

22 June 2018

# Preliminary findings of Feasibility Study indicate additional cobalt-nickel mineralisation potential at Sconi Project, Queensland

**Australian Mines Limited** ("Australian Mines" or "the Company") (Australia ASX: *AUZ*; USA OTCQB: *AMSLF*; Frankfurt Stock Exchange: *MJH*) advises that a review of the sterilisation drilling<sup>1</sup> completed across the proposed processing infrastructure sites at Sconi, as part of the Company's Bankable Feasibility Study (BFS), has indicated that high grade cobalt and nickel mineralisation<sup>2</sup> extends across the sites proposed for the processing plant and haul roads.

The sterilisation drilling, undertaken by Metallica Minerals Limited in the lead-up to the project's Pre-Feasibility Study<sup>3</sup> (PFS), identified a preferred site for the processing plant at Sconi. This location appears primarily designed to optimise scandium production from the ore body and did not comprehensively sterilise the cobalt and nickel prospectivity of the proposed mining and processing area.

Since acquiring a 100%-interest in the Sconi Project from Metallica Minerals in 2017, and having signed a binding off-take agreement with SK Innovation<sup>1</sup>, Australian Mines has been focused on optimising the Sconi BFS for cobalt and nickel production to maximise economic returns from the Project<sup>4</sup>.

<sup>&</sup>lt;sup>1</sup> Sterilisation drilling is undertaken during the pre-development phase of all mining and mineral resource programs to ensure there is no mineralisation within / beneath the sites earmarked for buildings, roads, power lines, pipelines, waste piles, tailings disposal areas and the like. The objective of a sterilisation drilling program is, therefore, to confirm the ground being tested is barren of mineralisation. Intersecting economic, or potentially economic grade mineralisation via a sterilisation drill program represents a (positive) issue for a resource company because although it means that a company needs to identify an alternate site on which to build the project's infrastructure, it similarly means that the deposit or ore body is potentially larger than that company had initially expected.

<sup>&</sup>lt;sup>3</sup> Australian Mines Limited, Technical Reports, released 31 March 2017

<sup>&</sup>lt;sup>4</sup> Whilst the Sconi Bankable Feasibility Study (BFS) is being optimised for cobalt and nickel production, the proposed plant is still expected to produce a similar volume of scandium as that outlined in the Pre-Feasibility Study (PFS).



This finding by Australian Mines' Studies Team that the previous sterilisation drilling intersected similar grades to those included in the project's current Mineral Resource<sup>5</sup> indicates that the overall footprint of cobalt and nickel mineralisation at the Company's 100%-owned Sconi Project may be significantly larger than previously indicated by both the Pre-Feasibility Study<sup>6</sup> (PFS) for Sconi and the project's existing Mineral Resource Statement.

As a result, Australian Mines, in collaboration with lead engineering firm Ausenco<sup>7</sup>, are presently re-evaluating the location and layout of the full-scale cobalt-nickel-scandium processing plant, and associated non-processing infrastructure to ensure the final site design enables maximum operational efficiency (and, thus, the lowest possible operating costs for the project) in tandem with optimising the Sconi Project's Life-of-Mine.

The current optimisation process for the Sconi BFS, which is appropriate in light of the additional cobalt and nickel mineralisation within sites earmarked for the processing plant and supporting infrastructure<sup>8</sup>, will necessarily result in a slight adjustment to the proposed BFS timetable. The Company now expects to receive the draft version of the report by the end of July 2018, with the final Board-approved version subsequently released to the market in September 2018.

This adjusted timing of the BFS is not expected to have any effect on the construction date for the project given that both SK and the financial institutions engaged in negotiations with Australian Mines are imbedded in the Company's current BFS process.

**Australian Mines' Managing Director, Benjamin Bell, commented:** *"Australian Mines remains committed to delivering the maximum value to shareholders from the Sconi Project through the delivery of a large-scale cobalt-nickel-scandium mining and processing operation in northern Queensland.* 

"Given this operation has the potential to run for several decades once commissioned it is imperative that we invest time at this critical planning stage to ensure the site is set-up to maximise and sustain future production.

"The positive news for Australian Mines' shareholders from the review of the sterilisation drilling program, is that the grades intersected were sufficient for us to reassess the plant location and will inevitably be the catalyst for us to reassess the overall footprint of the cobalt and nickel mineralisation.

<sup>&</sup>lt;sup>5</sup> The Mineral Resource Estimate for the Sconi Cobalt-Nickel-Scandium Project is reported under JORC 2012 Guidelines and was reported by Australian Mines Limited on 31 March 2017. The global Mineral Resource for Sconi, as announced on 31 March 2017 is: Measured 17Mt @ 0.80% Ni, 0.07% Co, Indicated 48Mt @ 0.58% Ni, 0.07% Co, Inferred, 24Mt @ 0.41% Ni, 0.06% Co. There has been no Material Change or Re-estimation of the Mineral Resource since this 31 March 2017 announcement by Australian Mines

<sup>&</sup>lt;sup>6</sup> Australian Mines Limited, Technical Reports, released 31 March 2017

<sup>7</sup> https://www.ausenco.com/



"The results from sterilisation drilling at Sconi, along with the anticipated results from the upcoming resource expansion drill program will provide significant data for us to revisit the existing Mineral Resource estimate and assess potential future conversion of those resources to Ore Reserves."

\*\*\*ENDS\*\*\*

For further information:

#### Shareholders contact:

Sophia Bolhassan Investor Relations Manager Ph: +61 488 022 944 E: sbolhassan@australianmines.com.au Media contact: Michael Cairnduff Cannings Purple Ph: + 61 406 775 241 E: mcairnduff@canningspurple.com.au

https://www.linkedin.com/company/australianmines/

https://twitter.com/ausmines



# Appendix 1: Sterilisation Drilling Program Results – Sconi Project

#### Table 1: Sconi Reverse Circulation Drill Program – Drill Hole Information Summary

| Hole<br>Number | Northing<br>(MGA55) | Easting<br>(MGA55) | Elevation<br>(metres) | Hole Depth<br>(metres) |
|----------------|---------------------|--------------------|-----------------------|------------------------|
| GVM221         | 7902208             | 281673             | 536                   | 16                     |
| GVM222         | 7902184             | 281682             | 537                   | 16                     |
| GVM223         | 7902147             | 281683             | 540                   | 30                     |
| GVM224         | 7902121             | 281676             | 542                   | 22                     |
| GVM225         | 7902094             | 281674             | 543                   | 19                     |
| GVM226         | 7902058             | 281674             | 544                   | 19                     |
| GVM227         | 7902073             | 281673             | 544                   | 19                     |
| GVM228         | 7902060             | 281701             | 546                   | 13                     |
| GVM229         | 7902036             | 281705             | 546                   | 13                     |
| GVM230         | 7902016             | 281710             | 547                   | 19                     |
| GVM231         | 7901995             | 281714             | 547                   | 13                     |
| GVM232         | 7902152             | 281634             | 528                   | 19                     |
| GVM233         | 7902115             | 281606             | 529                   | 25                     |
| GVM234         | 7902111             | 281589             | 529                   | 13                     |
| GVM235         | 7902045             | 281607             | 533                   | 17                     |
| GVM236         | 7902002             | 281596             | 532                   | 19                     |
| GVM237         | 7901967             | 281588             | 531                   | 13                     |
| GVM250         | 7901263             | 281075             | 511                   | 28                     |
| GVM251         | 7901215             | 281079             | 511                   | 15                     |
| GVM252         | 7901142             | 281079             | 511                   | 31                     |
| GVM253         | 7901098             | 281078             | 511                   | 25                     |
| GVM254         | 7901097             | 281039             | 512                   | 31                     |
| GVM255         | 7901142             | 281042             | 512                   | 27                     |
| GVM256         | 7901180             | 281037             | 513                   | 28                     |
| GVM257         | 7901216             | 281039             | 513                   | 27                     |
| GVM258         | 7901264             | 281047             | 514                   | 27                     |
| GVM590         | 7901121             | 281077             | 511                   | 24                     |
| GVM591         | 7901164             | 281080             | 511                   | 27                     |
| GVM592         | 7901177             | 281058             | 511                   | 42                     |
| GVM593         | 7901160             | 281058             | 512                   | 24                     |
| GVM594         | 7901141             | 281058             | 511                   | 27                     |
| GVM595         | 7901197             | 281080             | 510                   | 24                     |
| GVM596         | 7901200             | 281059             | 511                   | 21                     |
| GVM597         | 7901124             | 281098             | 511                   | 21                     |
| GVM628         | 7902155             | 281580             | 527                   | 15                     |
| GVM629         | 7902121             | 281562             | 526                   | 15                     |



| GVM630 | 7902077 | 281559 | 522 | 12 |
|--------|---------|--------|-----|----|
|        |         |        |     |    |

All holes are vertical, hence, have a nominal dip of -90 and an azimuth of 0 degrees.

Table 1 above contains all known drill holes undertaken as part of the sterilisation drill program. Any gaps in the range of drill hole numbers outlined in the above table is due to the sterilisation drill holes being undertaken over multiple programs.



# Table 2: Sconi Drill Program - Assay Summary - Cobalt and Nickel

| Hole<br>Number | From<br>(metres) | To<br>(metres) | Cobalt<br>(%) | Nickel<br>(%) |
|----------------|------------------|----------------|---------------|---------------|
| GVM221         | 0                | 1              | 0.066         | 0.691         |
| GVM221         | 1                | 2              | 0.060         | 0.811         |
| GVM221         | 2                | 3              | 0.058         | 1.040         |
| GVM221         | 3                | 4              | 0.021         | 0.479         |
| GVM221         | 4                | 5              | 0.014         | 0.365         |
| GVM221         | 5                | 6              | 0.016         | 0.408         |
| GVM221         | 6                | 7              | 0.013         | 0.294         |
| GVM221         | 7                | 8              | 0.012         | 0.260         |
| GVM221         | 8                | 9              | 0.014         | 0.323         |
| GVM221         | 9                | 10             | 0.010         | 0.265         |
| GVM221         | 10               | 11             | 0.010         | 0.210         |
| GVM221         | 11               | 12             | 0.013         | 0.299         |
| GVM221         | 12               | 13             | 0.013         | 0.263         |
| GVM221         | 13               | 14             | 0.007         | 0.201         |
| GVM221         | 14               | 15             | 0.007         | 0.144         |
| GVM221         | 15               | 16             | 0.010         | 0.192         |
| GVM222         | 0                | 1              | 0.018         | 1.530         |
| GVM222         | 1                | 2              | 0.016         | 0.858         |
| GVM222         | 2                | 3              | 0.012         | 0.274         |
| GVM222         | 3                | 4              | 0.012         | 0.337         |
| GVM222         | 4                | 5              | 0.012         | 0.306         |
| GVM222         | 5                | 6              | 0.011         | 0.249         |
| GVM222         | 6                | 7              | 0.010         | 0.214         |
| GVM222         | 7                | 8              | 0.011         | 0.224         |
| GVM222         | 8                | 9              | 0.011         | 0.241         |
| GVM222         | 9                | 10             | 0.016         | 0.410         |
| GVM222         | 10               | 11             | 0.014         | 0.319         |
| GVM222         | 11               | 12             | 0.012         | 0.278         |
| GVM222         | 12               | 13             | 0.016         | 0.369         |
| GVM222         | 13               | 14             | 0.012         | 0.307         |
| GVM222         | 14               | 15             | 0.013         | 0.347         |
| GVM222         | 15               | 16             | 0.012         | 0.316         |
| GVM223         | 0                | 1              | 0.025         | 0.502         |
| GVM223         | 1                | 2              | 0.020         | 0.579         |
| GVM223         | 2                | 3              | 0.017         | 0.994         |
| GVM223         | 3                | 4              | 0.018         | 0.741         |
| GVM223         | 4                | 5              | 0.018         | 0.783         |
| GVM223         | 5                | 6              | 0.014         | 0.449         |
| GVM223         | 6                | 7              | 0.016         | 0.551         |



| GVM223 | 7  | 8  | 0.018 | 0.670 |
|--------|----|----|-------|-------|
| GVM223 | 8  | 9  | 0.019 | 0.660 |
| GVM223 | 9  | 10 | 0.016 | 0.368 |
| GVM223 | 10 | 11 | 0.018 | 0.443 |
| GVM223 | 11 | 12 | 0.018 | 0.597 |
| GVM223 | 12 | 13 | 0.016 | 0.660 |
| GVM223 | 13 | 14 | 0.014 | 0.622 |
| GVM223 | 14 | 15 | 0.017 | 0.707 |
| GVM223 | 15 | 16 | 0.018 | 0.775 |
| GVM223 | 16 | 17 | 0.016 | 0.537 |
| GVM223 | 17 | 18 | 0.019 | 0.843 |
| GVM223 | 18 | 19 | 0.029 | 1.560 |
| GVM223 | 19 | 20 | 0.041 | 1.710 |
| GVM223 | 20 | 21 | 0.018 | 0.721 |
| GVM223 | 21 | 22 | 0.022 | 1.100 |
| GVM223 | 22 | 23 | 0.008 | 0.303 |
| GVM223 | 23 | 24 | 0.015 | 0.382 |
| GVM223 | 24 | 27 | 0.011 | 0.191 |
| GVM223 | 27 | 30 | 0.009 | 0.192 |
| GVM224 | 0  | 1  | 0.001 | 0.001 |
| GVM224 | 1  | 2  | 0.048 | 1.490 |
| GVM224 | 2  | 3  | 0.025 | 0.485 |
| GVM224 | 3  | 6  | 0.022 | 0.509 |
| GVM224 | 6  | 7  | 0.012 | 0.266 |
| GVM224 | 7  | 8  | 0.010 | 0.208 |
| GVM224 | 8  | 11 | 0.009 | 0.201 |
| GVM224 | 11 | 14 | 0.010 | 0.216 |
| GVM224 | 14 | 17 | 0.009 | 0.196 |
| GVM224 | 17 | 20 | 0.008 | 0.177 |
| GVM224 | 20 | 21 | 0.008 | 0.169 |
| GVM224 | 21 | 22 | 0.009 | 0.186 |
| GVM225 | 0  | 1  | 0.025 | 0.890 |
| GVM225 | 1  | 2  | 0.038 | 1.050 |
| GVM225 | 2  | 3  | 0.054 | 1.510 |
| GVM225 | 3  | 4  | 0.123 | 3.350 |
| GVM225 | 4  | 5  | 0.023 | 0.654 |
| GVM225 | 5  | 6  | 0.009 | 0.212 |
| GVM225 | 6  | 9  | 0.009 | 0.214 |
| GVM225 | 9  | 12 | 0.009 | 0.190 |
| GVM225 | 12 | 15 | 0.008 | 0.175 |
| GVM225 | 15 | 18 | 0.007 | 0.155 |
| GVM225 | 18 | 19 | 0.008 | 0.172 |
| GVM226 | 0  | 1  | 0.023 | 0.442 |
| GVM226 | 1  | 2  | 0.013 | 0.247 |



| GVM226 | 2  | 3  | 0.039 | 0.861 |
|--------|----|----|-------|-------|
| GVM226 | 3  | 4  | 0.024 | 0.576 |
| GVM226 | 4  | 5  | 0.021 | 0.603 |
| GVM226 | 5  | 6  | 0.025 | 0.644 |
| GVM226 | 6  | 7  | 0.017 | 0.982 |
| GVM226 | 7  | 10 | 0.016 | 0.535 |
| GVM226 | 10 | 11 | 0.013 | 0.502 |
| GVM226 | 11 | 12 | 0.015 | 0.862 |
| GVM226 | 12 | 13 | 0.023 | 1.040 |
| GVM226 | 13 | 14 | 0.021 | 0.799 |
| GVM226 | 14 | 15 | 0.019 | 0.621 |
| GVM226 | 15 | 16 | 0.017 | 0.507 |
| GVM226 | 16 | 17 | 0.014 | 0.372 |
| GVM226 | 17 | 18 | 0.014 | 0.333 |
| GVM226 | 18 | 19 | 0.023 | 0.811 |
| GVM227 | 0  | 1  | 0.037 | 1.330 |
| GVM227 | 1  | 2  | 0.026 | 0.816 |
| GVM227 | 2  | 3  | 0.017 | 0.581 |
| GVM227 | 3  | 4  | 0.010 | 0.240 |
| GVM227 | 4  | 5  | 0.009 | 0.208 |
| GVM227 | 5  | 6  | 0.008 | 0.192 |
| GVM227 | 6  | 7  | 0.008 | 0.186 |
| GVM227 | 7  | 10 | 0.009 | 0.207 |
| GVM227 | 10 | 13 | 0.012 | 0.273 |
| GVM227 | 13 | 16 | 0.013 | 0.332 |
| GVM227 | 16 | 19 | 0.007 | 0.176 |
| GVM228 | 0  | 1  | 0.018 | 1.000 |
| GVM228 | 1  | 2  | 0.029 | 1.320 |
| GVM228 | 2  | 3  | 0.009 | 0.211 |
| GVM228 | 3  | 4  | 0.008 | 0.181 |
| GVM228 | 4  | 7  | 0.008 | 0.180 |
| GVM228 | 7  | 10 | 0.009 | 0.185 |
| GVM228 | 10 | 13 | 0.009 | 0.195 |
| GVM229 | 0  | 1  | 0.031 | 1.290 |
| GVM229 | 1  | 2  | 0.023 | 0.915 |
| GVM229 | 2  | 3  | 0.014 | 0.478 |
| GVM229 | 3  | 4  | 0.006 | 0.172 |
| GVM229 | 4  | 7  | 0.010 | 0.191 |
| GVM229 | 7  | 10 | 0.010 | 0.206 |
| GVM229 | 10 | 13 | 0.010 | 0.220 |
| GVM230 | 0  | 1  | 0.069 | 0.537 |
| GVM230 | 1  | 2  | 0.096 | 1.400 |
| GVM230 | 2  | 3  | 0.067 | 2.090 |
| GVM230 | 3  | 4  | 0.015 | 0.537 |



| GVM230 | 4  | 5  | 0.010 | 0.222 |
|--------|----|----|-------|-------|
| GVM230 | 5  | 6  | 0.010 | 0.210 |
| GVM230 | 6  | 7  | 0.010 | 0.202 |
| GVM230 | 7  | 10 | 0.009 | 0.185 |
| GVM230 | 10 | 13 | 0.009 | 0.187 |
| GVM230 | 13 | 16 | 0.009 | 0.173 |
| GVM230 | 16 | 19 | 0.009 | 0.182 |
| GVM231 | 0  | 1  | 0.023 | 0.749 |
| GVM231 | 1  | 2  | 0.019 | 0.485 |
| GVM231 | 2  | 3  | 0.021 | 0.529 |
| GVM231 | 3  | 4  | 0.015 | 0.726 |
| GVM231 | 4  | 5  | 0.014 | 0.485 |
| GVM231 | 5  | 6  | 0.014 | 0.818 |
| GVM231 | 6  | 7  | 0.008 | 0.229 |
| GVM231 | 7  | 10 | 0.006 | 0.189 |
| GVM231 | 10 | 13 | 0.007 | 0.149 |
| GVM232 | 0  | 1  | 0.041 | 0.784 |
| GVM232 | 1  | 2  | 0.032 | 0.822 |
| GVM232 | 2  | 3  | 0.024 | 0.603 |
| GVM232 | 3  | 4  | 0.025 | 0.632 |
| GVM232 | 4  | 5  | 0.021 | 0.536 |
| GVM232 | 5  | 6  | 0.019 | 0.534 |
| GVM232 | 6  | 7  | 0.019 | 0.626 |
| GVM232 | 7  | 8  | 0.025 | 1.290 |
| GVM232 | 8  | 9  | 0.012 | 0.333 |
| GVM232 | 9  | 10 | 0.009 | 0.188 |
| GVM232 | 10 | 13 | 0.013 | 0.302 |
| GVM232 | 13 | 16 | 0.011 | 0.245 |
| GVM232 | 16 | 19 | 0.017 | 0.403 |
| GVM233 | 0  | 1  | 0.037 | 0.545 |
| GVM233 | 1  | 2  | 0.033 | 0.379 |
| GVM233 | 2  | 3  | 0.048 | 0.434 |
| GVM233 | 3  | 4  | 0.055 | 0.500 |
| GVM233 | 4  | 5  | 0.043 | 0.441 |
| GVM233 | 5  | 6  | 0.058 | 1.370 |
| GVM233 | 6  | 7  | 0.073 | 1.060 |
| GVM233 | 7  | 8  | 0.070 | 0.983 |
| GVM233 | 8  | 9  | 0.039 | 1.100 |
| GVM233 | 9  | 10 | 0.041 | 1.070 |
| GVM233 | 10 | 11 | 0.046 | 1.370 |
| GVM233 | 11 | 12 | 0.045 | 1.500 |
| GVM233 | 12 | 13 | 0.019 | 0.673 |
| GVM233 | 13 | 14 | 0.022 | 0.818 |
| GVM233 | 14 | 15 | 0.025 | 0.582 |



| GVM233 | 15 | 16 | 0.025 | 0.556 |
|--------|----|----|-------|-------|
| GVM233 | 16 | 17 | 0.023 | 0.677 |
| GVM233 | 17 | 18 | 0.022 | 0.543 |
| GVM233 | 18 | 19 | 0.023 | 0.628 |
| GVM233 | 19 | 22 | 0.015 | 0.372 |
| GVM233 | 22 | 25 | 0.026 | 0.503 |
| GVM234 | 0  | 1  | 0.007 | 0.112 |
| GVM234 | 1  | 2  | 0.005 | 0.090 |
| GVM234 | 2  | 3  | 0.045 | 0.804 |
| GVM234 | 3  | 4  | 0.072 | 0.803 |
| GVM234 | 4  | 5  | 0.082 | 0.955 |
| GVM234 | 5  | 6  | 0.076 | 0.896 |
| GVM234 | 6  | 7  | 0.101 | 1.130 |
| GVM234 | 7  | 8  | 0.052 | 0.830 |
| GVM234 | 8  | 9  | 0.036 | 0.649 |
| GVM234 | 9  | 10 | 0.030 | 0.614 |
| GVM234 | 10 | 11 | 0.019 | 0.659 |
| GVM234 | 11 | 12 | 0.012 | 0.482 |
| GVM234 | 12 | 13 | 0.017 | 0.476 |
| GVM235 | 0  | 1  | 0.024 | 0.473 |
| GVM235 | 1  | 2  | 0.020 | 0.437 |
| GVM235 | 2  | 3  | 0.015 | 0.357 |
| GVM235 | 3  | 4  | 0.014 | 0.363 |
| GVM235 | 4  | 5  | 0.017 | 0.519 |
| GVM235 | 5  | 6  | 0.015 | 0.368 |
| GVM235 | 6  | 7  | 0.012 | 0.261 |
| GVM235 | 7  | 8  | 0.012 | 0.232 |
| GVM235 | 8  | 9  | 0.013 | 0.297 |
| GVM235 | 9  | 10 | 0.014 | 0.329 |
| GVM235 | 10 | 13 | 0.010 | 0.226 |
| GVM235 | 13 | 17 | 0.009 | 0.216 |
| GVM236 | 0  | 1  | 0.026 | 0.686 |
| GVM236 | 1  | 2  | 0.016 | 0.567 |
| GVM236 | 2  | 3  | 0.014 | 0.449 |
| GVM236 | 3  | 4  | 0.014 | 0.319 |
| GVM236 | 4  | 5  | 0.013 | 0.359 |
| GVM236 | 5  | 6  | 0.011 | 0.281 |
| GVM236 | 6  | 7  | 0.015 | 0.520 |
| GVM236 | 7  | 10 | 0.013 | 0.317 |
| GVM236 | 10 | 13 | 0.011 | 0.287 |
| GVM236 | 13 | 16 | 0.011 | 0.275 |
| GVM236 | 16 | 19 | 0.009 | 0.186 |
| GVM237 | 0  | 1  | 0.037 | 1.070 |
| GVM237 | 1  | 2  | 0.042 | 1.040 |



| GVM237 | 2  | 3  | 0.029 | 0.555 |
|--------|----|----|-------|-------|
| GVM237 | 3  | 4  | 0.017 | 0.333 |
| GVM237 | 4  | 10 | 0.001 | 0.001 |
| GVM237 | 10 | 13 | 0.010 | 0.227 |
| GVM250 | 1  | 2  | 0.056 | 0.503 |
| GVM250 | 2  | 3  | 0.056 | 0.596 |
| GVM250 | 3  | 6  | 0.007 | 0.244 |
| GVM250 | 6  | 9  | 0.021 | 0.342 |
| GVM250 | 9  | 12 | 0.020 | 0.327 |
| GVM250 | 12 | 15 | 0.036 | 0.298 |
| GVM250 | 15 | 18 | 0.041 | 0.391 |
| GVM250 | 18 | 19 | 0.014 | 0.427 |
| GVM250 | 19 | 20 | 0.012 | 1.420 |
| GVM250 | 20 | 21 | 0.014 | 1.090 |
| GVM250 | 21 | 22 | 0.011 | 0.340 |
| GVM250 | 22 | 23 | 0.014 | 0.620 |
| GVM250 | 23 | 24 | 0.006 | 0.528 |
| GVM250 | 24 | 25 | 0.014 | 0.254 |
| GVM250 | 25 | 28 | 0.016 | 0.308 |
| GVM251 | 0  | 3  | 0.024 | 0.324 |
| GVM251 | 3  | 6  | 0.006 | 0.122 |
| GVM251 | 6  | 9  | 0.015 | 0.231 |
| GVM251 | 9  | 10 | 0.034 | 0.318 |
| GVM251 | 10 | 11 | 0.033 | 0.378 |
| GVM251 | 11 | 12 | 0.070 | 0.475 |
| GVM251 | 12 | 13 | 0.020 | 0.413 |
| GVM251 | 13 | 14 | 0.018 | 0.324 |
| GVM251 | 14 | 15 | 0.016 | 0.261 |
| GVM252 | 0  | 3  | 0.035 | 0.364 |
| GVM252 | 3  | 6  | 0.008 | 0.027 |
| GVM252 | 6  | 9  | 0.003 | 0.001 |
| GVM252 | 9  | 12 | 0.001 | 0.001 |
| GVM252 | 12 | 15 | 0.008 | 0.118 |
| GVM252 | 15 | 18 | 0.055 | 0.515 |
| GVM252 | 18 | 19 | 0.069 | 1.860 |
| GVM252 | 19 | 20 | 0.044 | 3.280 |
| GVM252 | 20 | 21 | 0.035 | 2.090 |
| GVM252 | 21 | 22 | 0.027 | 1.470 |
| GVM252 | 22 | 23 | 0.025 | 1.070 |
| GVM252 | 23 | 24 | 0.023 | 0.777 |
| GVM252 | 24 | 25 | 0.024 | 0.805 |
| GVM252 | 25 | 26 | 0.021 | 0.780 |
| GVM252 | 26 | 27 | 0.020 | 0.622 |
| GVM252 | 27 | 28 | 0.024 | 0.659 |



| GVM252 | 28 | 29 | 0.020 | 0.491 |
|--------|----|----|-------|-------|
| GVM252 | 29 | 30 | 0.014 | 0.368 |
| GVM252 | 30 | 31 | 0.016 | 0.398 |
| GVM253 | 0  | 1  | 0.001 | 0.001 |
| GVM253 | 1  | 2  | 0.001 | 0.001 |
| GVM253 | 2  | 3  | 0.015 | 0.181 |
| GVM253 | 3  | 4  | 0.009 | 0.084 |
| GVM253 | 4  | 5  | 0.005 | 0.086 |
| GVM253 | 5  | 6  | 0.001 | 0.036 |
| GVM253 | 6  | 7  | 0.001 | 0.035 |
| GVM253 | 7  | 8  | 0.001 | 0.035 |
| GVM253 | 8  | 9  | 0.001 | 0.041 |
| GVM253 | 9  | 10 | 0.001 | 0.026 |
| GVM253 | 10 | 11 | 0.003 | 0.034 |
| GVM253 | 11 | 12 | 0.001 | 0.045 |
| GVM253 | 12 | 13 | 0.001 | 0.034 |
| GVM253 | 13 | 14 | 0.001 | 0.039 |
| GVM253 | 14 | 15 | 0.001 | 0.049 |
| GVM253 | 15 | 16 | 0.003 | 0.071 |
| GVM253 | 16 | 17 | 0.021 | 0.335 |
| GVM253 | 17 | 18 | 0.048 | 0.360 |
| GVM253 | 18 | 19 | 0.057 | 0.407 |
| GVM253 | 19 | 20 | 0.056 | 0.549 |
| GVM253 | 20 | 21 | 0.029 | 0.592 |
| GVM253 | 21 | 22 | 0.028 | 0.489 |
| GVM253 | 22 | 23 | 0.019 | 0.319 |
| GVM253 | 23 | 24 | 0.013 | 0.305 |
| GVM253 | 24 | 25 | 0.001 | 0.001 |
| GVM254 | 0  | 3  | 0.044 | 0.413 |
| GVM254 | 3  | 6  | 0.021 | 0.256 |
| GVM254 | 6  | 9  | 0.003 | 0.061 |
| GVM254 | 9  | 12 | 0.001 | 0.043 |
| GVM254 | 12 | 15 | 0.001 | 0.026 |
| GVM254 | 15 | 18 | 0.001 | 0.058 |
| GVM254 | 18 | 21 | 0.004 | 0.059 |
| GVM254 | 21 | 24 | 0.010 | 0.272 |
| GVM254 | 24 | 27 | 0.015 | 0.431 |
| GVM254 | 27 | 30 | 0.020 | 0.461 |
| GVM254 | 30 | 31 | 0.019 | 0.400 |
| GVM255 | 0  | 6  | 0.029 | 0.342 |
| GVM255 | 6  | 9  | 0.008 | 0.093 |
| GVM255 | 9  | 12 | 0.001 | 0.033 |
| GVM255 | 12 | 15 | 0.001 | 0.029 |
| GVM255 | 15 | 18 | 0.001 | 0.042 |



| GVM255 | 18 | 21 | 0.007 | 0.130 |
|--------|----|----|-------|-------|
| GVM255 | 21 | 24 | 0.014 | 0.236 |
| GVM255 | 24 | 27 | 0.007 | 0.271 |
| GVM256 | 0  | 1  | 0.060 | 0.596 |
| GVM256 | 1  | 2  | 0.096 | 0.550 |
| GVM256 | 2  | 3  | 0.066 | 0.407 |
| GVM256 | 3  | 6  | 0.037 | 0.435 |
| GVM256 | 6  | 9  | 0.008 | 0.114 |
| GVM256 | 9  | 12 | 0.003 | 0.058 |
| GVM256 | 12 | 15 | 0.006 | 0.047 |
| GVM256 | 15 | 18 | 0.001 | 0.038 |
| GVM256 | 18 | 21 | 0.005 | 0.126 |
| GVM256 | 21 | 24 | 0.026 | 0.336 |
| GVM256 | 24 | 27 | 0.016 | 0.348 |
| GVM256 | 27 | 28 | 0.017 | 0.380 |
| GVM257 | 0  | 1  | 0.083 | 0.743 |
| GVM257 | 1  | 2  | 0.113 | 0.736 |
| GVM257 | 2  | 3  | 0.061 | 0.464 |
| GVM257 | 3  | 6  | 0.039 | 0.402 |
| GVM257 | 6  | 9  | 0.003 | 0.084 |
| GVM257 | 9  | 12 | 0.003 | 0.050 |
| GVM257 | 12 | 15 | 0.001 | 0.037 |
| GVM257 | 15 | 18 | 0.003 | 0.080 |
| GVM257 | 18 | 21 | 0.026 | 0.259 |
| GVM257 | 21 | 24 | 0.038 | 0.346 |
| GVM257 | 24 | 27 | 0.009 | 0.173 |
| GVM258 | 0  | 1  | 0.066 | 0.589 |
| GVM258 | 1  | 2  | 0.066 | 0.793 |
| GVM258 | 2  | 3  | 0.083 | 0.522 |
| GVM258 | 3  | 6  | 0.042 | 0.468 |
| GVM258 | 6  | 9  | 0.004 | 0.089 |
| GVM258 | 9  | 12 | 0.006 | 0.103 |
| GVM258 | 12 | 15 | 0.028 | 0.244 |
| GVM258 | 15 | 18 | 0.037 | 0.291 |
| GVM258 | 18 | 21 | 0.057 | 0.374 |
| GVM258 | 21 | 24 | 0.020 | 0.287 |
| GVM258 | 24 | 27 | 0.005 | 0.146 |
| GVM590 | 0  | 3  | 0.033 | 0.343 |
| GVM590 | 3  | 6  | 0.003 | 0.048 |
| GVM590 | 6  | 9  | 0.001 | 0.034 |
| GVM590 | 9  | 12 | 0.003 | 0.058 |
| GVM590 | 12 | 15 | 0.005 | 0.124 |
| GVM590 | 15 | 16 | 0.043 | 0.357 |
| GVM590 | 16 | 17 | 0.060 | 0.452 |



| GVM590 | 17 | 18 | 0.048 | 0.546 |
|--------|----|----|-------|-------|
| GVM590 | 18 | 19 | 0.070 | 1.460 |
| GVM590 | 19 | 20 | 0.035 | 1.100 |
| GVM590 | 20 | 21 | 0.012 | 0.565 |
| GVM590 | 21 | 22 | 0.008 | 0.248 |
| GVM590 | 22 | 23 | 0.006 | 0.146 |
| GVM590 | 23 | 24 | 0.007 | 0.151 |
| GVM591 | 0  | 3  | 0.029 | 0.315 |
| GVM591 | 3  | 6  | 0.007 | 0.093 |
| GVM591 | 6  | 9  | 0.006 | 0.087 |
| GVM591 | 9  | 12 | 0.018 | 0.259 |
| GVM591 | 12 | 13 | 0.052 | 0.484 |
| GVM591 | 13 | 14 | 0.150 | 0.676 |
| GVM591 | 14 | 15 | 0.084 | 1.630 |
| GVM591 | 15 | 16 | 0.048 | 2.740 |
| GVM591 | 16 | 17 | 0.027 | 2.840 |
| GVM591 | 17 | 18 | 0.031 | 1.850 |
| GVM591 | 18 | 19 | 0.018 | 1.130 |
| GVM591 | 19 | 20 | 0.020 | 1.290 |
| GVM591 | 20 | 21 | 0.020 | 1.070 |
| GVM591 | 21 | 22 | 0.020 | 1.020 |
| GVM591 | 22 | 23 | 0.016 | 0.983 |
| GVM591 | 23 | 24 | 0.013 | 0.705 |
| GVM591 | 24 | 27 | 0.014 | 0.567 |
| GVM592 | 0  | 3  | 0.033 | 0.341 |
| GVM592 | 3  | 6  | 0.007 | 0.158 |
| GVM592 | 6  | 9  | 0.003 | 0.088 |
| GVM592 | 9  | 12 | 0.003 | 0.068 |
| GVM592 | 12 | 15 | 0.003 | 0.073 |
| GVM592 | 15 | 18 | 0.035 | 0.399 |
| GVM592 | 18 | 21 | 0.056 | 0.433 |
| GVM592 | 21 | 24 | 0.185 | 0.510 |
| GVM592 | 24 | 27 | 0.056 | 1.060 |
| GVM592 | 27 | 30 | 0.051 | 1.200 |
| GVM592 | 30 | 33 | 0.026 | 0.726 |
| GVM592 | 33 | 36 | 0.010 | 0.390 |
| GVM592 | 36 | 39 | 0.018 | 0.469 |
| GVM592 | 39 | 42 | 0.015 | 0.401 |
| GVM593 | 0  | 3  | 0.042 | 0.388 |
| GVM593 | 3  | 6  | 0.008 | 0.168 |
| GVM593 | 6  | 9  | 0.003 | 0.076 |
| GVM593 | 9  | 12 | 0.004 | 0.057 |
| GVM593 | 12 | 15 | 0.001 | 0.045 |
| GVM593 | 15 | 18 | 0.036 | 0.324 |



| GVM593 | 18 | 19 | 0.091 | 0.655 |
|--------|----|----|-------|-------|
| GVM593 | 19 | 20 | 0.029 | 0.708 |
| GVM593 | 20 | 21 | 0.015 | 0.348 |
| GVM593 | 21 | 24 | 0.015 | 0.254 |
| GVM594 | 0  | 3  | 0.040 | 0.367 |
| GVM594 | 3  | 6  | 0.004 | 0.113 |
| GVM594 | 6  | 9  | 0.001 | 0.035 |
| GVM594 | 9  | 12 | 0.007 | 0.084 |
| GVM594 | 12 | 15 | 0.013 | 0.223 |
| GVM594 | 15 | 18 | 0.018 | 0.218 |
| GVM594 | 18 | 19 | 0.126 | 0.523 |
| GVM594 | 19 | 20 | 0.074 | 0.566 |
| GVM594 | 20 | 21 | 0.109 | 0.703 |
| GVM594 | 21 | 22 | 0.045 | 0.927 |
| GVM594 | 22 | 23 | 0.050 | 1.410 |
| GVM594 | 23 | 24 | 0.043 | 0.998 |
| GVM594 | 24 | 25 | 0.037 | 0.865 |
| GVM594 | 25 | 26 | 0.026 | 0.814 |
| GVM594 | 26 | 27 | 0.022 | 0.626 |
| GVM595 | 0  | 3  | 0.025 | 0.341 |
| GVM595 | 3  | 6  | 0.007 | 0.198 |
| GVM595 | 6  | 9  | 0.030 | 0.348 |
| GVM595 | 9  | 10 | 0.108 | 0.554 |
| GVM595 | 10 | 11 | 0.045 | 0.571 |
| GVM595 | 11 | 12 | 0.129 | 1.100 |
| GVM595 | 12 | 13 | 0.107 | 1.480 |
| GVM595 | 13 | 14 | 0.028 | 1.960 |
| GVM595 | 14 | 15 | 0.032 | 1.380 |
| GVM595 | 15 | 16 | 0.025 | 1.240 |
| GVM595 | 16 | 17 | 0.019 | 1.340 |
| GVM595 | 17 | 18 | 0.018 | 0.753 |
| GVM595 | 18 | 19 | 0.019 | 0.851 |
| GVM595 | 19 | 20 | 0.018 | 0.934 |
| GVM595 | 20 | 21 | 0.018 | 0.709 |
| GVM595 | 21 | 22 | 0.020 | 0.727 |
| GVM595 | 22 | 23 | 0.018 | 0.685 |
| GVM595 | 23 | 24 | 0.018 | 0.532 |
| GVM596 | 0  | 3  | 0.040 | 0.468 |
| GVM596 | 3  | 6  | 0.003 | 0.092 |
| GVM596 | 6  | 9  | 0.004 | 0.075 |
| GVM596 | 9  | 12 | 0.003 | 0.070 |
| GVM596 | 12 | 15 | 0.036 | 0.351 |
| GVM596 | 15 | 16 | 0.102 | 0.512 |
| GVM596 | 16 | 17 | 0.089 | 0.630 |



| GVM596 | 17 | 18 | 0.016 | 0.411 |
|--------|----|----|-------|-------|
| GVM596 | 18 | 21 | 0.016 | 0.332 |
| GVM597 | 0  | 3  | 0.045 | 0.412 |
| GVM597 | 3  | 6  | 0.041 | 0.500 |
| GVM597 | 6  | 9  | 0.018 | 0.185 |
| GVM597 | 9  | 12 | 0.035 | 0.393 |
| GVM597 | 12 | 13 | 0.078 | 0.621 |
| GVM597 | 13 | 14 | 0.021 | 0.713 |
| GVM597 | 14 | 15 | 0.030 | 0.630 |
| GVM597 | 15 | 16 | 0.017 | 0.336 |
| GVM597 | 16 | 17 | 0.028 | 0.605 |
| GVM597 | 17 | 18 | 0.022 | 0.492 |
| GVM597 | 18 | 19 | 0.020 | 0.376 |
| GVM597 | 19 | 20 | 0.015 | 0.364 |
| GVM597 | 20 | 21 | 0.015 | 0.412 |
| GVM628 | 0  | 1  | 0.001 | 0.001 |
| GVM628 | 1  | 2  | 0.016 | 0.342 |
| GVM628 | 2  | 3  | 0.009 | 0.168 |
| GVM628 | 3  | 4  | 0.013 | 0.286 |
| GVM628 | 4  | 5  | 0.012 | 0.323 |
| GVM628 | 5  | 6  | 0.013 | 0.229 |
| GVM628 | 6  | 7  | 0.021 | 0.652 |
| GVM628 | 7  | 8  | 0.014 | 0.462 |
| GVM628 | 8  | 9  | 0.011 | 0.259 |
| GVM628 | 9  | 12 | 0.010 | 0.205 |
| GVM628 | 12 | 15 | 0.010 | 0.203 |
| GVM629 | 0  | 1  | 0.035 | 0.489 |
| GVM629 | 1  | 2  | 0.021 | 0.477 |
| GVM629 | 2  | 3  | 0.038 | 0.657 |
| GVM629 | 3  | 4  | 0.006 | 0.156 |
| GVM629 | 4  | 5  | 0.021 | 0.686 |
| GVM629 | 5  | 6  | 0.024 | 0.592 |
| GVM629 | 6  | 7  | 0.022 | 0.277 |
| GVM629 | 7  | 8  | 0.016 | 0.619 |
| GVM629 | 8  | 9  | 0.026 | 0.812 |
| GVM629 | 9  | 10 | 0.021 | 0.569 |
| GVM629 | 10 | 11 | 0.036 | 0.628 |
| GVM629 | 11 | 12 | 0.019 | 0.430 |
| GVM629 | 12 | 13 | 0.016 | 0.462 |
| GVM629 | 13 | 14 | 0.026 | 0.857 |
| GVM629 | 14 | 15 | 0.023 | 0.755 |
| GVM630 | 0  | 1  | 0.037 | 0.703 |
| GVM630 | 1  | 2  | 0.026 | 0.754 |
| GVM630 | 2  | 3  | 0.019 | 0.668 |



| GVM630 | 3 | 4  | 0.016 | 0.525 |
|--------|---|----|-------|-------|
| GVM630 | 4 | 5  | 0.011 | 0.315 |
| GVM630 | 5 | 6  | 0.014 | 0.331 |
| GVM630 | 6 | 9  | 0.009 | 0.196 |
| GVM630 | 9 | 12 | 0.015 | 0.360 |
|        |   |    |       |       |



**Figure 1:** Drill hole location map for the Metallica Minerals sterilisation drill program for the Sconi Project. These holes, drilled via a series of programs between 2010 and 2012, were designed to confirm that the location of the then-proposed scandium processing plant was on barren ground with regards to scandium mineralisation. These drill holes, however, did intersect cobalt and nickel mineralisation being the focus of Australian Mines' Sconi Bankable Feasibility Study and off-take agreement with SK Innovation. The Company is, therefore, in the process of re-evaluating the location and layout of the full-scale cobalt-nickel-scandium processing plant, and associated non-processing infrastructure to ensure the final site design optimizes the project's future cobalt and nickel operations.



# Appendix 2: JORC Code, 2012 Edition

# Section 1 Sampling Techniques and Data

| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques   | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30-g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | Drilling was completed by Straits Resources in 2007 (141 RC holes for 5,935 metres) and Metallica Minerals in 2010-12 (641 RC holes for 16,841 metres).<br>RC samples of 1 metre drill length were passed through a rig mounted cyclone and collected in large plastic bags positioned beneath the cyclone. Samples for dispatch to the analytical laboratory were collected by laying the sample bag on its side and using a long trowel ("spear"), with between 1.5 kg and 3 kg collected. |
| Drilling<br>techniques   | • Drill type (eg core, reverse circulation,<br>open-hole hammer, rotary air blast,<br>auger, Bangka, sonic, etc) and details (eg<br>core diameter, triple or standard tube,<br>depth of diamond tails, face-sampling bit<br>or other type, whether core is oriented and<br>if so, by what method, etc).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drilling was Reverse Circulation (RC).                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Drill sample<br>recovery | <ul> <li>Method of recording and assessing core<br/>and chip sample recoveries and results<br/>assessed.</li> <li>Measures taken to maximise sample<br/>recovery and ensure representative<br/>nature of the samples.</li> <li>Whether a relationship exists between<br/>sample recovery and grade and whether<br/>sample bias may have occurred due to<br/>preferential loss/gain of fine/coarse<br/>material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Metallica Minerals' RC drilling generally used<br>high air pressure to keep the lateritic samples<br>dry and to maintain good sample recovery.<br>Recovery in the mineralised intervals was<br>deemed to be good to excellent.<br>RC samples were not weighed and advice to<br>the Competent Person was provided by former<br>Metallica geological staff who were involved<br>with the drilling.                                                                                             |



| Criteria                                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Relationships between sample recovery and<br>grade could not be determined without original<br>sample weight data, however the Competent<br>Person does not believe a material relationship<br>exists.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Logging                                                     | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                             | A Metallica Minerals geologist was present at all<br>times during drilling and sampling. Metallica's<br>geological logging protocols at the time were<br>followed to ensure consistency in drill logs<br>between the geological staff.<br>RC chips were logged for weathering,<br>lithologies (primary and proto), mineralogy,<br>colour and grainsize. RC chip trays (with chips)<br>were photographed.<br>The interpreted weathering and fresh zone<br>domains were also logged; ferruginous pisolite,<br>limonite, saprolite, weathered ultramafic and<br>fresh ultramafic. These logs were correlated<br>with assays.                                                                                                                                                                                                                            |
| Sub-<br>sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>The full sample lengths were logged.</li> <li>RC speared samples were dispatched to the analytical laboratory.</li> <li>The Competent Person considers the spear sampling method to be an appropriate sampling method, based upon testwork from the Kokomo deposit, to compare it with riffle split samples.</li> <li>Samples were dry.</li> <li>Field duplicates from RC samples were taken at a rate of 1:60, approximately 1 sample per drill hole.</li> <li>No field duplicate sample was taken if field XRF readings showed barred samples.</li> <li>Field duplicates were taken by spear method by the same sampler who took the original spear sample.</li> <li>No records were kept regarding the sample sizes for either the original or duplicate samples.</li> <li>A total of 351 field duplicate samples were taken.</li> </ul> |



| Criteria                                               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of<br>assay data<br>and<br>laboratory<br>tests | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of</li> </ul> | <ul> <li>Drill samples were originally sent to ALS (2007 drilling) and then to SGS (2010 drilling). Both labs conform to Australian Standards ISO9001 and ISO 17025.</li> <li>ALS samples were dried then pulverised in LM5 Mill to achieve a nominal 85% passing 75um.</li> <li>A pulp sample was then taken and split down to achieve a 0.5 g sample which was digested in a mixture of 3 acids (nitric, perchloric and hydrofluoric). The residue is then leached in hydrochloric acid and the solution's elemental concentrations determined by Inductively</li> </ul> |
|                                                        | accuracy (ie lack of bias) and precision have been established.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coupled Plasma Atomic Emission Spectrometry (ICPAES).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Internal standards were used to monitor Quality Control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SGS samples followed a similar sub-sampling<br>process. The pulp sample is digested in 4-acid<br>to effect as near to total solubility of the metals<br>as possible, with the solution presented to an<br>ICP for element quantification.                                                                                                                                                                                                                                                                                                                                  |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The processes are considered total.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metallica Minerals used 5 Certified Reference<br>Materials (CRMs) to monitor the accuracy of the<br>metal analyses. The CRMs were certified for Ni,<br>Cu and Zn, but not for Fe, Mg, Sc or Co. Ni<br>displayed reasonable precision and accuracy<br>with the exception of one CRM, which showed<br>a low bias.                                                                                                                                                                                                                                                            |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Field duplicates (n=351) are discussed in Sub-<br>sampling section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Selected pulps from the 2007 program (n=109), originally assayed by SGS, were sent to ALS lab for umpire analyses in 2010.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Results for Ni, Co and Sc are considered by the Competent Person to be good.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The QAQC procedures and results show acceptable levels of accuracy and precision were established.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Verification<br>of sampling<br>and<br>assaying         | <ul> <li>The verification of significant intersections<br/>by either independent or alternative<br/>company personnel.</li> <li>The use of twinned holes.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                 | Australian Mines geological personnel<br>independently reviewed selected RC drill<br>intersections                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



| Criteria                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                          |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     | <ul> <li>Documentation of primary data, data<br/>entry procedures, data verification, data<br/>storage (physical and electronic)<br/>protocols</li> </ul>                                                                                                                                                                                                          | Australian Mines geological personnel also verified their suitability to be included in the estimation of Mineral Resources.                                                                                                                                                                                        |
|                                     | <ul> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                                                                                                                                                          | The mineralisation is not visual and any significant intersections are apparent from the sample analyses.                                                                                                                                                                                                           |
|                                     |                                                                                                                                                                                                                                                                                                                                                                    | There are no twinned diamond / RC hole pairings.                                                                                                                                                                                                                                                                    |
|                                     |                                                                                                                                                                                                                                                                                                                                                                    | RC drill hole collars were surveyed in the field<br>with a hand-held GPS unit, and the surveyed<br>coordinates (easting and northing) were within<br>10 m of the coordinates surveyed by DGPS.                                                                                                                      |
| Location of<br>data points          | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                              | All drill holes drilled by Metallica Minerals were<br>surveyed by independent surveying companies,<br>using DGPS to provide accurate surveyed<br>coordinates. Down hole surveys were not<br>required due to the shallow depths of most<br>holes.                                                                    |
|                                     |                                                                                                                                                                                                                                                                                                                                                                    | All grid coordinates are in Map Grid of Australia<br>(MGA) coordinates, with the grid being MGA<br>Zone 55 South.                                                                                                                                                                                                   |
|                                     |                                                                                                                                                                                                                                                                                                                                                                    | The topographic Digital Terrain Model (DTM) was prepared using data sourced from WorldView-2 satellite imagery dated December 2010.                                                                                                                                                                                 |
|                                     |                                                                                                                                                                                                                                                                                                                                                                    | A 1 m contour file was created in ER Mapper<br>and imported into Vulcan to model a DTM, and<br>was considered adequate to constrain the block<br>model and Mineral Resource estimate for<br>Sconi.                                                                                                                  |
| Data spacing<br>and<br>distribution | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul> | Several sets of drill spacing are noted at Sconi.<br>The broadest scale of drilling is 480 m (EW) by<br>80 m (NS), with closer spaced drill grids of 40 m<br>(EW) by 40 m (NS), and 20 m (EW) by 20 m<br>(NS).                                                                                                      |
| •                                   |                                                                                                                                                                                                                                                                                                                                                                    | The local drill grids played a key role in the classification of the Mineral Resources, and therefore the Competent Person considers the data spacing to be sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource classification categories adopted for Sconi. |
|                                     |                                                                                                                                                                                                                                                                                                                                                                    | Samples were not composited at the sampling stage.                                                                                                                                                                                                                                                                  |



| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Orientation<br>of data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | Drill holes were drilled vertically which is<br>considered to minimize any potential sampling<br>bias with the host lithology.<br>Any sampling bias resultant from the orientation<br>of drilling and possible structural offsets of<br>mineralisation is considered to be minimal.                                                                                                                                                                                                                                                                                                                 |
| Sample<br>security                                                  | • The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                    | Drill samples were under the care and<br>supervision of Straits or Metallica Minerals staff<br>at all times until transportation by local couriers<br>to the analytical laboratories in Townsville.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Audits or<br>reviews                                                | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                              | The drilling procedures, sampling<br>methodologies, sample analyses and the drill<br>hole database were audited by Golder<br>Associates (Golder) in 2010 as part of the 2010<br>Mineral Resource estimate.<br>CSA Global carried out a high level and did not<br>note any material deficiencies in the quality of<br>work undertaken during Metallica's work<br>programs. CSA Global focused on the spear<br>sampling methodology employed by Metallica<br>and consider the spear sampling was carried<br>out to a high level, ensuring a representative<br>sample was obtained from each 1 m drill |



# Section 2: Reporting of Exploration Results

| Criteria                                                   | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Mineral<br/>tenement<br/>and land<br/>tenure status</i> | <ul> <li>Type, reference name/number, location<br/>and ownership including agreements or<br/>material issues with third parties such as<br/>joint ventures, partnerships, overriding<br/>royalties, native title interests, historical<br/>sites, wilderness or national park and<br/>environmental settings.</li> <li>The security of the tenure held at the time<br/>of reporting along with any known<br/>impediments to obtaining a licence to<br/>operate in the area.</li> </ul>                                                                                                                                                                                                                                                      | All the tenements within the Sconi Project are<br>100% held by Australian Mines via is wholly<br>owned subsidiary company.<br>All the tenements are in good standing with no<br>known impediments.                                                                                                                                                                                                                                                                             |
| Exploration<br>done by<br>other parties                    | <ul> <li>Acknowledgment and appraisal of exploration by other parties.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Metallica Minerals commenced exploration in<br>1997 in areas known to have nickel laterites.<br>For most of its deposits, the previous<br>exploration was limited and has not been used<br>for resource evaluation purposes.<br>At Lucknow and Greenvale early exploration<br>drilling is available and Greenvale has<br>subsequently been mined. This early<br>exploration data was first used by Straits<br>Resources to undertake an exploration<br>programme for scandium. |
| Geology                                                    | <ul> <li>Deposit type, geological setting and style<br/>of mineralisation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The deposits are nickel laterites developed by<br>weathering processes over fragments of<br>ultramafic basement rocks. Nickel, cobalt and<br>scandium have been enriched from the<br>basement rocks by both residual and<br>supergene processes.                                                                                                                                                                                                                               |
| Drill hole<br>Information                                  | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | Refer to Appendix 1 of this report.                                                                                                                                                                                                                                                                                                                                                                                                                                            |



| Criteria                                                                                                  | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data<br>aggregation<br>methods                                                                            | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                   | This report details the complete, individual<br>sample-metres for the sterilisation drilling at<br>Sconi. Thus, no upper or lower cuts have<br>been applied.<br>No metal equivalents have been used in this<br>report.                                                        |
| Relationship<br>between<br>mineralisatio<br>n widths and<br>intercept<br>lengths<br>Balanced<br>reporting | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> <li>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misloading reporting of</li> </ul> | All holes were drilled vertically, and as the laterite sequence is close to flat-lying, the intersected widths of cobalt and nickel mineralisation approximate true widths.<br>The reported results reflect a full range of intersected widths and, cobalt and nickel grades. |
| Other                                                                                                     | Exploration Results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Other exploration data collected by the                                                                                                                                                                                                                                       |
| substantive<br>exploration<br>data                                                                        | <ul> <li>Survey exploration data, in meaningful and<br/>material, should be reported including<br/>(but not limited to): geological<br/>observations; geophysical survey results;<br/>geochemical survey results; bulk samples         <ul> <li>size and method of treatment;<br/>metallurgical test results; bulk density,<br/>groundwater, geotechnical and rock<br/>characteristics; potential deleterious or<br/>contaminating substances.</li> </ul> </li> </ul>                                                                                                                                                           | company is not considered as material to this<br>report at this stage. Further data collection will<br>be reviewed and reported when considered<br>material.                                                                                                                  |
| Further work                                                                                              | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                                                                                                                                                                                                                             | Australian Mines is preparing to undertake a 50,000 metre Resource expansion drill program at Sconi in June 2018.                                                                                                                                                             |



#### **Appendix 3: Competent Person's Statement**

#### Sconi Cobalt-Nickel-Scandium Project

The Mineral Resource for the Sconi Cobalt-Nickel-Scandium Project contained within this document is reported under JORC 2012 Guidelines. This Mineral Resource was first reported by Australian Mines on 31 March 2017. There has been no Material Change or Re-estimation of the Mineral Resource since this 31 March 2017 announcement by Australian Mines.

Information in this report that relates to Sconi Cobalt-Scandium-Nickel Project's Exploration Results is based on information compiled by Mr. Mick Elias, who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr. Elias is a director of Australian Mines Limited. Mr. Elias has sufficient experience relevant to this style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Elias consents to the inclusion in this report of the matters based on his information in the form and context in which is appears.