

ASX Release

18 June 2018

CASTILLO COPPER LIMITED ACN 137 606 476

Level 26 140 St Georges Terrace Perth WA, 6000 Australia

Tel: +61 8 6558 0886 Fax: +61 8 6316 3337

Contact: Alan Armstrong Executive Director

E-mail: info@castillocopper.com

For the latest news:

www.castillocopper.com

Directors / Officers: Peter Meagher Alan Armstrong Peter Smith

Issued Capital: 580.1 million shares 84.5 million options

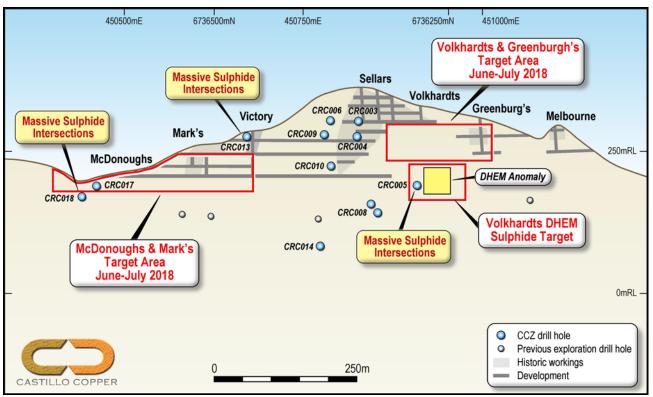
> ASX Symbol: CCZ

Phase II drilling targets high-grade supergene ore and massive sulphides at Cangai

- Regulatory approval has been granted to start the Phase II RC drilling campaign at Cangai Copper Mine
- The 39 drill-hole program will focus on three areas along the line of lode targeting supergene ore near legacy workings and massive sulphide intersections identified during Phase I
- Earth clearing work is well underway, while the drilling contractor is on-site reviewing planned drill-pads and access routes to expedite the commencement of work
- Assay results from ten hand-picked rock specimens (including malachite and gossan) from around Volkhardts stockpile along the line of lode returned up to 23.9% Cu – this is consistent with supergene ore grades and in a priority drill target area
- Incrementally, assay results for samples collected from the recent trenching exercise at the Smelter Creek stockpile were up to 5.58% Cu, 3.31% Zn and 1,350ppm Co
- The initial four drill-holes are planned for the historic Smelter Creek stockpile
- Metallurgical test-work on samples from the Smelter Creek stockpile are continuing to be optimised, while discussions with prospective off-take partners are ongoing

Castillo Copper's Chairman Peter Meagher commented: "Regulatory approval to commence the Phase II drilling campaign heralds another significant milestone towards the Board's strategic goal of re-opening Cangai Copper Mine. The Board is confident the geology team have mapped out a comprehensive drilling program, targeting supergene ore and massive sulphides, that has the potential to expand the resource size."

Castillo Copper Limited's ("CCZ" or "**the Company")** Board has received clearance from the NSW mining regulator to progress the Phase II drilling campaign at Cangai Copper Mine (CCM). This builds on the Phase I program and should significantly broaden the geology team's understanding of mineralisation apparent within the system.


PHASE II DRILLING CAMPAIGN

Approval

The NSW mining regulator has approved the Phase II RC drilling campaign at CCM, which comprises 39 drill-holes. As can be seen from Figure 1, there are three primary zones along the line of lode that the geology team are planning to drill (refer below for more details).

Key targets areas are supergene ore near the legacy workings and where massive sulphides were identified during the Phase I program. Once this second drilling campaign concludes, the geology team anticipates the resource size may potentially be materially expanded.

In preparation for the campaign to start, land clearing is already well underway. Furthermore, the drilling contractor has visited the project reviewing access routes and planned drill pads, so that work can commence as soon as practical.

Source: CCZ geology team

Key targets

The geology team have put a significant amount of work into planning the Phase II drilling campaign, as a core objective is build a greater understanding of the underlying mineralised system. The reasons for targeting three specific areas, around known lodes, is summarised in more detail below:

Greenburgs: This is a blind lens discovered along strike to the east of the Sellars and Volkhardts workings (Figure 2). According to legacy reports (Carne 1908), Greenburgs was reputed to be the largest ore lens discovered at CCM until it was replaced by a horizontal fault.

With only limited exploration undertaken, the geology team believe additional ore lens remains undiscovered and, hence, qualifies as a shallow target of interest for the Phase II campaign.

Volkhardts: This is immediately to the east of the central Sellars workings area and where the main shear splits into two parallel shear zones (10m apart). This main shear splitting resulted in the grade in the original mine dropping below the 10% Cu threshold desired in the 1900's.

The geology team believe current economic grades and widths exist between the two parallel shears which make it a shallow target for the upcoming Phase II drilling program. Moreover, beneath the Volhardts workings is where a DHEM target has been identified from the Phase I drilling campaign.

Marks: This was the principal ore lens on the western side of the main Sellars workings (Figure 2), which is why it is a target. However, mining operations ceased when the grade dropped

below 10% Cu. According to legacy mine records, the width of the ore body remained consistent, although at depth it comprised mainly second grade ore (i.e. less than 10% Cu).

McDonoughs: This was the last ore lens found during the A-level adit development at the western end of the mine. Limited information is available on this ore lens, although it was in production until the mines closure, explaining why it is an area of interest for the geology team.

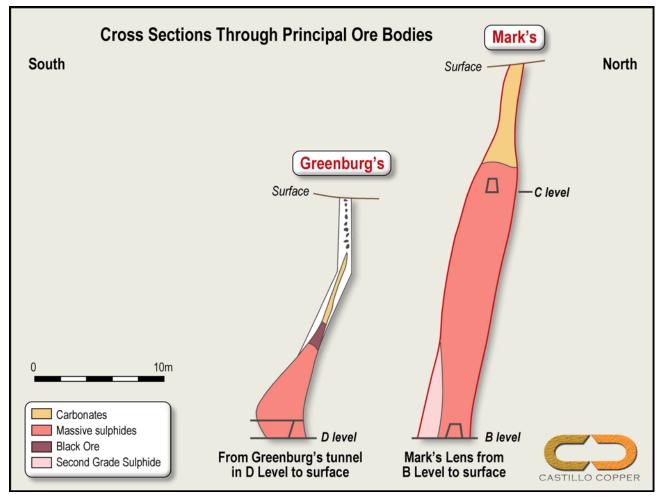
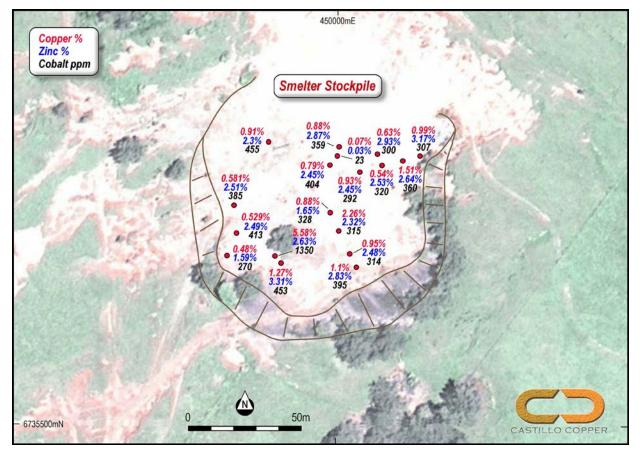



FIGURE 2: CROSS SECTIONS OF KEY ORE BODIES

Source: CCZ geology team

UPDATE ON LEGACY STOCKPILES

A strategic objective of the Board is monetising legacy stockpiles along the line of lode and at Smelter Creek. Considerable work has already been done and some key assay results for Smelter Creek have been finalised that confirm significant mineralisation (Figure 3). The best results from the samples, which was from channel trenching, were up to 5.58% Cu, 3.31% Zn and 1,350ppm Co (refer Appendix A).

FIGURE 3: SUMMARY ASSAY RESULTS FOR SMELTER CREEK STOCKPILE

Source: CCZ geology team and ALS

In addition, from ten hand-picked rock specimens from around the Volkhardts stockpile, which included malachite and gossan, a reading of 23.9% Cu was recorded (refer Appendix B). This reading is consistent with supergene ore grades.

The laboratory is still optimising metallurgical test-work which is yet to run its course, while discussions with prospective off-take partners are ongoing.

Next steps

With work on CCM progressing on several fronts, the next focus will be an update on the Broken Hill project.

For and on behalf of Castillo Copper

Alan Armstrong Executive Director

COMPETENT PERSON STATEMENT

The information in this document that relates to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Mr Peter Smith, BSc (Geophysics) (Sydney) AIG ASEG, who is a Member of The Australasian Institute of Geoscientists (AIG). Mr Smith has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Mineral Resources and Ore Reserves" (JORC Code). Mr Smith has approved and consented to the inclusion in this document of the matters based on his information in the form and context in which it appears.

The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

ABOUT CASTILLO COPPER

Castillo Copper Limited (ASX: CCZ) is an ASX-listed base metal explorer that's flagship project is the historic Cangai Copper Mine near Grafton in northeast NSW. The project comprises a volcanogenic massive sulphide ore deposit, with one of Australia's highest grade JORC compliant Inferred Resources for copper: 3.2Mt @ 3.35% (6 September 2017). In terms of contained metal, the Inferred Resource is 107,600t Cu, 11,900t Zn, 2.1Moz Ag and 82,900 Moz Au. A notable positive is the presence of supergene ore with up to 35% copper and 10% zinc which is ideal feedstock for direct shipping ore. Incrementally, the project holds five historic stock piles of high-grade ore located near Cangai Copper Mine.

In brief, CCZ's Australian assets are 100% owned and comprise four tenure groups detailed briefly as follows:

- NSW assets: Consists of two projects: 1) Jackaderry, which includes Cangai Copper Mine, is in an area highly prospective for copper-cobalt-zinc and made up of three tenements; and, 2) Broken Hill which consists of two contiguous tenements prospective for cobalt-zinc that are located within a 20km radius of Broken Hill and just north of Cobalt Blue's ground (ASX: COB).
- Queensland assets: Comprises two projects: 1) Mt Oxide made up of three prospects (two are contiguous) in the Mt Isa region, northwest Queensland, and are well known for copper-cobalt systems; and, 2) Marlborough which includes three prospects located north-west of Gladstone (adjacent to Queensland Nickel mining leases) in an area with proven high-grade cobalt-nickel systems.

Finally, CCZ' holds six exploration concessions in Chile.

APPENDIX A: SMELTER CREEK STOCKPILE CHANNEL SAMPLING ASSAY RESULTS

SAMPLE ID	E	N	Co (ppm)	Cu (ppm)	Zn (ppm)	COMMENTS
						Smelter slag, 0.5m cover, minor Cu
1012550	450009	6735507	395	11,000	28,300	carbonates
						Smelter slag, 0.5m cover, minor Cu
1012551	450006	6735576	314	9,480	24,800	carbonates, charcoal
1012552	450001	6735586	315	22,600	23,200	Smelter slag, 0.5m cover, minor Cu
						Smelter slag, 0.5m cover,
1012553	449997	6735594	328	38,100	16,500	significant Cu carbonates, charcoal
						Smelter slag, 0.3-0.5m cover, minor
1012554	450037	6735619	307	9,940	31,700	Cu carbonates, charcoal
						Smelter slag, 0.3-0.5m cover, minor
1012555	450029	6735617	360	15,100	26,400	Cu carbonates
						Smelter slag, 0.3-0.5m cover, minor
1012556	450020	6735615	320	5,430	25,300	Cu carbonates
						Smelter slag, 0.3-0.5m cover, minor
1012557	450010	6735612	292	9,310	24,500	Cu carbonates
						Smelter slag, 0.3-0.5m cover, minor
1012558	450001	6735623	359	8,780	28,700	Cu carbonates
1012559	450000	6725619	23	647	270	Brick foundations
						Saprolite, bricks, minor Cu
1012560	449997	6735615	404	7,870	24,500	carbonates and charcoal
						Smelter slag and minor Cu
1012561	450018	6735220	300	6,250	29,300	carbonates
						Smelter slag, 0.5m cover, minor Cu
1012562	449970	6735625	455	9,100	23,000	carbonates
						Smelter slag, 0.5m cover, minor Cu
1012563	449955	6735597	385	5,810	25,100	carbonates
						Smelter slag, 0.5m cover, minor Cu
1012564	449956	6735585	413	5,290	24,900	carbonates
						Smelter slag, 0.5m cover, minor Cu
1012565	449952	6735575	270	4,800	15,900	carbonates
						Smelter slag, 0.5m cover, minor Cu
1012566	449973	6735575	1,350	55,800	26,300	carbonates
						Smelter slag, 0.5m cover, minor Cu
1012567	449976	6735572	453	12,700	33,100	carbonates

(in reference to ppm to % conversion: 10,000ppm = 1%)

Note: Samples taken from Smelter Creek stockpile on 29 April 2018 Source: ALS

APPENDIX B: CHANNEL AND HAND-PICKED SAMPLES FROM VOLKHARDTS STOCKPILE

SAMPLE ID	E	N	Co (ppm)	Cu (ppm)	Zn (ppm)	COMMENTS
1012524	450904	6736261	11	3,890	1,040	Surface channel sample dac., lap.t., felsic int
1012525	450898	6736251	73	6,530	440	Surface channel sample dac., lap.t., felsic int
1012526	450908	6736245	16	3,570	420	Surface channel sample dac., lap.t., felsic int
1012527	450908	6736254	31	14,500	830	Surface channel sample dac., lap.t., felsic int
1012528	450910	6736249	17	5,950	490	Surface channel sample dac., lap.t., felsic int
1012529	450910	6736247	32	6,290	740	Surface channel sample dac., lap.t., felsic int
1012530	450903	6736260	27	1,730	560	Sheared lapilli tuff malachite coatings
1012531	450904	6736259	58	29,100	3,870	Oxid felsic iontrusive malachite 10%
1012532	451023	6736185	75	10,400	2,250	Black sheares lappilli tuff trace sulphides
1012533	450940	6736215	10	5,720	440	Oxid dacite 5% sulphides and gossan
1012534	450901	6736260	13	28,800	440	Iron rich gossan and felsic intrusive
1012535	450905	6736260	33	53,100	810	Gossan and felsic intrusive
1012536	451163	6736167	146	79,600	1,820	Gossan and felsic intrusive
1012537	451162	6736162	177	31,300	430	Gossan after massive sulphides
1012538	451183	6736158	183	239,000	2,900	Malachite rich felsic intrusive
1012539	450944	6736202	18	26,400	4,740	Malachite rich felsic intrusive

Note: Samples taken from Volkhardts stockpile on 21 April 2018 Source: ALS

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30-g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Castillo Copper completed smelter stockpile sampling in the form of trench samples. The samples were collected from ditch witch tenches of the slag dump and sent for analysis at ALS using procedure ME-MS61-C which uses a 4 acid digest.

SAMPLE ID	E	N	Co (ppm)	Cu (ppm)	Zn (ppm)	COMMENTS
						Smelter slag, 0.5m cover, minor
1012550	450009	6735507	395	11,000	28,300	carbonates
						Smelter slag, 0.5m cover, minor
1012551	450006		314	9,480	24,800	carbonates, charcoal
1012552	450001	6735586	315	22,600	23,200	Smelter slag, 0.5m cover, minor
						Smelter slag, 0.5m cover,
1012553	449997	6735594	328	38,100	16,500	significant Cu carbonates, charce
						Smelter slag, 0.3-0.5m cover, mi
1012554	450037	6735619	307	9,940	31,700	Cu carbonates, charcoal
						Smelter slag, 0.3-0.5m cover, mi
1012555	450029	6735617	360	15,100	26,400	Cu carbonates
						Smelter slag, 0.3-0.5m cover, mi
1012556	450020	6735615	320	5,430	25,300	Cu carbonates
						Smelter slag, 0.3-0.5m cover, mi
1012557	450010	6735612	292	9,310	24,500	Cu carbonates
				,	,	Smelter slag, 0.3-0.5m cover, mi
1012558	450001	6735623	359	8,780	28,700	Cu carbonates
1012559	450000	6725619	23	647	270	Brick foundations
1012333	150000	0723013	25	017	270	Saprolite, bricks, minor Cu
1012560	449997	6735615	404	7,870	24,500	carbonates and charcoal
1012300	115557	0/0010	101	7,070	21,500	Smelter slag and minor Cu
1012561	450018	6735220	300	6,250	29,300	carbonates
1012301	100010	0733220	500	0,230	23,300	Smelter slag, 0.5m cover, minor
1012562	449970	6735625	455	9,100	23,000	carbonates
1012502	++5570	0733023	+55	5,100	23,000	Smelter slag, 0.5m cover, minor
1012563	449955	6735597	385	5,810	25,100	carbonates
1012303	++5555	0133331	505	5,010	23,100	Smelter slag, 0.5m cover, minor
1012564	449956	6735585	413	5,290	24,900	carbonates
1012304	449930	0733363	415	5,230	24,900	Smelter slag, 0.5m cover, minor
1012565	449952	6735575	270	4,800	15,900	carbonates
1012303	445552	0/555/5	270	4,000	13,900	Smelter slag, 0.5m cover, minor
1012566	440072	6725575	1 250	FF 900	26,200	-
1012566	449973	6735575	1,350	55,800	26,300	carbonates Smelter slag, 0.5m cover, minor
1012567	440070	(7)[7]	450	12 700	22 100	-
1012567	449976	6735572	453	12,700	33,100	carbonates

And from v	various ol	ld minina	dumps	s along t	he line of lode.

SAMPLE ID	E	N	Co (ppm)	Cu (ppm)	Zn (ppm)	COMMENTS
						Surface channel sample dac.,
1012524	450904	6736261	11	3,890	1,040	lap.t., felsic int
						Surface channel sample dac.,
1012525	450898	6736251	73	6,530	440	lap.t., felsic int
						Surface channel sample dac.,
1012526	450908	6736245	16	3,570	420	lap.t., felsic int
						Surface channel sample dac.,
1012527	450908	6736254	31	14,500	830	lap.t., felsic int
						Surface channel sample dac.,
1012528	450910	6736249	17	5,950	490	lap.t., felsic int
						Surface channel sample dac.,
1012529	450910	6736247	32	6,290	740	lap.t., felsic int
						Sheared lapilli tuff malachite
1012530	450903	6736260	27	1,730	560	coatings
						Oxid felsic iontrusive malachite
1012531	450904	6736259	58	29,100	3,870	10%
						Black sheares lappilli tuff trace
1012532	451023	6736185	75	10,400	2,250	sulphides
						Oxid dacite 5% sulphides and
1012533	450940	6736215	10	5,720	440	gossan
		6706060	10			Iron rich gossan and felsic
1012534	450901	6736260	13	28,800	440	intrusive
1012535	450905	6736260	33	53,100	810	Gossan and felsic intrusive
4042526	454462	6726467	4.45	70.000	1.000	
1012536	451163	6736167	146	79,600	1,820	Gossan and felsic intrusive
1012537	451162	6736162	177	31,300	430	Gossan after massive sulphides
1012538	451183	6736158	183	239,000	2,900	Malachite rich felsic intrusive
1012330	-51105	0730130	105	233,000	2,500	
1012539	450944	6736202	18	26,400	4,740	Malachite rich felsic intrusive

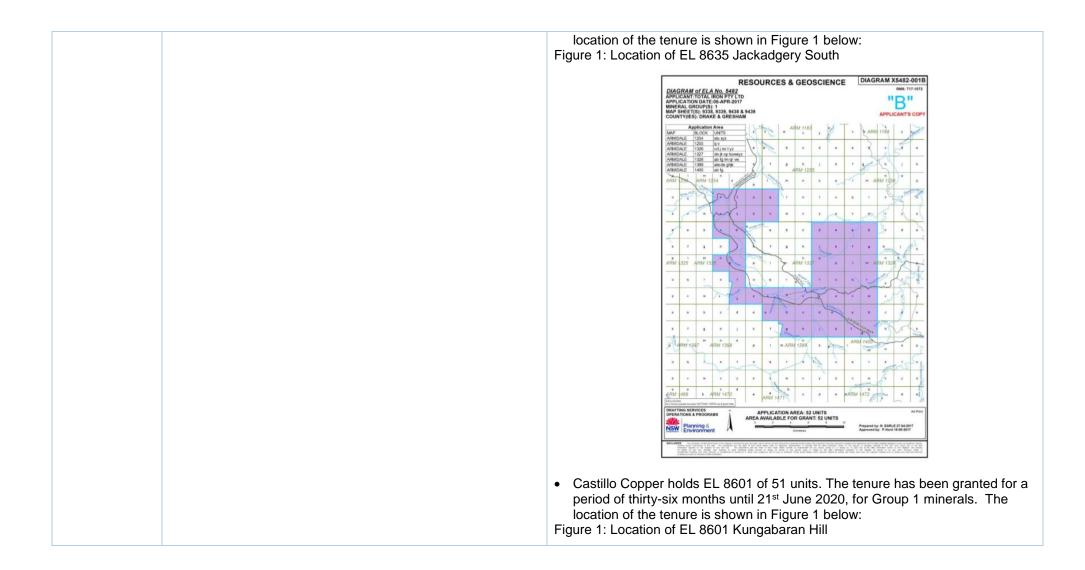
Note: Samples taken from Volkhardts stockpile on 21 April 2018

- All other sampling used in this analysis was all historical from the period 1967-2016. The data was a combination of the NSW Geological Survey surface sampling database and historical annual and relinquishment reports revisited and additional data extracted. Additional analyses are currently being collated from a 1991 UNSW Honours Thesis (Brauhart 1991).
- Nearly 870 sample analyses from stream sediment, soil, and rock chip sources were collated and combined.
- Many of the sampling programs, especially from the 1990's did include reference

samples and duplicate analyses and other forms of QA/QC checking. • Sampling prior to 1985 generally has higher "below detection limits" and less QA/QC checks. Regarding historical cores from holes held by the NSW Geological Survey at the • Cangai Copper Mine (closed), selected sections have been reanalyzed using pXRF. The grades guoted for cored intervals described in section 2 have been measured using a handheld pXRF Analyser. These grades are indicative grades only as the pXRF Analyser does not have the same degree of accuracy as laboratory generated results. Sample details from the pXRF machine are listed in Table 1, below. The actual • results have been listed in Appendix 1 of the Geological Summary report. Table 2: Cangai Core pXRF Sample Details Elapsed Elapsed Elapsed Instrument Tube User Factor Field Label 1 Model Date Mode Unit Time Time 1 Time 2 SN Anode Name Total 01-06-17 SAMPLE ID#1 Geochem 29.29 59.72 89.01 550172 Delta Premium-50kV Au Factory-Default % 01-06-17 SAMPLE ID#2 Geocher 29.31 59.64 88.95 550172 Delta Premium-50kV Au Factory-Default % 01-06-17 SAMPLE ID#3 Geochem 29.3 59.65 88.95 550172 Delta Premium-50kV Au Factory-Default % 01-06-17 SAMPLE ID#4 Geochen 29.68 59.31 88.99 550172 Delta Premium-50kV Au Factory-Default % SAMPLE ID#5 29.69 59.31 89.01 % 01-06-17 Geocherr 550172 Delta Premium-50kV Au Factory-Default % 01-06-17 SAMPLE ID#6 29.22 59.8 89.02 550172 Geochem Delta Premium-50kV Au Factory-Default 01-06-17 SAMPLE ID#7 29.31 59.78 89.08 550172 Delta Premium-50kV Au Factory-Default % Geochem SAMPLE ID#8 29.36 59.55 88.92 % 01-06-17 Geochem 550172 Delta Premium-50kV Au Factory-Default 01-06-17 SAMPLE ID#9 29.57 59.8 89.37 % 550172 Delta Premium-50kV Au Eactory-Default Geochem SAMPLE ID#10 29.43 59.71 89.14 Factory-Default % 01-06-17 Geochem 550172 Delta Premium-50kV Au 01-06-17 SAMPLE ID#11 29.46 59.84 89.3 Delta Premium-50kV % Geochem 550172 Au Eactory-Default 01-06-17 SAMPLE ID#12 Geochem 29.65 59.32 88 97 550172 Delta Premium-50kV Au Factory-Default % % 01-06-17 SAMPLE ID#13 Geochem 29.65 59.52 89.17 550172 Delta Premium-50kV Au Factory-Default 59.85 89.08 % 01-06-17 SAMPLE ID#14 Geochem 29.23 550172 Delta Premium-50kV Au Factory-Default 01-06-17 SAMPLE ID#15 Geochem 29.44 59.8 89.24 550172 Delta Premium-50kV Au Factory-Default % 01-06-17 SAMPLE ID#16 Geochem 29.38 59.75 89.13 550172 Delta Premium-50kV Au Factory-Default % 01-06-17 SAMPLE ID#17 Geochem 29.24 59.87 89.11 550172 Delta Premium-50kV Au Factory-Default % 01-06-17 SAMPLE ID#18 Geochem 29.59 59.72 89.31 550172 Delta Premium-50kV Au Factory-Default % SAMPLE ID#19 29.42 59.69 89.11 550172 Delta Premium-50kV Factory-Default % 01-06-17 Geochem Au 01-06-17 SAMPLE ID#20 29.36 29.36 550172 Delta Premium-50kV % Geochem Au Factory-Default 02-06-17 SAMPLE ID#21 29.42 59.85 89.27 550172 Delta Premium-50kV Au Factory-Default % Geochem 02-06-17 SAMPLE ID#22 29.73 59.81 89.54 550172 Delta Premium-50kV Au Factory-Default % Geochem 02-06-17 SAMPLE ID#23 Geochem 29.7 59.42 89.12 550172 Delta Premium-50kV Au Factory-Default % 02-06-17 SAMPLE ID#24 Geochem 29.41 59.74 89.15 550172 Delta Premium-50kV Au Factory-Default % 02-06-17 SAMPLE ID#25 Geochen 29.54 59.89 89.43 550172 Delta Premium-50kV Au Factory-Default % SAMPLE ID#26 29.34 59.82 89.16 % 02-06-17 Geocherr 550172 Delta Premium-50kV Au Factory-Default % SAMPLE ID#27 29.48 59.71 89.19 550172 Delta Premium-50kV Au 02-06-17 Geochem Factory-Default % 02-06-17 SAMPLE ID#28 Geochen 29.4 59.68 89.09 550172 Delta Premium-50kV Au Factory-Default SAMPLE ID#29 29.42 59.74 89.17 Delta Premium-50kV % 02-06-17 Geochem 550172 Au Factory-Default 02-06-17 SAMPLE ID#30 59 79 89 11 Delta Premium-50kV % Geochem 29.32 550172 Au Factory-Default 89.13 % 02-06-17 SAMPLE ID#31 Geochem 29.45 59.68 550172 Delta Premium-50kV Au Factory-Default 02-06-17 SAMPLE ID#32 Geochem 29.23 59.86 89.09 550172 Delta Premium-50kV Au Eactory-Default % 02-06-17 SAMPLE ID#33 Geochem 29.5 59.59 89.1 550172 Delta Premium-50kV Au Factory-Default % 02-06-17 SAMPLE ID#34 Geochem 29.62 59.9 89.51 550172 Delta Premium-50kV Au Factory-Default % 59.79 % 02-06-17 SAMPLE ID#35 Geochem 29.58 89.36 550172 Delta Premium-50kV Au Factory-Default 02-06-17 SAMPLE ID#36 Geochem 29.68 29.11 88.15 550172 Delta Premium-50kV Au Factory-Default % % 02-06-17 SAMPLE ID#37 Geochem 29.21 28.85 87.91 550172 Delta Premium-50kV Au Factory-Default Drilling • Drill type (eg core, reverse circulation, open-hole There are several drillholes near EL 8625 that could be investigated for relevant techniques hammer, rotary air blast, auger, Bangka, sonic, etc.) and and similar geology that are held by the department and could be retested.

11

	details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	• The closest set of drill holes (ten (10) in total) with available core for analysis are in the tenure, at the Cangai copper mine. To the north of EL 8625, seventeen (17) drill holes were completed for copper-gold exploration at the Just-in-Time mine and Coaldale Prospects. Those cores are also available from the NSW Core Library. Drilling was a combination of RAB, RC with limited diamond cored holes.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Not applicable in this study as no new drilling was undertaken.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 The drilling that did occur was completed to modern-day standards. No downhole geophysical logging took place.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No new samples were obtained. Historical cores from Cangai Mine lodged with the NSW Geological Survey are generally sawn with half or quarter core remaining. Industry acceptable standards and blanks were used as certified reference material to ensure satisfactory performance of the pXRF QAQC results indicate that the sampling is accurate and precise
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading 	 All the analyses bar a few (<75 out 2,600) samples were laboratory tested in various NATA-registered laboratories throughout Australia. Many of the earlier CRA Exploration stream sediment and soil samples were analysed by CRA internal laboratories. XRF geochemical data taken from field portable XRF Olympus. Duration of sampling 30 seconds per filter (3 filters).


Manification	 times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 core library. The following e Sr, Rb, Pb, Hg, The Cangai sm Spectroscopy f Au_ppm. 	, Zn, W, Cu, Ni, C nelter site sample or the following e	alysed; Ag, A co, V, Ti, Au, s were analy lements: Cu_	As, Se, (Fe, Mn, /sed by _pct, Co	Ca, K, S, I , Cr, Sc, N Atomic A o_ppm, Zr	Ba, Sb, S Io, Th, U bsorptio	Sn, Cd, Pd, Z J, Ta. n	
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	None of the historical data has been adjusted. procedures,							
 Accuracy and quality of surveys used to locate drill hole. (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 									
		Company	Prospect Name	Hole Name	Title	Title	Total	Completion	
		CRA Exploration	Cangai Copper	DD91CG2	Code EL	Number 3665	Depth 421.1	Date 1991	
		Pty Ltd,	Mine - Grafton						
		Western Mining Corporation Ltd,	Jackadgery - Cangai	BJAC2	EL	1809	193.5	1982	
		CRA Exploration Pty Ltd,	Cangai Copper Mine - Grafton	DD91CG4	EL	3665	180	1991	
		CRA Exploration Pty Ltd,	Cangai Copper Mine - Grafton	DD91CG1	EL	3665	15	1991	
		Western Mining Corporation Ltd,	Jackadgery - Cangai	BJAC1	EL	1809	226.7	1982	
		CRA Exploration Pty Ltd,	Cangai Copper Mine - Grafton	DD91CG5	EL	3665	275	1991	
		CRA Exploration Pty Ltd,	Cangai Copper Mine - Grafton	DD91CG3	EL	3665	402.4	1991	
		Union Corporation (Australia) Pty Ltd, Mineral wealth NL	Cangai Copper Mine - Grafton	DDH2	ML	6244	228.6	1972	
		Union Corporation (Australia) Pty Ltd, Mineral wealth NL	Cangai Copper Mine - Grafton	DDH5	ML	6244	132.7	1972	
	Data spacing for reporting of Exploration Results.			acing across					

and distribution	 establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The current database does not contain any sub-surface samples, but these are currently being added (3rd August 2017). Additional surface bedding and foliation data, and that from some of the accessible underground mine adits is being compiled form a UNSW Honours thesis (Brauhart 1991)
Sample security	• The measures taken to ensure sample security.	No additional samples have been obtained at this stage.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have yet been undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and and tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Castillo Copper holds EL 8625 of 35 units (155 km²). The tenure has been granted for a period of thirty-six months until 17th July 2020, for Group 1 minerals. The location of the tenure is shown in Figure 1 below: Figure 1: Location of EL 8625 Jackadgery North

Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous explorers (Brownlow, 1989; Abraham-Jones, 2012) have noted that a 'basement window' of exposed magmatic hydrothermal alteration and historical copper workings may represent the western and upper extent of a much larger hydrothermal system concealed under Mesozoic cover to the east, prospective for: Quartz-tourmaline-sulphide-cemented, magmatic-hydrothermal breccia hosted copper-gold-molybdenum-cobalt (Cu-Au-Mo-Co) deposit; Concealed porphyry copper-gold-molybdenum-cobalt (Cu-Au-Mo-Co) ore body associated with quartz diorite to tonalitic porphyry apophyses proximal to the tourmaline-sulphide cemented breccia's; Potential also exists for copper-gold (Cu-Au) skarn; Considerable exploration has taken place in and around the Cangai Copper Mine (closed) by several large explorers such as Western Mining and CRA Exploration, the results of which are covered in the Local Geology section.

Geology	• Deposit type, geological setting and style of mineralisation.	Regional Geology
		The underlying geology is contained within the Coffs Harbour Block, east of the Demon Fault. The major basement unit is the Silurian-Devonian Silverwood Group (locally the Willowie Creek Beds), a mixed sequence of tuffaceous mudstones, intermediate to basic igneous rocks, slates, and phyllites, a low stage of regional metamorphism. Overlying this rock formation is a younger tectonic melange of Early Carboniferous age – the Gundahl Complex of slates, phyllites and schist, with chert, greenstone and massive lithic greywackes. These rocks are intruded by the Early Permian Kaloe Granodiorite, which also in turn is intruded by numerous later-stage mafic dykes.
		Local Geology
		The local geology is well understood as considerable exploration has taken place in and around the Cangai Copper Mine (closed) by several major explorers such as Western Mining and CRA Exploration, the results of which are covered in the section below.
		Western Mining 1982-1984
		Western Mining found that the recognition of substantial amounts of pyrrhotite in high grade ore collected from mine dumps led to the reappraisal of previous explorer's ground magnetics (Brown, 1984). Two soil anomalies were identified @ +60ppm Cu (max 1100ppm) and several strong linear magnetic anomalies (=250nT above background). Soil sampling and detailed ground inspections conducted over the linear magnetic high failed to identify any anomalous geochemistry or a possible source lithology. A 180m diamond drill hole was drilled to test the anomaly. Given the poor results of both the drilling and the follow-up stream sediment sampling, no further work was recommended. The decision was made to relinquish the licence in 1984.
		CRA Exploration 1991-1992
		CRA Exploration examined the geological form, setting and genesis of the mineralisation at the Cangai Copper Mine over several years. The work carried out consisted of geological mapping, collection of rock chip samples, and underground investigations at the mine site. Drill core from a CRA exploration program and mine dumps were also inspected. They concluded that the Cangai Copper Mine is hosted by sedimentary rocks of the Siluro-Devonian Willowie Creek Beds of tuffaceous mudstones, tuffaceous sandstones and conglomerates. Mineralisation appears to be associated with steeply plunging ore shoots in and

										nary ore consists of d minor arsenopyrite
		and galena. A detailed, well documented report was produced, but no reasons were given for the relinquishment of the licence.								
		Fig	ure 2	Rock Ch			ngai Coppe e Sample A			
			sub	mitted fo	r analysis	by CRA Ex	pllected by ploration. unless oth	Selected	assays are	
				1	2	3	4	5	6	
			Cu Pb Zn Ag As Mn Au Fe Co V Ba Ni	15.3% 640 4.68% 76 4750 185 1.80 30.9% 27.5% 70	28.6% 1200 1.27% 86 1650 240 2.50 22.6% 3.73% 25	12.4% 1800 2.35% 30 4850 370 0.72 28.2% 16.6% 300	14.8% 7550 9.50% 49 3800 430 2.30 32.9% 29.6% 330	10.6% 800 6400 160 4750 155 1.32 33.8% 370 <10 <10	11.0% 2500 5.10% 150 7150 1.85 27.4% 300 <10 20	
			Bi Cd	Oxide ma Massive Well ban Weakly b	chalcopyri terial pyrite cha ded pyrite anded mass	te-pyrite lcopyrite -sphalerit ive sulfid ive sulfid	rock with e ore e	<5 30 14 gangue cla	<5 80 90	
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the 		Surv view com Minii store As th sam pXR inter The	ey core , log and pleted b ng and (ed with t nis was a ples rem F machi val whic drillhole	storage f d resamp y various CRA Exp he Depar a prelimin naining it ne, and r h were g s were si	acility at le Canga explorat loration) thent. hary visit, was deci enerally (ted in an	Londond ai Mine co ion and n during the and mar ided to so e average 0.5-2m in d around	erry in th pres. Of the period any of the can targe grade for length. the mine	e Westerr the ten (10 mpanies (1974-1995 core only f ted areas or a suite o ed-out area	the NSW Geological a Sydney area, to b) drillholes including Western 5, eight (8) had core had quarter core with a portable of minerals over that as and generally the including western bad quarter core

tested had normal laboratory results available, but only for Cu, Au, Ag, Pb and Zn. Comparisons have yet to be made with the pXRF values, only to note that pXRF copper values were higher than the comparable assayed interval.

- A summary of selected results for all holes combined is given below in Table 3. In all 22 elements were tested.
- Total Minerals considers that if laboratory retesting of the core for cobalt is achieved then, combined with the mine working data and other geological information, sufficient data exists to calculate a small copper-cobalt-zinc resource based on the unmined portions of the now closed Cangai Copper Mine.

Table 3: Summary of Cangai pXRF Testing

Element	Total Tests	Anomalous Threshold (ppm)	Number of Anomalous Values	Highest Value ppm
Cu	37	500	17	190,000 (19%)
Pb	37	600	3	2,500
Zn	37	600	5	1,860
Со	37	50	4	730
Au	37	5 ppb	1	25ppb
Ag	37	2	2	15
U	37	50	1	170

Note: pXRF testing is indicative only, and further laboratory testing is required. It should be noted that the main purpose of the pXRF testing was to confirm the presence of cobalt which was previously not analysed.

- The smelter slag dump resulting from the smelting of ore from the historical workings at Cangai was sampled to determine the order of magnitude of remaining mineralisation.
- Three bulk samples were collected up the face of the slag dump at intervals 20 meters apart and sent for AAS Analysis; results in Table 4.

		Table 4: Cangai Smelter Site Sampling							
		Sample ID	Easting	Northing	Copper (%)	Cobalt (ppm)	Zinc (%)	Silver(ppm)	Gold (ppm)
		1012521	0450010	6735565	0.995%	357	2.30%	2	N/A
		1012522	0459995	6735536	1.04%	286	2.26%	2.2	N/A
		1012523	0459977	6735557	1.25%	319	2.57%	2.7	N/A
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of 	No cor	npositing	ı has take	n place.				

Relationship between mineralisation widths and intercept lengths	 high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Figure 3, below is a cross-section showing the four (4) main near vertical mineralised zones at the Cangai Mine. Figure 3 NW to SE Cross-section of workings at Cangai Mine Figure 3 NW to SE Cross-section of workings at Cangai Mine Figure 3 NW to SE Cross-section of workings at Cangai Mine Figure 3 NW to SE Cross-section of workings at Cangai Mine Figure 3 NW to SE Cross-section of workings at Cangai Mine Figure 3 NW to SE Cross-section of workings at Cangai Mine Figure 3 NW to SE Cross-section of workings at Cangai Mine Figure 3 NW to SE Cross-section of workings at Cangai Mine Figure 3 NW to SE Cross-section of working the transmission of the Cangai Cangai Mine Follow-up work is recommended (Phase 2), particularly the anomalous zones (which are in the process of being digitised off the 1908 and 1912 mine plans (Brauhart 1991), should become priority targets for geological mapping, ground magnetic and EM surveys. Data is also being extracted from a thorough UNSW Honours Thesis as referenced below: Brauhart, C. (1991). The Geology & Mineralisation of the Cangai Copper Mine, Coffs Harbour Block Northeastern New South Wales. CRAE Report No: 17739. University of NSW.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Current surface anomalies are shown on maps in the report. All historical surface sampling has had their coordinates converted to MGA94, Zone 54.

Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results. 	 No new exploration results have been reported, but regarding the surface sampling, no results other than duplicates or reference standard assays have been omitted. 				
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Historical explorers have also conducted airborne and ground gravity, magnetic, EM, and resistivity surveys over parts of the tenure area but this is yet to be collated. 				
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not 	While further desktop work is still required, as cobalt was not the focus of previous exploration activities, CastilloCopper intends to commence suitable fieldwork within the next few months to assist in gathering data that could identify a resource to 2012 JORC standards. Drillhole and assay data will have to be encoded and validated. New laboratory assaying will be required of the historic core to confirm pXRF readings.				
	commercially sensitive.	Conclusions by CRA Exploration in 1991 noted "that because of uncertainty over shoot pitch and correlation between longitudinal sections generated by the various mining companies it is not clear whether the historic drilling was well suited to test for copper ore extensions".				
		No JORC Resources have been outlined to date at Cangai, but there is potential for further economic mineralisation of (probably) moderate size:				
		 As lower grade aureoles (3+%) around and below stopes (CRAE's drilling was 90-150m below the deepest level worked); Blind deposits between the shoots in areas not tested to date (e.g. below the 1m @ 1.74% over 60m in "A" Level northwest of Marks Shoot; Along the lateral extension of the line of lode as suggested by ground magnetics (part of which may fall outside EL 8625). 				