318	6686603	458	8
BARAC0594	-90	0	788401	6686599	457	3
BARAC0595	-90	0	788481	6686610	460	3
BARAC0596	-90	0	788559	6686600	467	26
BARAC0597	-90	0	788639	6686603	471	26
BARAC0598	-90	0	788719	6686601	459	5
BARAC0599	-90	0	788798	6686595	458	9
BARAC0600	-90	0	788880	6686600	457	28
BARAC0601	-90	0	788597	6686594	457	18
BARAC0602	-90	0	211681	6687074	464	11
BARAC0603	-90	0	211522	6687061	464	36
BARAC0604	-90	0	211364	6687063	461	34
BARAC0605	-90	0	211206	6687050	459	24
BARAC0606	-90	0	211046	6687035	463	59
BARAC0607	-90	0	210878	6687031	460	26
BARAC0608	-90	0	210523	6687012	454	18
BARAC0609	-90	0	210443	6687007	456	22
BARAC0610	-90	0	210362	6687004	456	6
BARAC0611	-90	0	789441	6686997	454	11
BARAC0612	-90	0	789365	6687003	467	10
BARAC0613	-90	0	789282	6687001	457	6
BARAC0614	-90	0	789204	6687002	454	20
BARAC0615	-90	0	789118	6687001	458	14
BARAC0616	-90	0	789004	6687011	455	25
BARAC0617	-90	0	788963	6686999	466	8
BARAC0618	-90	0	788875	6686993	433	20
BARAC0619	-90	0	788806	6686998	464	21
BARAC0620	-90	0	788700	6686990	431	9
BARAC0621	-90	0	788645	6687003	469	29
BARAC0622	-90	0	788561	6687004	460	33
BARAC0623	-90	0	/884/9	6687003	459	16
BARAC0624	-90	0	788405	6686997	457	9
BARAC0625	-90	0	/88322	6687002	456	3
BARACU626	-90	0	788244	6687007	459	2
BARACU627	-90	0	700004	6687005	450	23
BARACU628	-90	0	788084	6686000	458	3
BARAC0629	-90	0	788002	6687002	457	44 25
	-90	0	707925	6687407	457	25
BARACUOSI	-90	0	709444	6687407	455	o F
BARACOGZ	-90	0	789797	6687400	454	Л
BARACO624	-90 _00	0	780202	6627/05	452	+
BARACO635	-90 -90	0	789125	6627400	45 <i>2</i>	s R
BARACO636	-90 -90	0	789042	6687400	455	20
BARACO637	-90	0	788957	6687409	47 <u>4</u>	36
BARACO638	-90	0	788883	6687401	454	50
5, 11, 100050	50	0	,00005	0007401		5

Hole_ID	Dip	Azimuth	Easting	Northing	RL (m)	EOH (m)
BARAC0639	-90	0	788802	6687401	455	20
BARAC0640	-90	0	788714	6687405	452	12
BARAC0641	-90	0	788642	6687403	459	12
BARAC0642	-90	0	788566	6687401	462	27
BARAC0643	-90	0	788480	6687404	459	33
BARAC0644	-90	0	788401	6687404	454	10
BARAC0645	-90	0	788322	6687406	457	2
BARAC0646	-90	0	788245	6687406	457	3
BARAC0647	-90	0	788167	6687406	457	3
BARAC0648	-90	0	788082	6687401	458	37
BARAC0649	-90	0	788002	6687405	457	39
BARAC0650	-90	0	787909	6687392	480	42
BARAC0651	-90	0	787844	6687403	463	25
BARAC0652	-90	0	787763	6687404	463	37
BARAC0653	-90	0	210419	6687400	490	18
BARAC0654	-90	0	210357	6687808	459	30
BARAC0655	-90	0	789559	6687806	459	17
BARAC0656	-90	0	788717	6688198	451	12
BARAC0657	-90	0	788642	6688199	451	9
BARAC0658	-90	0	788562	6688206	456	7
BARAC0659	-90	0	788484	6688198	449	20
BARAC0660	-90	0	788402	6688205	447	21
BARAC0661	-90	0	787918	6688205	454	25
BARAC0662	-90	0	787843	6688200	457	38
BARAC0663	-90	0	787764	6688204	454	20
BARAC0664	-90	0	787681	6688206	454	18
BARAC0665	-90	0	788646	6688595	448	18
BARAC0666	-90	0	788561	6688598	447	21
BARAC0667	-90	0	788482	6688594	445	44
BARAC0668	-90	0	788404	6688604	451	35
BARAC0669	-90	0	788322	6688599	471	24
BARAC0670	-90	0	788243	6688602	446	34
BARAC06/1	-90	0	/88164	6688592	451	6
BARAC0672	-90	0	/880//	6688596	443	8
BARACU673	-90	0	/8800/	6688600	449	13
BARACU674	-90	0	787938	6688599	450	27
BARACU675	-90	0	787920	6688600	452	30
BARACU676	-90	0	/8/852	6688607	450	53
BARACU677	-90	0	707601	6688601	448	32
	-90	0	10/001	LU08800	440	11
	-90	0	706050	00000003	447	12
	-90	0	796760	0000002	448	20
BABACOGOL	-90	0	786600	0000000	449	22
BADACUCOS	-90 -00	0	786677	6688601	4/4	33 40
BADACOCOJ	-90	0	786610	6689602	455	40
DANALU084	-90	U	100010	0000003	450	20

Hole_ID	Dip	Azimuth	Easting	Northing	RL (m)	EOH (m)
BARAC0685	-90	0	786551	6688603	456	29
BARAC0686	-90	0	786492	6688602	458	49
BARAC0687	-90	0	788247	6688996	463	3
BARAC0688	-90	0	788184	6689000	444	8
BARAC0689	-90	0	788113	6689001	445	8
BARAC0690	-90	0	788042	6689001	445	13
BARAC0691	-90	0	787562	6689004	444	15
BARAC0692	-90	0	787480	6689004	444	6
BARAC0693	-90	0	787402	6689006	444	9
BARAC0694	-90	0	787321	6689010	448	29
BARAC0695	-90	0	787239	6689005	446	2
BARAC0696	-90	0	786837	6688986	445	14
BARAC0697	-90	0	786761	6689003	452	9
BARAC0698	-90	0	786682	6689003	454	12
BARAC0699	-90	0	786533	6688998	458	66
BARAC0700	-90	0	786447	6689003	462	44
BARAC0701	-90	0	788163	6689392	444	12
BARAC0702	-90	0	788080	6689395	452	16
BARAC0703	-90	0	787363	6689395	448	15
BARAC0704	-90	0	787281	6689397	444	26
BARAC0705	-90	0	787211	6689383	444	41
BARAC0706	-90	0	787123	6689404	446	6
BARAC0707	-90	0	787042	6689402	447	6
BARAC0708	-90	0	786962	6689404	450	14
BARAC0709	-90	0	786882	6689404	452	12
BARAC0710	-90	0	786803	6689405	455	34
BARAC0711	-90	0	786729	6689402	454	53

Appendix B -	· Significant as	say results	(min.	3m @	0.1g/t)
--------------	------------------	-------------	-------	------	---------

Hole ID	From (m)	To (m)	Length (m)	Grade (g/t)
BARAC0328	36	37 (EOH)	1	0.20
BARAC0394	11	22 (EOH)	11	0.23
incl.	11	14	3	0.48
BARAC0424	32	35	3	0.53
BARAC0457	0	34	34	0.25
incl.	10	16	6	0.57
and	22	25	3	0.89
BARAC0475	0	2	2	0.14
BARAC0477	0	56 (EOH)	56	0.82
incl.	0	24	24	1.62
incl.	12	21	9	3.34
and	42	45	3	0.83
BARAC0573	11	14	3	0.23
BARAC0584	53	56	3	0.11
BARAC0591	17	19 (EOH)	2	0.15
BARAC0600	23	26	3	0.11
BARAC0651	14	17	3	0.15
BARAC0677	31	32 (EOH)	1	0.37
BARAC0685	0	2	2	0.10
BARAC0693	0	9 (EOH)	9	0.21
BARAC0699	15	26	11	0.14
BARAC0705	11	38	27	0.13
incl.	14	17	3	0.65

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	• Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 Aircore (AC) chips were collected at 1m intervals. 3m composites were collected by a scoop sample from 1m sample piles. AC samples were collected via a cyclone return system attached to the Drill Rig. The sample was collected in buckets and placed in rows on the pad in 1m intervals.
	• Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 2-3 kg samples were collected from the sample piles Field duplicates were collected on a 1:50 ratio to ensure repeatability of sampling method CRM standards were inserted on a 1:50 ratio to test the calibration of lab equipment. Sample weights have been recorded and reported by the lab.
	• Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 Air core drilling was used to obtain 1m samples which were placed on the ground from which a scoop was used to composite 3m samples weighing approximately 2-3kgs being made up equally from each sample pile. These samples will be dispatched to ALS Laboratories in Perth for sample preparation and analysis. 3 kg samples were pulverised to 85% passing 75 micron for Au determination by fire assay of a 50g aliquot followed by ICP-AES (ALS Code Au-ICP22). A fresh rock sample was collected from the end of hole and analysed for a 48 element suite (ALS Code ME-MS61) via a four acid digest of a 0.25 gram aliquot finished with ICP-MS. Four acid digest is considered a near total digest. Hyperspectral data was also collected from an end of hole sample on

Criteria	JORC Code explanation	Commentary
		the coarse reject, as opposed to pulverised sample, by a TerraSpec 4 (TRSPEC-20) and interpreted by AusSpec International (ALS Code INTERP-11)
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	• Aircore drilling comprised of a 90mm aircore sampling bit.
Drill sample recovery	• Method of recording and assessing core and chip sample recoveries and results assessed.	 Drill sample recoveries are visually inspected on the rig and recorded in the drilling database. Samples submitted to the lab are weighed and reported by ALS
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Drill samples are visually inspected during drilling to ensure sample recovery is satisfactory. Composite samples are collected once an entire drill rod has been drilled. Nominally this is a 3m composite sample as the drill rods are 3m in length. However, if the driller puts the hammer on or takes it off, it can result in a 2m or 4m composite sample. This ensures that the composite samples represent its actual depth interval and removes any error with improper metre marking or waiting for sample to travel up the drill string. As the cyclone is cleaned out at the end of each rod, this sampling process also reduces the potential for contamination between composite samples.
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 No bias is known at this stage.
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	• All drill chips have been logged for lithology, mineralogy, weathering, regolith and alteration whilst in the field.
	• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	• All field descriptions are qualitative in nature. Chip trays have been retained for further work and re-interpretation if required.
	• The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.

Criteria	JORC Code explanation	Commentary
Sub- sampling	 If core, whether cut or sawn and whether quarter, half or all core taken. 	No core reported.
techniques and sample preparation	• If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	• All 3m composite were scooped directly from sample piles. 100% of the samples were dry.
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 All samples were sent to ALS Laboratories in Perth for sample preparation and analysis using standard codes and practices.
	• Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	No subsampling undertaken.
	• Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	 Field duplicates and certified reference materials (CRMs) were collected/inserted at a ~1:50 ratio.
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	• 2-3kg samples are considered appropriate for the rock type and style of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	 All samples were submitted to ALS laboratories in Perth. Sample Preparation included riffle split to a maximum of 3kg (if required) and then pulverized to >85% passing 75 micron. Gold results were obtained by Fire Assay fusion and ICP-AES finish from a 50 gram aliquot (ALS Code Au-ICP22) with a 1ppb detection limit. Fire assay is considered a total digest for gold. This procedure is considered appropriate for gold analysis. A fresh rock sample was collected from the end of hole and analysed for a 48 element suite (ALS Code ME-MS61) via a four acid digest of a 0.25 gram aliquot finished with ICP-MS. Four acid digest is considered a near total digest. Hyperspectral data was also collected from an end of hole sample on the coarse reject, as opposed to pulverised sample, by a TerraSpec 4 (TRSPEC-20) and interpreted by AusSpec International (ALS Code INTERP-11) All 3m composites are analysed at ALS by pXRF (ALS Code pXRF30) to assist with lithological interpretation and are not used for reporting.

Criteria	JORC Code explanation	Commentary
	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 No geophysical results discussed.
	• Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Field duplicates and CRMs (certified reference materials) were inserted in to the sample string at a 1:50 ratio. The laboratory analyses a range of internal and industry standards, blanks and duplicates as part of the analysis. All field and lab QAQC demonstrate an acceptable level of precision and accuracy.
Verification of sampling	• The verification of significant intersections by either independent or alternative company personnel.	 All significant results have been reviewed by the exploration manager.
and assaying	• The use of twinned holes.	No twin holes have been drilled.
	• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	• Primary data is recorded in the field in a spreadsheet and imported to a digital database software package on a regular basis during the drill program and at the end of the drill program.
	Discuss any adjustment to assay data.	No adjustments were made to assay data.
Location of data points	• Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	• Sample locations were recorded with a Garmin handheld GPS which has an accuracy of +/-5m.
	• Specification of the grid system used.	 GDA94 MGA Zone 50 and Zone 51. For the purpose of displaying results in plan view, all coordinates have been converted to Zone 50.
	• Quality and adequacy of topographic control.	• The level of topographic control offered by the handheld GPS is considered sufficient for the work undertaken.
Data spacing and distribution	Data spacing for reporting of Exploration Results	• Drill holes are spaced at 40-80m along lines spaced 200-400m apart.
	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications	• The data spacing and distribution is not sufficient to establish the degree of geological and grade continuity appropriate for Mineral

Criteria	JORC Code explanation	Commentary
	applied.	Resource estimation purposes.
	Whether sample compositing has been applied.	• Samples reported have been collected as 3m intervals which are composited from 1m drill intervals.
Orientation of data in relation to geological structure	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	• The orientation of mineralised structures is unknown at this time.
	• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Further work is required to confirm the true orientation of the mineralised structures.
Sample security	• The measures taken to ensure sample security.	• Samples were collected, stored and delivered to the lab by company personnel.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 No audits or reviews have been undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 The Strickland Gold Project is comprised of 7 granted and 1 pending Exploration Licenses (E77/2403, E77/2416, E77/2432, E30/488, E30/493, E30/494, E16/495 and E16/498) which are held by Arrow (Strickland) Pty Ltd which is a 100% owned subsidiary of Arrow Minerals Limited. There are no JVs, Partnerships or overriding royalties associated with these tenements. There are no Native Title Claims over the tenements. The project is adjacent to the Mount Manning Range Nature Reserve. Available ground within the nature reserve was not pegged. Part of E77/2403 and E30/488 are located within the Proposed Mt Elvire Conservation Park. Mining and Exploration is allowed within the

Criteria	JORC Code explanation	Commentary
		Mt Elvire Conservation Park.
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 Tenements E77/2403, E77/2416, E77/2432, E30/488, E30493, E30/494 and E16/495 have been granted and are currently live and in good standing. E16/498 is currently pending and in good standing with no known impediments.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 This report refers to data generated by Arrow Minerals. Historical exploration of the project area has been discussed in previous ASX announcements. The Rainy Rocks prospect (in and around T1) has been explored and prospected by numerous parties over the years. The area has old shafts and evidence of historical drilling. There does appear to be additional ground disturbance in the area but no record of those activities.
Geology	• Deposit type, geological setting and style of mineralisation.	 The Strickland Project is located over granite greenstones of the Yilgarn Craton within the Southern Cross Domain. The project covers a majority of the Yerilgee Greenstone Belt as well as the South Elvire Greenstone Belt and the NE extension of the Evanston Greenstone Belt. This geological setting is prospective for shear hosted / orogenic gold style of mineralization as well as VMS base metal, nickel sulfide and nickel-cobalt laterite mineralization.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	• Refer to Appendix A.

Criteria	JORC Code explanation	Commentary
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	Intercepts are length weight averaged.No maximum cuts have been made.
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	• Reported significant gold assay intersections are reported over a minimum down hole interval of 3m at plus 0.10 g/t Au (using a 0.01 g/t Au lower cut). They contain up to 3m of internal dilution.
	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values reported.
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All intervals are reported as down hole intercepts. True widths are unknown at this stage of exploration.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• Refer to figures within the announcement.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All exploration results greater than 0.1 g/t Au have been reported. All drill collars have been reported in the table of Appendix 2 and in the associated diagrams in the release.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential	• All meaningful and material exploration data has been reported.

Criteria	JORC Code explanation	Commentary
	deleterious or contaminating substances.	
Further work	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Further aircore drilling will be completed over high ranking prospects and RC drilling completed over prospective mineralised targets. Further multielement, hyperspectral and petrographic work will be undertaken as required to further the geological understanding of mineralisation intersected to date. Petrophysics will be carried out over drill core samples with an aim of determining an appropriate ground geophysics technique to aid targeting of mineralisation.
	• Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Refer to figures within the announcement.