Ti

Mt Edwards Project Mineral Resource Over 120,000 Nickel Tonnes

Li

Highlights

- Nickel Mineral Resource for the Mt Edwards Project increased to 7.4 million tonnes at 1.7% Ni for 123,340t of contained nickel
- Approximately 155% increase in contained nickel
- Increase to the maiden April 2018 Mineral Resources due to the addition of nickel rights covering four deposits upon settlement of the Mt Edwards acquisition

Neometals Ltd (**ASX: NMT**) (**"Neometals"**) is pleased to announce details of its updated nickel Mineral Resource Estimate following completion of the acquisition of tenements and the assignment of the nickel rights held by Apollo Phoenix Resources Pty Ltd (Apollo) (see Neometals ASX release dated 30 April 2018). The maiden Mineral Resources announced on 19 April 2018 have been significantly increased with the inclusion of four additional deposits: Mt Edwards, Widgie Townsite, Widgie 3 and Gillett (see Table 1).

As announced on 15 March 2018, Neometals executed binding agreements to acquire a package of tenure and mineral rights including lithium and nickel rights comprising the Mt Edwards Project. The tenement and rights package is located 40km south of the Mt Marion Lithium Project (Neometals 13.8%, through Reed Industrial Minerals Pty Ltd) (refer Figure 1 and Appendix 1).

	Measured		Indicated		Inferred		TOTAL Mineral Resources		
Deposit	Tonne (Kt)	Nickel (%)	Tonne (Kt)	Nickel (%)	Tonne (Kt)	Nickel (%)	Tonne (Kt)	Nickel (%)	Nickel (t)
132N ¹			110	3.5	10	1.8	120	3.4	4,070
Armstrong ¹	10	2.1	280	2.3	30	4.9	320	2.6	8,180
Cooke ¹					150	1.3	150	1.3	1,950
McEwen ¹					1,070	1.3	1,070	1.3	13,380
McEwen Hangingwall ¹					1,060	1.4	1,060	1.4	14,840
Zabel ¹					330	1.8	330	1.8	5,780
Mt Edwards					575	1.4	575	1.4	8,210
Widgie Townsite			2,190	1.9			2,193	1.9	40,720
Widgie 3					625	1.5	625	1.5	9,160
Gillet					955	1.8	955	1.8	17,050
TOTAL	10	2.1	2,580	2.0	4,805	1.5	7,395	1.7	123,340

Mt Edwards Nickel Mineral Resources Table

Note: 1 refer announcement ASX:NMT 19 April 2018

ACN 099 116 361 Level 3, 1292 Hay Street West Perth WA 6005 Locked Bag 8 West Perth WA 6872 T: +61 8 9322 1182 F: +61 8 9321 0556 Nm

This Mineral Resource estimate is reported in accordance with the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' prepared by the Joint Or Reserves Committee of The Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Minerals Council of Australia (**JORC Code**) and follows a detailed interrogation and review of the previously reported Mineral Resource estimates under the 2004 Edition of the JORC Code by the previous owners of these tenements and nickel rights.

Figure 1: Mt Edwards Project & Nickel Mineral Resource Location

A summary of geology, mineralisation, estimation methodology, drill information, drill intercepts in is provided below and in Appendices 1 to 5 accompanying this announcement.

A summary of information relevant to the estimates of Mineral Resources for the relevant deposits in the Mt Edwards Project is provided in appendices attached to this announcement.

Mt Edwards deposit Mineral Resource

Geology/Geological Interpretation	The Mt Edwards deposit occurs on the western limb of the north plunging Mt Edwards anticline, at or near the base of a series of ultramafic flows which overlie a footwall basaltic sequence. The ultramafic units range from high MgO to low MgO peridotite and consist of a series of 40-50 metres thick flows with interflow sediments up to 5 metres thick.
	Some nickel mineralisation is associated with parasitic folding of the ultramafic-mafic contact, however the majority of the nickel mineralisation occurs at the base of the second ultramafic flow (i.e. hanging wall ore) some 10-40 metres above the basal contact and is closely associated with graphitic and sulphidic sediments.
Sampling Sub- sampling	Diamond core spilt ½ (BQ, NQ and HQ). Percussion & RC split 1 metre splits using riffle splitter.
Drilling Techniques	Diamond and reverse circulation.
Classification Criteria	Resource classification determined on the basis of geological continuity and confidence due to lack of QAQC data. The deposit has been extensively mined historically and there is significant existing development and stoping. The extent of this mining is unconfirmed and it is not known whether it provides accurate representation of insitu material.
Sample Analysis Method	4 acid digest and a combination of ICP-MS and ICP-OES multi element analysis techniques.
Estimation Methodology	The Mineral Resource estimate is based on a nominal 0.8% Ni wireframe cut-off with a maximum internal dilution of two metres. Grade was interpolated using a combination of Ordinary Kriging and Inverse distance weighting squared (IDW ²) in Supervisor and Surpac software.
Cut-off Grades	Mineral Resources quoted using a lower 1% Ni block cut-off.
Mining and metallurgical methods and parameters and other material modifying factors	Modifying factors are not applied for Mineral Resources, however the deposit is considered to have reasonable prospects for eventual economic extraction via underground mining methods utilising existing historical development to access the remnant mineralisation.

Widgie Townsite deposit Mineral Resource

Geology/Geological Interpretation	Widgie Townsite is interpreted to be partially hydrothermally and structurally modified "Kambalda Style" nickel occurrence. The mineralisation dips steeply to the north-east, strikes north-west to south east and plunges to the south east.
Sampling Sub- sampling	Diamond core spilt ½ and ¼. Percussion & RC split 1 metre splits using riffle splitter.
Drilling Techniques	Diamond, reverse circulation & percussion.
Classification Criteria	Resource classification determined on the basis of geological continuity and confidence, the number of drill hole intersections, and average distance to samples.
Sample Analysis Method	4 acid digest and a combination of ICP-MS and ICP-OES multi element analysis techniques.
Estimation Methodology	Domain interpretation was based on structural and stratigraphic controls. Grade was interpolated using inverse distance weighting squared (IDW ²) and Surpac software.

Cut-off Grades	Mineral Resources quoted using a 1% Ni block cut-off.
Mining and metallurgical methods and parameters and other material modifying factors	Modifying factors are not applied for Mineral Resources, however the deposit is considered to have reasonable prospects for eventual economic extraction via open pit and underground methods.

Widgie 3 deposit Mineral Resource

Geology/Geological Interpretation	Nickel mineralisation is located along a vertical basalt and ultramafic contact. The more massive higher-grade mineralisation is developed within a serpentinite lens at the base of the ultramafic sequence within an embayment along the contact. Mineralisation consists of massive, matrix and disseminated sulphides (pyrite, pyrrhotite, pentlandite, chalcopyrite and gersdorffite) within a mineralised envelope up to 19 metres thick and 200 metres strike.
Sampling Sub- sampling	Diamond core is assumed to be ½ and ¼ splits. Percussion & RC samples are assumed to be 1 metre splits using riffle splitter.
Drilling Techniques	Diamond, reverse circulation & percussion.
Classification Criteria	Resource classification determined on the basis of geological continuity and confidence, the number of drill hole intersections, and average distance to samples, and lack of QAQC data.
Sample Analysis Method	4 acid digest and a combination of ICP-MS and ICP-OES multi element analysis techniques.
Estimation Methodology	Grades interpolated within grade-based domain (nominally 1.0% Ni) with a maximum internal dilution of two metres. Grade was interpolated using ordinary kriging and Surpac software.
Cut-off Grades	Mineral Resources quoted using a 1% Ni block cut-off.
Mining and metallurgical methods and parameters and other material modifying factors	Modifying factors are not applied for Mineral Resources, however the deposit is considered to have reasonable prospects for eventual economic extraction via open pit methods.

Gillet deposit Mineral Resource

Geology/Geological Interpretation	The Gillet deposit is hosted within an ultramafic package on or near a basal contact with a metabasalt. This basal contact is interpreted to be thrusted from the main contact that hosts the Widgie 3 and Widgie Townsite deposits. The host ultramafic is highly talc-carbonate altered with strong foliation developed parallel to the basal contact. There are several interflow black shale sediments that sit on the basal contact and in the hanging wall to the mineralisation. The black shales are sulphidic with banded pyrrhotite and chalcopyrite.
Sampling Sub- sampling	Diamond core spilt ½ and ¼ (BQ, NQ and HQ). Percussion & RC split 1 metre splits using riffle splitter.
Drilling Techniques	Diamond, reverse circulation & percussion.

Classification Criteria	Resource classification determined on the basis of geological continuity and confidence, the number of drill hole intersections, and average distance to samples, and lack of QAQC data.
Sample Analysis Method	4 acid digest and a combination of ICP-MS and ICP-OES multi element analysis techniques.
Estimation Methodology	The Mineral Resource estimate is based on a nominal 1.0% Ni wireframe cut-off with a maximum internal dilution of two metres. Grade was interpolated using inverse distance weighting squared (IDW ²) and Surpac software.
Cut-off Grades	Mineral Resources quoted using a 1% Ni block cut-off.
Mining and metallurgical methods and parameters and other material modifying factors	Modifying factors are not applied for Mineral Resources, however the deposit is considered to have reasonable prospects for eventual economic extraction via open pit methods.

ENDS

For further information, please contact:

Chris Reed Managing Director Neometals Ltd T: +61 8 9322 1182 E: info@neometals.com.au Media Michael Weir / Cameron Gilenko Citadel-MAGNUS T: +61 8 6160 4900

About Neometals Ltd

Li + Ti = Nm

Neometals Limited ("Neometals" - ASX:NMT) is a developer of industrial mineral and advanced materials projects. Neometals has two key divisions – a fully integrated Lithium business and a Titanium-Vanadium development business. Both are supported by proprietary technologies that assist downstream integration through revenue enhancement and cost efficiencies.

Neometals owns a 13.8% stake in the Mt Marion lithium mine near Kalgoorlie, which operates one of the world's biggest lithium concentrators. Neometals holds an offtake option, which forms the backbone to its fully-integrated lithium business aspirations which include a Lithium Hydroxide Refinery and Lithium-ion Battery Recycling process. The 100%-owned Barrambie Titanium-Vanadium Project in WA's Mid-West is one of the world's highest-grade hard-rock titanium-vanadium deposits.

Neometals' strategy focuses on de-risking and developing long life projects with strong partners and integrating down the value chain to increase margins. The company aims to leverage its cashflows to grow opportunities that provide sustainable mineral and material solutions to customers and to return value to shareholders.

Competent Person's Statement:

The information in this announcement that relates to Widgie Townsite, Widgie 3 and Gillet Exploration Results and Mineral Resources is based on, and fairly represents, information and supporting documentation compiled and prepared by Mr Luke Marshall. Mr Marshall is a sole trader and independent contractor to Neometals Ltd.

The information in this announcement that relates to the Mt Edwards Exploration Results and Mineral Resources is based on, and fairly represents, information and supporting documentation compiled and prepared by Mr Andrew Bewsher. Mr Bewsher is an employee of BM Geological Services who provides consulting services to Neometals Ltd.

Both Mr Marshall and Mr Bewsher are Members of The Australasian Institute of Geoscientists have sufficient experience which is relevant to the styles of mineralisation and types of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code.

Mr Marshall and Mr Bewsher have provided prior written consent as to the form and context in which the Exploration Results and Mineral Resources and the supporting information are presented in this market announcement.

The information relating to the 132N, Armstrong, Cooke, McEwen, McEwen Hangingwall and Zabel deposits Mineral Resources is extracted from Neometals Ltd's announcement and supporting information of 19 April 2018 "Mt Edwards Nickel – Mineral Resource Estimate". The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings presented have not been materially modified from the original market announcement.

Tenement ID	Interest
M15/101	100% (No gold interest)
M15/99	100% (No gold interest)
M15/653	100% (No gold interest)
M15/97	100% (No gold interest)
M15/96	100% (No gold interest)
M15/102	100% (No gold interest)
M15/100	100% (No gold interest)
M15/1271	100% (No gold interest)
M15/94	100% nickel rights only
M15/103	100% nickel rights only

Appendix 1 - Details of relevant Tenure relating to the Mt Edwards nickel Mineral Resources

Appendix 2 – JORC Code (2012 Edition) Mineral Resource Estimate Summaries

Mt Edwards deposit Mineral Resource

The Mt Edwards (MTE) deposit is one of a series of nickel deposits subject to the acquired nickel rights located on the tenements acquired by Neometals. A summary of geology, mineralisation, estimation methodology, drill information, drill intercepts and JORC Code (2012 Edition) Table 1 is provided here and in Appendices 1 to 5.

The Mineral Resource estimate (reporting above block model 1% Ni) for Mt Edwards is set out in the table below:

Min	eral Resources	5		Metal Grade		Contained Metal		I
Category	Cut off	Tonnage	Nickel	Arsenic	Copper	Nickel	Arsenic	Copper
	(Ni %)	(Kt)	(%)	(ppm)	(ppm)	(t)	(t)	(t)
Measured								
Indicated								
Inferred	1	574	1.43	4	953	8,210	3	550
Total	1	574	1.43	4	953	8,210	3	550

The mineralisation at the MTE deposit consists of structurally modified or emplaced thin anastomosing lenses of disseminated and massive Nickel (Ni) sulphides hosted by talc-chlorite-carbonate ultramafic. The mineralised zone is sub-vertical to steep west dipping and plunges steeply to the north. It has a maximum strike length of 220 metres and extends to at least 550 metres below surface. The sulphide mineralogy is pyrrhotite, pentlandite, pyrite, and chalcopyrite. The following is supporting information for this Mineral Resource estimate.

The Mineral Resource Estimate (MRE) is based on a nominal 0.8% Ni lower cut-off for wireframes with a maximum internal dilution of two metres. Grade was interpolated using a combination of ordinary kriging (OK) and inverse distance weighting squared (IDW2) estimation techniques using Surpac software.

Statistics, variography and a regression analysis between nickel and specific gravity measurements were completed utilising Supervisor software. Composites were generated on 1m intervals for Ni, Copper (Cu), Cobalt (Co), Arsenic (As) and Specific Gravity (SG). The Ni, Cu, Co and As grades were weighted by SG. A top cut of 4% Ni was applied to the Ni grades to limit the effect of massive sulphide mineralisation causing a bias to the estimate.

Drill data, interpretations and models were completed using the Western Mining, Kambalda Nickel Operations (KNO) grid system. This grid was used as existing UG development, stoping and UG drill collars were recorded with this grid system. Surface drilling was transformed from both AMG84 and GDA94 grid systems to KNO grid.

Mineralisation and weathering wireframes were generated as part of the interpretation process. No mineralisation has been reported above the top of fresh rock boundary.

The entire resource is defined as Inferred, due to the following concerns with data quality:

- UG development and stoping is defined by detailed digital terrain models (DTM's), however, it is not known whether they are representative of the full extent of development and stoping.
- The UG drilling dataset has grade and geological intercepts that match in with scanned level geological mapping plans and development DTM's. These drill intercept locations are considered to be accurate.
- The surface drilling dataset, and the mineralised intercepts defining MTE mineralisation are offset from development wireframes. This suggest there is some question over the survey accuracy of these holes. The grade intercepts for these were moved prior to grade estimation.
- The drilling dataset, that defines the MTE Mineral Resource estimate was collated from 4 Microsoft Access databases provided to the author. The collated drilling dataset appears to be comprehensive, however the author is unable to confirm whether all historical drilling data is being utilised.

Cross section (left) and Long section (right), Mt Edwards deposit: showing mineralisation in relation to historical development and drilling.

Plan view, Mt Edwards deposit: showing drill holes, historical development and mineralisation interpretation

Plan view, Mt Edwards deposit: showing geological mapping and interpretation (blue outline) on 18 level (-90m rl).

Widgie Townsite deposit Mineral Resource

An interrogation and review of the Mineral Resource estimates for the Widgie Townsite deposit previously evaluated in compliance with the JORC Code (2004 Edition) has resulted in restatement of the Mineral Resource estimate by Neometals in accordance with the JORC Code (2012 Edition). There are minor changes to the tonnage, grade and classifications but these are considered immaterial in the context of this report.

The Widgie Townsite deposit is one of a series of nickel deposits located on the tenements acquired by Neometals. A summary of geology, mineralisation, estimation methodology, drill information, drill intercepts and JORC Code (2012 Edition) Table 1 is provided here and in Appendices 1 to 5. The Mineral Resource estimate for the Widgie Townsite deposit is set out below:

Mineral Resources				Metal Grade		Contained Metal			
Category	Cut off	Tonnage	Nickel	Arsenic	Copper	Nickel	Arsenic	Copper	
	(Ni %)	(Kt)	(%)	(ppm)	(ppm)	(t)	(t)	(t)	
Measured									
Indicated	1	2193	1.86	830	2,418	40,720	1,821	5,303	
Inferred									
Total	1	2193	1.86	830	2,418	40,720	1,821	5,303	

The Widgie Townsite deposit nickel mineralisation is interpreted to be partially hydrothermally and structurally modified "Kambalda Style" nickel occurrence. The mineralisation dips steeply to the north-east, strikes north-west to south east and plunges to the south east.

The Mineral Resource estimate is based on a nominal 1.0% Ni wireframe cut-off with a maximum internal dilution of two metres. Grade was interpolated using a combination of inverse distance weighting squared (IDW2), ordinary kriging, Surpac block maths and direct assignment techniques using Surpac software.

Bulk density was assigned to fresh mineralised material in the block model using the formula (Ni * 0.165) + 2.80. Drill data, interpretations and models are in GDA94 coordinates.

Mineral Resource classification was determined on the basis of geological continuity and confidence, the number of drill hole intersections, and average distance to samples, as follows:

- All domains and blocks defined by a single drill hole were assigned as unclassified and not included in the Mineral Resource estimate.
- Areas where the nominal drill hole spacing was greater than 40m x 40m or where geological continuity and confidence where low were classified as Inferred Mineral Resource.
- Areas where the nominal drill hole spacing approached 40 x 40m or where geological continuity and confidence were high were classified as an Indicated Mineral Resource.
- Resources above the base of supergene sulphide (completely weathered) were assigned as unclassified irrespective of geology or the drill hole spacing. This is due to the uncertainties relating to mineralogy and processing routes. Classifying this material as unclassified has the effect of excluding it from the Mineral Resource estimate and any further economic evaluations.
- Nickel mineralisation and arsenic values were validated by northing and RL versus the domain composites from the drill hole database. The estimated mineralisation displays a very good correlation between the drill hole composites and the grade estimated from the block model. Filling of the Ni grades in the block model behaved as expected and the graphs display an averaging effect of the high and low values within the drill hole data.

Long section, Widgie Townsite: showing mineralisation domains (looking west)

Cross Section, Widgie Townsite deposit: 303870mN showing mineralisation domains (red) and basalt contact (green)

Plan view, Widgie Townsite deposit: showing drill holes and nickel mineralisation domains

Widgie 3 deposit Mineral Resource

An interrogation and review of the Mineral Resource estimates for the Widgie 3 deposit previously evaluated in compliance with the JORC Code (2004 Edition) has resulted in restatement of the Mineral Resource estimate by Neometals in accordance with the JORC Code (2012 Edition). There are minor changes to the tonnage, grade and classifications but these are considered immaterial in the context of this report.

The Widgie 3 deposit is one of a series of nickel deposits located on the tenements acquired by Neometals. A summary of geology, mineralisation, estimation methodology, drill information, drill intercepts and JORC Code (2012 Edition) Table 1 is provided here and in Appendix 1 to 5. The Mineral Resource estimate for the Widgie 3 deposit is set out below:

Mineral Resources				Metal Grade			Contained Metal			
Category	Cut off	Tonnage	Nickel	Arsenic	Copper	Nickel	Arsenic	Copper		
	(Ni %)	(Kt)	(%)	(ppm)	(ppm)	(t)	<i>(t)</i>	(t)		
Measured										
Indicated										
Inferred	1	626	1.46	1,058		9,160	662			
Total	1	626	1.46	1,058	N/A	9,160	662	N/A		

The Widgie 3 nickel mineralisation is located along the contact of basalt and ultramafic rocks. The more massive higher-grade mineralisation is developed within a serpentinite lens at the base of the ultramafic sequence within an embayment along the contact. Mineralisation consists of contact massive sulphides (pyrite, pyrrhotite, pentlandite, chalcopyrite and gersdorffite) typically less than 1 metre thick overlain by matrix sulphides and disseminated sulphides. The mineralised envelope can be up to 19 metres thick (decreasing with depth) and 200 metres strike. The mineralisation dips vertically.

The Mineral Resource estimate is based on a nominal 1.0% Ni wireframe cut-off with a maximum internal dilution of two metres. Grade was interpolated using ordinary kriging and Surpac software.

Bulk density was assigned using a regression (t/m3) = 167.0654/57.6714*Ni%.

Due to uncertainties with the data the Mineral Resource is classified as Inferred. Nickel and arsenic estimates were validated by northing versus the domain composites from the drill hole database. The estimated mineralisation displays a reasonable correlation between the drill hole composites and the grade estimated from the block model.

Long section, Widgie 3 deposit: showing mineralisation domains (looking west)

Cross Section, Widgie 3 deposit: 6512050mN showing drilling and mineralisation domains

Plan view, Widgie 3 deposit: showing drill holes and nickel mineralisation domains

Gillet deposit Mineral Resource

An interrogation and review of the Mineral Resource estimates for the Gillet deposit previously evaluated in compliance with the JORC Code (2004 Edition) has resulted in restatement of the Mineral Resource estimate by Neometals in accordance with the JORC Code (2012 Edition). There are minor changes to the tonnage, grade and classifications but these are considered immaterial in the context of this report.

The Gillet deposit is part of a series of nickel deposits located on the tenements acquired by Neometals. A summary of geology, mineralisation, estimation methodology, drill information, drill intercepts, and JORC Code (2012 Edition) Table 1 are provided here and in Appendices 1 to 5. The JORC 2012 Mineral Resource statement estimate for the Gillet deposit is set out below:

Mineral Resources				Metal Grade			Contained Metal			
Category	Cut off	Tonnage	Nickel	Arsenic	Copper	Nickel	Arsenic	Copper		
	(Ni %)	(Kt)	(%)	(ppm)	(ppm)	(t)	(t)	(t)		
Measured										
Indicated										
Inferred	1	953	1.79	205	2,151	17,053	195	2,049		
Total	1	953	1.79	205	2,151	17,053	195	2,049		

The Gillet deposit is hosted within an ultramafic package on or near a basal contact with a metabasalt. This basal contact is interpreted to be thrusted from the main contact that hosts the Widgie 3 and Widgie Townsite deposits. The host ultramafic is highly talc-carbonate altered with strong foliation developed parallel to the basal contact. There are several interflow black shale sediments that sit on the basal contact and in the hanging wall to the mineralisation. The black shales are sulphidic with banded pyrrhotite and chalcopyrite.

The mineralisation styles range from weakly disseminated to very strong matrix sulphide mineralisation. Drilling has intersected 2 slivers of massive sulphide of banded pyrrhotite and pentlandite grading ~10-11.8% Ni. The disseminated sulphide runs between 0.4 and 2.0% Ni with the matrix style mineralisation grading up to 5% Ni. Most of the mineralisation is disseminated with 1 to 2 zones of stacked matrix zones.

The Mineral Resource estimate is based on a nominal 1.0% Ni wireframe cut-off with a maximum internal dilution of two metres. Grade and density were interpolated using inverse distance techniques using Surpac software. Drill data, interpretations and models are in MGA94 Coordinates.

Due to the influence of cross cutting faults and pinching and swelling of mineralisation confidence in the geological interpretation is low hence the Mineral Resource is classified as Inferred. Estimated values were validated by northing versus the domain composites from the drill hole database. The estimated mineralisation displays a reasonable correlation between the drill hole composites and the grade estimated from the block model.

Long section Gillet deposit showing >1% Ni mineralisation

Plan view, Gillet deposit - Plan view of the drill holes and +1% nickel mineralisation

Appendix 3 – JORC Code (2012 Edition) Drill hole Location Information

Mt Edwards deposit

Hole_ID	Hole_Type	Orig_Grid_ID	East	North	Elevation	Dip	Azimuth
ME10	DDH	KNO	360931.38	515460.226	373.58	-59	90
ME10715	DDH	KNO	360461.197	515305.401	364.89	-55	81
ME10737	DDH	KNO	360956.6	515568.559	377.39	-63	81
ME11	RC	KNO	361050.997	515647.006	386.03	-90	360
ME14210	DDH	KNO	360996.199	515513.092	376.59	-90	360
ME14211	DDH	KNO	360999.213	515513.557	378.19	-90	360
ME14212	DDH	KNO	361002.218	515514.032	379.79	-90	360
ME14213	DDH	KNO	361005.232	515514.507	381.49	-90	360
ME14214	DDH	KNO	361011.252	515515.458	382.89	-90	360
ME14215	DDH	KNO	361014.266	515515.933	382.59	-90	360
ME14216	DDH	KNO	361017.271	515516.408	382.09	-90	360
ME14217	DDH	KNO	361020.285	515516.884	381.89	-90	360
ME2	RC	KNO	361047.402	515598.035	386.3	-90	360
ME3	DDH	KNO	360986.003	515443.503	373.89	-85	333
ME3495	DDH	KNO	360938.211	515812.511	384.89	-45	81
ME3830	DDH	KNO	360610.378	515514.039	368.5	-45	81
ME4	RC	KNO	360941.504	515586.398	375.29	-90	360
ME5	RC	KNO	361100.569	515637.534	380.45	-82	265
ME5147	DDH	KNO	360979.774	515695.634	385.89	-90	360
ME5148	DDH	KNO	360994.817	515698.01	389.89	-90	360
ME5149	DDH	KNO	361009.88	515700.386	391.09	-90	360
ME5150	DDH	KNO	360964.721	515693.258	383.89	-90	360
ME5498	DDH	KNO	360935.978	515503.597	372.89	-65	81
ME5499	DDH	KNO	360932.137	515533.855	372.89	-60	81
ME5500	DDH	KNO	360937.707	515473.017	372.89	-60	81
ME5649	RC	KNO	360893.374	515558.59	373.39	-90	360
ME5650	DDH	KNO	360923.48	515563.342	374.89	-90	360
ME5651	DDH	KNO	360953.595	515568.084	374.89	-90	360
ME5652	DDH	KNO	360983.701	515572.836	375.89	-90	360
ME5653	DDH	KNO	361013.806	515577.569	385.09	-90	360
ME5654	DDH	KNO	361043.911	515582.321	383.39	-90	360
ME5688	DDH	KNO	360937.03	515565.47	374.89	-60	81
ME5689	DDH	KNO	360927.437	515440.536	372.46	-64	81
ME5690	DDH	KNO	360932.053	515626.404	374.29	-60	81
ME5694	DDH	KNO	360998.753	515575.202	376.89	-90	360
ME5695	DDH	KNO	360968.638	515570.46	374.89	-90	360
ME5696	DDH	KNO	360963.079	515507.874	373.89	-90	360
ME5697	DDH	KNO	360978.132	515510.24	374.39	-90	360
ME5698	PERC	KNO	360948.026	515505.488	373.39	-90	360
ME5699	PERC	KNO	360987.617	515450.02	375.89	-90	360
ME5700	PERC	KNO	360972.575	515447.654	374.89	-90	360
ME5823	DDH	KNO	360848.711	515490.295	370.13	-50	81
ME5827	DDH	KNO	360863.45	515554.037	372.14	-45	81
ME5829	DDH	KNO	360845.593	515427.629	368.31	-48	81
ME5834	DDH	KNO	360774.626	515539.877	369.19	-53	81
ME5835	DDH	KNO	360850.155	515521.04	370.01	-48	81
ME5836	DDH	KNO	360853.366	515614.311	372.95	-47	81
ME5836W1	DDH	KNO	360853.366	515614.311	372.95	-47	81
ME5840	DDH	KNO	360790.91	515480.732	367.94	-55	81
ME5841	DDH	KNO	360876.442	515367.383	372.89	-45	81
ME5842	DDH	KNO	360824.491	515424.313	367.4	-57	81
ME5844	DDH	KNO	360836.327	515674.184	375.94	-45	81
ME5845	DDH	KNO	360821.353	515730.91	376.62	-45	81
ME5846	DDH	KNO	360723.142	515532.291	367.59	-55	81
ME5847	DDH	KNO	360813.665	515607.848	371.64	-55	81

Hole_ID	Hole_Type	Orig_Grid_ID	East	North	Elevation	Dip	Azimuth
ME5848	DDH	KNO	360859.136	515460.314	369.61	-45	81
ME5853	DDH	KNO	360868.012	515585.544	372.65	-45	81
ME5854	DDH	KNO	360848.541	515644.027	374.7	-45	81
ME5855	DDH	KNO	360857.106	515398.678	369.18	-45	81
ME5856	DDH	KNO	360757.971	515475.543	367.48	-60	81
ME5857	DDH	KNO	360820.723	515795.098	377.23	-45	81
ME5858	DDH	KNO	360795.637	515666.609	374.36	-55	81
ME5864	DDH	KNO	360857.266	515307.709	367.89	-45	81
ME5865	DDH	KNO	360828.529	515363.278	367.08	-57	81
ME5866	DDH	KNO	360740.527	515596.56	369.76	-60	81
ME5868	DDH	KNO	360825.052	515362 446	370.89	-57	81
ME5869	DDH	KNO	360800.492	515575.07	370.65	-45	81
ME5872	DDH	KNO	360800.01	515574 914	371.17	-48	81
ME5873	DDH	KNO	360735 755	515657.001	371.13	-60	81
NEE 974		KNO	260912.2	E1E4E2 471	269.07	-00	01
IVIE3074	DDH	KNO	300613.3	515455.471	200.07	-55	01
IVIE3877	DDH	KNO	360694.074	515588.892	308.19	-70	01
IVIE58//VV1	DDH	KNU	360694.074	515588.892	368.19	-70	81
ME5878	DDH	KNO	360782.418	515510.877	369.05	-55	81
ME5879	DDH	KNO	360818.805	515547.304	370.44	-50	81
ME5880	DDH	KNO	360939.164	515565.813	375.68	-60	81
ME5882	DDH	KNO	360652.532	515520.692	366	-65	81
ME5883	DDH	KNO	360806.65	515637.752	373.73	-55	81
ME5886	DDH	KNO	360836.758	515858.229	381.66	-45	81
ME5890	DDH	KNO	360694.735	515589.016	368.34	-63	81
ME5892	DDH	KNO	360737.815	515564.925	368.45	-55	81
ME5893	DDH	KNO	360652.532	515520.692	366	-57	81
ME5893W1	DDH	KNO	360652.532	515520.692	366	-57	81
ME5896	DDH	KNO	360836.857	515918.69	380.61	-45	81
ME5897	DDH	KNO	360417.015	515853.804	373.89	-55	81
ME5897W1	DDH	KNO	360417.015	515853.804	373.89	-55	81
ME5897W2	DDH	KNO	360417.015	515853.804	373.89	-55	81
ME5898	DDH	KNO	361031.772	515620.209	389.09	-90	360
ME5900	DDH	KNO	360932.082	515626.394	376.8	-60	81
ME6	DDH	KNO	360914.999	515520.004	371.96	-48	90
ME6001	PERC	KNO	361002.669	515452.396	373.89	-90	360
ME6002	PERC	KNO	360922.89	515439.823	371.89	-90	360
ME6003	DDH	KNO	360944.101	515628.305	375.89	-90	360
MF6004	DDH	KNO	360951.622	515629,493	376.89	-90	360
ME6005	DDH	KNO	360959 153	515630.671	376.89	-90	360
MEGOOG	DDH	KNO	360966.685	515631.859	377.89	-90	360
ME6007	DDH	KNO	360974 216	515633.037	378 39	-90	360
ME6008		KNO	360921 777	51563/ 225	270.00		360
ME6009		KNO	360989.750	515625 /02	270.09	 	360
ME6010		KNO	360903.233	515636 601	370.09	 QA	360
ME6011		KNO	36100/ 211	515627 700	200 00	-50	200
ME6012		KNO	261011.042	515620,169	200.00	-90	200
		KNO	201011.843	515036.977	300.10	-90	360
		KNO	301019.374	515640.165	300.00	-90	360
	DDH	KINU	361026.905	515641.354	389.39	-90	360
IVIE6024	DDH	KNU	360934.606	515688.526	380.89	-90	360
IVIE6025	DDH	KINU	360949.659	515690.892	381.89	-90	360
ME6026	DDH	KNO	360945.742	515813.689	385.89	-90	360
ME6027	DDH	KNO	360930.679	515811.323	382.89	-90	360
ME6028	DDH	KNO	360915.627	515808.957	381.89	-90	360
ME6029	DDH	KNO	360900.574	515806.581	380.89	-90	360
ME6030	DDH	KNO	360885.521	515804.215	379.89	-90	360
ME6031	DDH	KNO	360870.459	515801.829	379.39	-90	360
ME6032	PERC	KNO	360942.459	515442.902	372.89	-90	360
ME6033	PERC	KNO	360957.512	515445.278	374.89	-90	360
ME6034	PERC	KNO	361008.237	515514.983	383.09	-90	360

Hole_ID	Hole_Type	Orig_Grid_ID	East	North	Elevation	Dip	Azimuth
ME6035	PERC	KNO	361023.29	515517.359	380.69	-90	360
ME6036	PERC	KNO	361038.352	515519.735	378.39	-90	360
ME6037	PERC	KNO	360876.68	515370.831	372.89	-90	360
ME6038	PERC	KNO	360891.733	515373.197	369.89	-90	360
ME6039	PERC	KNO	360906.786	515375.573	370.89	-90	360
ME6040	PERC	KNO	360861.618	515368.456	368.39	-90	360
ME6041	PERC	KNO	360921.838	515377.939	371.89	-90	360
ME6042	PERC	KNO	360936.891	515380.315	372.89	-90	360
ME6043	PERC	KNO	360951.954	515382.691	373.89	-90	360
MF6044	PFRC	KNO	360967.006	515385.058	374.89	-90	360
ME6045	PERC	KNO	360982.059	515387 434	374.89	-90	360
ME6046	PERC	KNO	360916 271	515315 353	368.89	-90	360
ME6047	DDH	KNO	360931 334	515317 729	368.89	-90	360
ME6048	DDH	KNO	3609/6 377	515320.106	368.89	-90	360
ME6049		KNO	360961 439	515222.100	368.80	-50	360
MEGOEO	DDH	KNO	360901.439	E1E224 929	260.03	-90	300
IVIE0050	DDH	KNO	300970.491	515524.656	209.09	-90	500
IVIE6051	DDH	KNU	360935.293	515596.061	369.89	-60	81
IVIE6061	DDH	KNO	360991.554	515327.224	370	-90	360
ME6084	DDH	KNO	360997.112	515389.8	374.89	-90	360
ME6085	DDH	KNO	361012.165	515392.176	370.69	-90	360
ME6086	DDH	KNO	360925.121	515748.736	381.89	-90	360
ME6087	DDH	KNO	360940.174	515751.112	382.89	-90	360
ME6088	DDH	KNO	360955.227	515753.479	383.89	-90	360
ME6089	DDH	KNO	360970.28	515755.855	383.89	-90	360
ME6090	DDH	KNO	360919.553	515686.139	379.89	-90	360
ME6091	DDH	KNO	360904.501	515683.773	378.89	-90	360
ME6092	DDH	KNO	361066.496	515585.885	381.89	-90	360
ME6093	DDH	KNO	361028.859	515579.945	385.39	-90	360
ME6094	DDH	KNO	360993.184	515512.607	374.89	-90	360
ME6095	DDH	KNO	360804.68	515729.747	374.89	-90	360
ME6096	DDH	KNO	360819.743	515732.133	376.29	-90	360
ME6097	DDH	KNO	360834.785	515734.499	375.89	-90	360
ME6098	DDH	KNO	360789.627	515727.381	373.89	-90	360
ME6099	DDH	KNO	360848.7	515890.977	379.89	-90	360
ME6100	DDH	KNO	360833.648	515888.6	378.89	-90	360
ME6201	DDH	KNO	360818.595	515886.234	377.39	-90	360
ME6251	PERC	KNO	361068.458	515524.477	377.89	-90	360
ME6252	PERC	KNO	361098.563	515529.22	377.59	-90	360
ME6253	DDH	KNO	360910.059	515746.36	380.89	-60	81
ME6254	DDH	KNO	361012.894	515700.851	391.09	-60	261
ME6255	DDH	KNO	360959 283	515815 828	388.89	-60	261
ME6270	DDH	KNO	360971 653	515570 935	374 89	-60	81
MF6271	PERC	KNO	360978 132	515510.24	374 39	-65	81
ME6273	DDH	KNO	360965 172	515631 621	377.89	-60	81
ME6274	PERC	KNO	360977 081	515448 367	374 89	-67	R1
ME6275		KNO	361007 777	515576.618	285 10	_70	Q1
ME6276	DEPC	KNO	3600/0////	515/0.010	272 00	-70	01
ME6/21	DEPC	KNO	360210 220	515207 62	260 00	-00	δ1 01
		KNO	300013.522	513532.03 E1EE00.30C	202.505	-00	10
		KNO	300320.308	515500.296	372.89	-50	90
		KNO	300927.244	5154/9.024	372.87	-53	90
		KINU	300824.618	515517.15	369.85	-53	81
IVIE8104	DDH	KINU	360900.355	515405.952	3/3.69	-50	81
ME8106	DDH	KNO	360835.373	515456.879	368.37	-49	81
ME8107	DDH	KNO	360837.62	515611.441	372.16	-51	81
ME8108	DDH	KNO	360571.403	515322.764	364.89	-45	81
ME8110	DDH	KNO	360860.238	515368.347	368.23	-53	81
ME8112	DDH	KNO	360917.706	515654.988	379.02	-50	81
ME8113	DDH	KNO	360862.442	515368.929	368.48	-52	81
ME8119	DDH	KNO	360772.367	515570.371	370.26	-52	81

Hole_ID	Hole_Type	Orig_Grid_ID	East	North	Elevation	Dip	Azimuth
ME8120	DDH	KNO	360758.229	515722.269	372.9	-51	81
ME8121	DDH	KNO	360805.891	515976.848	375.07	-45	81
ME8123	DDH	KNO	360769.693	515569.953	369.32	-54	81
ME8127	DDH	KNO	360803.477	515976.468	375.07	-45	81
ME8136	DDH	KNO	360830.696	515641.404	374.28	-55	81
ME8139	DDH	KNO	360712.625	515622.465	369.41	-56	81
ME8141	DDH	KNO	360951.321	515599.139	375.36	-50	81
ME8145	DDH	KNO	360886.259	515496.296	371.42	-45	81
MF8151	DDH	KNO	360839.935	515426.746	368.42	-54	81
ME8155	DDH	KNO	360770 287	515848 956	375.27	-55	81
ME8157	DDH	KNO	360808.4	515390.489	367.08	-57	81
ME9	DDH	KNO	360900 395	515479 726	372.23	-48	90
ME9573	DDH	KNO	360971 311	515475.20	374.89	-90	360
ME0573		KNO	360072 390	515540 256	274.00	-50	360
NE9574	DDH	KNO	200973.369	515340.530	374.03	-90	300
	DDH	KNO	360871.113	515308.245	308.89	-90	300
IVIE9576	DDH	KINU	360840.998	515303.493	367.89	-90	360
MED12-6	DDH	KNO	360951.127	515559.983	33.63	5	270
MED12-7	DDH	KNO	360953.926	515550.109	33./	5	270
MED12-8	DDH	KNO	360953.233	515540.072	33.83	5	270
MED12-9	DDH	KNO	360965.509	515527.158	31.07	5	270
MED13-1	DDH	KNO	360953.602	515539.949	15.85	5	270
MED13-2	DDH	KNO	360954.475	515549.974	15.89	5	270
MED13-4	DDH	KNO	360952.996	515532.022	15.88	5	270
MED13-7	DDH	KNO	361011.658	515538.059	20.93	-63	264
MED13-8	DDH	KNO	360991.265	515559.931	16.39	-66	270
MED16-14	DDH	KNO	360962.001	515550.501	-47.11	5	247
MED16-16	DDH	KNO	360959.504	515557.003	-47.11	5	270
MED16-17	DDH	KNO	360962.001	515550.501	-45.11	45	247
MED16-22	DDH	KNO	360961.997	515550.001	-45.11	45	270
MED6-10	DDH	KNO	361023.602	515529.699	203.39	-39	243
MED6-12	DDH	KNO	361020.002	515539.501	203.39	-50	270
MED6-13	DDH	KNO	361020.002	515539.501	203.99	-25	270
MED6-14	DDH	KNO	361020.002	515539.501	204.59	-5	275
MED6-15	DDH	KNO	361022.505	515531.398	204.09	-51	261
MED6-16	DDH	KNO	361022.998	515530.504	203.39	-26	261
MED6-17	DDH	KNO	361022.998	515530.504	204.09	-5	238
MED6-18	DDH	KNO	361022.5	515529.508	204.39	-6	224
MED6-19	DDH	KNO	361022.5	515529 508	203 89	-26	224
MED6-20	DDH	KNO	361022.499	515529.408	203.85	-27	240
MED6-21	DDH	KNO	361023.406	515529	201.25	-6	210
MED6-22	DDH	KNO	361023.100	515529	201.35	-42	216
MEDG 22		KNO	361023.406	515520	203.35	-42	210
MEDG-24		KNO	361023.400	515561	204.33	-0	200
MEDE 22		KNO	301027.701	515560.005	204.03 20E 00	-5	20J E0
		KNO	361033.00	515500.005	203.89	40	20
		KNO	301022.606	515529.007	205.39	20	204
		KNO	301022.606	515529.007	205.89	38	205
IVIED6-38		KNU	361022.606	515529.007	205.39	20	22/
IVIED6-39	DDH	KINU	361022.606	515529.00/	205.89	36	227
MED6-4	DDH	KNO	361026.002	515560.004	205.89	36	275
MED6-9	DDH	KNO	361023.602	515529.699	203.39	-39	227
MED8-818	DDH	KNO	361064.86	515555.072	141.73	-57	264
MED8-818W1	DDH	KNO	361064.86	515555.072	141.73	-57	264
MED9-1	DDH	KNO	361011.305	515557.105	113.89	-42	260
MED9-10	DDH	KNO	361011.305	515557.005	113.89	-69	246
MED9-11	DDH	KNO	361011.305	515557.005	113.89	-42	225
MED9-2	DDH	KNO	361011.305	515557.105	113.89	-35	232
MED9-4	DDH	KNO	361011.305	515557.105	113.93	-49	234
MED9-5	DDH	KNO	361011.305	515557.105	113.89	-67	234
MED9-9	DDH	KNO	361011.305	515557.005	113.89	-72	274

Hole_ID	Hole_Type	Orig_Grid_ID	East	North	Elevation	Dip	Azimuth
WD6160	DDH	KNO	360833.648	515888.6	378	-90	360
WD9627	DDH	KNO	360673.445	515338.804	364.8	-90	360
WD9628	DDH	KNO	360665.924	515337.605	364.8	-90	360
WD9629	DDH	KNO	360658.392	515336.417	364.7	-90	360
WD9630	DDH	KNO	360650.861	515335.239	364.4	-90	360
WD9631	DDH	KNO	360643.34	515334.051	364.4	-90	360
WD9632	DDH	KNO	360626.324	515393.084	364.3	-90	360
WD9633	DDH	KNO	360656.429	515397.826	364.9	-90	360
WD9634	DDH	KNO	360641.366	515395.46	364.8	-90	360
WD9635	DDH	KNO	360626.324	515393.084	364.3	-90	360
WD9636	DDH	KNO	360611 271	515390 708	364.1	-90	360
WD9637	DDH	KNO	360596 208	515388 342	363.8	-90	360
WD9638	DDH	KNO	360/92/17	515557 131	363.3	-90	360
WD9639	DDH	KNO	360484 939	515555 9/3	363.5	-90	360
WD9039		KNO	260477.417	E1EEE4 74E	264.4	-30	300
WD9040	DDH	KNO	200208.217	515554.745	271	-90	300
WD9641	DDH	KNO	360398.217	515665.701	371	-90	360
WD9642	DDH	KNO	360390.686	515664.513	372.2	-90	360
WD9643	DDH	KNO	360383.165	515663.325	3/2.2	-90	360
MED12-1	DDH	KNO	360997.166	515608.312	52.28	-39	260
MED12-11	DDH	KNO	360989.354	515589.993	36.8	-69	266
MED12-2	DDH	KNO	360997.376	515608.301	52.04	-49	270
MED12-3	DDH	KNO	360997.437	515608.4	51.98	-58	265
MED12-4	DDH	KNO	360977.656	515578.517	50.98	-53	202
MED12-5	DDH	KNO	360950.754	515567.947	33.83	5	270
MED13-3	DDH	KNO	360947.745	515560.981	15.81	5	270
MED13-5	DDH	KNO	360946.709	515579.543	16.24	5	270
MED13-6	DDH	KNO	360949.391	515570.109	16.1	5	270
MED16-1	DDH	KNO	361031.699	515673.2	-35.01	4	300
MED16-18	DDH	KNO	360957.503	515581.004	-47.11	5	270
MED16-19	DDH	KNO	360955.501	515593.003	-47.11	5	270
MED16-2	DDH	KNO	361032.004	515673.698	-35.01	-3	138
MED16-20	DDH	KNO	360953.5	515605.002	-47.11	5	270
MED16-23	DDH	KNO	360955.501	515593.003	-45.11	45	270
MED16-24	DDH	KNO	360953.5	515605.002	-45.11	45	270
MED16-4	DDH	KNO	361032.703	515674.803	-35.01	-2	153
MED17-1	DDH	KNO	360961.199	515563.5	-66.11	0	250
MED17-2	DDH	KNO	360961.503	515569.999	-66.11	0	270
MFD17-3	DDH	KNO	360959.005	515580.002	-66.11	0	270
MED17-4	DDH	KNO	360954 997	515590.007	-66.11	0	270
MED17-5	DDH	KNO	360953 999	515600.007	-66.11	0	270
MED17-6	DDH	KNO	360958.002	515610.006	-66.11	0	270
MED17-7		KNO	360958.002	515010.000	-66 11	0	270
MED17-2		KNO	360963 000	515630.001	-00.11	0	270
MED 18.1		KNO	360963.999	5156/5 506	-00.11	0	270
MED10 10		KNO	360056 001	515645.500	-07.01	0	220
		KNO	200220.001	515005.002	-07.11	0	90
	DDH	KINU	360962.497	515645.506	-8/.61	0	242
IVIED18-3	DDH	KNU	360962.497	515645.506	-87.61	0	254
MED18-4	DDH	KNU	360965.499	515590	-87.11	0	205
MED18-5	DDH	KNO	360965.499	515590	-87.11	0	240
MED18-6	DDH	KNO	360964.003	515590.503	-87.11	0	270
MED18-7	DDH	KNO	360951.999	515600.004	-87.11	0	270
MED18-8	DDH	KNO	360947.5	515610.003	-87.11	0	270
MED18-9	DDH	KNO	360944.502	515620	-87.11	0	270
MED19-1	DDH	KNO	361015.112	515713.826	-93.44	4	330
MED19-10	DDH	KNO	361027.816	515668.062	-99.31	-24	258
MED19-11	DDH	KNO	361028.27	515667.258	-99.2	-26	234
MED19-12	DDH	KNO	361028.371	515667.397	-99.77	-45	221
MED19-13	DDH	KNO	361028.097	515668.159	-99.65	-48	256
MED19-14	DDH	KNO	361012.785	515708.294	-94.64	-55	252

Hole_ID	Hole_Type	Orig_Grid_ID	East	North	Elevation	Dip	Azimuth
MED19-15	DDH	KNO	361013.236	515709.58	-94.72	-54	284
MED19-16	DDH	KNO	361028.201	515627.5	-104.11	-42	222
MED19-17	DDH	KNO	361028.201	515627.5	-104.11	-28	212
MED19-18	DDH	KNO	361028.201	515627.5	-104.11	-59	206
MED19-2	DDH	KNO	361015.367	515714.434	-93.41	3	334
MED19-3	DDH	KNO	361013.236	515709.58	-94.72	-51	268
MFD19-4	DDH	KNO	361012.979	515708.732	-94.79	-61	277
MED 19-5	DDH	KNO	361012.875	515708 284	-94 73	-43	261
MED 19-6	DDH	KNO	361012.828	515708 584	-94.46	-30	259
MED19-7	DDH	KNO	361028 107	515668 169	-99.65	_39	255
	DDH	KNO	261027.621	E1E669 6E2	-55.05	-35	201
MED10-0	DDH	KNO	261027.021	E1ECC9 472	-99.41	-20 E1	240
MED19-9	DDH	KNO	200002 507	515008.472	-99.04	-51	232
MED20-1	DDH	KNO	360963.507	515653.99	-110.41	55	207
MED20-2	DDH	KNO	360963.75	515651.997	-110.45	52	248
MED20-3	DDH	KNO	360963.//	515651.917	-110.45	53	206
MED20-4	DDH	KNO	360963.936	515651.446	-109.56	90	83
MED2-801	DDH	KNO	361022.279	515607.985	323.75	0	261
MED2-802	DDH	KNO	361023.496	515606.345	323.72	0	221
MED2-803	DDH	KNO	361022.239	515609.205	323.69	0	296
MED4-1	DDH	KNO	360953.756	515599.699	265.96	-1	32
MED4-10	DDH	KNO	361026.6	515604.398	266.89	22	177
MED4-11	DDH	KNO	361026.6	515604.398	266.89	33	205
MED4-12	DDH	KNO	361026.6	515604.398	266.89	31	180
MED4-13	DDH	KNO	361026.6	515604.398	266.89	34	236
MED4-14	DDH	KNO	361026.6	515604.398	266.89	38	253
MED4-15	DDH	KNO	361026.6	515604.398	266.89	45	201
MED4-2	DDH	KNO	360953.696	515599.7	265.96	-1	320
MED4-3	DDH	KNO	360931.506	515591.701	264.36	-45	121
MED4-4	DDH	KNO	360942.095	515592.604	264.36	-62	88
MED4-5	DDH	KNO	360942.095	515592.604	267.86	43	85
MFD4-6	DDH	KNO	360931.506	515591.701	267.86	49	114
MED4-7	DDH	KNO	360931 748	515595.6	266.89	31	50
MED4-8	DDH	KNO	361026.6	515604 398	266.89	26	190
MED4-804	DDH	KNO	361021 133	515609 745	266.23		261
		KNO	261021.133	515609.745	200.23	0	201
		KNO	361022.133	515607.842	200.23	0	201
	DDH	KNO	301022.308	515007.842	200.17	0	224
	DDH	KNO	301022.308	515007.842	200.17	0	224
IVIED 4-806	DDH	KNO	361028.283	515611.956	266.11	0	302
IVIED4-806VV1	DDH	KNO	361028.283	515611.956	266.11	0	302
IVIED4-9	DDH	KNO	360931.506	515591.701	267.86	45	129
MED6-1	DDH	KNO	360978.998	515615.004	203.89	0	263
MED6-2	DDH	KNO	360938.006	515585.506	203.89	0	225
MED6-25	DDH	KNO	361019.804	515641.402	203.89	-20	225
MED6-26	DDH	KNO	361019.804	515641.402	203.89	-22	237
MED6-27	DDH	KNO	361019.406	515642.806	203.89	6	308
MED6-28	DDH	KNO	361019.804	515641.402	203.89	-21	245
MED6-29	DDH	KNO	361020.6	515640.806	203.89	42	223
MED6-3	DDH	KNO	360938.006	515585.506	203.89	-1	255
MED6-30	DDH	KNO	361019.602	515643.504	203.89	37	308
MED6-31	DDH	KNO	360968.003	515563.804	205.89	26	75
MED6-32	DDH	KNO	360968.003	515563.804	205.89	24	55
MED6-34	DDH	KNO	360966.999	515567.003	205.89	20	35
MED6-35	DDH	KNO	360966.999	515567.003	205.89	26	35
MED6-40	DDH	KNO	360934.253	515596.099	205.99	46	56
MED6-41	DDH	KNO	360977.098	515596.906	205.19	28	224
MED6-6	DDH	KNO	361026.502	515563.501	205.89	-21	264
MED6-7	DDH	KNO	360989 004	515598 498	203 89	0	190
MED6-8	DDH	KNO	360988 504	515598 502	203.89	0	215
MED6-807	DDH	KNO	361014 631	515607178	203.05	0	213
			201014:021	JTJ001.110	204.02	U	201

Hole_ID	Hole_Type	Orig_Grid_ID	East	North	Elevation	Dip	Azimuth
MED6-807A	DDH	KNO	360987.609	515602.77	204.82	0	261
MED6-808	DDH	KNO	361024.059	515610.351	210.92	0	300
MED6-809	DDH	KNO	361024.281	515606.998	204.27	0	225
MED6-815	DDH	KNO	361020.518	515640.656	205.74	42	261
MED6-817	DDH	KNO	361019.727	515641.763	203.91	0	266
MED7-1	DDH	KNO	361004.003	515631.901	164.49	20	268
MED7-2	DDH	KNO	361004.003	515631.901	171.69	18	282
MED7-3	DDH	KNO	361005.103	515628.301	172.29	30	256
MED7-4	DDH	KNO	361005.103	515628.301	172.29	37	279
MED7-6	DDH	KNO	360947.504	515671.005	169.39	0	71
MED7-7	DDH	KNO	360947.504	515671.005	169.39	0	46
MED8-1	DDH	KNO	360991.203	515593.499	143.19	-2	217
MED8-10	DDH	KNO	360949.997	515618.004	142.99	0	36
MED8-11	DDH	KNO	360949.997	515618.004	142.39	-22	36
MED8-2	DDH	KNO	360991.203	515593.499	143.19	-1	230
MED8-3	DDH	KNO	360993.505	515593.7	143.19	0	252
MED8-31	DDH	KNO	360948.001	515606.498	142.39	1	41
MED8-32	DDH	KNO	360948.001	515606.498	142.39	2	58
MED8-33	DDH	KNO	360948.001	515606.498	141.69	-22	45
MED8-34	DDH	KNO	360971.803	515631.497	147.79	41	335
MED8-35	DDH	KNO	360971.705	515631.797	146.49	0	344
MED8-36	DDH	KNO	360972.796	515631.898	146.39	-7	11
MED8-37	DDH	KNO	360978.996	515635.398	146.19	-57	55
MED8-38	DDH	KNO	360978.996	515635.398	146.19	-52	25
MED8-39	DDH	KNO	360978.996	515635.398	146.19	-52	38
MED8-4	DDH	KNO	360989.997	515596.499	143.19	0	297
MED8-40	DDH	KNO	360978.996	515635.398	146.19	-9	25
MED8-42	DDH	KNO	361028	515653.997	142.89	0	313
MED8-43	DDH	KNO	361028	515653.997	142.89	0	323
MED8-5	DDH	KNO	360989.997	515596.499	143.19	0	311
MED8-6	DDH	KNO	360948.001	515606.498	143.19	20	41
MED8-7	DDH	KNO	360948.001	515606.498	143.19	21	58
MED8-8	DDH	KNO	360948.001	515606.498	143.19	26	75
MED8-810	DDH	KNO	361053.986	515610.444	141.43	-56	264
MED8-811	DDH	KNO	361067.65	515586.366	141.43	-48	264
MED8-812	DDH	KNO	361063.583	515647.442	141.12	-51	266
MED8-813	DDH	KNO	361067.65	515586.366	141.12	-28	264
MED8-814	DDH	KNO	361065.571	515679.842	140.82	-55	259
MED8-816	DDH	KNO	361056.089	515610.776	141.73	-69	260
MED8-819	DDH	KNO	361063.583	515647.442	141.12	-69	263
MED8-819W1	DDH	KNO	361063.583	515647.442	141.12	-69	263
MED8-820	DDH	KNO	361068.671	515679.716	141.43	-70	264
MED8-821	DDH	KNO	361064.923	515680.048	141.12	-56	293
MED8-9	DDH	KNO	360949.997	515618.004	143.49	22	36
MED9-3	DDH	KNO	361008.201	515563.802	113.89	-55	264
MED9-6	DDH	KNO	361008.201	515563.802	113.89	-48	287
MED9-7	DDH	KNO	361008.201	515563.802	113.89	-59	287
MED9-8	DDH	KNO	361008.201	515563.802	113.89	-71	279

Widgie Townsite deposit

Hole_ID	Hole_Type	MGA_North	MGA_East	RL	Depth	Dip	Azimuth
DWT1	DDH	6514130.150	364307.220	1319.000	182.73	-50.00	215.00
DWT2	DDH	6514230.420	364365.340	1320.000	252.37	-50.00	210.00
DWT9	DDH	6513960.000	364698.780	1313.000	479.00	-65.00	225.00
DWT9W1	DDH	6513960.290	364698.800	1317.000	420.70	-65.00	225.00
DWT11	DDH	6514006.120	364510.670	1314.000	329.00	-65.00	225.00
DWT11W1	DDH	6514006.390	364510.710	1317.000	300.00	-65.00	225.00
DWT12	DDH	6513959.140	364467.740	1315.000	212.00	-50.00	225.00
DWT12W1	DDH	6513959.510	364467.850	1318.000	185.00	-50.00	225.00
DWT13	DDH	6513860.630	364514.180	1316.000	215.00	-65.00	225.00
DWT105	DDH	6514138.900	364528.520	1316.000	362.00	-60.00	220.00
DWT106	DDH	6513946.310	364413.760	1318.000	342.00	-62.00	225.00
DWT107	DDH	6514032.870	364635.590	1313.000	465.00	-67.00	225.00
DWT108	DDH	6513956.490	364631.400	1314.000	384.13	-58.00	220.00
DWT109	DDH	6513829.380	364648.250	1317.000	348.00	-60.00	220.00
DWT110	DDH	6513985.410	364680.540	1313.000	426.17	-60.00	225.00
DWT111	DDH	6514059.120	364352.250	1315.000	181.00	-63.00	225.00
DWT112	DDH	6514132.140	364424.360	1315.000	294.00	-60.00	225.00
DWT113	DDH	6513975.280	364496.610	1314.000	296.00	-62.00	225.00
DWT114	DDH	6513910.920	364518.630	1315.000	266.00	-64.00	225.00
DWT116	DDH	6513995,130	364375.790	1316.000	151.00	-65.00	225.00
DWT117	DDH	6514094,620	364474,290	1317.000	316.00	-60.00	225.00
DWT118	DDH	6514033.300	364326.860	1315.000	165.00	-60.00	220.00
DWT119	DDH	6514140 600	364377 520	1315 000	228.00	-51.00	222.00
DWT120	наа	6514165 230	364457.050	1314 000	327.00	-60.00	225.00
DWT123	наа	6514074 950	364309 890	1316.000	169.00	-60.00	225.00
DWT123	наа	6513993 970	364374 810	1315.000	168.00	-50.00	225.00
DWT127		6512028 400	264280.020	1216 000	174.00	-50.00	225.00
DWT128	HDD	6513966 960	364418 920	1315.000	211.00	-63.00	215.00
DWT123		6512002 020	364418.320	1215 000	211.00	-63.00	225.00
DWT130		6514011 970	264444.300	1215 000	236.00	-03.00	225.00
DWT133		6512072 200	364576 650	1313.000	247.00	-00.00	225.00
DWT137		6514042 120	264524 780	1314.000	402.00	-03.00	225.00
DWT140		6512046 990	364554.780	1314.000	403.00	-05.00	225.00
DWT144		65135940.880	364333.930	1222.000	169 20	-01.00	225.00
DWT147	DDH	6513060.830	364303.270	1322.000	400.50	-50.00	45.00
DWT175		6513958.210	364374.080	1319.000	138.00	-59.00	224.00
DWT213	DDH	6513973.310	364392.430	1315.000	147.00	-00.00	224.00
DW1332	DDH	6514032.740	364370.830	1319.000	133.00	-60.00	224.00
DW1331	DDH	6514039.100	364298.210	1319.000	109.00	-01.00	220.00
DW1352		6514095.790	364335.310	1315.000	175.00	-60.00	220.00
DW1353	DDH	6514115.290	364298.500	1319.000	151.00	-60.00	225.00
DW1354	DDH	6514059.120	364300.640	1319.000	95.00	-61.00	220.00
DW1661	DDH	0513903.940	304050.360	1214.000	378.00	-60.00	232.00
DW1662	DDH	6513878.760	364626.670	1314.000	327.00	-61.00	225.00
DW1663	DDH	6513763.600	364654.540	1315.000	225.00	270.00	-60.00
DW1664	DDH	6513911.650	364798.270	1314.000	225.00	270.00	-60.00
DW1686	DDH	6513973.220	364710.290	1313.000	225.00	270.00	-61.00
DW1687	DDH	6514004.980	364736.970	1312.000	225.00	270.00	-61.00
DWT688	DDH	6513964.160	364846.720	1310.000	227.00	272.00	-61.00
DWT692	DDH	6513891.590	364915.040	1314.000	224.00	269.00	-60.00
DWT714A	DDH	6513640.060	364335.200	1318.000	45.00	90.00	-56.00
DWT715	DDH	6513615.260	364317.380	1323.000	42.00	87.00	-54.00
DWT716	DDH	6514016.460	364611.240	1313.000	227.00	272.00	-60.00
DWT717	DDH	6513919.100	364750.430	1312.000	225.00	270.00	-60.00
DWT718	DDH	6513941.600	364800.390	1312.000	225.00	270.00	-60.00
HH615	PERC	6513930.490	364405.180	1320.000	45.00	90.00	-50.00
HH618	PERC	6513839.580	364480.660	1316.000	315.00	360.00	-90.00
RWT31	RAB	6513899 950	364511 030	1315 000	225.00	270.00	-60.00

Hole_ID	Hole_Type	MGA_North	MGA_East	RL	Depth	Dip	Azimuth
WDC295	RC	6513965.580	364584.340	1314.000	225.00	270.00	-60.00
WDC320	RC	6514016.100	364336.570	1316.000	225.00	270.00	-60.00
WDC321	RC	6514011.600	364360.130	1316.000	225.00	270.00	-60.00
WDC322	RC	6514002.640	364365.300	1316.000	229.00	274.00	-55.00
WDC323	RC	6513889.500	364519.200	1316.000	225.00	270.00	-60.00
WDC328	RC	6513924.770	364501.980	1315.000	270.00	315.00	-55.00
WDC329	RC	6514012.200	364319.130	1316.000	270.00	315.00	-55.00
WDC330	RC	6514037.160	364362.800	1315.000	270.00	315.00	-55.00
WDC331	RC	6514037.950	364319.670	1316.000	270.00	315.00	-55.00
WDC332	RC	6514050.120	364319.040	1316.000	270.00	315.00	-55.00
WDC333	RC	6514062.200	364322.770	1316.000	270.00	315.00	-60.00
WDC334	RC	6514087.260	364294.090	1316.000	270.00	315.00	-60.00
WDC336	RC	6514112.290	364307.170	1316.000	270.00	315.00	-60.00
WDC337	RC	6514100.160	364306.010	1316.000	270.00	315.00	-60.00
WDD096	DDH	6513950.840	364436.840	1315.000	230.00	275.00	-60.00
WDD097	RC	6513930.400	364493.530	1315.000	226.00	271.00	-61.00
WDD098	RC	6513884.570	364530.320	1316.000	225.00	270.00	-60.00
WDD098A	DDH	6513885.760	364529.740	1318.000	228.00	273.00	-71.00
WDD108	DDH	6513926.800	364443.370	1315.000	225.00	271.00	-60.00
WDD109	DDH	6513978.330	364467.410	1315.000	230.00	276.00	-61.00
WDD110	DDH	6513901.850	364503.500	1315.000	223.00	269.00	-60.00
WDD111	DDH	6513942.730	364544.590	1314.000	222.00	267.00	-60.00
WDD112	DDH	6513889.990	364548.680	1315.000	226.00	272.00	-60.00
WDD113	DDH	6513924.400	364583.700	1314.000	222.00	268.00	-60.00
WDD114	DDH	6513949.660	364509.540	1315.000	220.00	266.00	-60.00
WDD124	DDH	6513968.660	364540.970	1314.000	225.00	270.00	-61.00
WDD125	DDH	6513966.900	364481.920	1315.000	224.00	270.00	-61.00
WDD127	DDH	6513895.920	364662.470	1314.000	221.00	267.00	-63.00
WDD127W1	DDH	6513895.920	364662.470	1314.000	221.00	267.00	-63.00
WDD128	DDH	6513940.090	364648.240	1314.000	223.00	269.00	-64.00
WDD129	DDH	6514090.800	304028.000	1315.000	222.00	268.00	-62.00
WDD130	DDH	6514094.080	303978.000	1314.000	221.00	267.00	-57.00
WDD131	DDH	6514037.950	303981.000	1315.000	228.00	274.00	-62.00
WDD137	DDH	6513882.320	303656.000	1313.000	225.00	271.00	-64.00
WDD138	DDH	6513926.950	303726.000	1314.000	225.00	271.00	-61.00
WDD139	DDH	6513963.460	303755.000	1313.000	226.00	272.00	-60.00
WDD168	DDH	6514096.230	304075.000	1316.000	226.00	271.00	-63.00
WDD169	DDH	6514120.540	304046.000	1315.000	227.00	272.00	-62.00
WDD170	DDH	6514114.950	304082.000	1316.000	225.00	270.00	-61.00
WDD171	DDH	6514086.820	304035.000	1315.000	225.00	270.00	-61.00
WDD172	DDH	6514072.820	304005.000	1315.000	226.00	271.00	-57.00
WDD173	DDH	6514058.100	304035.000	1316.000	225.00	270.00	-60.00
WDD176	DDH	6514039.680	304005.000	1316.000	225.00	270.00	-60.00
WDD177	DDH	6514029.130	303967.000	1315.000	226.00	271.00	-57.00
WDD178	DDH	6513952.160	303923.000	1316.000	231.00	276.00	-59.00
WDD179	DDH	6513976.450	303927.000	1315.000	227.00	272.00	-58.00
WDD180	DDH	6513992.980	303918.000	1315.000	227.00	272.00	-58.00
WDD181	DDH	6513958.570	303895.000	1315.000	229.00	274.00	-59.00
WDD182	DDH	6514009.030	303941.000	1315.000	228.00	273.00	-58.00
WDD183	DDH	6513925.840	303814.000	1315.000	226.00	271.00	-59.00
WDD184	DDH	6513932.520	303811.000	1314.000	227.00	272.00	-59.00
WDD185	DDH	6513923.140	303789.000	1315.000	228.00	273.00	-59.00
WDD186	DDH	6513907.600	303771.000	1315.000	219.00	264.00	-57.00
WDD187	DDH	6513901.590	303755.000	1315.000	227.00	272.00	-61.00
WDD188	DDH	6513891.510	303734.000	1315.000	226.00	271.00	-61.00
WDD189	DDH	6513870.560	303722.000	1315.000	224.00	269.00	-60.00
WDD190	DDH	6513900.910	303722.000	1314.000	226.00	271.00	-61.00
WDD191	DDH	6513854.890	303694.000	1315.000	224.00	269.00	-60.00
WDD192	DDH	6513829.950	303663.000	1314.000	228.00	273.00	-60.00

Hole_ID	Hole_Type	MGA_North	MGA_East	RL	Depth	Dip	Azimuth
WDD193	DDH	6513867.350	303676.000	1314.000	228.00	273.00	-62.00
WDD194	DDH	6513785.920	303849.000	1318.000	52.00	97.00	-57.00
WDD231	DDH	6514082.210	304082.000	1316.000	159.00	204.00	-57.00
WND570	DDH	6513833.830	303599.000	1316.000	225.00	270.00	-50.00
WND576	DDH	6513795.280	303777.000	1317.000	45.00	90.00	-60.00
WND582	DDH	6514052.870	303963.000	1314.000	225.00	270.00	-50.00

Widgie 3 deposit

Hole_ID	MGA_North	MGA_East	RL	Depth	Azimuth	Dip
DWT121	6512105.59	365813.5	331.157	222	258.535	-45
DWT124	6512129.84	365838.97	331	84	258.535	-45
DWT125	6512130.53	365840.35	331	113	258.535	-60
DWT132A	6512077.24	365854.15	335.323	80	258.535	-45
DWT133	6512099.58	365877.13	332.477	132	258.535	-57
DWT136	6512041.87	365888.85	338.578	121	258.535	-45
DWT138	6512103.91	365949.96	330.73	211	253.535	-45
DWT141	6511991.53	365914.78	345.163	110.5	258.535	-45
DWT142	6512011.85	365934.63	340.557	201	250.535	-57
DWT143	6512011.35	365934.18	340.651	153	253.535	-50
DWT145	6511950.72	365941	348.162	120.12	258.535	-52
DWT146	6511971.24	365962.16	344.329	177	258.535	-60
DWT149	6512011.59	365893.44	343.28	96.36	248.535	-45
DWT150	6512091.05	365853.4	333.961	100	258.535	-60
DWT151	6511904.64	365896.1	350.597	60.5	78.535	-60
DWT152	6511907.64	365897.7	351.062	32	73.535	-49
DWT152A	6511907.64	365897.7	351.062	32	73.535	-59
DWT152B	6511907.64	365897.7	351.062	32	73.535	-59
DWT153	6511928.98	365850.15	349.223	54	81.535	-55
DWT153A	6511928.98	365850.15	349.223	53.5	81.535	-55
DWT153B	6511928.98	365850.15	349.223	53.5	81.535	-55
DWT154	6511933.51	365854.36	350.258	31.5	84.535	-55
DWT154A	6511933.51	365854.36	350.258	31.5	84.535	-55
DWT154B	6511933.51	365854.36	350.258	31.5	84.535	-55
DWT155	6511936.51	365857.6	350.935	30.5	87.535	-60
DWT155A	6511936.51	365857.6	350.935	30.5	87.535	-60
DWT155B	6511936.51	365857.6	350.935	30.5	87.535	-60
DWT156	6512000.87	365847.98	345.762	38	78.535	-60
DWT156A	6512000.87	365847.98	345.762	37.5	78.535	-60
DWT156B	6512000.87	365847.98	345.762	37.5	78.535	-60
DWT157	6512005.75	365852.92	345.676	34	83.535	-60
DWT157A	6512005.75	365852.92	345.676	34	83.535	-60
DWT157B	6512005.75	365852.92	345.676	34	83.535	-60
DWT158	6512054.18	365830.71	336.915	38	82.535	-66
DWT158A	6512054.18	365830.71	336.915	38	82.535	-66
DWT158B	6512054.18	365830.71	336.915	38	82.535	-66
DWT159	6512055.241	365831.75	336.812	31	83.535	-60
DWT159A	6512055.241	365831.75	336.812	30.5	83.535	-60
DWT159B	6512055.241	365831.75	336.812	30.5	83.535	-60
DWT320	6512129.84	365907.56	330	60	258.535	-60
DWT321	6512117.34	365894.31	330.563	60	258.535	-60
DWT322	6512098.95	365878.03	332.431	60	258.535	-60
DWT323	6512087.02	365866.559	334.247	60	258.535	-60
DWT324	6512040.59	365748.81	336.968	55	258.535	-60
DWT325	6512025.589	365735.34	338.622	50	258.535	-60
DWT326	6512011.8	365719.79	340.275	60	258.535	-60
DWT327	6511997.1	365704.18	342.044	60	258.535	-60
DWT328	6511987.42	365692.18	342.91	60	258.535	-60
DWT329	6511935.25	365970.05	345.303	60	258.535	-60

Hole_ID	MGA_North	MGA_East	RL	Depth	Azimuth	Dip
DWT330	6511921.14	365956.17	349.16	60	258.535	-60
DWT331	6511907.02	365942.29	352.668	60	258.535	-60
DWT355	6512049.39	365927.21	334.951	169	219.535	-61.5
DWT356	6512049.39	365927.21	334.951	201	258.535	-55
DWT357	6511924.47	365804.06	344.111	217	83.535	-54.4
DWT358	6511924.47	365804.06	344.111	17	78.535	-60
DWT668	6511746.73	365972	330.39	744	78.535	-60
DWT670	6512213.49	366143.79	328.67	279	253.535	-55
HH569	6511950.21	365845.94	347.791	57.3	260.535	-60
HH570	6511979.23	365848.7	346.592	36.58	260.535	-50
WDC236	6512095	365895	332.044	180	259.905	-57.55
WDC237	6512162	365892	330	192	260.545	-49.96
WDC257	6512067	365907	Missing	120	Missing	Missing
WDC258	6512085	365896	Missing	130	Missing	Missing
WDD080	6512054	365994	332.101	339.4	256.615	-56.24
WDD081	6512090.001	365972	330.585	330.6	258.205	-58
WDD082	6512140	365910	330	345.6	259.87	-62.99
WDD090	6512077.5	365922.5	Missing	100	Missing	Missing
WPH54	6511995.49	365882.47	350.725	0	258.535	-45
WPH55	6511995.49	365882.47	350.725	54.03	258.535	-45
WPH56	6511985.81	365883.75	352.889	58.22	258.535	-45
WPH57	6511978.34	365887.13	354	30.33	258.535	-45
WPH60	6511858.36	365983.67	356	46.79	258.535	-45
WPH61	6511654.42	366108.35	324.89	41.91	258.535	-60
WPH62	6511727 37	366103 751	331 103	48.16	258 535	-60
WPH63	6511641 55	366123.45	324 89	32	258 535	-60
WPH64	6511669 5	366239.21	324.89	36 58	258 535	-60
WPH65	6511847.05	365943 78	352 697	58.06	303 535	-60
WPH66	6511694.83	366038.03	3// 89	64.92	258 535	-60
W/PS1	6512108.64	365841.61	331 672	82.3	258.555	-60
W/DS2	6512090 51	365851 34	334 105	92.5	258.555	-00
W1 52	6512030.31	366167.69	220 /11	52.50	258.555	-00
W/DT2	6511712 54	366365.93	222.411	75	258.555	-00
WPT2	6511788.86	366370 57	322.007	75	258.535	-02
W/13	6511002.05	365011.9	345 303	96.01	258.555	-00
W/WD1	6512061.19	265090.24	221 025	155 14	79 525	-45
WWD10	6511052.070	366004 57	220 2/1	202.61	259 525	-45
WWD11	CE121CE 72	300004.37	220	205.01	230.353	-43
VVVD12	6512105.72	205949.071	220	247.55	236.353	-43
WWD13	6512209.93	365397.35	222.20	156 51	200.000	-43
000014	6511727.29	366236.69	322.39	150.51	258.535	-45
WWD15	6512064.6	365910.89	354.540	100.03	258.535	-45
wwD16	6511964.42	365904.67	352.615	//.05	258.535	-45
WWD17	6512167.73	365951.75	330	366.98	258.535	-60
WWD18	6511///.94	366100.3	330.866	150.27	258.535	-60
WWD19	6512245.93	365910.96	330	424.89	258.535	-65
WWD2	6512061.18	365980.24	331.925	206.96	258.535	-50
WWD20	6512104.3	366022.48	330.177	500.12	258.535	-60
WWD21	6512391.98	365915.67	337.49	455.98	258.535	-65
WWD22	6512058.74	366107.67	331.976	489.2	258.535	-60
WWD23	6511875.25	366062.74	336.691	181.66	258.535	-45
WWD24	6512127.43	365971.52	330	265	258.535	-46
WWD25	6511971.97	365958.89	344.4	344.2	258.535	-48
WWD26	6511991.67	366009.57	334.949	284	258.535	-61
WWD27	6511935.36	365954.18	347.841	142	258.535	-40
WWD28	6511786.01	366362.65	322.351	485	258.535	-65
WWD3	6511976.91	366028.461	334.877	286.66	258.535	-60
WWD30	6511942.85	366090.57	335.82	362	263.535	-65
WWD4	6512100.84	365885.48	331.814	134.11	258.535	-45
WWD5	6512183.03	365822.17	331.089	120.24	258.535	-45

Hole_ID	MGA_North	MGA_East	RL	Depth	Azimuth	Dip
WWD6	6512292.42	365799.73	329.96	168.1	258.535	-45
WWD7	6511760.36	366083.42	330	120.58	258.535	-45

Gillet deposit

Hole_ID	MGA_North	MGA_East	RL	Depth	Azimuth	Dip
	365841.52	6512360.84	327.17	198	93	-55
WDC339	365952.64	6512409.64	331.66	108	271	-60
WDC340	365973.31	6512388.31	330.78	104	274	-60
WDC341	365992.7	6512361.51	328.89	114	273	-60
WDC342	365896.49	6512562.35	328.14	162	272	-53
WDC343	365745.92	6512508.49	341.92	228	96	-55
WDC344	365919.81	6512494.85	329.98	124	273	-55
WDC345	365966.52	6512423.92	330.22	160	274	-61
WDC347	366017.28	6512385.01	327.29	220	274	-63
WDC348	365979.22	6512406.33	329.66	180	271	-63
WDC349	365988.42	6512415.04	328.89	220	272	-65
WDC350	365900.18	6512522.74	330.91	180	269	-62
WDC351	365904.11	6512526.79	330.3	198	270	-65
WDC352	365993.89	6512362.11	328.9	162	273	-68
WDD163	365950.07	6512525.29	327.71	264.07	272	-60
WDD164	365778.1	6512713.18	333.3	372.02	266	-72
WDD195	365754.59	6512746.15	332.3	312	269	-67
WDD196	365776.94	6512711.84	333.12	270	265	-65
WDD197	365776.51	6512711.32	333.22	195	264	-56
WDD198	365709.07	6512531.27	338.13	279	93	-58
WDD199	365629.31	6512562.68	330.73	453	92	-72
WDD200	365736.48	6512444.97	334.33	342	93	-60
WDD201	365752.85	6512461.79	337.69	258	94	-55
WDD201A	365753.87	6512462.73	337.86	63	93	-55
WDD202	365673.05	6512500.95	334.22	351.17	97	-61
WDD203	365629.95	6512563.53	330.78	468	97	-72
WDD214	365600.61	6512646.09	331.39	444	97	-73
WDD215	365693.6	6512515.95	337.04	348	91	-62
WDD216	365671.9	6512499.76	334.37	123	94	-72
WDD217	365700.66	6512468.67	334.56	366	92	-68
WDD218	365755.06	6512421.61	333.33	399.16	93	-71
WDD219	366140.81	6512207.03	328.79	180	260	-58
WDD220	365833.85	6512351.15	327.07	348.05	85	-68
WDD232	365923.28	6512497.91	329.73	420.75	278	-73
WDD233	365843.41	6512362.45	327.16	222	86	-60
WDD234	365921.87	6512496.86	329.75	194.3	277	-65
WDD235	365845.31	6512364.45	327.23	186	88	-55
WDD236	365980.12	6512436.27	329.15	204	274	-60
WDD237	365981.25	6512437.33	329.02	276	274	-65
WDD238	365836.35	6512353.49	327.03	267	87	-66
WDD239	365755.69	6512422.11	333.19	312	99	-66
WDD240	365757.02	6512423.72	333.38	291	91	-60
WDD241	365758.45	6512425.15	333.65	273	92	-51
WDD242	365701.79	6512469.82	334.78	360	90	-60
WDD243	365831.76	6512348.87	327	324	91	-66
WDD244	365752.77	6512326.55	328.59	66	93	-57
WDD245	365630.03	6512563.38	330.81	396.75	96	-69
WDD246	366024.33	6512391.83	326.54	309	270	-65
WDD247	365713.81	6512422.51	331.14	351	92	-64
WDD248	365756.87	6512748.91	332.61	294.55	270	-68
WDD249	365782.53	6512714.08	333.42	280.3	269	-67
WDD250	365736.54	6512//4.37	331.06	2/9.41	2/1	-60
WDD251	365743.07	6512/81.23	331.42	300.3	272	-66
WDD252	365706.52	6512797.91	329.74	228	273	-63
WDD253	365717.56	6512808.68	330.16	267	2/0	-65
WDD254	365919.8	6512541.79	328.75	291.8	2/2	-6/
WDD255	365687.55	6512457.29	333.64	369	88	-63
VVDD/56	3656/394	6512442.98	333.48	43/	84	- /()

Hole_ID	MGA_North	MGA_East	RL	Depth	Azimuth	Dip
WDD257	365750.61	6512330.19	328.73	387.04	93	-57
WDD258	365997.16	6512424.04	328.16	345	272	-69
WDD259	365659.7	6512493.5	333	403.64	96	-66

Appendix 4 – JORC Code (2012 Edition) Drill hole Intersection Information

Note: All composited intersections used in the Mineral Resource estimation are set out below. Composites created using the mineralisation wireframe boundaries as the cut-off. Note not all historic holes have As, Cu and/or Co assays.

Mt Edwards deposit

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
ME5890	573.05	586.74	13.69	1.45	60	850	248
ME5893W1	542	555.96	13.96	1.49		1034	
MED12-1	72.9	75.4	2.5	0.30	100	184	128
MED12-11	69.8	110.1	40.3	8.61	469	7021	1363
MED12-3	85	92.9	7.9	1.76	113	905	380
MED12-4	74.8	84.5	9.7	1.22	100	985	371
MED12-6	0	4	4	0.94	100	595	253
MED12-7	2.5	11	8.5	2.45	100	2172	455
MED12-8	2.39	9.5	7.11	0.83	100	465	275
MED13-1	0	5.5	5.5	1.31	100	1614	310
MED13-2	0	9.8	9.8	6.36	100	5493	1320
MED13-3	0	3.2	3.2	0.40	100	216	125
MED13-4	0	4.4	4.4	1.03	100	764	274
MED13-5	5.1	10.7	5.6	0.92	100	473	219
MED13-6	0	14.4	14.4	0.92	100	648	242
MED16-14	0	4.15	4.15	1.35			
MED16-16	0	6	6	1.24			
MED16-17	0	15.3	15.3	2.12			
MED16-18	0	7	7	2.30			
MED16-19	0	9	9	1.14			
MED16-20	0	11	11	0.84			
MED16-22	0	10	10	1.79			
MED16-23	0	4	4	0.64			
MED16-24	0	12	12	1.54			
MED17-1	8	12	4	1.12			
MED17-2	3.45	10	6.55	1.25			
MED17-3	0	17.3	17.3	1.39			
MED17-4	0	10	10	2.00			
MED17-5	0	5	5	1.19			
MED17-6	2.25	12	9.75	3.33			
MED17-7	12.35	15.05	2.7	2.19			
MED18-1	27.04	35.45	8.41	1.72	100		
MED18-2	26.5	30.64	4.14	2.29	100		
MED18-3	24.33	27.89	3.56	0.99	100		
MED18-4	28.75	36	7.25	1.61			
MED18-5	17	22	5	1.29			
MED18-6	16.5	21	4.5	1.67			
MED18-7	0	9.25	9.25	5.76			
MED18-8	0	5	5	1.52			
MED18-9	0	5	5	0.71			
MED19-10	99.05	101.6	2.55	0.96			
MED19-11	122	129.9	7.9	1.43			
MED19-7	121.9	129	7.1	7.55			
MED19-8	100.4	104	3.6	0.90			
MED19-9	161	169.7	8.7	1.39			
MED8-810	178.61	195.35	16.74	7.30	2645	4384	1348
MED8-811	169.87	182.88	13.01	2.08	89	879	401
MED8-816	270.66	294.62	23.96	1.16	51	1281	264
MED8-818	188.98	192.02	3.04	1.13		913	323
MED8-819	262.52	283.46	20.94	1.79	33	1610	333
MED8-820	318.46	350.67	32,21	0.98		654	226

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
MED9-10	146.66	152.98	6.32	0.39			
MED9-3	92.75	111	18.25	6.24			
MED9-7	118	141	23	1.39			
MED9-9	142.3	176.6	34.3	4.67			
MED8-819W1	507.4	524.56	17.16	7.63		4982	1442
MED19-14	156.3	157.4	1.1	0.67			
MED19-5	129.5	133	3.5	1.82			
ME5690	64.01	74.68	10.67	3.96		515	
ME5836	146	149.05	3.05	0.87		530	
ME5844	154.02	161	6.98	0.47		211	
ME5847	213.97	229.51	15.54	1.10	18	671	347
ME5853	127.59	129.24	1.65	4.72	13	2911	817
ME5854	144.2	149.96	5.76	0.88		534	
ME5858	243.96	247.95	3.99	0.52		293	
ME5866	318.24	338.45	20.21	1.70		1144	
ME5872	184.71	189.59	4.88	1.25		638	
ME5873	363.63	367.28	3.65	0.65		396	
ME5883	232.56	250.24	17.68	1.16	5	762	360
ME5892	334.58	343.17	8.59	1.37		1017	
ME8107	170.69	181.36	10.67	1.08		837	
ME8112	67.43	70.38	2.95	0.85		661	
ME8123	260.3	275.11	14.81	1.64		1311	
ME8136	186.75	201.44	14.69	1.03		836	
ME8139	363.02	384.11	21.09	1.35		894	
MED2-801	42.85	50.91	8.06	0.82		535	
MED2-802	42.12	55.37	13.25	1.90		1970	
MED2-803	59.69	67.62	7.93	0.60		318	
MED4-7	41.4	50.04	8.64	0.43			
MED4-806	91.42	99.05	7.63	0.77		478	
MED6-1	53.2	58.34	5.14	1.98			
MED6-27	97.98	101.98	4	0.44			
MED6-807A	53.64	59.44	5.8	1.06		934	
MED6-808	90.22	93.57	3.35	0.99		568	
MED6-815	89	96.01	7.01	0.88		664	222
MED6-817	85.83	90.25	4.42	1.30		902	273
MED8-4	64.91	75	10.09	1.45			
MED8-5	74	86.2	12.2	1.01			
MED8-814	223.27	228.2	4.93	1.18		814	363
MED8-821	256.03	260.6	4.57	0.74		412	222

Widgie Townsite deposit

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
DWT1	100.58	112.47	11.89	1.00	70.92	643.95	37.10
DWT2	184.22	214.15	29.93	1.23	0.00	1416.94	0.00
DWT9	395.50	411.50	16.00	1.49	18.46	1575.00	447.31
DWT9W1	396.00	411.00	15.00	1.66	0.00	1895.50	522.97
DWT11	268.00	286.70	18.70	0.94	15.44	1027.80	348.52
DWT11W1	270.50	289.00	18.50	0.77	13.86	873.33	339.65
DWT12	47.00	181.70	134.70	2.23	33.88	2333.07	616.96
DWT12W1	170.50	180.88	10.38	3.53	66.45	5153.70	824.86
DWT13	30.00	42.00	12.00	0.86	0.00	1150.00	170.00
DWT105	332.00	334.00	2.00	0.64	0.00	563.75	292.50
DWT106	106.00	130.70	24.70	2.07	64.45	0.00	0.00
DWT107	427.00	430.74	3.74	1.51	18.80	3292.19	547.59
DWT108	251.53	326.35	74.82	1.43	530.02	1441.99	403.33
DWT109	129.00	188.00	59.00	0.81	92.35	668.41	256.87
DWT110	354.00	369.15	15.15	1.21	35.71	1338.74	409.69
DWT111	112.00	136.00	24.00	1.49	2156.70	0.00	0.00

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
DWT112	236.00	242.70	6.70	1.88	252.72	4246.60	513.12
DWT113	224.00	244.86	20.86	1.85	37.39	2314.50	681.48
DWT114	90.40	206.75	116.35	2.23	2605.91	3977.12	620.62
DWT116	106.00	123.87	17.87	1.53	730.15	1773.88	428.58
DWT117	267.00	269.40	2.40	0.99	27.08	920.42	315.79
DWT118	75.35	100.00	24.65	1.39	839.32	0.00	0.00
DWT119	144.00	193.00	49.00	0.91	31.69	1036.77	377.64
DWT120	290.00	292.00	2.00	0.70	0.00	1290.00	270.00
DWT123	64.00	100.80	36.80	1.36	2616.79	1838.66	1172.74
DWT127	98.07	99.07	1.00	2.40	5.00	0.00	0.00
DWT128	69.00	72.21	3.21	2.78	315.58	2580.72	1130.16
DWT129	148.00	167.10	19.10	1.82	44.43	2439.22	597.85
DWT130	189.00	194.00	5.00	0.66	0.00	840.00	252.50
DWT135	207.70	223.20	15.50	1.90	100.00	2066.10	530.86
DWT137	294.00	307.00	13.00	1.50	14.39	2244.49	493.63
DWT140	322.00	334.00	12.00	0.88	0.00	1573.04	335.78
DWT144	194.00	281.40	87.40	1.80	159.85	2109.50	469.97
DWT147	360.00	380.00	20.00	1.49	20.05	1883.30	414.85
DWT175	66.00	79.00	13.00	1.05	96.69	768.92	509.38
DWT213	101.08	110 50	9.42	1 38	162 15	1174 69	417.98
DWT213	78.90	91.40	12 50	1.30	0.00	2053.65	633.85
DWT351	65.35	73.00	7.65	0.78	0.00	1104.44	511 31
DW/T351	85.00	140.80	55.80	1 22	1567.50	703.96	799.60
DW1352	85.00	140.80	24.25	1.33	1307.33	12/15 22	360.40
DW/T353	42.00	74.40	24.23	1.22	0.00	926.22	467.46
DWT534	242.00	219.00	70.50	2.22	100.00	2714 05	608.04
DWT663	100.00	102.00	70.30	2.57	100.00	020.00	270.00
DW1002	190.00	192.00	2.00	0.82	100.00	31355.00	270.00
DW1663	157.20	157.60	0.40	2.63	100.00	21355.00	961.25
DW1664	165.00	545.00	380.00	1.50	135.00	1394.06	361.06
DW1686	453.00	482.35	29.35	2.05	622.78	2674.60	473.19
DW1687	182.65	566.29	383.64	1.26	1549.57	1/27.83	375.43
DW1688	662.00	667.35	5.35	1.24	8430.84	1698.04	303.46
DW1692	594.00	614.00	20.00	0.94	883.15	1454.43	323.36
DW1714A	412.00	436.00	24.00	1.63	408.40	1/2/.51	446.16
DWT/15	4/2.45	495.20	22.75	1.08	26.91	1531.74	353.25
DW1716	355.00	358.80	3.80	0.76	0.00	922.63	243.16
DWT/1/	418.00	520.45	102.45	2.30	1463.68	2243.33	568.92
DWT718	476.95	555.50	78.55	1.11	313.78	1406.01	312.74
HH615	38.10	47.70	9.60	0.13	0.00	125.71	91.42
HH618	39.47	44.96	5.49	0.82	0.00	879.54	295.06
RWT31	20.00	30.00	10.00	0.05	88.00	22.00	112.00
WDC295	44.00	56.00	12.00	0.90	215.00	375.00	593.67
WDC320	72.00	93.00	21.00	0.89	443.71	808.29	474.29
WDC321	100.00	105.00	5.00	1.04	1646.80	2986.60	586.60
WDC322	81.00	102.00	21.00	1.26	360.05	2257.53	756.63
WDC323	18.00	60.00	42.00	0.98	1261.70	305.30	737.25
WDC328	24.00	63.00	39.00	0.69	1081.41	281.95	387.59
WDC329	47.00	87.00	40.00	0.97	1213.00	1156.82	419.27
WDC330	85.00	125.00	40.00	1.28	3101.18	973.94	904.97
WDC331	79.00	92.00	13.00	1.11	1704.85	1334.77	514.38
WDC332	66.00	89.00	23.00	1.26	4701.91	1629.00	662.96
WDC333	56.00	113.00	57.00	1.20	3203.97	752.09	732.69
WDC334	86.00	95.00	9.00	0.87	4920.33	718.56	588.00
WDC336	127.00	129.00	2.00	1.49	9153.00	1032.00	1076.50
WDC337	114.00	117.00	3.00	1.58	2716.67	2690.67	525.00
WDD096	34.00	143.60	109.60	2.12	381.36	2337.04	673.48
WDD097	23.00	188.40	165.40	2.16	807.93	2364.57	751.45
WDD098	24.00	79.00	55.00	0.89	1584.26	358.61	410.65
WDD098A	29.00	222.22	193.22	0.90	853.90	1237.07	339.70

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
WDD108	115.00	144.33	29.33	2.77	286.37	3285.79	783.62
WDD109	60.00	213.40	153.40	1.12	315.30	958.87	388.26
WDD110	48.00	56.00	8.00	0.67	1053.50	697.50	291.00
WDD111	52.00	248.80	196.80	1.95	885.51	2359.95	689.55
WDD112	40.00	88.00	48.00	0.85	901.33	170.67	490.00
WDD113	154.00	279.00	125.00	1.19	407.96	1349.89	386.87
WDD114	42.00	227.00	185.00	2.25	474.21	2617.17	832.02
WDD124	44.00	294.00	250.00	1.09	345.81	1570.20	420.42
WDD125	40.00	205.40	165.40	2.01	676.51	1754.92	771.15
WDD127	33.00	38.00	5.00	0.95	165.60	376.40	576.60
WDD127W1	326.90	357.00	30.10	0.94	5.38	1158.68	341.45
WDD128	40.00	385.00	345.00	1.47	182.77	1599.25	490.87
WDD129	188.75	193.35	4.60	2.73	2437.46	5329.51	882.35
WDD130	233.85	241.60	7.75	1.54	168.48	2166.90	478.29
WDD131	148.00	163.55	15.55	1.31	830.45	2380.98	386.68
WDD137	177.00	180.00	3.00	1.08	56.00	1776.33	411.00
WDD138	32.00	64.00	32.00	1.03	960.33	346.00	550.83
WDD139	48.00	56.00	8.00	0.92	716.50	123.50	540.50
WDD168	63.00	130.00	67.00	1.14	1622.79	684.88	507.86
WDD169	203.00	214.00	11.00	2.14	3428.95	3150.05	800.46
WDD170	87.00	136.10	49.10	1.28	3466.78	1134.74	592.60
WDD171	162.00	172.00	10.00	1.61	996.11	4711.40	1216.22
WDD172	93.00	175.79	82.79	1.22	3043.21	454.91	585.33
WDD173	67.00	109.94	42.94	0.99	414.68	505.92	536.45
WDD176	75.00	84.00	9.00	0.32	250.00	146.67	147.67
WDD177	145.00	158.60	13.60	1.65	3753.07	2678.05	945.94
WDD178	75.00	87.00	12.00	0.78	191.08	677.58	225.58
WDD179	117.00	130.14	13.14	1.58	1409.86	1911.34	587.81
WDD180	160.00	171.00	11.00	1.07	19.59	1122.50	339.73
WDD181	28.00	159.71	131.71	1.55	976.74	1850.36	542.64
WDD182	144.00	159.96	15.96	1.00	151.09	1141.27	388.11
WDD183	28.00	42.00	14.00	0.86	472.54	235.50	521.39
WDD184	60.00	121.00	61.00	1.23	7032.06	625.15	734.03
WDD185	45.00	222.00	177.00	1.96	1464.56	2158.57	657.27
WDD186	45.00	136.39	91.39	1.12	633.34	533.32	464.68
WDD187	55.00	259.78	204.78	1.84	650.51	1179.10	670.22
WDD188	53.00	255.00	202.00	0.60	203.92	437.47	219.13
WDD189	49.00	150.00	101.00	0.71	556.21	257.79	350.70
WDD190	50.00	296.04	246.04	1.24	165.59	1498.17	460.63
WDD191	45.00	151.15	106.15	1.33	626.61	1434.36	483.51
WDD192	39.00	165.00	126.00	0.95	363.30	1329.40	523.90
WDD193	39.00	230.68	191.68	0.85	351.72	826.71	339.06
WDD194	215.81	249.10	33.29	2.65	390.77	3710.83	840.14
WDD231	119.00	171.00	52.00	1.15	1388.97	1395.16	489.04
WND570	254.10	260.60	6.50	1.56	0.00	2272.71	485.21
WND576	185.75	191.54	5.79	1.04	0.00	2256.82	243.92
WND582	99.80	200.00	100.20	1.18	559.90	1262.43	547.86

Widgie 3 deposit

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
DWT121	8	9	1	0.26			
DWT124	42	43	1	0.49			
DWT124	43	44	1	0.42			
DWT124	44	45	1	0.66			
DWT125	69	70	1	0.42			
DWT125	70	71	1	0.97			
DWT132A	23	24	1	0.50			
DWT132A	24	25	1	1.28			
DWT132A	25	26	1	0.47			
DWT132A	26	27	1	0.47			
DWT132A	27	28	1	0.42			
DWT132A	28	29	1	0.37			
DWT132A	29	30	1	0.54			
DWT132A	30	31	1	0.69			
DWT132A	31	32	1	2.88			
DWT132A	32	33	1	2.00			
DW/T132A	110	111	1	0.68			
DWT133	111	112	1	0.00			
DWT133	112	113	1	1.28			
DWT133	113	114	1	1.20			
DWT133	114	115	1	0.76			
DW/T133	115	115	1	0.70			
DWT133	115	117	1	0.37			
DW/T133	117	118	1	2 70			
DWT133	118	119	1	1 30			
DW/T133	119	120	1	1.63			
DW/T136	50	51	1	0.75			
DWT136	51	52	1	0.73			
DWT136	52	53	1	0.35			
DWT136	53	5/	1	1.61			
DW/T136	54	55	1	1.67			
DW1130	169	170	1	0.75			
DW1138	105	170	1	1.16			
DW1138	170	171	1	1.10			
DW1138	171	172	1	1.04			
DW/T138	172	173	1	1.05			
DWT138	173	174	1	2.10			
DW1138	174	175	1	2.19			
DW1138	175	170	1	5.27			
DWT138	170	1//	1	0.00			
DW/T141	55	50	1	0.62			
DW1141	20 57	57	1	0.62			
DW1141	57	58	1	0.69			
DW1141	58	59	1	0.48			
DW1141	59	60	1	0.45			
DW1141	60	61	1	0.46			
DW1141	61	62	1	0.76	1.4		
DW1141	62	63	1	0.79	11		
DW1141	63	64	1	1.50	2/		
DW1141	64	65	1	1.72	34		
DW1141	74	/5	1	0.75	3//		
DW1141	/5	/6	1	0.38	65		
DW1141	/6	/7	1	0.90	22		
DW1141	//	/8	1	0.73			
DW1141	/8	/9	1	0.63	25		
DWT141	79	80	1	0.50	20		

L

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
DWT141	80	81	1	0.39	11		
DWT141	81	82	1	9.20	227		
DWT141	82	83	1	3.23	101		
DWT142	111	112	1	0.52			
DWT142	112	113	0.82	0.36			
DWT143	93	94	1	0.59			
DWT143	94	95	1	0.20			
DWT143	95	96	1	0.50			
DWT143	96	97	1	0.76			
DWT143	97	98	1	0.76			
DWT143	98	99	1	0.64			
DWT143	99	100	1	0.96			
DWT143	100	101	1	0.35			
DWT143	101	102	1	1.03			
DWT143	102	103	1	0.53			
DWT143	103	104	1	0.55			
DWT143	104	105	1	0.57			
DWT143	111	112	1	0.47			
DWT143	112	113	1	1.26			
DWT143	113	114	1	0.47			
DWT143	114	115	1	4.11			
DWT143	115	116	1	5.68			
DWT145	64	65	1	0.63			
DWT145	65	66	1	0.05			
DWT145	66	67	1	0.43			
DWT145	67	68	1	0.45			
DWT145	68	69	1	1 12			
DWT145	69	70	1	0.68			
DWT145	70	70	1	0.00			
DW1145	70	71	1	0.30			
DW1145	71	72	1	1.62			
DW1143	72	75	1	1.05			
DWT145	12/ 1/	125 1/	1	2.50			
DWT146	134.14	135.14	1	0.40			
DW1146	133.14	127.14	1	0.00			
DW1146	127.14	137.14	1	0.01			
DW1146	137.14	120.14	1	0.45			
DW1146	120.14	139.14	1	0.43			
DW1146	139.14	140.14	1	0.33			
DW1146	140.14	141.14	1	0.79			
DWT140	141.14	142.14	0.96	0.83			
DW1140	142.14	145.14	0.00	0.85			
DWT149	43	40	1	0.74			
DW1149	40	47	1	0.72			
DW1149	47	40	1	0.05			
DW1149	48	49	1	0.50			
DW1149	49	50	1	0.75			
DW1149	50	51	1	1.10			
DW1149	51	52	1	0.63			
DW1149	52	53	0.86	0.33			
DW1149	/3.16	/4.16	1	14.06			
DWT149	74.16	75.16	1	12.27			ļ
DWT149	75.16	76.16	1	3.44			ļ
DWT149	76.16	77.16	0.84	0.26			ļ
DWT150	53	54	1	0.22			
DWT150	54	55	1	0.58			
DWT150	55	56	1	0.52			
DWT150	56	57	1	0.33			

33 neometals.com.au

L

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
DWT150	57	58	1	0.57			
DWT150	58	59	1	0.54			
DWT150	59	60	1	0.89			
DWT150	60	61	1	0.92			
DWT150	61	62	1	1.06			
DWT150	62	63	1	1.48			
DWT150	63	64	1	0.54			
DWT150	64	65	1	1.72			
DWT150	65	66	1	1.39			
DWT150	66	67	1	1.59			
DWT150	67	68	1	1.79			
DWT150	68	69	1	0.70			
DWT150	69	70	1	1.03			
DWT150	70	71	1	1.81			
DWT150	71	72	1	1.28			
DWT150	72	73	1	3.49			
DWT150	73	74	1	0.62			
DWT150	79.9	80.9	1	0.71			
DWT150	80.9	81.9	1	0.71			
DWT150	81.9	82.9	1	5.95			
DWT152	26	27	1	1.03	116		
DWT152	23	28	1	1.09	121		
DWT152	28	20	1	1.05	121		
DWT152	20	30	1	0.96	185		
DWT152	30	31	1	0.90	162		
DWT152	31	32	1	0.97	130		
DWT152	16.5	17.5	1	20.65	135		
DWT153	40.5	47.5	1	19.15	160		
DW/1153	47.5	40.5	1	10.00	104		
DW1133	40.J	49.5 E0 E	1	10.90	30		
DW1133	49.5	50.5	1	4.49	10		
DW1153	50.5	51.5	1	1.13	12		
DW1153	51.5	52.5	1	1.13	12		
DWT153	52.5	23.5	1	1.13	12		
DW1154	12.5	13.5	1	0.47	2		
DW1154	13.5	14.5	0.5	0.47	24		
DW1154	10	10	1	0.46	34		
DW1154	18	19	0.5	0.46	34		
DW1154	22.5	23.5	1	2.00	4		
DW1154	23.5	24.5	1	3.99	52		
DW1154	24.5	25.5	1	7.25	65		
DW1154	25.5	20.5	1	2.07	01		
	20.5 27 F	27.5 20 г	1	5.58 5.77	40		
	27.5 20 F	28.5 20 F	1	3.23	38		ļ
	20.5	23.5	1	2.39	33		
DW1134	29.J	30.3 21 E	1	1.44	20		
DWT154	50.5	51.5	1	1.44	50		
DW1155	14	15	1	1./1	49		
DW1155	15	10	1	5.76	/5		
DW1155	16	1/	1	5.80	101		
DW1155	1/	18	1	3.73	99		
DW1155	18	19	1	2.82	114		
DW1155	19	20	1	1.90	129		
DWT155	20	21	1	1.27	57		ļ
DWT155	21	22	1	1.44	45		
DWT155	22	23	1	1.61	32		ļ
DWT155	23	24	1	2.00	29		
DWT155	24	25	1	1.87	27		

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
DWT155	25	26	1	1.74	24		
DWT155	26	27	1	1.52	28		
DWT155	27	28	1	1.41	25		
DWT155	28	29	1	1.29	21		
DWT155	29	30	1	0.87	19		
DWT155	30	31	0.5	0.87	19		
DWT156	27.5	28.5	1	2.00	386		
DWT156	27.5	20.5	1	2.00	107		
DWT150	28.5	29.3	1	3.02	107		
DWT156	29.5	30.5	1	2.80	160		
DW1156	30.5	31.5	1	1.00	128		
DW1156	31.5	32.5	1	0.52	285		
DWT156	32.5	33.5	1	0.58	239		
DWT156	33.5	34.5	1	0.63	192		
DWT156	34.5	35.5	1	0.55	190		
DWT156	35.5	36.5	1	0.59	178		
DWT156	36.5	37.5	1	0.63	166		
DWT157	14.5	15.5	1	3.21	68		
DWT157	15.5	16.5	1	3.12	56		
DWT157	16.5	17.5	1	3.02	43		
DWT157	17.5	18.5	1	2.12	80		
DWT157	18.5	19.5	1	1.74	63		
DWT157	19.5	20.5	1	1.35	46		
DWT157	20.5	21.5	1	0.84	49		
DWT157	21.5	22.5	1	0.75	45		
DWT157	22.5	23.5	1	0.65	41		
DWT157	23 5	24 5	1	0.43	19		
DWT157	24.5	25.5	0.5	0.43	19		
DW/T158	24.5	29.5	1	0.19	126		
DW/T158	20.5	20.5	1	2.44	2000		
DW1138	29.5	21.5	1	2.44	2000		
DWT158	30.5	31.5	1	1.10	1400		
DW1158	31.5	32.5	1	0.71	268		
DW1158	32.5	33.5	1	0.63	145		
DW1159	17	18	1	0.95	280		
DW1159	18	19	1	1.29	1/90		
DWT159	19	20	1	1.62	3300		
DWT159	20	21	1	1.93	11000		
DWT159	21	22	1	1.94	5700		
DWT159	22	23	1	1.86	3200		
DWT159	23	24	1	0.86	1300		
DWT159	24	25	1	0.75	1450		
DWT159	25	26	1	0.64	1600		
DWT356	115	116	1	0.51			
DWT356	116	117	1	0.66			
DWT356	117	118	1	0.98			
DWT356	118	119	1	1.01			
DWT356	119	120	0.8	3.16			
HH570	12.04	13.04	1	0.12			
HH570	13.04	14.04	1	0.06			h
HH570	14.04	15.04	0.74	0.02			
WDC236	127	128	1	1 62	28		
WDC236	178	129	1	2.02	20		
WDC236	120	120	1	2.10	35		L
WDC230	129	101	1	2.03	٥٧ در		
WDC230	130	131	1	2.30	48		
WDC236	131	132	1	1.54	29		
WDC236	132	133	1	1.36	2/		
WDC236	133	134	1	1.11	20		
WDC236	134	135	1	0.66	24		

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
WDC236	135	136	1	0.80	100		
WDC236	136	137	1	1.51	448		
WDC237	124	125	1	0.54	81		
WDC237	125	126	1	0.54	81		
WDC237	126	127	1	0.54	81		
WDC237	127	128	1	0.54	81		
WDC237	128	120	1	1.26	41		
WDC237	120	120	1	1.20	41		
WDC237	129	121	1	1.20	41		
WDC237	130	131	1	1.20	41		
WDC237	131	132	1	1.26	41		
WDC237	158	159	1	0.42	124		
WDC237	159	160	1	0.38	9		
WDC237	160	161	1	0.66	13		
WDC237	161	162	1	0.58	14		
WDC237	162	163	1	1.49	266		
WDC237	163	164	1	1.07	720		
WDD080	289	290	1	0.55	17		
WDD080	290	291	1	0.73	10		
WDD080	291	292	1	0.32	13		
WDD080	292	293	1	0.36	6		
WDD080	293	294	1	0.27	68		
WDD080	294	295	1	0.79	142		
WDD080	295	296	1	0.65	163		
WDD080	296	297	0.77	0.41	108		
WDD081	298.2	299.2	1	0.32	66		
WDD081	299.2	300.2	1	0.50	162		
WDD081	300.2	301.2	1	0.43	262		
WDD081	301.2	302.2	1	0.32	14		
WDD081	303.42	304.42	1	0.44	58		
WDD081	304.42	305.42	0.63	0.68	57		
WDD082	310	311	1	0.65	272		
WDD082	311	312	0.89	1.28	91		
WPH55	25.91	26.91	1	0.63	15		
WPH55	26.91	27.91	1	0.52	12		
WPH55	27.91	28.91	1	0.52	12		
WPH55	28.91	29.91	1	0.71	18		
WPH55	29.91	30.91	1	0.60	15		
WPH55	30.91	31.91	1	0.58	17		
WPH55	31.91	32.91	1	0.59	17		
WPH55	32.91	33.91	1	0.71	13		
WPH55	33.91	34.91	1	0.68	7		
WPH55	34.91	35.91	1	0.68	4		
WPH55	35.91	36.91	1	0.67	2		
WPH55	36.91	37.91	1	0.15	5		
WPH56	25.3	26.3	1	0.57	8		
WPH56	26.3	27.3	1	0.58	8		
WPH56	27 3	28.3	1	0.49	8		
WPH56	28.3	29.3	1	0.43			
WPH56	20.0	30.3	1	0.59		ļ	ļ
WPH56	20.0	21.2	1	0.35			
\\/DUE6	21 2	27.2	1	0.47			
\\/DUEC	27.5	32.5	1	0.05			
	32.3	22.5	1	0.40			
WPH56	33.3	34.3	1	0.58			
WPH56	34.3	35.3	1	0.04			
WPH56	35.3	30.3	1	0.71			
WPH56	30.3	37.3	1	0.74			
WPH56	37.3	38.3	1	0.60			
Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
---------	-------	-------	-------	--------	--------	--------	--------
WPH56	38.3	39.3	1	0.87			
WPH56	39.3	40.3	1	0.73			
WPH56	40.3	41.3	1	0.35			
WPH57	24.84	25.84	1	0.50			
WPH57	25.84	26.84	1	0.64			
WPH57	26.84	27.84	1	0.65			
WPH57	27.84	28.84	1	0.86			
WPH57	28.84	20.01	1	0.74			
WPH60	34.44	35.44	1	0.74	18		
WPHEO	25.44	36.44	1	0.73	0		
WPLICO	35.44	27.44	1	0.77	10		
VVPH60	30.44	37.44	1	0.72	18		
WPH60	37.44	38.44	1	1.10	45		
WPH65	38.86	39.86	1	0.48			
WPH65	39.86	40.86	1	0.61			
WPS1	51.82	52.82	1	0.23			
WPS1	52.82	53.82	1	0.23			
WPS1	53.82	54.82	1	0.19			
WPS2	53.34	54.34	1	0.25			
WPS2	54.34	55.34	1	0.29			
WPS2	55.34	56.34	1	0.58			
WPS2	56.34	57.34	1	0.63			
WPS2	57.34	58.34	1	0.46			
WPS2	58.34	59.34	1	0.44			
WPS2	59.34	60.34	1	0.41			
WPS2	60.34	61.34	1	0.50			
WPS2	61.34	62.34	1	0.82			
WPS2	62.34	63.34	1	1.21			
WPS2	63.34	64.34	1	1.41			
WPS2	64.34	65.34	1	0.81			
WPS2	65.34	66.34	1	0.67			
WPS2	66.34	67.34	1	0.76	30		
WPS2	67.34	68.34	1	1.37	30		
WPS2	68.34	69.34	1	1.19	19		
WPS2	69.34	70.34	1	1.10	17		
WPS2	70.34	71.34	1	1.30	25		
WPS2	71.34	72.34	1	2.03	11		
WPS2	72.34	73.34	1	1.58	16		
WPS2	73.34	74.34	1	2.45	14		
WPS2	74.34	75.34	1	2.96	22		
WPS2	75.34	76.34	1	1.13	11		
WPS2	76.34	77.34	1	0.77			
WPS2	83.82	84.82	1	6.23			
WPS2	84.82	85.82	1	6.76			
WPS2	85.82	86.82	1	2.89	1200		
WPS2	86.82	87.82	0.81	0.61			
WWD1	56.69	57.69	1	0.50			
WWD1	57.69	58.69	1	0.49			
WWD1	58.69	59.69	1	0.04			
WWD1	59.69	60.69	1	0.21			
WWD1	60.69	61.69	1	0.25			
WWD1	61.69	62.69	1	0.13			
WWD1	62.69	63.69	1	0.65			
WWD1	63.69	64.69	1	0.69			
WWD1	64.69	65.69	0.99	0.31			
WWD1	69.19	70.19	1	0.56			
WWD1	70.19	71.19	1	0.63			
WWD1	71.19	72.19	1	0.66			

37 neometals.com.au

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
WWD1	72.19	73.19	1	0.52			
WWD1	73.19	74.19	1	0.37			
WWD1	74.19	75.19	1	0.64			
WWD1	75.19	76.19	1	0.79			
WWD1	76.19	77.19	1	0.95			
WWD1	77.19	78.19	1	0.41			
WWD1	78.19	79.19	1	0.56			
WWD1	85.04	86.04	1	0.47			
WWD1	86.04	87.04	1	8.98			
WWD11	121.92	122.92	1	0.14			
WWD11	122.92	123.92	1	0.16			
WWD11	123.92	124.92	1	0.17			
WWD11	160.32	161.32	1	0.05			
WWD11	161.32	162.32	1	0.05			
WWD11	162.32	163.32	1	0.05			
WWD12	201.5	202.5	1	0.85			
WWD12	202.5	203.5	1	0.64			
WWD12	203.5	204.5	1	0.86			
WWD12	204.5	205.5	1	1.09	600		
WWD12	205.5	206.5	1	1.15	600		
WWD12	206.5	207.5	1	1.33			
WWD12	207.5	208.5	1	1.34			
WWD12	208.5	209.5	1	1.35			
WWD12	209.5	210.5	1	1.35			
WWD12	210.5	211.5	1	1.24			
WWD12	211.5	212.5	1	0.96			
WWD12	212.5	213.5	1	1.37			
WWD12	213.5	214.5	1	1.05			
WWD12	214.5	215.5	1	0.67			
WWD12	215.5	216.5	1	0.72			
WWD12	216.5	217.5	1	1.18	80		
WWD12	217.5	218.5	1	4.34	65		
WWD12	218.5	219.5	0.56	0.61			
WWD13	207.57	208.57	1	0.13			
WWD13	208.57	209.57	1	0.12			
WWD13	209.57	210.57	1	0.11			
WWD13	210.57	211.57	1	0.17			
WWD13	211.57	212.57	0.81	0.17			
WWD13	218.51	219.51	1	0.07			
WWD15	86.56	87.56	1	0.84	19		
WWD15	87.56	88.56	1	0.88	21		
WWD15	88.56	89.56	1	0.93	25		
WWD15	89.56	90.56	1	0.80	187		
WWD15	90.56	91.56	1	0.69	483		
WWD15	91.56	92.56	1	3.80	257		
WWD16	33.38	34.38	1	0.78	15		
WWD16	34.38	35.38	1	1.40	15		
WWD16	35.38	36.38	1	0.59	15		
WWD16	36.38	37.38	1	0.61	15		
WWD16	37.38	38.38	1	0.65	15		
WWD16	38.38	39.38	1	0.51	2		
WWD16	39.38	40.38	1	0.61	5		
WWD16	40.38	41.38	1	0.67	20		
WWD16	41.38	42.38	1	0.66	20		
WWD16	42.38	43.38	1	1.07	20		
WWD16	43.38	44.38	1	1.25	20		
WWD16	44.38	45.38	1	0.58	10		

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
WWD16	45.38	46.38	1	0.49	20		
WWD16	46.38	47.38	1	0.50	18		
WWD16	47.38	48.38	1	0.57	15		
WWD16	48.38	49.38	1	0.90	15		
WWD16	49.38	50.38	1	0.82	19		
WWD16	50.38	51.38	1	0.69	21		
WWD16	51.38	52.38	1	0.62	25		
WWD16	52.38	53.38	1	0.77	31		
WWD16	53.38	54.38	1	0.88	35		
WWD16	54.38	55.38	1	0.72	20		
WWD16	55.38	56.38	1	1.05	5		
WWD16	56.38	57.38	1	2.09	14		
WWD16	57.38	58.38	1	7.16	27		
WWD17	326.65	327.65	1	0.26	50		
WWD17	327.65	328.65	1	3.99	2804		
WWD17	328.65	329.65	1	0.58	100		
WWD17	329.65	330.65	0.78	0.58	100		
WWD19	337.87	338.87	1	0.49	1		
WWD19	338.87	339.87	1	0.66	2341		
WWD19	339.87	340.87	1	1.15	9000		
WWD19	340.87	341.87	1	1.08	6240		
WWD19	341.87	342.87	1	1.52	3360		
WWD19	342.87	343.87	1	1.87	847		
WWD19	343.87	344.87	1	4.60	51		
WWD2	193.24	194.24	1	0.60			
WWD2	194.24	195.24	1	1.58			
WWD2	195.24	196.24	1	2.62			
WWD2	196.24	197.24	1	1.19			
WWD2	197.24	198.24	1	0.73			
WWD2	198.24	199.24	1	0.66			
WWD2	199.24	200.24	0.74	0.68			
WWD24	204	205	1	0.59	588		
WWD24	205	206	1	0.87	1680		
WWD24	206	207	1	1.57	1080		
WWD24	207	208	1	1.61	573		
WWD24	208	209	1	1.33	58		
WWD24	209	210	1	2.83	128		
WWD24	210	211	1	1.97	115		
WWD24	211	212	1	1.52	153		
WWD24	212	213	1	1.07	895		
WWD24	213	214	1	2.38	2696		
WWD24	214	215	0.6	1.12	2900		
WWD25	106	107	1	0.21	29		
WWD25	107	108	1	0.17	4		
WWD26	258	259	1	0.62	1755		
WWD26	259	260	1	0.34	370		
WWD26	260	261	1	0.47	210		
WWD26	261	262	1	1.94	6390		
WWD26	262	263	1	1.41	7900		
WWD26	263	264	1	4.05	10850		
WWD26	264	265	1	3.02	588		
WWD26	265	266	1	1.65	7100		
WWD26	266	267	1	1.42	815		
WWD26	267	268	1	1.94	375		
WWD26	268	269	1	0.71	6025		
WWD27	87	88	1	0.19	8		
WWD27	88	89	1	0.57	6		

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
WWD3	272.86	273.86	1	0.45			
WWD3	273.86	274.86	0.86	0.99			
WWD4	79.86	80.86	1	1.50			
WWD4	80.86	81.86	1	0.24			
WWD4	81.86	82.86	1	0.26			
WWD4	82.86	83.86	1	0.83			
WWD4	83.86	84.86	1	0.48			
WWD4	84.86	85.86	1	0.33			
WWD4	85.86	86.86	1	0.95			
WWD4	95.71	96.71	1	1.31	1000		
WWD4	96.71	97.71	1	0.90	30		
WWD4	97.71	98.71	1	1.15	30		
WWD4	98.71	99.71	1	2.72	619		
WWD5	76.69	77.69	1	0.27			
WWD5	77.69	78.69	1	0.23			

Gillet deposit

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
WDC338	154.00	155.00	1.00	1.69	87	302	6164
WDC338	155.00	156.00	1.00	0.70	59	143	1170
WDC338	156.00	157.00	1.00	0.44	1075	235	622
WDC338	157.00	158.00	1.00	0.28	336	146	443
WDC338	158.00	159.00	1.00	0.24	517	120	324
WDC338	159.00	160.00	1.00	0.13	205	75	190
WDC338	160.00	161.00	1.00	2.97	709	775	4540
WDC338	161.00	162.00	1.00	3.34	332	818	2931
WDC338	162.00	163.00	1.00	3.29	3345	1346	3032
WDC338	163.00	164.00	1.00	3.46	1247	999	3698
WDC338	164.00	165.00	1.00	3.48	145	846	3643
WDC338	165.00	166.00	1.00	4.85	106	1204	5488
WDC338	166.00	167.00	1.00	3.42	78	868	3251
WDC338	167.00	168.00	1.00	3.11	59	779	3746
WDC338	168.00	169.00	1.00	4.05	75	1025	3565
WDC338	169.00	170.00	1.00	3.44	36	842	3691
WDC338	170.00	171.00	1.00	3.60	25	898	3765
WDC338	171.00	172.00	1.00	3.48	20	883	3491
WDC338	172.00	173.00	1.00	3.18	56	827	3572
WDC338	173.00	174.00	1.00	2.89	18	756	3275
WDC347	186.00	187.00	1.00	0.85	718	251	887
WDC347	187.00	188.00	1.00	2.44	29870	2389	1379
WDC347	188.00	189.00	1.00	0.92	8989	865	1440
WDC352	67.00	68.00	1.00	1.88	204	550	1952
WDC352	68.00	69.00	1.00	0.63	1093	253	631
WDC352	69.00	70.00	1.00	0.28	902	122	161
WDC352	70.00	71.00	1.00	1.51	1481	574	2371
WDC352	71.00	72.00	1.00	2.39	1670	774	2624
WDC352	72.00	73.00	1.00	2.22	810	583	1690
WDC352	73.00	74.00	1.00	1.91	1689	622	3457
WDC352	74.00	75.00	1.00	0.61	835	242	1511
WDD164	215.80	216.80	1.00	1.08	5	387	1551
WDD164	216.80	217.81	1.00	1.50	11	538	2044
WDD164	217.81	218.81	1.00	1.75	7	603	2441
WDD164	218.81	219.81	1.00	2.12	13	699	2674
WDD164	219.81	220.82	1.00	1.90	16	635	2545
WDD164	220.82	221.82	1.00	1.97	14	659	2508

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
WDD164	221.82	222.83	1.00	2.16	13	704	2578
WDD164	222.83	223.83	1.00	1.88	18	620	2369
WDD164	223.83	224.83	1.00	1.24	11	427	1500
WDD164	224.83	225.84	1.00	1.04	7	377	1263
WDD164	225.84	226.84	1.00	0.97	7	364	1263
WDD164	226.84	227.84	1.00	0.84	9	326	1089
WDD164	227.84	228.85	1.00	0.81	12	312	1016
WDD164	227.01	220.05	1.00	1 21	16	127	1429
WDD164	220.05	220.85	1.00	0.85	10	340	1420
WDD104	229.85	230.85	1.00	0.85		340	1081
WDD164	230.85	231.86	1.00	0.66	9	272	875
WDD164	231.86	232.86	1.00	0.80	6	312	1174
WDD164	232.86	233.87	1.00	0.75	9	283	1254
WDD164	233.87	234.87	1.00	0.71	6	289	1111
WDD164	234.87	235.87	1.00	0.72	6	290	999
WDD164	235.87	236.88	1.00	0.69	11	287	933
WDD164	236.88	237.88	1.00	0.68	9	275	865
WDD164	237.88	238.88	1.00	0.67	9	270	870
WDD164	238.88	239.89	1.00	0.64	12	270	936
WDD164	239.89	240.89	1.00	0.69	9	283	999
WDD164	240.89	241.89	1.00	0.63	6	254	855
WDD164	241.89	242.90	1.00	0.65	9	268	987
WDD164	242.90	243.90	1.00	0.62	12	253	893
WDD164	243.90	244.91	1.00	0.83	7	311	1171
WDD164	244 91	245 91	1.00	0.67	7	264	1001
WDD164	245.91	246.91	1.00	0.78	12	303	1079
WDD164	215.51	210.51	1.00	0.78	7	276	910
WDD164	240.91	247.32	1.00	0.08	10	270	1007
WDD104	247.32	248.92	1.00	0.73	10	292	1152
WDD104	240.92	249.92	1.00	0.76	15	502	1132
WDD164	249.92	250.93	1.00	1.46	11	489	6866
WDD164	250.93	251.93	1.00	2.73	12	8/3	3890
WDD164	251.93	252.93	1.00	2.89	19	928	3241
WDD164	252.93	253.94	1.00	2.76	20	880	3684
WDD164	253.94	254.94	1.00	2.76	19	877	3388
WDD164	254.94	255.95	1.00	3.06	24	978	3684
WDD164	255.95	256.95	1.00	3.11	26	1005	3550
WDD164	256.95	257.95	1.00	2.94	31	942	3627
WDD164	257.95	258.96	1.00	2.78	22	891	3787
WDD164	258.96	259.96	1.00	2.42	17	756	2777
WDD164	259.96	260.96	1.00	2.48	26	792	4801
WDD164	260.96	261.97	1.00	2.38	26	774	3128
WDD164	261.97	262.97	1.00	2.34	23	759	3396
WDD164	262.97	263.97	1.00	2.35	26	757	2886
WDD164	263.97	264.98	1.00	2.56	23	814	2606
WDD164	264.98	265.98	1.00	2.09	54	701	3601
WDD164	265.98	266.98	1.00	2.05	68	684	2090
WDD164	266.98	267 99	1 00	1 96	60	630	2993
WDD164	267.00	267.55	1.00	1.50	610 610	670	2555
	207.33	200.33	1.00	1.00	771	120	1502
	200.33	270.00	1.00	1.33	070	420 27F	100
WDD104	270.00	271.00	1.00	1.14	0/0	545	1280
WDD164	271.00	272.00	1.00	1.44	1688	443	16/9
WDD164	2/2.00	2/3.01	1.00	1.63	2129		1811
WDD164	2/3.01	2/4.01	1.00	1.47	1549	579	1513
WDD164	274.01	275.01	1.00	1.06	744	327	1270
WDD164	275.01	276.02	1.00	0.67	637	212	730
WDD164	276.02	277.02	1.00	1.12	1163	334	1243
WDD164	277.02	278.02	1.00	1.16	1372	361	1226
WDD164	278.02	279.03	1 00	1 18	1482	367	1252

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
WDD164	279.03	280.03	1.00	0.94	1077	274	1021
WDD164	280.03	281.04	1.00	0.83	833	239	907
WDD164	281.04	282.04	1.00	0.83	461	267	1003
WDD164	282.04	283.04	1.00	0.72	144	225	803
WDD164	283.04	284.05	1.00	1.39	710	506	1624
WDD164	284.05	285.05	1.00	1.58	418	568	1884
WDD164	285.05	286.05	1.00	1.17	107	384	1277
WDD164	286.05	287.06	1.00	1.42	47	473	1576
WDD164	287.06	288.06	1.00	1.22	25	406	1219
WDD164	288.06	289.06	1.00	1.35	16	432	1229
WDD164	289.06	290.07	1.00	0.91	23	289	928
WDD164	290.07	291.07	1.00	0.58	36	192	511
WDD164	291.07	292.08	1.00	1.01	10	320	1130
WDD164	292.08	293.08	1.00	1.45	15	499	1852
WDD164	293.08	294.08	1.00	1.72	11	566	2283
WDD164	294.08	295.09	1.00	1.79	15	585	2245
WDD164	295.09	296.09	1.00	1.58	19	516	1782
WDD164	296.09	297.09	1.00	1.98	20	635	1903
WDD164	297.09	298.10	1.00	1.97	20	615	2223
WDD164	298.10	299.10	1.00	1.43	20	399	1474
WDD164	299.10	300.10	1.00	0.98	15	274	882
WDD164	300.10	301.11	1.00	0.90	11	247	756
WDD164	301.11	302.11	1.00	0.81	13	242	880
WDD164	302.11	303.12	1.00	0.71	7	229	687
WDD164	303.12	304.12	1.00	1.04	15	312	1101
WDD164	304.12	305.12	1.00	1.69	15	491	1799
WDD164	305.12	306.13	1.00	1.78	18	499	1783
WDD164	306.13	307.13	1.00	1.74	20	518	1284
WDD164	307.13	308.13	1.00	1.48	10	472	2337
WDD164	308.13	309.14	1.00	2.70	12	889	4751
WDD164	309.14	310.14	1.00	1.09	9	360	1392
WDD198	221.53	222.49	0.96	2.43		704	3128
WDD198	222.49	223.44	0.96	3.18		906	2788
WDD198	223.44	224.40	0.96	2.22		629	2469
WDD198	224.40	225.36	0.96	1.23		365	1239
WDD198	225.36	226.31	0.96	1.42		404	1429
WDD198	226.31	227.27	0.96	1.04		313	1035
WDD198	227.27	228.22	0.96	0.63		204	610
WDD198	228.22	229.18	0.96	1.01		299	942
WDD199	381.77	382.87	1.10	1.02	985	196	4064
WDD199	382.87	383.97	1.10	0.90	2703	307	2757
WDD199	383.97	385.07	1.10	1.34	5724	667	2408
WDD200	256.00	256.99	0.99	0.91		281	1294
WDD200	256.99	257.97	0.99	2.70	10	758	3103
WDD200	257.97	258.96	0.99	2.65	9	743	3830
WDD200	258.96	259.94	0.99	2.16	9	613	2521
WDD200	259.94	260.93	0.99	0.76		233	801
WDD200	260.93	261.92	0.99	1.03		326	1146
WDD200	261.92	262.90	0.99	0.72		226	780
WDD200	262.90	263.89	0.99	1.60		512	1805
WDD200	263.89	264.87	0.99	2.13		666	2645
WDD200	264.87	265.86	0.99	1.76		569	2752
WDD202	296.00	297.00	1.00	2.53	30	719	3279
WDD202	297.00	298.00	1.00	2.18	8	621	2933
WDD202	298.00	299.00	1.00	0.45		161	469
WDD202	299.00	300.00	1.00	0.39		150	415
WDD202	300.00	301.00	1.00	0.29	9	122	285

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
WDD202	301.00	302.00	1.00	0.71		235	801
WDD202	302.00	303.00	1.00	0.85		269	1017
WDD202	303.00	304.00	1.00	1.67	19	509	2373
WDD202	304.00	305.00	1.00	2.11	34	648	2701
WDD202	305.00	306.00	1.00	2.83	18	826	2842
WDD202	306.00	307.00	1.00	2.30	24	701	3043
WDD202	307.00	308.00	1.00	2.22	9	704	3029
WDD202	308.00	309.00	1.00	0.71		273	866
WDD214	404.67	405.76	1.09	1.32	20	416	1112
WDD214	405.76	406.85	1.09	0.95	26	319	896
WDD214	406.85	407.94	1.09	0.22	30	106	160
WDD214	407.94	409.03	1.09	0.61	20	212	534
WDD215	270.45	271.42	0.97	1.76	15	481	1947
WDD215	271.42	272.39	0.97	3.04	20	809	3183
WDD215	272 39	273.36	0.97	2 99	16	808	3338
WDD215	272.35	273.30	0.97	0.67	10	207	767
WDD215	274.33	275.30	0.97	0.07	38	97	173
WDD215	275.30	275.30	0.97	0.25	77	202	710
WDD215	275.50	270.27	0.97	1.54	20	202	710
WDD215	270.27	277.24	0.97	2.34	20	444	236J E710
WDD215	277.24	270.21	0.97	2.70	33	983	5710
WDD215	278.21	279.18	0.97	3.48	34	903	5193
WDD215	279.18	280.15	0.97	2.97	32	/89	6228
WDD215	280.15	281.12	0.97	3.30	32	876	4337
WDD215	281.12	282.09	0.97	2.90	29	//1	4056
WDD215	282.09	283.06	0.97	2.46	20	6/5	3/40
WDD215	283.06	284.03	0.97	0.84	10	291	1175
WDD215	284.03	285.00	0.97	0.87	10	320	1340
WDD217	323.00	323.99	0.99	1.01	11	304	1343
WDD217	323.99	324.97	0.99	1.04	7	301	1261
WDD232	303.40	304.40	0.99	0.73	10	259	786
WDD232	304.40	305.40	1.00	1.07	10	347	1274
WDD232	305.40	306.40	1.00	0.63	15	215	767
WDD232	306.40	307.40	1.00	1.08	18	334	1482
WDD232	307.40	308.40	1.00	1.26	30	382	1945
WDD232	308.40	309.40	1.00	0.83	24	264	1226
WDD232	309.40	310.40	1.00	0.27	10	113	229
WDD232	310.40	311.40	1.00	0.42	10	151	414
WDD232	311.40	312.40	1.00	0.93	18	269	854
WDD232	312.40	313.40	1.00	1.18	30	327	1124
WDD232	313.40	314.40	1.00	2.16	30	579	1996
WDD232	314.40	315.40	1.00	2.00	26	531	1859
WDD232	315.40	316.40	1.00	0.95	16	265	1044
WDD232	316.40	317.40	1.00	0.61	10	196	608
WDD232	317.40	318.40	1.00	0.61	26	200	629
WDD232	318.40	319.40	1.00	0.43	40	157	423
WDD232	319.40	320.39	1.00	0.58	10	183	643
WDD232	320.39	321.39	1.00	0.40	18	153	470
WDD232	321.39	322.39	1.00	0.41	30	153	445
WDD232	322.39	323.39	1.00	0.68	17	205	794
WDD232	323.39	324.39	1.00	0.89	26	262	1111
WDD232	324.39	325.39	1.00	0.82	50	246	1059
WDD232	325.39	326.39	1.00	0.86	10	244	1063
WDD232	326.39	327.39	1.00	0.97	10	264	1000
WDD232	327.39	328.39	1.00	1.02	18	281	1126
WDD232	328.39	329.39	1.00	0.91	34	263	1132
WDD232	329.39	330.39	1.00	0.82	40	243	1006
WDD232	330.39	331.39	1.00	0.69	40	213	874

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
WDD232	331.39	332.39	1.00	0.68	40	217	582
WDD232	332.39	333.39	1.00	1.34	32	366	1509
WDD232	333.39	334.39	1.00	1.35	24	376	1867
WDD232	334.39	335.39	1.00	0.72	21	229	731
WDD232	335.39	336.39	1.00	1.47	28	387	1536
WDD232	336.39	337.39	1.00	1.25	32	320	1204
WDD232	337.39	338.39	1.00	0.64	16	198	492
WDD232	338.39	339.39	1.00	0.64	10	192	631
WDD232	339.39	340.39	1.00	0.42	10	139	471
WDD232	340 39	341 39	1 00	0.42	18	141	496
WDD232	341 39	342 39	1.00	0.68	26	173	671
WDD232	342.39	343 39	1.00	0.76	16	193	738
WDD232	242.35	244.30	1.00	0.70	10	155	591
WDD232	244.20	245.20	1.00	0.01	14	105	581
WDD232	245.29	345.39	1.00	0.52	10	100	552
WDD232	345.39	340.39	1.00	0.41	10	135	624
WDD232	346.39	347.39	1.00	0.34	23	122	434
WDD232	347.39	348.39	1.00	0.27	38	100	263
WDD232	348.39	349.39	1.00	0.37	54	117	297
WDD232	349.39	350.38	1.00	0.72	41	180	665
WDD232	350.38	351.38	1.00	0.86	10	201	933
WDD232	351.38	352.38	1.00	0.71		184	934
WDD232	352.38	353.38	0.67	0.98		245	1160
WDD232	354.38	355.38	0.78	1.49	10	370	1960
WDD232	355.38	356.38	1.00	1.30	10	332	1628
WDD232	356.38	357.38	1.00	1.04	30	275	1136
WDD232	357.38	358.38	1.00	1.04	26	264	1123
WDD232	358.38	359.38	1.00	1.23	16	302	1431
WDD232	359.38	360.38	1.00	1.13	18	279	1392
WDD232	360.38	361.38	1.00	2.25	38	483	1463
WDD232	361.38	362.38	1.00	9.77	1027	2166	4822
WDD232	362.38	363.38	1.00	5.92	2748	1890	10834
WDD233	151.70	152.68	0.98	1.91		346	2091
WDD233	152.68	153.66	0.98	0.70	68	145	1718
WDD233	153.66	154 64	0.98	0.54	89	123	1036
WDD233	154.64	155.62	0.98	0.39	72	118	517
WDD233	155.62	156.60	0.98	2 30	4411	1087	975
WDD233	155.62	157.50	0.98	2.50	4411	1087	5034
WDD233	150.00	159.56	0.98	1.00		496	2552
WDD233	157.56	150.50	0.98	1.09	1676	480	2332
WDD233	158.50	100.52	0.98	2.25	1450	1049	3741
WDD233	159.54	160.52	0.98	3.37	1459	1049	3512
VVDD233	160.52	161.50	0.98	3.43	40	850	3764
WDD233	161.50	162.48	0.98	3.51	35	890	3/59
WDD233	162.48	163.46	0.98	2.94	42	/53	84/1
WDD233	163.46	164.43	0.98	2.77	26	726	2507
WDD233	164.43	165.41	0.98	3.10	33	834	3039
WDD233	165.41	166.39	0.98	3.08	38	837	3425
WDD233	166.39	167.37	0.98	2.36	16	650	2590
WDD233	167.37	168.35	0.98	1.18	10	348	1408
WDD233	168.35	169.33	0.98	0.42		155	404
WDD233	169.33	170.31	0.98	0.17		105	116
WDD233	170.31	171.29	0.98	0.13		102	67
WDD233	171.29	172.27	0.98	0.14		96	55
WDD233	172.27	173.25	0.98	0.35		139	134
WDD236	157.00	158.16	1.16	0.37	24	131	364
WDD236	158.16	159.32	1.16	1.72	50	450	1860
WDD237	186.14	187.13	0.99	2.75	27	786	1433
WDD237	187 13	188 12	0 99	1 28	19	367	1413

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
WDD237	188.12	189.11	0.99	1.50	12	459	1877
WDD237	189.11	190.11	0.99	0.30	19	144	380
WDD237	190.11	191.10	0.99	0.28	10	140	375
WDD237	191.10	192.09	0.99	0.26	10	134	473
WDD237	192.09	193.08	0.99	0.42	10	155	755
WDD237	193.08	194.07	0.79	1.03	10	312	2527
WDD237	194.07	195.06	0.99	0.50	30	174	992
WDD237	195.06	196.05	0.99	0.19	30	81	267
WDD237	196.05	197.04	0.99	1 22	142	333	2706
WDD237	197.04	198.04	0.99	0.95	1737	519	1520
WDD237	102.04	199.04	0.99	0.95	2/02	620	1320
WDD237	198.04	200.02	0.99	0.03	2435	600	1170
WDD237	199.05	200.02	0.99	0.02	2389	241	11/9
WDD237	200.02	201.01	0.99	0.80	8/3	341	1149
WDD237	201.01	202.00	0.99	0.82	1470	430	1070
WDD238	188.05	189.11	1.06	1.68	20	254	2895
WDD238	189.11	190.18	1.06	0.86	32	151	2022
WDD238	190.18	191.24	1.06	0.74	62	195	1173
WDD238	191.24	192.31	1.06	0.87	373	285	1166
WDD238	192.31	193.37	1.06	1.04	1240	433	1516
WDD238	193.37	194.44	1.06	1.15		353	1807
WDD238	194.44	195.50	1.06	1.09		351	1727
WDD238	215.00	216.04	1.04	1.19	20	353	1457
WDD238	216.04	217.07	1.04	1.58	20	444	1954
WDD238	217.07	218.11	1.04	1.80	20	499	2373
WDD238	218.11	219.15	1.04	1.77	20	497	2043
WDD238	219.15	220.18	1.04	2.32	20	643	2709
WDD238	220.18	221.22	1.04	2.62	20	724	2426
WDD239	259.00	259.87	0.87	1.26		365	1400
WDD239	259.87	260.73	0.87	1.37		378	1121
WDD239	260.73	261.60	0.87	0.96		277	864
WDD242	247.16	248.18	1.02	2.20	12	522	2464
WDD242	248.18	249.20	1.02	1.63	20	383	2036
WDD242	249.20	250.22	1.02	5.98	33	1409	5455
WDD242	250.22	251.23	1.02	4.62	30	1120	4148
WDD242	251.23	252.25	1.02	3.78	28	945	4785
WDD242	252.25	253.27	1.02	2.21	17	576	6094
WDD242	253.27	254.29	1.02	2.22	10	593	2988
WDD242	254.29	255.31	1.02	2.94	13	799	4396
WDD242	255.31	256.33	1.02	2.80	20	774	3275
WDD242	256.33	257.35	1.02	3.17	20	860	2540
WDD242	257.35	258.36	1.02	2.98	20	807	3590
WDD242	258.36	259.38	1.02	2.80	20	781	3678
WDD242	259.38	260.40	1.02	2.77	20	778	3443
WDD243	196.55	197.58	1.03	1.10	12806	331	1304
WDD243	197.58	198.60	1.03	0.77	605	189	1464
WDD243	198.60	199.63	1.03	0.96	1872	382	1471
WDD243	199.63	200.65	1.03	1.43	1217	448	2332
WDD243	200.65	201.68	1.03	1.76	10	563	2538
WDD243	201.68	202.70	1.03	1.50	10	492	2280
WDD243	229.50	230.65	1.15	1.72		493	1921
WDD243	230.65	231.80	1.15	1.99		566	2132
WDD245	293.00	294.03	1.03	0.74	285	252	912
WDD245	294.03	295.07	1.03	0.93	144	293	1101
WDD245	295.07	296.10	1.03	0.26	48	115	228
WDD245	296.10	297.14	1.03	0.38	29	150	386
WDD245	297.14	298.17	1.03	1.09	21	383	1424
WDD245	298.17	299.20	1.03	2.14	30	701	2731

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
WDD245	299.20	300.24	1.03	2.22		714	2945
WDD245	300.24	301.27	1.03	2.07		675	2960
WDD246	204.98	206.05	1.07	2.16	39	548	3130
WDD246	206.05	207.12	1.07	2.71	39	660	2990
WDD246	207.12	208.20	1.07	2.60	34	624	2431
WDD246	208.20	209.27	1.07	2.35	34	533	1815
WDD246	209.27	210.34	1.07	1.84	31	430	1879
WDD247	297.62	298.60	0.98	1.41	20	461	1831
WDD247	298.60	299.59	0.98	1.25	10	400	1478
WDD247	299.59	300.57	0.98	0.43	10	165	477
WDD247	300.57	301.55	0.98	1.23		389	1337
WDD247	301.55	302.53	0.98	1.19	20	365	1470
WDD247	302.53	303.52	0.98	1.63	20	488	2179
WDD247	303.52	304.50	0.98	1.88	20	563	2580
WDD247	304.50	305.48	0.98	1.30	20	405	1742
WDD248	201.25	202.20	0.95	3.54	20	843	3318
WDD248	202.20	203.15	0.95	3.08	20	730	2239
WDD248	203.15	204.10	0.95	2.11	20	507	2461
WDD248	204.10	205.05	0.95	1.22	20	312	1206
WDD248	205.05	206.00	0.95	1.05		255	950
WDD251	176.00	176.88	0.88	1.15	6	306	1020
WDD251	176.88	177.75	0.88	1.00	10	291	1036
WDD253	193.55	194.61	1.06	1.35	14	350	1549
WDD253	194.61	195.68	1.06	1.11	10	287	1168
WDD253	195.68	196.74	1.06	0.69	20	188	632
WDD253	196.74	197.81	1.06	0.68	12	196	626
WDD253	197.81	198.87	1.06	0.57	10	174	551
WDD253	198.87	199.94	1.06	0.98		280	1049
WDD253	199.94	201.00	1.06	0.93	10	276	960
WDD255	307.00	308.00	1.00	0.61	10	285	820
WDD255	308.00	309.00	1.00	1 64		535	2240
WDD255	309.00	310.00	1.00	0.69	20	245	844
WDD255	310.00	311.00	1.00	0.22		115	200
WDD255	311.00	312.00	1.00	0.41	10	170	558
WDD255	312.00	313.00	1.00	1 47		450	1970
WDD255	313.00	314.00	1.00	1 92	10	595	2610
WDD255	314.00	315.00	1.00	1 53	10	460	1970
WDD255	315.00	316.00	1.00	2.03	20	600	2820
WDD255	316.00	317.00	1.00	2 52	20	745	3090
WDD255	317.00	318.00	1.00	1 81	20	559	2047
WDD256	377 24	378.00	0.76	1 47	20	570	10400
WDD257	297.00	298.20	1 20	0.78	10	266	789
WDD257	297.00	299.20	1.20	1 31	17	420	1513
WDD258	213.00	233.10	1.20	0.82	10	280	988
WDD258	213.00	214.00	1.00	0.86	20	200	1000
WDD258	211.00	215.99	1.00	0.82	20	250	946
W/DD258	214.55	215.55	1.00	1 05	20	230	1257
WDD258	215.55	210.55	1.00	0.96	10	290	1083
W/DD258	210.39	217.30	1.00	1 05	10	200	1160
W/DD230	217.30	210.30	1.00	1.03	10	215	100
W/DD230	210.30	219.90	1.00	2.15		050	2540
WDD238	213.30	220.97	1.00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0.52	3349 3560
WDD238	220.37	221.37	1.00	3.33 2.00	20	030 777	2300
۷۷ DD2 SQ	221.97	222.90	1.00	2.90	20	777	2491
WDD258	222.90	223.90	1.00	2.83	10	780	2007
W/DD258	223.90	224.90	1.00	2.82	29	700	2941
۵۶200 ۱۱/۱۵۵۶۹	224.50	223.93	1.00	2.00	20	204 201	3200

Hole_ID	From	То	Width	Ni_pct	As_ppm	Cu_ppm	Co_ppm
WDD258	226.95	227.95	1.00	3.73	30	1028	3571
WDD258	227.95	228.94	1.00	2.47	13	697	2856
WDD258	228.94	229.94	1.00	1.25	20	381	1358
WDD258	229.94	230.94	1.00	1.22	16	378	1371
WDD258	230.94	231.93	1.00	1.17	20	374	1420
WDD258	231.93	232.93	1.00	0.94	10	305	966
WDD258	232.93	233.92	1.00	1.11	10	346	1357
WDD258	233.92	234.92	1.00	1.60	19	480	1834
WDD258	234.92	235.92	1.00	1.79	20	531	1842
WDD258	235.92	236.91	1.00	1.01		306	1035
WDD258	236.91	237.91	1.00	1.35	10	395	1308
WDD259	302.00	303.00	1.00	1.27	11	418	1594
WDD259	303.00	304.00	1.00	2.06	20	620	2420
WDD259	304.00	305.00	1.00	0.71		250	846
WDD259	305.00	306.00	1.00	0.22		115	204
WDD259	306.00	307.00	1.00	0.31		130	328
WDD259	307.00	308.00	1.00	0.49		195	546
WDD259	308.00	309.00	1.00	0.61		250	802
WDD259	309.00	310.00	1.00	1.10		405	1450
WDD259	310.00	311.00	1.00	2.36	10	775	3920
WDD259	311.00	312.00	1.00	2.49		795	3260
WDD259	312.00	313.00	1.00	2.87		920	2890
WDD259	313.00	314.00	1.00	3.61	10	1137	2061
WDD259	314.00	315.00	1.00	0.51	10	200	578

Nm

Appendix 5 – JORC Code (2012 Edition) Table 1

Mt Edwards deposit: Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Mt Edwards has been drilled by diamond and reverse circulation (RC) drilling. Diamond drilling has been completed using surface and UG drill rigs. Drilling data exists for 398 drill holes for a total of 47822 metres in the area. Diamond holes were selectively sampled through the visible mineralised zone on a nominal 1m sample length, adjusted to geological and domain boundaries. Sample lengths vary from 0.06m to 6.6m. Diamond core samples have been sampled by a combination of quarter core and half core cut samples and a combination of BQ, NQ and HQ diameter. RC drill holes were sampled at 1m intervals with the sample material being passed through a riffle splitter. RC drilling was 5 ¼ inch in diameter. Sample representivity for diamond core was ensured by the sampling of an average length of 1m of core, which was then cut to quarter or half, depending on the company operating at the time, for laboratory analysis. RC sampling was riffle split from 1m composite bulk samples, producing a nominal 3kg – 5kg representative sample. Sample lengths for diamond drilling range from 0.05 to 4.2 m and average approximately 1.0m. RC samples sample were all 1m in length. Mineralised intervals are determined by visual inspection and logging prior to any sampling. Laboratory assays are then compared to the visual estimates and logging to determine if any adjustments are required. Mineralisation is identified as pyrrhotite and pentlandite with minor chalcopyrite hosted in talc- carbonate ultramafics.
Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.).	The data used in the remnant Mineral Resource is comprised entirely of diamond drill holes (367). No RC drilling intersected areas of remnant insitu mineralisation. Diamond drilling included NQ, HQ and BQ diameter core.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No drilling recoveries have been identified within the available datasets. No recovery information was available to review relationships between recovery and grade.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core	Detailed geological logging is available in the database for all drilling. Two sequences of geological legend are apparent within the dataset. The logging is of a detailed nature, and of sufficient detail to support the current Mineral Resource estimate categories.

Criteria	JORC Code explanation	Commentary
	(or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged	The total length of drill intersections used in the remnant Mineral Resource estimate is 853.68m and 100% of those intersections are logged.
Sub-sampling techniques and	If core, whether cut or sawn and whether quarter, half or all core taken.	The core was halved by sawing before sampling. Typically half core samples were sampled for surface drilling and whole core samples were used from UG drilling.
sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	RC drilling was riffle split directly from the sample collection cyclone on the drilling rig.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation is considered to be appropriate for RC and diamond drilling as per industry standard practices for managing RC samples and diamond core.
	stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative	No quality control procedures have been sited relating to the drilling dataset provided.
	of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	Host rock is a talc-chlorite-carbonate ultramafic with thin lenses of disseminated and massive Ni sulphides. Samples of diamond core and RC samples produce appropriate size samples to be representative for the style of mineralisation and rock type encountered.
Quality of assay data and laboratory tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	NO QAQC data is available for the historical dataset No geophysical methods or hand-held XRF units have been used for determination of grades in the Mineral Resource estimate.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic)protocols. Discuss any adjustment to assay data	Intersections of drill holes have been confirmed by visual reference of scanned level plans that included mining outlines, and correlating geological mapping to confirm intersections. No twinned drilling is available in the dataset, however numerous drill holes intersect UG development and have confirmation of geological development mapping to confirm geology and assay results in core. Drill hole data were sourced from digital sources and original hard- copy sampling and assay records, and imported into a central electronic database. Datashed software was used to validate and manage the data. Assays were composited to 1m SG weighted lengths and where necessary top cuts applied for resource estimation.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Drill hole collars have been picked up by Mine Surveyors using standard industry techniques. The holes were surveyed by single shot tool and by collar measurement with a clinometer and compass. Significant magnetic interference is present at MTE, reducing the reliability of single shot surveys. Surface topography is derived from collar pickups of drill holes. Topographic control is considered adequate for the current Mineral Resource estimate and the classification provided.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The resource area has been drilled on an irregular pattern over an extended period. The average spacing is estimated to be approximately 40m by 20m within the remnant Mineral Resource. Fan drilling from UG development locations provides detailed coverage to 15 by 15m in some areas of the resource
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity	The drill data spacing and sampling is adequate to establish the geological and grade continuity required for the current Mineral Resource estimate.

Criteria	JORC Code explanation	Commentary
	appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied	Diamond drill hole samples were composited to 1.0 m down-hole intervals for resource modelling.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and	The drill line and drill hole orientation is oriented as close as practical to perpendicular to the orientation of the general mineralised orientation. The majority of the surface drilling intersects the mineralisation at close to 90 degrees ensuring intersections are representative of true widths. The UG drilling intersects the mineralisation at acute angles through to perpendicular. This is due to limited locations for drill
	reported if material.	sites and is typical function of UG drilling.
Sample security	The measures taken to ensure sample security. Reports and original log files indicate at a thorough process of logging, recording, sample storage and dispatch to labs was followed at the time of drilling.	No information is available on the sample security protocols used for geological logging and the sampling/assaying processes in the drilling database provided.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The author is not aware of any audits that have been completed on the sampling techniques and data in the dataset used.

Mt Edwards deposit: Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Neometals holds a 100% interest in the nickel and base metal rights to the project under M15/102. Neometals has the exclusive right to explore and extract nickel from M15/103. There are no known impediments to operate in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Exploration has been undertaken by previous holders, but predominantly Western Mining Corporation (WMC) during the 1980s and Titan Resources Limited from 2001. Consolidated Minerals Ltd took over Titan Resources Limited in 2006.
Geology	Deposit type, geological setting and style of mineralisation.	The Mt Edwards deposit occurs on the western limb of the north plunging Mt Edwards anticline, at or near the base of a series of ultramafic flows which overlie a footwall basaltic sequence. The ultramafics range from high MgO to low MgO peridotite, and consist of a series of 40-50m thick flows with interflow sediments up to 5m thick. Some nickel mineralisation is associated with parasitic folding of the ultramafic-mafic contact, however the majority of the nickel mineralisation occurs at the base of the second ultramafic flow (i.e. hanging wall ore) some 10-40m above the basal contact, and is closely associated with graphitic and sulphidic sediments. The mineralised zone is sub-vertical to steep west dipping and plunges steeply to the north. It has a maximum strike length of 220 metres and extends to at least 550 metres below surface. The sulphide mineralogy is pyrrhotite, pentlandite, pyrite, and chalcopyrite. Three mineralisation ore types are recognised: 1. massive, on contact surfaces (up to 8.6% Ni) or hanging wall sediment associated surfaces (up to 10.8% Ni), 2. disseminated, on both hanging wall and contact surfaces, associated with high MgO peridotites (1-6% Ni), and
		neometals com au

50

Criteria	JORC Code explanation	Commentary
		3. sedimentary, fine sulphide laminae in interflow sediments (1-7.5% Ni). The contact mineralisation is associated with parasitic folding of the contact but is not confined to trough structures and passes laterally into sulphide rich sediments. The hanging wall mineralisation is developed at the base of as well as within the second ultramafic flow 10-40m above the basal contact. The base of this flow is defined by a sediment horizon. Best grades are developed in the northern half of this surface. Minor amounts of economic grade mineralisation are present stratigraphically higher in the sequence, within the second ultramafic flow and at the base of the third ultramafic flow.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	See Drilling Information, appendix 3. No information is excluded.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 Drill hole summary results are included in this release. The results reported include all intersections included in the estimation of the resource. A nominal cut-off of 0.8% Ni was used to define the drilling intersections composites. A 2m maximum internal dilution was used. Appendix 4 above contains all weighted composites included in the remnant Mineral Resource estimate. No metal equivalents are used in this Mineral Resource estimate.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	The surface drill line and drill hole orientation is oriented as close to 90 degrees to the orientation of the anticipated mineralised orientations practicable. UG drilling orientations are varied from acute angles of intersection to perpendicular. Some of the intersections trend downwards through the mineralised trend.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps and tables are included in the body of the announcement.
balanceu reporting	where comprehensive reporting of all Exploration Results is	An unin intercepts used in the estimation of the resource envelope irrespective of grade are reported in Appendix 4 above.

Criteria	JORC Code explanation	Commentary
	not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The resource envelope is constructed using a nominal 0.8% Ni cut-off and a maximum drilled internal dilution of 2m. All drill hole collars are reported in Appendix 3 above.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Mineral Resources were estimated from drill hole assay data, with geological logging used to aid interpretation of mineralised contact positions. Geological observations are included in the report. Scanned level mapping of the UG development is available for review and were utilised to understand the orientation of mineralisation relative to the drill intercepts. Multi-element assay suites have been analysed and arsenic has been identified as a potentially deleterious element. Specific Gravity (SG) measurements were available in the dataset. Not all samples contained an SG. A Ni vs SG regression was completed and the formula (Ni% x0.116) + 2.814 was used to generate SG for all samples.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	No further work is planned at this stage. Drill spacing is currently considered adequate to undertake limited high level economic evaluations on the project. Infill drilling would be required if more detailed feasibility studies were to be undertaken.

Mt Edwards deposit: Section 3 Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its	The drill hole database was compiled from 4 Microsoft access databases.
	initial collection and its use for Mineral Resource estimation purposes.	The UG drilling data collars were matched to development wireframes and all appeared to be visually sensible.
	Data validation procedures used.	Validation measures included spot checking between database and scanned level plans.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	No Site visits have been completed by Mr Bewsher. The Historical workings are not accessible and there is no core or drilling chips at site available to review.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral	The MTE mineralisation has been extensively developed with UG mining. There are detailed geological mapping plans showing structural and geological features pertinent to the mineralisation. The drilling dataset ties in well with these level plans.
	Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation.	For this Mineral Resource estimate a 0.8% Ni lower cut-off was used, with the interpretation based on structural and stratigraphic controls. The only valid departure from this interpretation would be to apply varying grade cut-off based on economic viability. Wireframe boundaries were "snapped" to drilling intercepts using the sample positions, with the use of geological logging

Criteria	JORC Code explanation	Commentary
	The factors affecting continuity both of grade and geology.	being used as a guide when considering the interpretation of the mineralised wireframe.
		The existing development wireframes and geological mapping provided strong geological guidance on the continuity and confidence in the interpretation.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The Mineral Resources extend over a strike length of approximately 450m. The resource models extend to 700m depth below top of oxidation profile. The deposit has been extensively mined historically. The Mineral Resource prepared relates to remnant mineralisation around existing development and down plunge and along strike from development.
Estimation and modelling techniques	Resource. The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	around existing development and down plunge and along strike from development. Grades were estimated by Ordinary Kriging (OK) and Inverse Distance Squared estimation of 1.0m Nickel, arsenic, cobalt and copper assay (SG weighted) grades from diamond and RC holes within mineralised domain wireframes. Surpac software was used for data compilation, wireframing, and coding of composite values. Statistics, variography and regression analysis were completed using Supervisor software. Documentation of previous Mineral Resource estimates are not available. There are figures quoted in summary documentation, that have no supporting models or wireframes and are not possible to verify. No consideration has been made for the recovery of by-products. Arsenic is a significant deleterious element. No consideration has been made with regard to sulphur levels in the waste material but the assays are available. This is due to the preliminary nature of economic evaluation to date. Resources were estimated into 10m North by 5m East by 5m elevation parent blocks aligned N-S on KNO grid system. For precise volume representation, sub-blocking was allowed to 2.5m N x 1.25 E x1.25m Z. The modelling included used a search ellipsoid with minimum data requirements of 8 data points and a minimum of two holes in the centre of the deposit. The search ellipsoid was elongated along the strike and plunge of the orebody. The main search distance was 40m. The estimates are not intended to reflect a fixed mining method but could be amenable to several mining techniques. Details of potential mining parameters have been considered but reflect the early stage of the project evaluation. Correlations exist in the assay data between Ni, Cu and Co due to correlated sulphide mineralogy. The geology and grade information was used in the creation of the mineralised domain wireframes. A nominal 0.8% Ni cut-off was used to define the outline within geological units. The selection of this cut- off was used to define broader geological contin
		software.

Criteria	JORC Code explanation	Commentary
		There is no detailed production information to reconcile against the model.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages are estimated on a dry tonnage basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The cut off grades reflect Neometals' perception of the potential range of operating costs and prices of nickel. The mineralised envelope is modelled using a 0.8% Ni cut-off grade. The Mineral Resource is reported based on a 1% Ni cut-off.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	Neometals has considered the possibility underground mining on the project Given the nature of the geometry of the mineralisation underground mining of the remnant Mineral Resource would appear to be appropriate. No feasibility studies have yet been completed. Dependant on the cost parameters used and the nickel price, Mineral Resource, or part thereof, is potentially amenable to underground mining.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	There were no metallurgical test work results available for this report,
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	Mine waste is stored locally in waste dumps while process waste is stored in tailings dams by Nickel West. High talc and carbonate content and low sulphide content the waste rock suggest that ARD should not be a problem.
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	A Ni vs SG regression curve was used to develop SG information for all samples. Existing SG values were used to generate the regression. There is no documentation on methodology used, however it is likely that WMC employed water immersion techniques on selected intervals of core to determine the SG.

Criteria	JORC Code explanation	Commentary
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	The Ni regression calculation was (Ni% x0.116) + 2.814 to generate SG for all samples.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit.	Resource classification was assigned on the basis of geological continuity and confidence. The historical nature of the drilling dataset provides low confidence in quality and accuracy of data. The development wirefames match well with available geological plans providing geological confidence that the Mineral Resource exists. The resource classification accounts for all relevant factors in the opinion of the Competent Person. Classification of the estimates reflects the Competent Person's views of the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	A detailed audit was completed on the Mineral Resource estimate to prepare this JORC 2012 statement.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available	Confidence in the relative accuracy of the estimates is reflected by the classifications assigned in the blockmodel. The geostatistical procedures used to estimate, quantify and qualify the block model were completed to a high standard. The Mineral Resource has been assigned entirely as inferred category which reflects the relative confidence, or lack thereof, in the accuracy of the drilling and mining data available. There is a medium level of confidence in the spatial accuracy of the UG drilling datasets used in the Mineral Resource estimate as they match with scanned level plans. There is a low level of confidence in the spatial accuracy of the surface drilling datasets used in the Mineral Resource estimate as they do not match with development wireframes. The confidence in surface drilling data increase with vertical depth of mineralised intercept. No detailed production data is available for reconciliation as the historical data could not be located.

Widgie Townsite deposit: Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chins, or specific specialised industry standard measurement	Widgie Townsite has been drilled by percussion, diamond drilling and RC drilling. Accurate drilling data exists for 267 drill holes for 46074 37 metres. A total of 125 holes had one or more intercents over 1% Ni. Of these only 2 intercents were
teeninques	tools appropriate to the minerals under investigation, such as	rejected due to inconsistent spatial positioning due to suspect down hole surveys (DWT8 and DWT8W1 in Domain 1).

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	CommentaryAssay data were missing from the following holes which intersect the mineralised wireframe interpretations at the time of this report; WDD137, WDD138 and WDD139. These holes were drilled by Consolidated Minerals in 2007.The holes have been drilled on irregular spacing as tight as 20m by 20m in the central high grade part of the mineralisation and up to 100m by 50m towards the extremities and low grade areas.Diamond holes were selectively sampled through the visible mineralised zone on a nominal 1m sample length, adjusted to geological and domain boundaries. Sample lengths vary from 0.2m to 1.2m.Diamond core samples have been sampled by a combination of quarter core and half core cut samples and a combination of BQ, NQ and HQ diameter.RC drill holes were sampled by 1m riffle split composites. RC drilling was 5 ¼ inch in diameter.Sample representivity for diamond core was ensured by the sampling of an average length of 1m of core, which was then cut to quarter or half, depending on the company operating at the time, for laboratory analysis.RC sampling was riffle split from 1m composite bulk samples, producing a nominal 3kg – 5kg representative sample.Sample lengths for diamond drilling range from 0.2 to 1.2 m and average approximately 1.0m. RC samples sample were all 1m in length.Mineralised intervals are determined by visual inspection and logging prior to any sampling. Laboratory assays are then compared to the visual estimates and logging to determine if any adjustments are required.Mineralisation is identified pyrhotite and pentlandite with minor chalcopyrite hosted in talc- carbonate ultramafics.For Titan and Consmin drilling, representative samples from RC and diamond drilling were collected and sent to accredited laboratories for analysis. Acc
		took a 50g pulp for analysis. This process cannot be established for drilling completed before 2005. For Titan and Consmin samples, analysis was performed by 4 acid digest and a combination of ICP-MS and ICP-OES multi element analysis techniques. Gold and PGEs were determined by a fire assay fusion followed by aqua regia digest and atomic absorption spectrometer (AAS) finish. Analysis techniques were not established for samples taken before 2005, but the results generally correlate well with newer data.
Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.).	The database used in the mineral resource is comprised of diamond drilling samples (5941), RC drilling samples (5638), Unspecified (16792), Unknown (64), Rockchip (26). Most of the unspecified samples are actually historic diamond drilling drilled predominantly by Western Mining during the early 1980s. Diamond drilling included NQ, HQ and BQ diameter core.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Core recoveries were recorded for all resource database diamond core collected by Titan and Consmin. Handwritten geotechnical logging sheets were kept of all drilling activities. Core recoveries are recorded in the database. Diamond core recoveries averaged 96% where core recoveries were recorded. RC samples recoveries or weights were not recorded. No relationship could be established between sample recovery and reported grade. RC samples report a lower average grade than core samples overall which is related their being drilled as RC pre-collars intersecting lower grades portions outside of main body of the mineralisation, and diamond drilling focusing on higher grade portions of the orebody.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core	Detailed drill hole logs (all drilling), geotechnical and structural logs (core only) areavailable for the drilling. Separate sample logging sheets were kept including samples numbers for duplicates, standards and blanks taken for QA/QC purposes. The logging is of A detailed nature, and of sufficient detail to support the current Mineral Resource estimate categories.

Criteria	JORC Code explanation	Commentary
	(or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged	The total length of drill intersections used in the remnant Mineral Resource estimate is 1796.71m and 100% of those intersections are logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	The core was halved or quartered, depending on which company and phase of work, by sawing before sampling RC drilling was riffle split directly from the sample collection cyclone on the drilling rig. Sample condition field to record moisture and sample recovery is included in the sampling log sheet and populates the assayable of the database. Unfortunately only a very small percentage of the logs have captured this information so no determination can be made about the quality of the RC samples. Sample preparation is considered to be appropriate for RC and diamond drilling as per industry standard practices for managing RC samples and diamond core. Quality control procedures included the inclusion of field duplicates, standard samples and blank samples into the sampling stream for laboratory analysis. 1482 QAQC samples are included in the dataset used for this mineral resource estimate. Host rock is mainly a talc-carbonate ultramafic with minor interflow sediments (black shales). Samples of diamond core and RC samples produce appropriate size samples to be representative for the style of mineralisation and rock type encountered.
Quality of assay data and laboratory tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Quality control procedures included the inclusion of field duplicates, standard samples and blank samples into the sampling stream for laboratory analysis. One standard, blank and field duplicate were inserted into the sample stream every 20 samples. These were offset through the sampling stream and placed in areas of interest i.e. high grade standards and blanks in the ore zone where possible. Overall, standards used reported values within 2 standard deviations of the expected values with a few exceptions. These were usually found to be sample miss labelling in the field and were largely able to be rectified in the database. No geophysical methods or hand-held XRF units have been used for determination of grades in the mineral resource estimate.
Verification of sampling and assaying	The verification of significant intersections by either independentor alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic)protocols. Discuss any adjustment to assay data	Intersections reported have been checked back to original logs and assay data. No twin holes have been drilled. Drill hole data were sourced from digital sources and original hard- copy sampling and assay records, and imported into a central electronic database. Datashed software was used to validate and manage the data. Assays were composited to 1m lengths and where necessary top cuts applied for resource estimation.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Surface topography is derived from a detailed topographic survey completed by Spectrum Surveys in 2006. Collar co-ordinates were picked up by Spectrum Surveys during the 2006 topographic survey. A majority of the drill holes were downhole surveyed with gyroscopic survey tool. The remaining holes were surveyed by single shot tool and by collar measurement with a clinometer and compass. Significant magnetic interference is present at Widgie Townsite reducing the reliability of single shot surveys. Original surveying was undertaken in Widgiemooltha South East Grid (WSEG). Topographic control is considered more than adequate for the current Mineral Resource estimate as it was completed by a licenced surveyor using a RTDGPS.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to	The resource area has been drilled on an irregular pattern and spacing by several different companies over an extended period. The average spacing is estimated to be approximately 40m by 40m within the remnant Mineral Resource. The drill data spacing and sampling is adequate to establish the geological and grade continuity required for the current

neometals.com.au

Criteria	JORC Code explanation	Commentary
	establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied	Mineral Resource estimate. Diamond drill hole samples were composited to 1.0 m down-hole intervals for resource modelling. RC Samples used in the estimate were composited to 1m intervals already.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The drill line and drill hole orientation is oriented as close as practicable to perpendicular to the orientation of the general mineralised orientation. A majority of the drilling intersects the mineralisation at close to 90 degrees ensuring intersections are representative of true widths. Several historic holes are drilled at a low angle to themineralisation, the reasons for which are unclear.
Sample security	The measures taken to ensure sample security. Reports and original log files indicate at a thorough process of logging, recording, sample storage and dispatch to labs was followed at the time of drilling.	Sample security measures adopted include the daily movement of core samples in trays to the Kalgoorlie Office, where core was keptin a secure area before cutting and sampling. RC split samples were transported from site daily and delivered to the accredited laboratory depot in Kalgoorlie for preparation and analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sample data reviews have included an inspection and investigation of all available paper and digital geological logs to ensure correct entry into the drill hole database. Visualisation of drilling data in three dimensional software (Micromine and Surpac) and QA/QC sampling review using Maxwell Geoservices QAQCR Software was undertaken. Although these reviews are not definitive, they provide confidence in the general reliability of thedata.

Widgie Townsite deposit: Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Neometals has the exclusive right to explore and extract nickel from the tenements. There are no known impediments to operate in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Exploration has been undertaken by previous holders, but predominantly Western Mining Corporation (WMC) during the 1980s. Programs of diamond drilling were undertaken by WMC as well as resource estimates, metallurgical test work and economic evaluations.
Geology	Deposit type, geological setting and style of mineralisation.	Widgie Townsite is interpreted to be a structurally and hydrothermally modified and remobilised Kambalda-style nickel occurrence. At prospect scale the major structural feature is the Widgie Townsite synform, with a 45° to the south to south south east plunging fold axis, with limbs dipping at 70° east and west. A major sub-vertical north north east trending shear zone (Arsenic Shear) some 30-50m wide located close to the axial plane of the synform truncates the mineralised zone, imparting a

Criteria	JORC Code explanation	Commentary
		southern plunge to the mineralisation. The stratigraphy at a deposit scale consists of the Archaean Mt Edwards basalt overlain by the Widgiemooltha Komatiite. The ultramafic succession consists of a series of flows with intercalated sediments. It is approximately 250m thick and displays carbonate alteration and serpentinisation. The mineral assemblages are talc- antigorite-chlorite-magnetite and talc- magnesite-amphibolite-magnetite. Stronger carbonate –chlorite alteration is noted around the mineralised lenses. Massive, matrix or disseminated sulphide development has been identified at Widgie Townsite, however subordinate stringy and blebby sulphide mineralisation is also recorded. Pyrrhotite, pentlandite, pyrite and chalcopyrite are the primary sulphide minerals. Locally elevated arsenic levels suggest the presence of nickel arsenides (e.g. Gerfsdorffite, Niccolite). Nickel Sulphide mineralisation is located within at least two lenses within the ultramafic sequence, about 5-40m above the footwall basalt contact (Figure 3). Mineralisation can be traced over a strike length of 700 metres. Drilling has not closed off the southern strike extent of mineralisation, the Arsenic Shear closes off the zone to the north. The mineralisation has been shown to extend from 30m to 600m vertical depth below surface. A broad vertical zonation of the style and mineralogy of the sulphides is noted, with semi-massive, matrix and disseminated nickel bearing sulphides (po-pn-py-cpy) noted towards the base of the mineralisation of arsenic and nickel has occurred along and adjacent to the Arsenic Shear. Highest arsenic values are spatially related to the shear, peripheral (particularly hanging wall) to the "stratabound" mineralised lenses and in the supergene zone at the north end of the deposit. Structural disruption of the "stratabound" lenses has occurred , with a noticeable increase in deformation and foliation. Depth of complete oxidation is up to 60 metres, with a further ~30- 50m of supergene zone below the base of oxidation.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	See Drilling Information, appendix 3. No information is excluded.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should bestated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Drill hole summary results are included in this release. The results reported include all intersections included in the estimation of the resource. A nominal cut-off of 1.0% Ni was used to define the drillintersections composites. A 2m maximum internal dilution was used. Appendix 4 above contains all weighted composites included in the remnant Mineral Resource estimate. Higher grade intersections within the composites are included in the table. No metal equivalents are used in this Mineral Resource estimate.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	The drill line and drill hole orientation is oriented as close to 90 degrees to the orientation of the anticipated mineralised orientationas practicable. The majority of the drilling intersects the mineralisation at close to 90 degrees. The following holes were drilled at a low angle to the mineralisation and therefore intercept widths are wider than true widths; DWT174, DWT148, DWT147, DWT1715, WND576, WDD194.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps and tables are included in the body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All drill intercepts used in the estimation of the resource envelope irrespective of grade are reported in Appendix 4 above. The resource envelope is constructed using a nominal 1.0% Ni cut-off and a maximum drilled internal dilution of 2m. All drill hole collars are reported in Appendix 3 above.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Mineral Resources were estimated from drill hole assay data, with geological logging used to aid interpretation of mineralised contact positions. Geological observations are included in the report. All core drilled at Widgie Townsite is available for review and is stored at the Fisher mine offices in Kambalda. Metallurgical test work is out of the scope of this report. Multi-element assay suites have been analysed and arsenic has been identified as a potentially deleterious element. Bulk density measurements have been taken and analysed. A regression line was determined for fresh mineralised samples of (Ni * 0.165) + 2.80 =SG SGs of 2.5 for completely weathered, 2.7 for moderately weathered, and 2.9 for fresh rock were assigned to all other blocks in the model.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	No further work is planned at this stage. There is potential for possible extensions in the down plunge position to the current Mineral Resource, but the grades are considered fartoo low to be economic at those depths. Drill spacing is currently considered adequate to undertake limited high level economic evaluations on the project. Infill drilling would be required if more detailed feasibility studies were to be undertaken.

Widgie Townsite deposit: Section 3 Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation	The drill hole database was sourced from original hard-copy sampling and assay records. Validation measures included spot checking between database and hard copy drill logs and sections and plans in historic reports.

Criteria	JORC Code explanation	Commentary
	purposes. Data validation procedures used.	The database is an extract from an Industry Standard SQLServer database using a normalised assay data model produced by Datashed Software.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	Mr. Marshall visited Widgie Townsite numerous times between 2005 and 2007 and was intimately involved in the planning and implementation of drilling programs completed during that time. Mr Marshall was also directly involved in the historic data compilation and validation for the project.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology.	The Widgie Townsite was discovered in the 1970's and evaluated intermittently by several companies since. Most of the data for the project was collected by WMC during the 1980s. As a result an extensive body of knowledge exists for the project and therefore confidence in interpretations is relatively high. Historical data as well as recent data collected by Titan and Consmin were used in the interpretations. The data from different companies and time periods correlated very well. For this mineral resource estimate a 1% Ni cut-off was used, with the interpretation based on structural and stratigraphic controls. The only valid departure from this interpretation would be to apply a different grade cut-off; the effect of which can be found in the Appendix 3 Wireframe boundaries were "snapped" to drilling intercepts using the sample positions, with the use of geological logging being used as a guide when considering the interpretation of the mineralised wireframe. Interpretations were prepared on 20m section spacings cut at bearing 90 degrees on the WSEG grid. The drill spacing is relatively wide and introduces sufficient uncertainty for the short range variability and continuity in the deposit. The mineralisation is hosted in a high strain environment which can adversely affect the continuity of the mineralisation and mine recogniliations back to the resource model
		Given the current wide drill spacing, pinching, swelling and truncation of the mineralisation is possible between the drill holes, as observed in many of the nickel mining operations in the area. The boundaries of the broader mineralised zone are consistent, but within these zones, higher/ lower grade and thicker/ thinner zones occur. It is expected that additional drilling will define the distribution and nature of this variability.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The Mineral Resources extend over a strike length of approximately 700 m. The resource models extend to 500 m depth below surface.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine	 Grades were estimated predominantly by Inverse Distance Squared estimation of 1.0m down-hole composited Nickel, arsenic, cobaltand copper assay grades from diamond and RC holes within mineralised domain wireframes. Surpac software was used for data compilation, domain wire-framing, and coding of composite values , statistics, geostatistics and resource estimation. Previous Mineral Resource estimates have been made by several companies from 1969 onwards. The three most recent estimates compare well with the current estimate: 1987 WMC 1.39M tonnes @ 2.8%Ni 1994 WMC 1.86M tonnes @ 1.97%Ni 1996 WMC 1.53 tonnes @ 1.45% Ni 1997 WMC 2.42M @ 153% Ni 1998 WMC 1.6M tonnes @ 1.46% Ni

Criteria	JORC Code explanation	Commentary
	drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	 Low Construction of the second seco
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages are estimated on a dry tonnage basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The cut off grades reflect Neometals' perception of the potential range of operating costs and prices of nickel. The mineralised envelope is modelled using a 1.0% Ni cut-off grade
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable,	Neometals has considered the possibility of both open cut and underground mining on the project. A significant amount of preliminary design work has been completed.

Criteria	JORC Code explanation	Commentary
	external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	High level scoping studies have been completed by Titan Resources in 2006 and Consolidated Minerals in 2008. The previous outcomes indicated a marginal operation at the prevailing metal prices and operating assumptions used at the time Dependant on the cost parameters used and the nickel price, mineral resource, or part thereof, is potentially amenable to open cut or underground mining.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Metallurgical test work was conducted by Western Mining in 1998. The study indicated a nickel recovery of 90% producing a concentrate grade of 8% Ni, 5% MgO and 5000ppm As from a head grade of 2.5% to 2.6% Ni. Bond Work index was low at 7.8KWhr/t which would result in lower processing costs Talc content is approximately 45% in the mineralisation so suppression of talc would be of utmost importance. The high arsenic levels could present a problem if the concentrate was to feed the Nickel west Smelter Iron rich areas lead to high S to Ni ratios of 3.8 resulting in low Ni concentrate grade.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	Mine waste is stored locally in waste dumps while process waste is stored in tailings dams by Nickel West. High talc and carbonate content and low sulphide content the waste rock suggest that ARD should not be a problem.
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alterationzones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	2079 samples were determined by weight in air weight in water technique. Cervoj (2007) completed statistics and a regression between nickel and specific gravity measurements. That work was also used as the basis for specific gravity measurements in the current block model. A regression line was determined for fresh mineralised samples of (Ni * 0.165) + 2.80 =SG. SGs of 2.5 for completely weathered, 2.7 for moderately weathered, and 2.9 for fresh rock were assigned to all other blocks in the model.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade	Resource classification was assigned on the basis of geological continuity and confidence, the number of drill hole intersections, and average distance to samples. The resource classification accounts for all relevant factors in the opinion of the Competent Person.

Criteria	JORC Code explanation	Commentary
	estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit.	Classification of the estimates reflects the Competent Person'sviews of the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	A detailed audit was completed on the Mineral Resource estimate to prepare this JORC 2012 statement.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentationshould include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available	Confidence in the relative accuracy of the estimates is reflected by the classifications assigned in the block model. The geostatistical procedures used to estimate, quantify and qualify the block model were completed to a high standard. No blocks have been assigned a Measured Mineral Resource category which reflects the relative confidence, or lack thereof, in the accuracy of the interpretations. Significant doubts about the validity of the wireframe interpretations exist as the mineral resource is located in a structurally complex and highly strained environment. This has been demonstrated by mining activity on other similar deposits in the Widgiemooltha area. There is a high level of confidence in the spatial accuracy of the datasets used in the mineral resource estimate as the survey control is very good. No production data are available for reconciliation as no mining has been undertaken on the project.

Widgie 3 deposit: Section 1 Sampling Techniques and Data

Sampling techniquesNature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting th broad meaning of sampling.The Widgie 3 resource has been drilled by percussion, diamond drilling and RC drilling. Drilling data exists for 110 drill holes for 14,733.96 metres. A total of 33 holes had one or more intercepts over 1% Ni. The majority of these holes were drilled by Western Mining Corporation and date from the 1980s – 1990s period.Include reference to measures taken to ensure measurement tools or systems used. Aspects of the determination of mineralisation that are material to Public Report. In cases where 'industry standard' work has been done this would relatively simple (e.g. 'reverse circulation drilling was used to obtain 1The Widgie 3 resource has been drilled by percussion, diamond drilling and RC drilling. Drilling data exists for 110 drill holes for 14,733.96 metres. A total of 33 holes had one or more intercepts over 1% Ni. The majority of these holes were drilled by Western Mining Corporation and date from the 1980s – 1990s period. The resource has been drilled on a spacing of about 50m by 25m in the mineralisation. Diamond holes were selectively sampled through the visible mineralised zone on a nominal 1m sample length, adjusted to geological and domain boundaries. Sample lengths vary from 0.30m to about 1.5m. Diamond core sampling techniques are not known but assumed to be industry standard at the time of collection. Sample representivity for diamond core and RC samples is unknown but assumed to be industry standard at the time of collection. Sample lengths for diamond drilling range from 0.3 to 1.5 m with the modal value approximately 1.	Criteria	JORC Code explanation	Commentary
	Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1	The Widgie 3 resource has been drilled by percussion, diamond drilling and RC drilling. Drilling data exists for 110 drill holes for 14,733.96 metres. A total of 33 holes had one or more intercepts over 1% Ni. The majority of these holes were drilled by Western Mining Corporation and date from the 1980s – 1990s period. The resource has been drilled on a spacing of about 50m by 25m in the mineralisation. Diamond holes were selectively sampled through the visible mineralised zone on a nominal 1m sample length, adjusted to geological and domain boundaries. Sample lengths vary from 0.30m to about 1.5m. Diamond core sampling techniques are not known but assumed to be industry standard at the time of collection. RC drill holes sampling techniques are not known but assumed to be industry standard at the time of collection. Sample representivity for diamond core and RC samples is unknown but assumed to be industry standard at the time of collection. Sample lengths for diamond drilling range from 0.3 to 1.5 m with the modal value approximately 1.0 m. RC samples ranged from 4 metres in waste material and 1 metre in or near mineralisation. Mineralisation consists of contact massive sulphides (pyrite, pyrrhotite, pentlandite, chalcopyrite and gersdorffite) typically

Criteria	JORC Code explanation	Commentary
	m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	less than 1 metre thick overlain by matrix sulphides and disseminated sulphides The majority of the drilling, sampling and assaying was completed by Western Mining Corporation during the late 1980's through to the early 1990's. How the samples were collected and which laboratory completed the analysis is unknown. Minor copper, cobalt and arsenic occur in the mineralisation.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.).	The database used in the area of the mineral resource is comprised of diamond drilling samples (57), RC drilling samples (273), and unspecified (3746). Diamond drilling diameter is unknown.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferentialloss/gain of fine/coarse material.	It is unknown whether core recoveries were recorded by WMC RC samples recoveries or weights were not recorded. No data exits for the historical drilling.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	Detailed drill hole logs are available for the majority of the drilling. The logging is of a detailed nature, and of sufficient detail to support the current mineral resource estimate categories. The total length of drill intersections used in the mineral resource estimate is 463.36 metres.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	Core sampling techniques are unknown but are assumed to have been industry standard at the time of collection. RC drilling sampling techniques are unknown but are assumed to be industry standard at the time. Sample conditions are unknown. Sample preparation is unknown but assumed to have been industry standard for the time. Quality control procedures are unlikely to have been used. Host rock is mainly a serpentinite lens at the base of an ultramafic sequence. It is assumed that WMC's sampling would have been appropriate for the style of mineralisation.
Quality of assay data and laboratory tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No Quality control procedures were used at the time No geophysical methods or hand-held XRF units have been used for determination of grades in the mineral resource estimate.

Criteria	JORC Code explanation	Commentary
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	
Verification of sampling and assaying	The verification of significant intersections by either independentor alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic)protocols. Discuss any adjustment to assay data.	Multiple intersections reported have been checked back to original logs and assay data. No twin holes have been drilled. Drill hole data were sourced from digital sources and original hard- copy sampling and assay records, and imported into a central electronic database. Datashed software was used to validate and manage the data. Assays were composited to 1m lengths and where necessary, top cuts applied for resource estimation. Nickel and Arsenic grades were cut to account for outliers in the populations.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Surface topography is derived from drill hole collars and the historical WMC pick ups of the Widgie 3 open pit and underground workings. It is assumed that the majority of the drill holes were downhole surveyed by a single shot tool and by collar measurement with a clinometer and compass. A minority of holes were down hole surveyed by a gyro. Survey type is not recorded for most of the drilling. Original surveying was undertaken in Kambalda Nickel Operations Grid and then later in GDA94 grid. Topographic control is considered poor and should be re-done using modern methods.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	The resource area has been drilled on a regular pattern and spacing by WMC. The average spacing is estimated to be approximately 50m by 25m within the mineral resource. The drill data spacing and sampling is adequate to establish the geological and grade continuity required for the current mineral resource estimate. Diamond drill hole samples were composited to 1.0 m down-hole intervals for resource modelling. RC Samples used in the estimate were composited to 1m intervals already.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The drill line and drill hole orientation is oriented as close as practicable to perpendicular to the orientation of the general mineralised orientation. A majority of the drilling intersects the mineralisation at close to 90 degrees ensuring intersections are representative of true widths.
Sample security	The measures taken to ensure sample security.	Sample security measures are unknown for WMC drilling. Industry standard sample security standards were followed for Titan Resources drilling.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sample data reviews are unknown. Visualisation of drilling data was completed in three dimensional software (Micromine and Surpac). Although these reviews are not definitive, they provide confidence in the general reliability of the data.

Widgie 3 deposit: Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement	Type, reference name/number, location and ownership	Neometals has the exclusive right to explore and extract nickel from the tenements. There are no known impediments to
and land tenure	including agreements or material issues with third parties	operate in the area.

Criteria	JORC Code explanation	Commentary
status	such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Anaconda discovered Widgie 3 in 1967 as a result of gossan sampling. Diamond drilling by Anaconda and CRA delineated the first resource in the late 1970s.
		Exploration has been undertaken by previous holders, but predominantly Western Mining Corporation (WMC) during the 1980s and early 1990s
		Programs of RC and diamond drilling were undertaken by WMC as well as resource estimates, metallurgical test work and economic evaluations. WMC mined Widgie 3 between 1988 to 1992.
Geology	Deposit type, geological setting and style of mineralisation.	The Widgie 3 deposit is located on the northeast flank of the Widgiemooltha Dome within a sequence of intercalated mafic and ultramafic rocks.
		Nickel mineralisation is located along the contact of basalt and ultramafic rocks. The more massive higher grade mineralisation is developed within a serpentinite lens at the base of the ultramafic sequence within an embayment along the contact.
		The stratigraphy at a deposit scale consists of the Archaean Mt Edwards basalt overlain by the Widgiemooltha Komatiite. The ultramafic succession consists of a series of flows with intercalated sediments. It is approximately 250m thick and displays carbonate alteration and serpentinisation. The mineral assemblages are talc- antigorite-chlorite-magnetite and talc-magnesite-amphibolite- magnetite.
		Mineralisation at Widgie 3 consists of contact massive sulphides (pyrite, pyrrhotite, pentlandite, chalcopyrite and gersdorffite) typically less than 1 metre thick overlain by matrix sulphides and disseminated sulphides. The mineralised envelope can be up to 19 metres thick (decreasing with depth) and 200 metres strike.
		Depth of complete oxidation ranges from 15 to 30 metres.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar	See Appendix 3 above for drilling information. No information is excluded.
	elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Drill hole summary results are included in this release. The results reported include all intersections included in the estimation of the resource.A nominal cut off of 1.0% Ni was used to define the drill intersections composites.Appendix 4 in the report contains all weighted composites included in the Mineral Resource estimate. Higher grade
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the	intersections within the composites are included in the table.

Criteria	JORC Code explanation	Commentary
	procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No metal equivalents are used in this Mineral Resource estimate.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length,true width not known').	The drill line and drill hole orientation is oriented as close to 90 degrees to the orientation of the anticipated mineralised orientation as practicable. The majority of the drilling intersects the mineralisation between 30 to 70 degrees.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps and tables are included in the body of the Announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All drill intercepts used in the estimation of the resource envelope irrespective of grade are reported in Appendix 4. The resource envelope is constructed using a nominal 1.0% Ni cut-off.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Mineral Resources were estimated from drill hole assay data, with geological logging used to aid interpretation of mineralised contact positions. Geological observations are included in the report. Multi-element assay suites have been analysed and arsenic has been identified as a potentially deleterious element. Bulk density measurements have been taken by WMC. Bulk density were assigned to the block model using the formula. Bulk Density (t/m3) = 167.0654/57.6714*Ni% Waste bulk density was assigned as 2.897. it is unknown how this figure was derived.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	No further work is planned at this stage. There is potential for possible extensions in the down plunge position to the current Mineral Resource, but the grades are considered far too low to be economic at those depths. Drill spacing is currently considered adequate to undertake limited high level economic evaluations on the project.

Widgie 3 deposit: Section 3 Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary	
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used.	The drill hole database was sourced from original hard-copy sampling and assay records Validation measures included spot checking between database and hard copy drill logs and sections and plans in historic reports. The database is an extract from an Industry Standard SQL Server database using a normalised assay data model produced by Datashed Software.	
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	Mr. Marshall visited Armstrong numerous times between 2005 and 2007. Mr Marshall was also directly involved in the historic data compilation, data validation and drilling programs for the project.	
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology.	The Widgie 3 deposit was discovered in the 1967 by Anaconda. WMC acquired the deposit by 1984 and mined it by open pit and underground methods between 1988 - 1991. Titan Resources acquired the deposit in 2004. Historical assay and geological data was used in the interpretations. For this mineral resource estimate a 1% Ni cut-off was used, with the interpretation based on structural and stratigraphic controls. The only valid departure from this interpretation would be to apply a different grade cut-off. Wireframe boundaries were regularised on sections, with the use of geological logging being used as a guide when considering the interpretation of the mineralised wireframe. Interpretations were prepared on 20m section spacings cut at bearing 90 degrees on a rotated MGA94 zone 51 grid. Given the drill spacing, pinching, swelling and truncation of the mineralisation is possible between the drill holes, as observed in many of the other nickel mining operations in the area. The boundaries of the broader mineralised zone are consistent, but within these zones, higher/ lower grade and thicker/ thinner zones occur	
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The Mineral Resources extend over a strike length of approximately 360 m. The resource models extend to 350 m depth below surface.	
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).	Grades were estimated predominantly by ordinary kriging estimation of 1.0m down-hole composited nickel assay grades from diamond and RC holes within mineralised domain wireframes. Surpac software was used for data compilation, domain wire-framing, and coding of composite values, statistics, geostatistics and resource estimation. Previous mineral resource estimates have been made by several companies from 1970s onwards. • Late 1970s Anaconda 1,080Kt @ 1.21% Ni • 1991 WMC 144kt @ 1.8% Ni (post mining) Production: • 1988-99 61,906t @ 1.9% Ni (open pit) • 1989-1990 6,597t @ 0.59% Ni (open pit) • 1990-1991 12,074t @ 4.18% Ni (underground) • 1991-1992 2,084t @ 3.35% Ni (underground) WMC exploited 3 ore surfaces at Widgie 3. The original interpretation had all lenses continuous however with open pit mining	

Criteria	JORC Code explanation	Commentar	у			
	In the case of block model interpolation, the block size in	it was found	that one of the	surfaces was disc	ontinuous resulting in about a 20% drop in tonnes.	
	relation to the average sample spacing and the search	No considera	ation has been r	nade for the reco	very of by-products	
	emploved.	Arconic is a s	ignificant doloti	nique lomont		
	Any assumptions behind modelling of selective mining units	Alsenic is a s		enous element.	an and have been been to also encoded in the state of the second second by the test of the second seco	
	Any assumptions about correlation between variables. Description of how the geological interpretation was used to provide the resource estimates.	to the prelim	ninary nature of	economic evalua	to suppur levels in the waste material but the assays are available. This is due tion to date.	
		Resources w on a rotated	ere estimated i MGA94 zone 5	nto the block moo 1 grid.	del with 10m x 2.5m x 5m parent blocks (strike, cross strike, vertical,) aligned N-	
	Discussion of basis for using or not using grade cutting or	For precise v	olume represer	ntation. sub-block	ing was allowed to 2.5m x0.3125m x 2.5m	
	capping.	The modelli	ng included us	ed an anisotropi	c search ellipsoid with minimum data requirements of 8 data points and a	
	The process of validation, the checking process used, the	maximum of	32 data points.	The estimation u	sed a 3 pass expanding approach. The first pass was 30m x 30m x 10m.	
	comparison of model data to drill hole data, and use of	The estimates are not intended to reflect a fixed mining method but could be amenable to several mining techniques				
	reconciliation data if available.	Details of no	tential mining r	arameters have h	peen considered but reflect the early stage of the project evaluation	
		Correlations	botwoon variat	la wara nat consi	dered apart from bulk density and nickel	
					is the spectrum of the mineralized density with frames. A memory of the set	
		me geology	anu grade infor	mation was used	in the creation of the mineralised domain wireframes. A nominal 1.0% NI cut-of	
		was used to	uenne the outli	ne within geologic		
		Grade cuttin	g of the input s	amples was used	to down grade the effect of outliers in the sample population on the estimation.	
		NICKEI	Uncut	Cut		
		Min	0.024%	0.024%		
		Max Mean	1.294%	1.194%	_	
		Median	0.740%	0.740%		
		Variance Coef. of	3.719	1.646	_	
		Variation	100			
		Samples	469	9 samples cut		
		Arsenic	Uncut	Cut		
		Min	1.0 ppm	1.0 ppm	-	
		Max	11000.00	7000.00 ppm		
		Mean	547.703 ppm	501.533 ppm	-	
		Median	45.00 ppm	45.00 ppm		
		Coef. of	2.937	2.704	-	
		Variation	225	C a served as such		
		Samples	235	5 samples cut		
		Model valida	tion included y	visual comparison	of model estimates and composite grades using section analysis with the raw	
		drilling data	and the compo	isite data It is lik	elv that the Ni grades are slightly overestimated due to more than one sample	
		nonulation in	the data decoi	te the high grade	cuts	
N4 1 4						
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Ionnages ai	re estimated on	a dry tonnage ba	SIS.	
Cut-off parameter	s The basis of the adopted cut-off grade(s) or quality	The cut off	rades reflect N	eometals' nercen	tion of the potential range of operating costs and prices of pickel	
	parameters applied	The minoral	ised envelope i	modelled using	a 1.0% Ni cut-off grade	
		N				
iviining factors or	Assumptions made regarding possible mining methods,	Neometals I	has considered	the possibility of l	both open cut and underground mining on the project.	

Criteria	JORC Code explanation	Commentary
assumptions	minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	Dependant on the cost parameters used and the nickel price, mineral resource, or part thereof, is potentially amenable to open cut or underground mining.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	There were no metallurgical test work results available for this report. The high arsenic levels need to be controlled with greater understanding on the controls of its distribution.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	Mine waste is currently held in an above ground waste dump. It would be expected that this practice was continued when mining recommences. High talc and carbonate content and low sulphide content the waste rock suggest that ARD should not be a problem.
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alterationzones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Bulk density measurements have been taken by WMC. Bulk density were assigned to the block model using the formula. Bulk Density (t/m3) = 167.0654/57.6714*Ni%. Waste bulk density was assigned as 2.897. it is unknown how this figure was derived.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	Resource classification was assigned on the basis of geological continuity and confidence. The resource classification accounts for all relevant factors in the opinion of the Competent Person.

Criteria	JORC Code explanation	Commentary
	Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit.	Classification of the estimates reflects the Competent Person's views of the deposit
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	A detailed audit was completed on the Mineral Resource estimate to prepare this JORC 2012 statement.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	Confidence in the relative accuracy of the estimates is reflected by the classifications assigned in the block model. The geostatistical procedures used to estimate, quantify and qualify the block model were completed to a reasonable standard however only nickel and arsenic were estimated. Usually a nickel estimate will include other attributes including non-sulphide nickel, copper, cobalt, MgO, iron and sulphur. It is unknown why these were not estimated. There is a low – moderate level of confidence in the spatial accuracy of the datasets used in the mineral resource estimate as the survey control is unknown. Significant production data is available for the Widgie 3 deposit that would feed back in an economic evaluation of the deposit.

Gillet deposit: Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are material to the Public Report.	The Gillet resource has been drilled by diamond drilling (47 holes) and RC drilling (14 holes). Drilling data exists for 61 drill holes for 16,529.31 metres. A total of 30 holes had one or more intercepts over 1% Ni. These holes were drilled by Consolidated Minerals during 2007. The resource has been drilled on a spacing of about 50m by 25m in the mineralisation. Diamond holes were selectively sampled through the visible mineralised zone on a nominal 1m sample length, adjusted to geological and domain boundaries. Sample lengths vary from 0.10m to about 1.3m. Diamond core samples have been sampled by a combination of quarter core and half core cut samples and a combination of BQ, NQ and HQ diameter. RC drill holes were sampled by 1m riffle split composites. RC drilling was 5 ¼ inch in diameter. Sample representivity for diamond core was ensured by the sampling of an average length of 1m of core, which was then cut to quarter or half, depending on the company operating at the time, for laboratory analysis.
Criteria	JORC Code explanation	Commentary
--------------------------	---	---
	In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was	RC sampling was riffle split from 1m composite bulk samples, producing a nominal 3kg – 5kg representative sample. Sample lengths for diamond drilling range from 0.1 to 1.3 m with the modal value approximately 1.0 m. RC samples ranged from 4 metres in waste material and 1 metre in or near mineralisation.
	pulverised to produce a 30 g charge for fire assay'). In other $_{ m N}$ cases more explanation may be required, such as where $_{ m C}$	Mineralised intervals are determined by visual inspection and logging prior to any sampling. Laboratory assays are then compared to the visual estimates and logging to determine if any adjustments are required.
	there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine	Mineralisation consists of contact massive sulphides (pyrite, pyrrhotite, pentlandite, chalcopyrite, minor millerite and violarite) typically less than 1 metre thick overlain by matrix and disseminated sulphides.
	nodules) may warrant disclosure of detailed information.	For Consolidated Minerals drilling, representative samples from RC and diamond drilling were collected and sent to accredited laboratories for analysis. Accredited laboratories in Kalgoorlie and Perth crushed and pulverised the samples in entirety, and took a 50g pulp for analysis.
		For Consolidated Minerals samples, analysis was performed by 4 acid digest and a combination of ICP-MS and ICP-OES multi element analysis techniques. Gold and PGEs were determined by a fire assay fusion followed by aqua regia digest and atomic absorption spectrometer (AAS) finish.
		Minor copper, cobalt and arsenic occur in the mineralisation.
Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g.	The database used in the area of the mineral resource is comprised of diamond drilling samples (725) and RC drilling samples (60)
	core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Diamond drilling included NQ, HQ and BQ diameter core.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whather a relationship avists between sample recovery and	Core recoveries were recorded for all resource database diamond core collected by Consolidated Minerals. Handwritten geotechnical logging sheets were kept of all drilling activities. Core recoveries are recorded in the database. Diamond core recoveries were close to 100% where core recoveries were recorded. RC samples recoveries or weights were not recorded.
	grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No relationship could be established between sample recovery and reported grade.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and	Detailed drill hole logs (all drilling), geotechnical and structural logs (core only) are available for the drilling. Separate sample logging sheets were kept including samples numbers for duplicates, standards and blanks taken for QA/QC purposes.
	metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	The logging is of a detailed nature, and of sufficient detail to support the current mineral resource estimate categories. The total length of drill intersections used in the mineral resource estimate is 403.50 metres.
Sub-sampling	If core, whether cut or sawn and whether quarter, half or all	The core was halved or quartered, depending on which company and phase of work, by sawing before sampling.
sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness	RC drilling was rittle split directly from the sample collection cyclone on the drilling rig. Sample condition field to record moisture and sample recovery is included in the sampling log sheet and populates the assay table of the database. Unfortunately, only a very small percentage of the logs have captured this information so no determination can be made about the quality of the RC samples.
	of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	Sample preparation is considered to be appropriate for RC and diamond drilling as per industry standard practices for managing RC samples and diamond core. Quality control procedures included the inclusion of field duplicates, standard samples and blank samples into the sampling

Criteria	JORC Code explanation	Commentary
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	stream for laboratory analysis. Standards were placed every 30 samples with a combination of blank, low grade and high grade standards, dependent on the geology a suitable was standard selected. Blank standards (OREAS22P) were generally placed after an ore zone and at the start of the hole sampling within each hole. Duplicate sampling was undertaken for the RC drilling for 4 metre composites. Further duplicates were taken from the RC drilling of the 1 metre samples at the discretion of the geologist. Only a brief study of the duplicate sampling has been located. A full QAQC study has yet to be located.
		Host rock is mainly a talc-carbonate ultramafic with minor interflow sediments (black shales). Samples of diamond core and RC samples produce appropriate size samples to be representative for the style of mineralisation and rock type encountered.
Quality of assay data and laboratory tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Quality control procedures included the inclusion of field duplicates, standard samples and blank samples into the sampling stream for laboratory analysis. One standard, blank and field duplicate were inserted into the sample stream every 30 samples. These were offset through the sampling stream and placed in areas of interest i.e. high grade standards and blanks in the ore zone where possible. Umpire assaying was completed on WCD338 that returned 14 metres @ 3.34% Ni. The first assays were completed by Genalysis. Assaying at Ultratrace returned 14 metres @ 33.4% Ni for the same interval. No geophysical methods or hand-held XRF units have been used for determination of grades in the mineral resource estimate.
Verification of sampling and assaying	The verification of significant intersections by either independentor alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic)protocols. Discuss any adjustment to assay data.	Intersections reported have been checked back to original logs and assay data. No twin holes have been drilled. Drill hole data were sourced from digital sources and original hard-copy sampling and assay records, and imported into a central electronic database. Datashed software was used to validate and manage the data. Assays were composited to 1m lengths for resource estimation.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Surface topography is derived from a detailed topographic survey completed by Spectrum Surveys in 2007. The majority of the collar coordinates were picked up by Spectrum Surveys in 2007. A majority of the drill holes were downhole surveyed with gyroscopic survey tool. Surveying was in both GDA94 zone and the Widgiemooltha South East Grid (WSEG). Topographic control is considered more than adequate for the current mineral resource estimate as it was completed by a licenced surveyor using a RTDGPS.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	The resource area has been drilled on a regular pattern and spacing by Consolidated Minerals. The average spacing is estimated to be approximately 50m by 25m within the mineral resource The drill data spacing and sampling is adequate to establish the geological and grade continuity required for the current mineral resource estimate. Diamond drill hole samples were composited to 1.0 m down-hole intervals for resource modelling. RC Samples used in the estimate were composited to 1m intervals already.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and	The drill line and drill hole orientation is oriented as close as practicable to perpendicular to the orientation of the general mineralised orientation. A majority of the drilling intersects the mineralisation at 30 to 60 degrees.

Criteria	JORC Code explanation	Commentary
	reported if material.	
Sample security	The measures taken to ensure sample security. Reports and original log files indicate at a thorough process of logging,	Sample security measures adopted include the daily movement of core samples in trays to the Kalgoorlie Office, where core was kept in a secure area before cutting and sampling.
	recording, sample storage and dispatch to labs was followed at the time of drilling.	RC split samples were transported from site daily and delivered to the accredited laboratory depot in Kalgoorlie for preparation and analysis.
		Reports and original log files indicate at a thorough process of logging, recording, sample storage and dispatch to labs was followed at the time of drilling.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sample data reviews have included an inspection and investigation of all available paper and digital geological logs to ensure correct entry into the drill hole database.
		Visualisation of drilling data in three dimensional software (Micromine and Surpac) and QA/QC sampling review using Maxwell Geoservices QAQCR Software was undertaken. Although these reviews are not definitive, they provide confidence in the general reliability of the data

Gillet deposit: Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Neometals has the exclusive right to explore and extract nickel from the tenements. There are no known impediments to operate in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	In August 2006 a SQUID FLTEM survey by Consolidated Minerals identified a conductor on an outer basal contact near the Widgie 3 NiS deposit at Widgiemooltha. This EM conductor was subsequently drill tested with 2 drill holes, WDD163 and WDD164. WDD164 intersected 94.14m @ 1.43% Ni including 16m@ 2.49% Ni within a talc carbonate altered ultramafic rock. Subsequent to these holes a detailed SQUID survey was conducted to target the Gillet contact. Several follow up drill programs where then planned and drilled over the next 12 months culminating in this Mineral Resource.
Geology	Deposit type, geological setting and style of mineralisation.	The Gillet deposit is located on the northeast flank of the Widgiemooltha Dome within a sequence of intercalated mafic and ultramafic rocks. The Gillet deposit is hosted within an ultramafic package on or near a basal contact with a metabasalt. This basal contact is interpreted to be thrusted from the main contact that hosts the Widgie 3 and Widgie Townsite deposits. The host ultramafic is highly talc-carbonate altered with strong foliation developed parallel to the basal contact. There are several interflow black shale sediments that sit on the basal contact and in the hanging wall to the mineralisation. The black shales are sulphidic with banded pyrrhotite and chalcopyrite. The stratigraphy at a deposit scale consists of the Archaean Mt Edwards basalt overlain by the Widgiemooltha Komatiite. The ultramafic succession consists of a series of flows with intercalated sediments. It is approximately 250m thick and displays carbonate alteration and serpentinisation. The mineral assemblages are talc-antigorite-chlorite-magnetite and talc-

Criteria	JORC Code explanation	Commentary
		magnesite-amphibolite- magnetite. The stratigraphy is overturned and is steeply dipping (75-80 deg) to the west. The ultramafic/basalt contact strikes NW (WSEG grid N-S). The plunge of the high grade zones (matrix-strong disseminated zones) appears to shallowly plunge to the north. The ore strikes about 010 WSEG or 325 MGA. The mineralisation styles range from weakly disseminated to very strong matrix sulphide mineralisation. Drilling has intersected 2 slivers of massive sulphide of banded pyrrhotite and pentlandite grading ~10-11.8% Ni. Generally, the disseminated sulphide runs between 0.4 and 2.0% Ni with the matrix style mineralisation grading up to 5% Ni. The majority of the mineralisation is disseminated with 1 to 2 zones of stacked matrix zones. The sulphide assemblage is mainly pyrrhotite with very minor pentlandite, chalcopyrite and pyrite. There has been some millerite and violarite identified by polished thin section in several zones (Crossley, 2007). Trace Gersdorffite, galena marcasite and sphalerite has been identified associated with late stage carbonate alteration and veining(?). Trace arsenopyrite was logged in 1 hole WDD243 in the footwall basalt. There have been several zones identified from the drilling as alteration/reaction zones of swelling core. These zones have been identified as fibrous anthophyllite (~30-40%) arrays with interstitial patches of phlogopite (~30-40%) (Crossley, 2007). The zones range up to several metres generally found within UTR (talc tremolite ultramafic) zones. Depth of complete oxidation ranges from 15 to 30 metres.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the followinginformation for all Material drill holes: easting and northing of the drill hole collar, elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	See Appendix 3 above.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Drill hole summary results are included in this release. The results reported include all intersections included in the estimation of the resource. A nominal cut off of 1.0% Ni was used to define the drill intersections composites. Appendix 4 t contains all weighted composites included in the mineral resource estimate. No metal equivalents are used in this mineral resource estimate.
Relationship between mineralisation widths and	These relationships are particularly important in the reporting f Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	The drill line and drill hole orientation is oriented as close to 90 degrees to the orientation of the anticipated mineralised orientation as practicable. The majority of the drilling intersects the mineralisation at between 30 to 60 degrees.

Criteria	JORC Code explanation	Commentary
intercept lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length,true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See figures above.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All drill intercepts used in the estimation of the resource envelope irrespective of grade are reported above. The Resource envelope is constructed using a nominal 1.0% Ni cut-off.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Mineral Resources were estimated from drill hole assay data, with geological logging used to aid interpretation of mineralised contact positions. Geological observations are included in the report. Multi-element assay suites have been analysed and arsenic has been identified as a potentially deleterious element. Bulk density measurements have been taken by Consolidated Minerals across all ore zones and basal contacts using a weight in air and weight in water method. Where bulk density has not been measured it was calculated according to regression on measured Bulk density vs Nickel grades. The regression is Bulk density = 0.123*Ni% + 2.9265 Waste bulk density was assigned as 2.897. it is unknown how this figure was derived.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	No further work is planned at this stage. There is potential for possible extensions in the down plunge position to the current Mineral Resource, but the grades are considered far too low to be economic at those depths. Drill spacing is currently considered adequate to undertake limited high level economic evaluations on the project.

Gillet deposit: Section 3 Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used.	The drill hole database was sourced from original hard-copy sampling and assay records Validation measures included spot checking between database and hard copy drill logs and sections and plans. The database is an extract from an Industry Standard SQL Server database using a normalised assay data model produced by Datashed Software.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	Mr. Marshall visited Gillet numerous times between 2005 and 2007. Mr Marshall was also directly involved in the historic data compilation and validation for the project.

Criteria	JORC Code explanation	Commentary
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology.	The Gillet deposit was discovered by Consolidated Minerals in 2007 by targeting an EM anomaly delineated in a SQUID survey in 2006. Solids wireframing was completed using Surpac with the use of the geology and Ni grade. Two wireframes were created including a mineralised envelope/global wireframe encompassing the disseminated sulphide mineralisation based on 3-5% sulphide logged and 0.7% Ni grades (gillet_global_wseg7.dtm). A high grade/matrix solid was modelled based on >1% Ni grades and matrix/strong disseminated zones (gillet_dec_matrix1.dtm). A basal contact wireframe was modelled from drilling and outcrop geology (gillet_basal_wseg3.dtm). Several faults were modelled firstly based on the aeromagnetics (gillet_faults_wseg1.dtm) and then a set based on the modelled mineralisation continuity (gillet_faults_wseg2.dtm). The only valid departure from this interpretation would be to apply a different grade cut-off. Given the drill spacing, cross cutting faults, pinching and swelling , truncation of the mineralisation is possible between the drill holes, as observed in many of the other nickel mining operations in the area. The confidence in the geological interpretation must be considered to be low. The boundaries of the broader mineralised zone are consistent, but within these zones, higher/ lower grade and thicker/ thinner zones occur.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The Mineral Resources extend over a strike length of approximately 550 m. The resource starts at 80-150 metres below the current topography and extends to about 350 m depth below the surface.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping.	Grades were estimated by inverse distance squared estimation of 1.0m down-hole composited nickel assay grades from diamond and RC holes within mineralised domain wireframes. Surpac software was used for data compilation, domain wire-framing, and coding of composite values, statistics, geostatistics and resource estimation. No previous estimates have been made of the Gillet deposit. The deposit is only 500 metres away from the Widgie 3 resources mined by WMC from 1988 – 1992. WMC exploited 3 surfaces at Widgie 3. The original interpretation had all lenses continuous however with open pit mining it was found that one of the surfaces was discontinuous resulting in about a 20% drop in tonnes. No consideration has been made for the recovery of by-products. Arsenic is a significant deleterious element. It is quoted in the mineral resource table. No consideration has been made with regard to sulphur levels in the waste material but the assays are available. This is due to the preliminary nature of economic evaluation to date. Resources were estimated into the block model with 20m x 5m x 20m parent blocks (strike, cross strike, vertical,) aligned N-S on The Widgiemooltha South East Grid. For precise volume representation, sub-blocking was allowed to 5m x 1.25m x 5m. The modelling included used an anisotropic search ellipsoid with minimum data requirements of 4 data points and a maximum of 16 data points. The estimation used a 3 pass expanding approach. The first pass was 40 metres, the second pass 80 metres and the third pass 120 metres. Any unfilled cells after 3 passes were assigned the mean of the naïve data. The estimates are not intended to reflect a fixed mining method but could be amenable to several mining techniques. Details of potential mining parameters have been considered but reflect the early stage of the project evaluation. Correlations between variable were not considered apart from bulk density and nickel.

neometals.com.au

Criteria	JORC Code explanation	Commentary
	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	No Grade cutting of the input samples was used to down grade the effect of outliers in the sample population on the estimation. Consideration should be given to either domaining high grade outliers in population distributions or cutting them in the future. Model validation included visual comparison of model estimates and composite grades using section analysis with the raw drilling data and the composite data. Further naïve, declustered and block model means were compared.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages are estimated on a dry tonnage basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The cut off grades reflect Neometals' perception of the potential range of operating costs and prices of nickel. The mineralised envelope is modelled using a 1.0% Ni cut-off grade.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	Neometals has considered the possibility of both open cut and underground mining on the project. Dependant on the cost parameters used and the nickel price, mineral resource, or part thereof, is potentially amenable to open pit or underground mining.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	There were no metallurgical test work results available for this report. The high arsenic levels need to be controlled with greater understanding on the controls of its distribution.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported	Mine waste is currently held in an above ground waste dump for nearby mines such as Widgie 3. It would be expected that this practice was continued if mining commences at the Gillet resource. High talc and carbonate content and low sulphide content the waste rock suggest that ARD should not be a problem.

Criteria	JORC Code explanation	Commentary
	with an explanation of the environmental assumptions made.	
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alterationzones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Bulk density measurements have been taken by Consolidated Minerals. Bulk density were estimated in the block model using inverse distance squared. Waste bulk density was not considered.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit.	Resource classification was assigned on the basis of geological continuity and confidence. The resource classification accounts for all relevant factors in the opinion of the Competent Person. Classification of the estimates reflects the Competent Person's views of the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	A detailed audit was completed on the Mineral Resource estimate to prepare this JORC 2012 statement.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available	Confidence in the relative accuracy of the estimates is reflected by the classifications of the resource. The geostatistical procedures used to estimate, quantify and qualify the block model were completed to a reasonable standard. No blocks have been assigned an indicated or measured category which reflects the relative confidence, or lack thereof, in the accuracy of the interpretations Significant doubts about the validity of the wireframe interpretations exist as the mineral resource is located in a structurally complex and highly strained environment. This has been demonstrated by mining activity on other similar deposits in the Widgiemooltha area There is a high level of confidence in the spatial accuracy of the datasets used in the mineral resource estimate. Significant production data is available for the nearby Widgie 3 deposit that may feedback in an economic evaluation of the Gillet resource. No mining has taken place on the Gillet resource.