

19<sup>h</sup> June 2018

# Burro Creek Lithium Drill Results Provide Foundation for Mineral Resource Estimate

Widespread, near surface lithium results intersected in the maiden drill program at the Burro Creek project, Nevada USA, including:

- Hole BCRC18-01 22.9 metres @ 1088ppm lithium and 2.94% potassium from 4.68m depth, and 9.1 metres @ 1325ppm lithium and 3.04% potassium from 33.5 metres depth;
- Hole BCRC18-04 19.8 metres @ 1180ppm lithium and 2.23% potassium from 21.3 metres depth; and
- Hole BCRC18-14 24.4 metres @ 1361ppm lithium and 3.23% potassium from 19.8m depth.

Drilling to date has tested only 1/4 of the total project area that has recently been expanded by staking new claims to the west;

Mapping and sampling in the newly staked western claim area has returned further widespread, high-grade lithium clays at surface with two new areas identified each equal in size to the zone of lithium mineralisation discovered in the current drill program; and

Data compilation, interpretation and geological modelling in progress leading to a maiden mineral resource estimate.

Zenith Minerals Limited ("Zenith" or "the Company") is very pleased to advise that widespread, near surface lithium has been intersected in drilling at the Burro Creek lithium project in Arizona USA, part of the American Lithium joint venture with Bradda Head Limited (Figure 1). The key aim of the program to obtain sufficient technical information on the lithium clays to allow for an initial mineral resource estimate to be calculated has been met with an estimate expected to be completed early next calendar quarter.

The Burro Creek lithium clay project is located in central western Arizona, USA within an active mining district, Freeport McMoRan's operating Bagdad porphyry copper mine is located 10km from the Burro Creek project. The Burro Creek project is subject to an exclusive option to purchase as detailed in Zenith's ASX Release 10<sup>th</sup> November 2016.

Assay results from the maiden drill program at Burro Creek show that the highergrade portion of the lithium bearing clay zone is a near surface, flat lying horizon extending over 900m by 400m within the eastern project state leases. Significant lithium rich drill intersections are detailed in Table 1 of this report and include:

- Hole BCRC18-01 22.9 metres @ 1088ppm lithium and 2.94% potassium from 4.68m depth, and 9.1 metres @ 1325ppm lithium and 3.04% potassium from 33.5 metres depth;
- Hole BCRC18-04 19.8 metres @ 1180ppm lithium and 2.23% potassium from 21.3 metres depth; and
- Hole BCRC18-14 24.4 metres @ 1361ppm lithium and 3.23% potassium from 19.8m depth.

## **Corporate Details**

#### ASX: ZNC

| Issued Shares (ZNC) | 212.8M   |
|---------------------|----------|
| Unlisted options    | 2.5M     |
| Mkt. Cap. (\$0.18)  | A\$38M   |
| Cash (31 Mar 2018)  | A\$2.9 M |
| Debt                | Nil      |
|                     |          |

#### Directors

Michael Clifford: Managing Director

Mike Joyce: Non Exec Chairman

Stan Macdonald: Non Exec Director

Julian Goldsworthy: Non Exec Director

Graham Riley: Non Exec Director

#### **Major Shareholders**

| HSBC Custody. Nom. | 12.8% |
|--------------------|-------|
| Nada Granich       | 5.4%  |
| Miquilini          | 4.3%  |
| J P Morgan         | 4.1%  |
| Abingdon           | 4.1%  |

#### **Contact Details**

Level 2/33 Ord Street West Perth, WA, 6005

Mail: PO Box 1426 West Perth, WA, 6872 T: +61 8 9226 1110 E: *info@zenithminerals.com.au* W: <u>www.zenithminerals.com.au</u>





Depending on the cut-off grade used the lithium mineralised portion of the clay averages 23 to 54 metres in thickness, whilst recent testwork indicates a bulk density of 1.6 to  $1.8 \text{ g/cm}^3$ .

Recent mapping and surface sampling in the new Burro Creek western claims has identified further widespread, highgrade, flat-lying lithium clays at surface with two new areas identified each equal or greater in size to the zone of lithium mineralisation discovered in the current drill program. These two new areas will be the focus of future resource drilling (Figure 1).

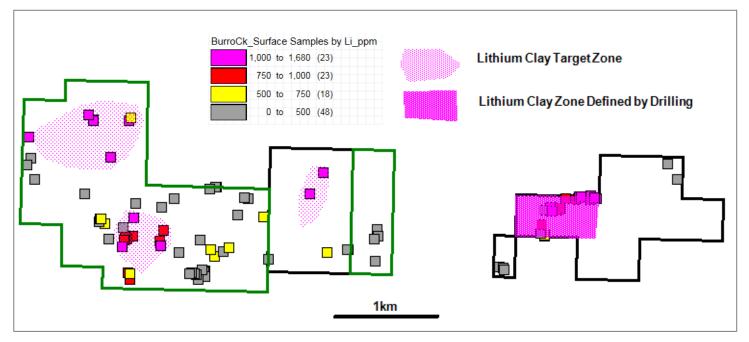



Figure 1: Burro Creek Project Area Showing Lithium Clay Area Defined by Drilling and New Western Claim Area Targets

### **Exploration Target**

Based on the drilling activity noted above, and surface sampling and mapping in the western claim area Zenith and Bradda Head have estimated an Exploration Target<sup>1</sup> for the Burro Creek project of 30-50 million tonnes at 1000 to 1100ppm lithium Li and 2% to 3% potassium. The upcoming maiden resource estimate will report on the eastern claim area only, representing approximately 1/3 of the Exploration Target<sup>1</sup>. It is expected that the western claim area targets will be the subject of a future drill campaign.

| Exploration Target <sup>1</sup> | Tonnes          | Lithium Grade   | Potassium Grade |
|---------------------------------|-----------------|-----------------|-----------------|
| Burro Creek Project             | 30 – 50 million | 1000 to 1100ppm | 2 to 3%         |

<sup>1</sup>The potential quantities and grades are conceptual in nature and there has been insufficient exploration to date to define a Mineral Resource. It is not certain that further exploration will result in the determination of a Mineral Resource under the "Australian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves, the JORC Code" (JORC 2012). The Exploration Target is not being reported as part of any Mineral Resource or Ore Reserve.



## **Project Comparatives**

The Burro Creek lithium clay project in Arizona is comparable to other lithium projects in the USA and Mexico subject to resource and development studies.

Global Geoscience Limited (ASX:GSC - market capitalisation \$A562 million as at 15<sup>th</sup> June 2018) recently announced 14<sup>th</sup> June 2018) it had secured funding (\$A53million) to accelerate the development of its 100% owned Rhyolite Ridge lithium – boron project in Nevada USA. The project contains a Mineral Resource constrained by a starter pit - open pit shell of 26 million tonnes at 1400ppm lithium and 1.24% boron which the company's pre-feasibility study is focussed on. <sup>2</sup>For details refer to GSC – ASX Release 13<sup>th</sup> June 2018.

| Constrained Starter Pit Shell                                        |        |               |             |
|----------------------------------------------------------------------|--------|---------------|-------------|
| South Basin Resource –<br>Constrained Starter Pit Shell <sup>2</sup> | Tonnes | Lithium Grade | Boron Grade |

Bacanora Minerals Limited (AIM:BCN - market capitalisation GBP116 million Source: BCN Corporate Presentation June 2018) are developing the Sonora lithium clay project in Mexico. An integrated plant has been designed at Sonora to initially process 1.1 Mt of ore per year, during Stage 1 of the Project, subsequently increasing to some 2.2 Mt per year at Stage 2, producing 17,500 tonnes per annum and 35,000 tonnes per annum of lithium carbonate, respectively. The plant design also includes a circuit to produce up to 30,000 tonnes per annum of potassium sulphate ( $K_2SO_4/SOP$ ) product through a series of evaporation and precipitation stages (source Bacanora website accessed 15/06/18).

## **Metallurgical Testwork Results**

Initial preliminary metallurgical testwork conducted on surface samples has provided encouraging results with calcinewater leaches recovering 89% lithium (ASX Release 1<sup>st</sup> May 2018) on Burro Creek clay samples using a similar method as being used in a pilot plant for the Sonora lithium clay project located in Mexico owned by Bacanora Minerals Limited.

These results are in addition to previous testwork (ASX Release 27<sup>th</sup> July 2017) that resulted in high lithium recoveries to 90% from simple acid leaching using a sulphuric acid leach at a temperature of 80<sup>o</sup>C. Acid consumption in those tests was similar to that from tests on raw ore from the Rhyolite Ridge lithium project in Nevada reported on 1<sup>st</sup> June 2017 by Global Geoscience Limited.

Further metallurgical testwork has commenced on representative sub-surface clay samples from the recent drill program and will include a future focus on the potassium contained within the lithium bearing clays.

## **Summary of Drill Results**

Significant lithium (Li) and potassium (K) results are included in Table 1 and shown on Figures 2 & 3. JORC reporting tables are appended to the end of this release.

|           | Hole_ID   | From<br>(m) | To (m) | Interval<br>(m) | Li (ppm)<br>900ppm cut-<br>off | Li (ppm)<br>500ppm<br>cut-off | К (%) |
|-----------|-----------|-------------|--------|-----------------|--------------------------------|-------------------------------|-------|
|           | BCRC18-01 | 1.5         | 59.4   | 57.9            |                                | 934                           | 3.36  |
| including | BCRC18-01 | 4.6         | 27.4   | 22.9            | 1088                           |                               | 2.94  |
| and       | BCRC18-01 | 33.5        | 42.7   | 9.1             | 1325                           |                               | 3.04  |
| and       | BCRC18-01 | 68.6        | 103.6  | 35.1            |                                | 689                           | 2.59  |

Table 1 – Burro Creek Significant Lithium and Potassium Results



|           | BCRC18-02              | 7.6  | 15.2         | 7.6         |      | 610      | 3.41 |
|-----------|------------------------|------|--------------|-------------|------|----------|------|
|           |                        |      | <b>6 6 6</b> | <b>60 6</b> |      | <b>.</b> |      |
| induding  | BCRC18-03              | 0.0  | 68.6         | 68.6        | 1150 | 847      | 3.25 |
| including | BCRC18-03              | 13.7 | 22.9         | 9.1         | 1152 |          | 0.46 |
| and       | BCRC18-03              | 36.6 | 48.8         | 12.2        | 1055 |          | 1.55 |
|           | BCRC18-04              | 10.7 | 47.2         | 36.6        |      | 932      | 2.64 |
| including | BCRC18-04              | 21.3 | 41.1         | 19.8        | 1180 | 932      | 3.23 |
| and       | BCRC18-04              | 54.9 | 71.6         | 15.8        | 1100 | 621      | 2.63 |
| anu       | DENCI0-04              | 54.5 | 71.0         | 10.8        |      | 021      | 2.03 |
|           | BCRC18-05              | 19.8 | 48.8         | 29.0        |      | 817      | 3.79 |
| including | BCRC18-05              | 19.8 | 27.4         | 7.6         | 1226 |          | 3.28 |
| and       | BCRC18-05              | 57.9 | 96.0         | 38.1        |      | 908      | 2.58 |
| including | BCRC18-05              | 70.1 | 74.7         | 4.6         | 977  |          | 1.55 |
| and       | BCRC18-05              | 79.2 | 93.0         | 13.7        | 1154 |          | 2.57 |
|           |                        |      |              |             |      |          |      |
|           | BCRC18-06              | 10.7 | 45.7         | 35.1        |      | 849      | 5.21 |
| including | BCRC18-06              | 16.8 | 24.4         | 7.6         | 1344 |          | 3.41 |
| and       | BCRC18-06              | 51.8 | 54.9         | 3.0         | 1200 |          | 2.51 |
|           |                        |      |              |             |      |          |      |
|           | BCRC18-07              | 0.0  | 47.2         | 47.2        |      | 685      | 3.37 |
| including | BCRC18-07              | 0.0  | 4.6          | 4.6         | 1197 |          | 1.64 |
|           | I                      |      | r            |             |      | 1        |      |
|           | BCRC18-08              | 7.6  | 10.7         | 3.0         |      | 725      | 1.49 |
| and       | BCRC18-08              | 24.4 | 39.6         | 15.2        |      | 789      | 2.27 |
|           |                        |      |              |             |      | [        |      |
|           | BCRC18-09              | 0.0  | 13.7         | 13.7        |      | 665      | 3.55 |
|           |                        |      |              | _           |      |          |      |
|           | BCRC18-10              | 4.6  | 9.1          | 4.6         |      | 673      | 2.00 |
|           |                        |      |              |             | -    |          |      |
|           | BCRC18-11              | NSR  |              |             |      |          |      |
|           |                        |      |              |             |      |          |      |
|           | BCRC18-12              | NSR  |              |             |      |          |      |
|           |                        | 22 5 | 67.4         | 22 5        |      | 007      | 2.52 |
| including | BCRC18-13              | 33.5 | 67.1         | 33.5        | 1244 | 887      | 3.52 |
| including | BCRC18-13              | 33.5 | 44.2         | 10.7        | 1244 |          | 2.94 |
|           | BCRC18-14              | 18.3 | 65.5         | 47.2        | 1050 |          | 3.74 |
| including | BCRC18-14<br>BCRC18-14 | 19.8 | 44.2         | 24.4        | 1361 |          | 3.23 |

 Including
 BCRC18-14
 19.8
 44.2
 24.4
 1361
 3.23

 All samples are 1.52m in length, average grades are simple arithmetic length weighted averages at cut-off grades of 900ppm Li and 500ppm Li with maximum of 3.04m of internal dilution.
 500ppm Li with maximum of 3.04m of internal dilution.



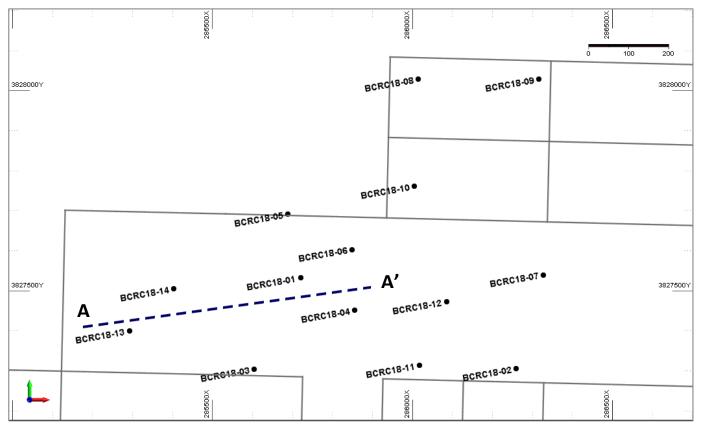



Figure 2: Burro Creek Drill Hole Locations & Location of Cross Section A-A'

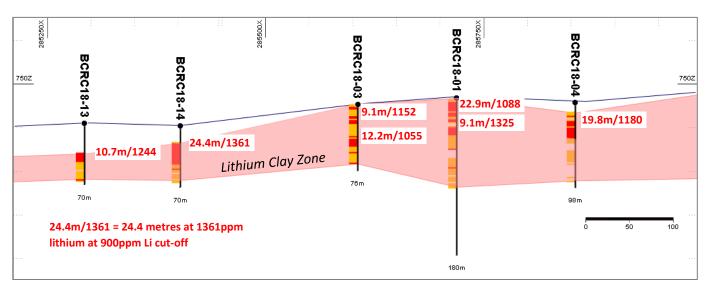



Figure 3: Burro Creek Drill Cross Section A – A' Showing Lithium Results

| HOLE_ID   | EAST_UTM | NORTH_UTM | Elevation<br>(m) | Dip | Depth |
|-----------|----------|-----------|------------------|-----|-------|
| BCRC18-01 | 285720   | 3827533   | 734              | -90 | 179.8 |
| BCRC18-02 | 286259   | 3827306   | 769              | -90 | 61.0  |

Table 2 - Burro Creek Drill Collars



| BCRC18-03 | 285604 | 3827304 | 727 | -90 | 76.2  |
|-----------|--------|---------|-----|-----|-------|
| BCRC18-04 | 285855 | 3827451 | 729 | -90 | 97.5  |
| BCRC18-05 | 285689 | 3827691 | 714 | -90 | 115.8 |
| BCRC18-06 | 285849 | 3827603 | 731 | -90 | 54.9  |
| BCRC18-07 | 286328 | 3827540 | 781 | -90 | 57.9  |
| BCRC18-08 | 286015 | 3828029 | 722 | -90 | 42.7  |
| BCRC18-09 | 286316 | 3828029 | 748 | -90 | 18.3  |
| BCRC18-10 | 286004 | 3827761 | 743 | -90 | 15.2  |
| BCRC18-11 | 286017 | 3827313 | 753 | -90 | 30.5  |
| BCRC18-12 | 286085 | 3827472 | 742 | -90 | 33.5  |
| BCRC18-13 | 285292 | 3827400 | 705 | -90 | 70.1  |
| BCRC18-14 | 285403 | 3827505 | 702 | -90 | 70.1  |
|           |        |         |     |     |       |

### Bradda Head - American Lithium Joint Venture

The American lithium transaction with Bradda Head included a cash refund of Zenith's historic expenditure of US\$500,000 (~A\$660,000), US\$5 million (A\$6.6 million) in exploration expenditures by Bradda Head for 55% project interest, a one off right for Zenith to contribute at 45%, or be free carried at 30% to the end of pre-feasibility studies on two projects. In addition, Jim Mellon (Deputy Chairman of Bradda Head) and other sophisticated investors completed a concurrent share placement of A\$1.5 million (ASX Release 15<sup>th</sup> March 2017).

Bradda Head currently holds 55% interest in the projects subject to fulfilling the expenditure requirements detailed above. Bradda Head has until 28<sup>th</sup> February 2021 to confirm that 55% interest.

The partners have also agreed to collaborate on any additional lithium projects that either party acquires within the same jurisdictions.

The transaction brings together the financial strength and market contacts of Bradda Head with the strong technical knowledge of the Zenith team and its USA and Mexican associates to advance these exciting lithium projects.

Bradda Head Ltd now plans to advance the American lithium JV projects prior to listing its interests in the joint venture on London's Alternative Investment Market (AIM) later in 2018.

#### **Competent Persons Statement**

The information in this report that relates to Exploration Results is based on information compiled by Mr Michael Clifford, who is a Member of the Australian Institute of Geoscientists and an employee of Zenith Minerals Limited. Mr Clifford has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Clifford consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

19<sup>th</sup> June 2018

#### For further information contact:

Zenith Minerals Limited Directors Michael Clifford or Mike Joyce E: <u>mick@zenithminerals.com.au</u> Phone +61 8 9226 1110 Media and Broker Enquiries Andrew Rowell E: <u>arowell@canningspurple.com.au</u> Phone +61 8 6314 6300



#### Zenith is advancing its project portfolio of high-quality, gold, lithium and base metal projects:

#### Kavaklitepe Gold Project, Turkey (ZNC 30%, Teck 70%)

Recent (2013) grass roots gold discovery in Tethyan Belt where continuous rock chip sampling to: 54m @ 3.33g/t gold, including 21.5m @ 7.2 g/t gold. Initial 2016 drill results include: 9 m @ 5.2 g/t Au from surface, 7.8 m @ 7.3 g/t Au from 3.3 m and 16.4m @ 4.7 g/t Au from 82.1m depth. Follow-up drilling planned 2018 (ASX Release 5<sup>th</sup> Oct 2016).

#### American Lithium Projects (Bradda Head earning initial 55%)

#### Zacatecas Lithium Brine Project, Mexico

> New tenure (26,000 acres) over extensive system of salt lakes within an emerging lithium brine district

Lithium brines to 2.1% lithium reported in sampling conducted by the Mexican Government from solar evaporation ponds for salt production (10km west of Zenith's new tenure) - Geophysical surveys completed, results awaited.

#### San Domingo Lithium, Arizona USA

9km x 1.5km lithium pegmatite field, initial surface sampling returned: 5m @ 1.97%Li<sub>2</sub>O including 2.4m @ 2.49% Li<sub>2</sub>O (ASX Release 18<sup>th</sup> Oct 2017) – Further mapping and sampling completed, results awaited.

#### Spencer & Wilson Salt Flat Lithium Brine Projects, Nevada USA

> Two lithium brine targets in producing lithium region - Geophysical surveys & infill sampling prior to drilling

#### Burro Creek Lithium, Arizona USA (ZNC option to acquire)

> Large scale lithium (Li) clay target under exclusive option - Positive initial metallurgical testwork to assess ease of extracting lithium. Interpretation and compilation of drill results for maiden resource in progress.

#### Australian Projects

#### Develin Creek Copper-Zinc-Silver-Gold, QLD (ZNC 100%)

> 3 known VHMS massive sulphide deposits - JORC resources, 50km of strike of host rocks.

> 2011 drilling: 13.2m @ 3.3% copper, 4.0% zinc, 30g/t silver & 0.4g/t gold - Drilling planned to extend known deposits, geophysics, geochemistry to detect new targets (ASX Release 15<sup>th</sup> Feb 2015).

#### Split Rocks Lithium, Nickel-Cobalt & Gold, WA (ZNC 100%)

> 100% owned exploration licences covering 500km<sup>2</sup> in emerging Forrestania lithium district. Awaiting drill results.

#### Tate River Gold QLD (ZNC earning up to 70%)

Trenching returned 5m @ 3.9g/t Au as well as widespread strongly anomalous gold zones such as 166m @ 0.14g/t Au (ASX Release 21<sup>st</sup> Sep 2017). Further surface sampling in progress.

#### Red Mountain Gold-Silver Project QLD (ZNC 100%)

➢ Initial reconnaissance rock chip sampling results up to 114 g/t silver and 0.69 g/t gold, associated with strong, open ended silver soil anomaly (ASX Release 25<sup>th</sup> July 2017). Follow-up sampling planned

#### Waratah Well Lithium -Tantalum Project WA (ZNC 100%)

 $\blacktriangleright$  Extensive outcropping pegmatites (3km x 2km) encouraging lithium rock chip sample results up to 1.75% Li<sub>2</sub>O as well as widespread, high-grade tantalum up to 1166ppm Ta<sub>2</sub>O<sub>5</sub> (ASX Release 29<sup>th</sup> Jul 2017 & 27<sup>th</sup> Apr 2018).

**Earaheedy Manganese Project, WA (ZNC 100%)** - Manganese province discovered by ZNC, potential DSO drill intersections (+40%Mn)

Mt Alexander Iron Ore, WA (ZNC 100%) - JORC magnetite Resource 566 Mt @ 30.0% Fe close to West Pilbara coast, 50% of target untested (ASX Release June Qtly 2015)- Seeking development partner/ buyer for iron project.

The Company has released all material information that relates to Exploration Results, Mineral Resources and Reserves, Economic Studies and Production for it's projects on a continuous basis to the ASX and in compliance with JORC 2012. The Company confirms that it is not aware of any new information that materially affects the content of this ASX release



## **Section 1 Sampling Techniques and Data**

(Criteria in this section apply to all succeeding sections.)

| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                            |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | channels, random chips, or specific<br>specialised industry standard measurement<br>tools appropriate to the minerals under<br>investigation, such as down hole gamma<br>sondes, or handheld XRF instruments,<br>etc.). These examples should not be taken<br>as limiting the broad meaning of sampling.    | Samples were collected via a cyclone.                                                                                                                                                                                                                 |
|                          | Include reference to measures taken to<br>ensure sample representivity and the<br>appropriate calibration of any measurement<br>tools or systems used.                                                                                                                                                      | intervals sampled.                                                                                                                                                                                                                                    |
| Sampling<br>techniques   | kg was pulverised to produce a 30 g charge                                                                                                                                                                                                                                                                  | Reverse circulation drilling was used to obtain 1.52m samples from which 2 kg was pulverised with analysis by ICP-MS for 46 elements including lithium.                                                                                               |
| Drilling<br>techniques   | Drill type (e.g. core, reverse circulation,<br>open-hole hammer, rotary air blast, auger,<br>Bangka, sonic, etc.) and details (e.g. core<br>diameter, triple or standard tube, depth of<br>diamond tails, face-sampling bit or other<br>type, whether core is oriented and if so, by<br>what method, etc.). | Reverse circulation drilling face sample bit.                                                                                                                                                                                                         |
|                          |                                                                                                                                                                                                                                                                                                             | Selected samples were weighed in the field and<br>using an estimated bulk density calculated weights<br>were compared against weighed samples to check<br>against visual estimates of recovery. Recovery data<br>was recorded for each drilled metre. |
| Drill sample<br>recovery | Measures taken to maximise sample<br>recovery and ensure representative nature<br>of the samples.                                                                                                                                                                                                           | Reverse circulation face sample bit ensured good recoveries through-out the drill program.                                                                                                                                                            |
|                          | Whether a relationship exists between<br>sample recovery and grade and whether<br>sample bias may have occurred due to<br>preferential loss/gain of fine/coarse<br>material.                                                                                                                                | Good sample recoveries through-out drill program po                                                                                                                                                                                                   |



|                                                  | Whether core and chip samples have been<br>geologically and geotechnically logged to a<br>level of detail to support appropriate Mineral<br>Resource estimation, mining studies and<br>metallurgical studies.                | geologist and descriptions recorded in a digital data base. Each sample has also been subject to                                                                                                                                                          |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logging                                          | Whether logging is qualitative or<br>quantitative in nature. Core (or costean,<br>channel, etc.) photography.                                                                                                                |                                                                                                                                                                                                                                                           |
|                                                  | The total length and percentage of the relevant intersections logged.                                                                                                                                                        | 100%                                                                                                                                                                                                                                                      |
|                                                  | If core, whether cut or sawn and whether quarter, half or all core taken.                                                                                                                                                    | No core                                                                                                                                                                                                                                                   |
| Sub-sampling                                     | If non-core, whether riffled, tube sampled,<br>rotary split, etc. and whether sampled wet<br>or dry.                                                                                                                         |                                                                                                                                                                                                                                                           |
| techniques and sample preparation                | For all sample types, the nature, quality and appropriateness of the sample preparation technique.                                                                                                                           | Samples were analysed at ALS Laboratories in Vancouver BC, 2 kg was pulverised and a representative subsample was analysed by ICP_MS for 46 elements.                                                                                                     |
|                                                  | Quality control procedures adopted for all<br>sub-sampling stages to maximise<br>representivity of samples.                                                                                                                  | ~250g of sample was pulverised and a sub-sample was taken in the laboratory and analysed.                                                                                                                                                                 |
| Sub-sampling<br>techniques and<br>sample         | Measures taken to ensure that the sampling<br>is representative of the in situ material<br>collected, including for instance results for<br>field duplicate/second-half sampling.                                            | Duplicate samples were taken in the field and                                                                                                                                                                                                             |
| preparation -<br>continued                       |                                                                                                                                                                                                                              | Each sample was approximately 2kg in weight which is appropriate to test for the grain size of material sampled.                                                                                                                                          |
|                                                  | the assaying and laboratory procedures                                                                                                                                                                                       | Samples were analysed at ALS Laboratories in Vancouver BC, 2 kg was pulverised and a representative subsample of 250g was digested with 4 acids and analysed by ICP-MS for 46 elements. The technique is considered near total for lithium and potassium. |
| Quality of assay<br>data and<br>laboratory tests | parameters used in determining the                                                                                                                                                                                           | Each sample has also been subject to quantative spectral analysis to assist in clay mineralogy definition. The spectral readings were completed by ALS in their Reno laboratory.                                                                          |
|                                                  | Nature of quality control procedures<br>adopted (e.g. standards, blanks, duplicates,<br>external laboratory checks) and whether<br>acceptable levels of accuracy (i.e. lack of<br>bias) and precision have been established. | Blanks, certified reference material for lithium, and<br>potassium, duplicate samples were included in the<br>analytical batches and indicate acceptable levels of<br>accuracy and precision.                                                             |
| Verification of<br>sampling and<br>assaying      | The verification of significant intersections by either independent or alternative company personnel.                                                                                                                        |                                                                                                                                                                                                                                                           |



|                                                | The use of twinned holes.                                                                                                                                                               | Nil                                                                                                                                                                                                   |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                | Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.                                                              | Field data were all recorded on paper logs and sample record books and then entered into a digital database                                                                                           |
|                                                | Discuss any adjustment to assay data.                                                                                                                                                   | No adjustments were made.                                                                                                                                                                             |
| Location of data points                        | Accuracy and quality of surveys used to<br>locate drill holes (collar and down-hole<br>surveys), trenches, mine workings and<br>other locations used in Mineral Resource<br>estimation. | Sample location is based on GPS coordinates +/-5m accuracy                                                                                                                                            |
|                                                | Specification of the grid system used.                                                                                                                                                  | The grid system used to compile data was NAD83<br>UTM Zone 12.                                                                                                                                        |
| Location of data<br>points –<br>continued      | Quality and adequacy of topographic control.                                                                                                                                            | Topography elevation control is +/- 1m, based on a digital terrain model from aerial surveying.                                                                                                       |
|                                                | Data spacing for reporting of Exploration Results.                                                                                                                                      | Drilling is on 150 to 250m spaced holes with lines approximately 200m apart.                                                                                                                          |
| Data spacing and<br>distribution               | geological and grade continuity appropriate                                                                                                                                             | The data spacing and distribution is sufficient to<br>establish the degree of geological and grade<br>continuity appropriate for the Mineral Resource,<br>which is will commence shortly.             |
|                                                | Whether sample compositing has been applied.                                                                                                                                            | Simple weight average mathematical compositing applied                                                                                                                                                |
| Orientation of                                 | achieves unbiased sampling of possible                                                                                                                                                  | All drilling is vertical and is close to representing true<br>width thickness of the sub-horizontal lithium-<br>potassium clay mineralisation. Orientations of gold<br>and lithium mineralisation are |
| data in relation to<br>geological<br>structure |                                                                                                                                                                                         | No bias considered based on current interpretation of sub-horizontal lithium clay mineralisation.                                                                                                     |
| Sample security                                | The measures taken to ensure sample security.                                                                                                                                           | All samples were taken by Bradda Head personnel<br>on site and retained in a secure location until<br>delivered directly to the laboratory by Bradda Head<br>personnel.                               |
| Audits or reviews                              | The results of any audits or reviews of sampling techniques and data.                                                                                                                   | The sampling techniques and data have been reviewed by two Bradda Head personnel who are qualified as Competent Persons                                                                               |



## Section 2 Reporting of Exploration

#### **Results**

(Criteria listed in the preceding section also apply to this section.)

| Section.)<br>Criteria                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral tenement<br>and land tenure<br>status | Type, reference name/number, location<br>and ownership including agreements or<br>material issues with third parties such<br>as joint ventures, partnerships,<br>overriding royalties, native title interests,<br>historical sites, wilderness or national<br>park and environmental settings.<br>The security of the tenure held at the<br>time of reporting along with any known | The Burro Creek Project is located within both state of<br>Arizona mineral development leases and federal placer<br>claims.<br>The Burro Creek project is part of the Bradda Head<br>joint venture, the JV terms are detailed in the body text<br>of this report.<br>The Burro Creek project is subject to an option<br>agreement that is detailed in Zenith's ASX Release<br>dated 10th November 2016.<br>The area subject to drilling in this release is on a |
|                                               | impediments to obtaining a licence to operate in the area.                                                                                                                                                                                                                                                                                                                         | granted Arizona state mineral development lease which<br>provides a licence to operate.<br>This is the maiden drill program focused on lithium                                                                                                                                                                                                                                                                                                                  |
| Exploration done<br>by other parties          | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                      | exploration. Previous exploration has focused on industrial clay. Mining is occurring along the southern lease boundary for industrial clays.                                                                                                                                                                                                                                                                                                                   |
| Geology                                       | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                      | Sub-horizontal lithium clay and tuff beds interpreted to<br>be originally part deposited in an ancient lake system.<br>Subsequent hydrothermal fluids and weathering<br>processes have enriched the lithium clay contents of<br>selected sedimentary horizons.                                                                                                                                                                                                  |
|                                               | A summary of all information material to the<br>understanding of the exploration results including<br>a tabulation of the following information for all<br>Material drill holes:                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                               | o easting and northing of the drill hole collar                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Drill hole                                    | o elevation or RL (Reduced Level –<br>elevation above sea level in metres) of the drill<br>hole collar                                                                                                                                                                                                                                                                             | Drill collars are provided in Table 1, whilst significant lithium and potassium results are included in Table 2.                                                                                                                                                                                                                                                                                                                                                |
| Information                                   | o dip and azimuth of the hole                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                               | o down hole length and interception depth                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                               | o hole length.                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                               | If the exclusion of this information is justified on<br>the basis that the information is not Material and<br>this exclusion does not detract from the<br>understanding of the report, the Competent<br>Person should clearly explain why this is the case.                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Data aggregation<br>methods                   | maximum and/or minimum grade                                                                                                                                                                                                                                                                                                                                                       | Simple arithmetic weight averaging with minimum cut-<br>off grade of 500ppm lithium and 900ppm lithium and<br>including up to 3.04m of internal dilution.                                                                                                                                                                                                                                                                                                       |
|                                               | Where aggregate intercepts incorporate<br>short lengths of high grade results and<br>longer lengths of low grade results, the<br>procedure used for such aggregation                                                                                                                                                                                                               | As above and included in Tables                                                                                                                                                                                                                                                                                                                                                                                                                                 |



|                                                                              | should be stated and some typical examples of such aggregations should be shown in detail.                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data aggregation<br>methods -<br>continued                                   | The assumptions used for any reporting<br>of metal equivalent values should be<br>clearly stated.                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept lengths | important in the reporting of Exploration Results.                                                                                                                                                                                                                                                                                     | All drilling is vertical and is close to representing true<br>width thickness of the sub-horizontal lithium-potassium<br>clay mineralisation.                                                                                                                                                                                                                                                                                          |
|                                                                              | If the geometry of the mineralisation<br>with respect to the drill hole angle is<br>known, its nature should be reported.                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                              | If it is not known and only the down hole<br>lengths are reported, there should be a<br>clear statement to this effect (e.g. 'down<br>hole length, true width not known').                                                                                                                                                             | Length reported are down-hole lengths but are believed to be close to true thickness                                                                                                                                                                                                                                                                                                                                                   |
| Diagrams                                                                     | Appropriate maps and sections (with<br>scales) and tabulations of intercepts<br>should be included for any significant<br>discovery being reported These should<br>include, but not be limited to a plan view<br>of drill hole collar locations and<br>appropriate sectional views.                                                    | Refer to descriptions and diagrams in body of text<br>(Figures 1 -3)                                                                                                                                                                                                                                                                                                                                                                   |
| Balanced<br>reporting                                                        | Where comprehensive reporting of all<br>Exploration Results is not practicable,<br>representative reporting of both low and<br>high grades and/or widths should be<br>practiced to avoid misleading reporting<br>of Exploration Results.                                                                                               | Refer to Figures 1 – 3 and Tables 1- 2 and descriptions in body of text                                                                                                                                                                                                                                                                                                                                                                |
| Other substantive<br>exploration data                                        | including (but not limited to): geological<br>observations; geophysical survey<br>results; geochemical survey results;<br>bulk samples – size and method of<br>treatment; metallurgical test results; bulk<br>density, groundwater, geotechnical and<br>rock characteristics; potential<br>deleterious or contaminating<br>substances. | Initial preliminary metallurgical testwork has been<br>completed on bulk surface samples and is summarised<br>in the text of this release. Further metallurgical<br>testwork has commenced on drill samples.<br>Drilling intersected significant quantities of fresh water<br>below the lithium clay target horizons, the water would<br>appear to be suitable for future mineral processing.<br>The state leases confer water rights. |
| Further work                                                                 | work (e.g. tests for lateral extensions or                                                                                                                                                                                                                                                                                             | Further drilling is planned to test the western claim target areas.                                                                                                                                                                                                                                                                                                                                                                    |