

ASX ANNOUNCEMENT/MEDIA RELEASE

28 June 2018

Albury Heath Drilling Enhances Resource Potential

• Recently completed RC drilling at Albury Heath returned new significant gold intersections (down hole length, true width not known):

2m @ 67.2 g/t from 27m in AHP116, incl 1m @ 129.3 g/t from 27m

4m @ **9.1 g/t** from 19m in AHP119, incl 2m @ **16.5 g/t** from 19m

2m @ **18.2 g/t** from 4m in AHP127, incl 1m @ **31.4 g/t** from 4m

1m @ **31.4 g/t** from 36m in AHP128

4m @ **5.8 g/t** from 45m in AHP129, incl 1m @ **19 g/t** from 45m

3m @ 9.0 g/t from 81m in AHP130, incl 1m @ 21.3 g/t from 82m

5m @ 63.1 g/t from 32m in AHP134, incl 1m @ 202.8 g/t from 33m

8m @ 23.1 g/t from 87m in AHP135, incl 2m @ 49.0 g/t from 87m

• All final assays awaited before analysis and re-assessment of the resource

The first batch of assays from samples collected during the recent RC drilling campaign at Albury Heath (Figure 1) have been received. Twenty nine RC holes for 1,866m were completed (see announcement on 14 May, 2018 and Figure 2). Of the total of 2,009 samples collected, 1,356 have now been received.

The drilling was undertaken to:

- Test the down dip potential of known lodes. The mineralisation is open and, based on previous drilling, shows no signs of abating at depth,
- Test the up dip potential of known lodes. Near surface mineralisation has been inadequately sampled in past drilling. Increasing this area of the resource will bolster the economics of open pit mining, and
- Sample the potentially mineralised footwall to historic underground stopes. These were inadequately sampled by past drilling. That drilling indicated that the stopes have an envelope of mineralisation on the hanging wall and also, where tested, on the footwall.

The received assays are from holes drilled into the southwestern edge of the resource (ASX announcement 7 February 2017). Drilling returned individual single metre assays of high-grade gold of **202.79** g/t (over 6 ounces per tonne), **129.3** g/t, **51.75** g/t, and **31.4** g/t gold (See Appendix 1

for full assay data). These are pleasing results in that previous drilling indicated some of the areas previously drilled were devoid of any significant gold grades. The current drilling has possibly extended the resource of those areas. Until a full analysis is undertaken, however, there is no basis to determine if such an outcome will occur.

Hole ID	Easting GDA94	Northing GDA94	Depth (m)	Azimuth (TN)	Dip
AHP111	656513	7035955	24	300°	60 [°]
AHP112	656473	7035952	50	300°	60°
AHP113	656472	7035976	30	300°	60°
AHP114	656499	7035985	70	300°	60°
AHP115	656509	7035980	84	300°	60°
AHP116	656478	7036021	30	300°	60°
AHP117	656535	7035985	84	300°	60 [°]
AHP118	656508	7036015	84	300°	60 [°]
AHP119	656497	7036034	36	300°	60 [°]
AHP120	656522	7036020	84	300°	60°
AHP121	656543	703610	84	300°	60°
AHP122	656491	7036066	20	300°	60°
AHP123	656496	7036059	45	300°	60°
AHP124	656503	7036053	30	300°	60 [°]
AHP125	656520	7036044	84	300°	60 [°]
AHP126	656541	7036033	110	300°	60°
AHP127	656500	7036072	40	300°	60°
AHP128	656509	7036068	50	300°	60°
AHP129	656522	7036059	78	300°	60°
AHP130	656536	7036060	96	300°	60°
AHP131	656520	7036078	50	300°	60°
AHP132	656508	7036097	30	300°	60 [°]
AHP133	656556	7036090	100	300°	60 [°]
AHP134	656545	7036122	120	300°	60°
AHP135	656553	7036068	65	300°	60°
AHP136	656569	7036129	90	300°	60 [°]
AHP137	656610	7036175	66	300°	60°
AHP138	656473	7036093	28	120°	60 [°]
AHP139	656473	7036093	120	120°	70°

Table 1. Drill hole statistics, RC drilling at Albury Heath. Co-ordinate system used is MGA / GDA94, Zone 50. Co-ordinates determined from hand held GPS with approximately +/-3m accuracy. RL data not presented as of insufficient accuracy at this stage. The area is generally flat.

Geology

Geological mapping of the underground workings in 1982 reported no distinction between foot wall and hanging wall, the host being a weathered medium grained fuchsitic quartz-tremolite-chlorite rock with remnant basaltic to gabbroic texture (DMIRS Open file report A37137, R.G.Colville, 1982).

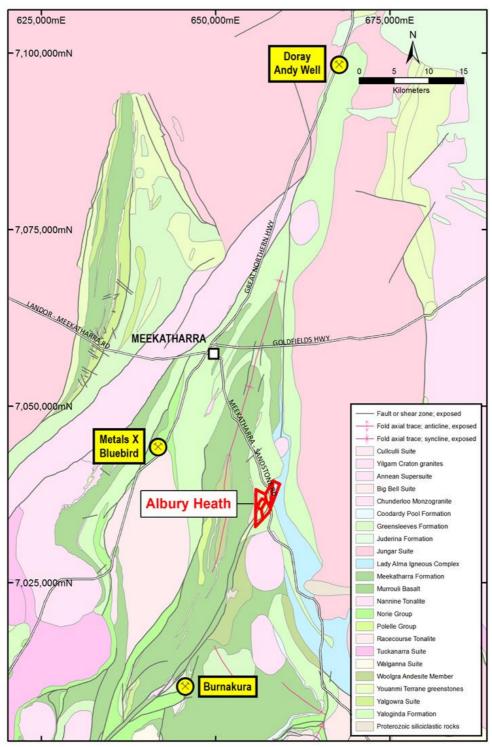


Figure 1. Location, Albury Heath Project, WA.

The quartz-haematite lode mined infilled a major shear. Narrow quartz-haematite stringers along small shears parallel to the main lode contain high gold values. The mineralised zone strikes 35° TN, varies from 0.4 to 4m in width and dips from 70° to 80° to the southeast. A steep (65°) northeasterly plunge is interpreted. The lode material contains up to 5% pyrite and minor arsenopyrite.

The host rocks are completely carbonatised mafic flow rocks; amygdaloidal and spinifex textures being evident.

Previous (historic) drilling, as reported by Cervantes 7 February, 2017 and 6 March, 2018 indicated erratic lithological correlation with gold grade in logging. The majority of that drilling was by RC and little structural information was collected. Figure 3 shows a typical grade cross section of the prospect based on gold intercepts. The position of the cross section is indicated on Figure 2.

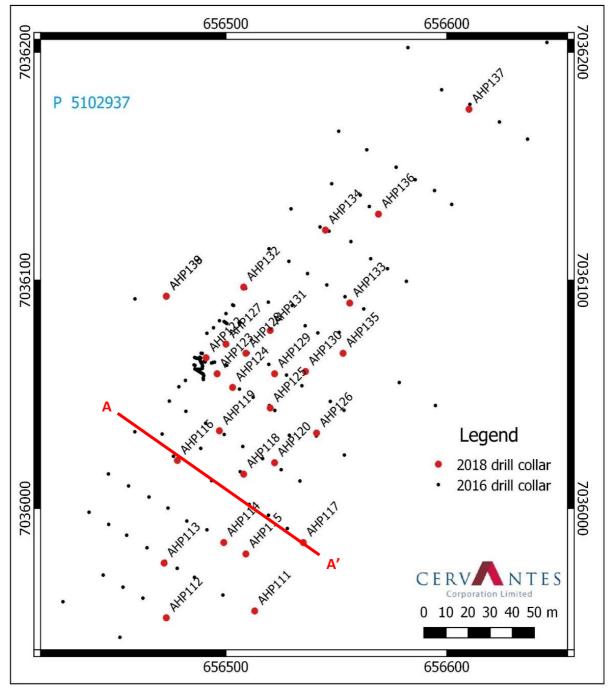
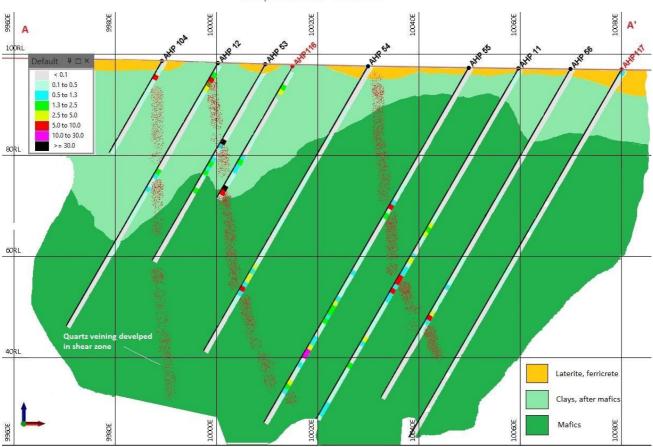



Figure 2. Drilling Location, 2018 drilling, Albury Heath Project, WA. Refer to Figure 3 for representative cross section. Grid is GDA94, Zone 50.

Page 4 of 23

Figure 3. Drill section 19960N preliminary geological interpretation. Host rock is undifferentiated mafics. Mineralisation occurs within a series of steeply dipping en echelon shear zones. RL datum for section is arbitrary. Plotted on a local grid. Location of section is shown on Figure 2. MGA94 co-ordinates of holes are listed in Table 1. Hole numbers annotated in red are the subject of this announcement.

Follow-up

Outstanding and final assays for this round of drilling are expected within the next two weeks. An interpretation of the drilling can then be made and a model synthesised. A decision will then be made on whether to recalculate the resource model for the Albury Heath and what additional work may be needed to further define that resource.

Opportunity

The Albury Heath gold resource occurs within relatively easy trucking distance of a number of existing operating and mothballed gold plants. Continued development of this project may provide early cash flow for Cervantes if the ore is toll treated, while Cervantes considers acquisition of, or working with other PL holders in the area.

Exploration Potential

Cervantes took the precaution at the time of acquiring the Albury Heath project to peg a further five Prospecting Leases around it for potential expansion of the resource through exploration. A number of targets, with a similar geophysical signature to the Albury Heath occurrence, have been identified along the NNW-SSE structure on which it occurs. Once the geologic model for Albury Heath is finalised, that model will be used for exploration on these PLs and potentially the surrounding area.

About Cervantes Corporation Limited

Cervantes is an emerging gold explorer and aspiring gold miner. It has built up a portfolio of gold properties in well-known and historically producing gold districts with a strategy to apply novel exploration and development thinking. Cervantes has identified opportunities in those districts that were overlooked by previous explorers. The company is committed to maximizing shareholder value through the development of those opportunities.

About the Albury Heath Project

The Albury Heath Project is centred on the historic Albury Heath gold mine. Gold production from underground workings during the period 1948 to 1957 totaled 2,204 oz at an average head grade of **47.8g/t** or 1.54oz/t.

Gold mineralisation is associated with quartz veining, quartz stringers, quartz stockworks, and wall rock alteration located in a major regional fault zone that trends north-northeasterly across the eastern side of the Meekatharra Greenstone Belt. The mineralisation occurs primarily within quartz-sulphide veins that are up to 4m in width. The main vein strikes north-northeasterly and dips steeply at 75° - 80° to the east-southeast.

Cervantes wholly owns six Prospecting Licences covering the Albury Heath mine and its surrounds (P51/2937 and P51/2997 to 3001). These comprise an area totaling 10.8km² that cover the northerly and southerly extent of the main controlling structure.

Competent Person's Statement

The details contained in this report that pertain to exploration results are based upon information compiled by Mr Marcus Flis, a Director and Exploration Manager of Cervantes Corporation Limited. Mr Flis is a Fellow of the Australasian Institute of Mining and Metallurgy (AusIMM) and has sufficient experience in the activity which he is undertaking to qualify as a Competent Person as defined in the December 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Flis consents to the inclusion in the report of the matters based upon his information in the form and context in which it appears.

Forward Looking Statement

This report contains forward looking statements concerning the projects owned by Cervantes Corporation Limited. Statements concerning mining reserves and resources may also be deemed to be forward looking statements in that they involve estimates based on specific assumptions. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward looking statements as a result of a variety of risks, uncertainties and other factors. Forward looking statements are based on management's beliefs, opinions and estimates as of the dates the forward looking statements are made and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

Collin Vost Executive Chairman (08) 6436 2300 <u>cvost@cervantescorp.com.au</u>

Page 6 of 23

Appendix1 RC Assays

Gold assays from recent RC drilling. All samples are of 1m intervals.

Hole Id	From m	To m	Au ppm	Hole Id	From m	To m	Au ppm	Hole Id	From m	To m	Au ppm
AHP111	0	1	0.006	AHP112	12	13	0.003	AHP112	48	49	0.006
AHP111	1	2	0.011	AHP112	13	14	0.003	AHP112	49	50	0.009
AHP111	2	3	0.003	AHP112	14	15	0.003	AHP113	0	1	0.009
AHP111	3	4	0.041	AHP112	15	16	0.003	AHP113	1	2	0.013
AHP111	4	5	0.003	AHP112	16	17	0.003	AHP113	2	3	0.003
AHP111	5	6	0.003	AHP112	17	18	0.003	AHP113	3	4	0.003
AHP111	6	7	0.003	AHP112	18	19	0.020	AHP113	4	5	0.003
AHP111	7	8	0.003	AHP112	19	20	0.009	AHP113	5	6	0.003
AHP111	8	9	0.003	AHP112	20	21	0.012	AHP113	6	7	0.006
AHP111	9	10	0.003	AHP112	21	22	0.442	AHP113	7	8	0.009
AHP111	10	11	0.003	AHP112	22	23	0.032	AHP113	8	9	0.003
AHP111	11	12	0.003	AHP112	23	24	0.100	AHP113	9	10	0.003
AHP111	12	13	0.060	AHP112	24	25	0.007	AHP113	10	11	0.782
AHP111	13	14	0.003	AHP112	25	26	0.003	AHP113	11	12	0.003
AHP111	14	15	0.003	AHP112	26	27	0.007	AHP113	12	13	0.003
AHP111	15	16	0.003	AHP112	27	28	0.003	AHP113	13	14	0.008
AHP111	16	17	0.003	AHP112	28	29	0.003	AHP113	14	15	0.003
AHP111	17	18	0.003	AHP112	29	30	0.007	AHP113	15	16	1.956
AHP111	18	19	0.003	AHP112	30	31	0.044	AHP113	16	17	0.345
AHP111	19	20	0.003	AHP112	31	32	0.003	AHP113	17	18	0.285
AHP111	20	21	0.003	AHP112	32	33	0.003	AHP113	18	19	1.389
AHP111	21	22	0.003	AHP112	33	34	0.003	AHP113	19	20	3.519
AHP111	22	23	0.003	AHP112	34	35	0.003	AHP113	20	21	0.707
AHP111	23	24	0.003	AHP112	35	36	0.003	AHP113	21	22	0.366
AHP112	0	1	0.003	AHP112	36	37	0.003	AHP113	22	23	1.668
AHP112	1	2	0.003	AHP112	37	38	0.003	AHP113	23	24	0.047
AHP112	2	3	0.003	AHP112	38	39	0.003	AHP113	24 25	25 26	0.059 0.029
AHP112	3	4	0.003	AHP112	39	40	0.006	AHP113 AHP113	25 26	26 27	0.029
AHP112	4	5	0.003	AHP112	40	41	0.003	AHP113	20	28	1.384
AHP112	5	6	0.003	AHP112	41	42	0.003	AHP113	28	29	0.492
AHP112	6	7	0.003	AHP112	42	43	0.003	AHP113	29	30	0.277
AHP112	7	, 8	0.003	AHP112	43	44	0.003	AHP114	0	1	0.003
AHP112	8	9	0.003	AHP112	44	45	0.003	AHP114	1	2	0.003
AHP112 AHP112	8 9	9 10	0.003	AHP112 AHP112	44 45	45 46	0.003	AHP114	2	3	0.003
AHP112 AHP112	9 10	10	0.003	AHP112 AHP112	45 46	40 47	0.003	AHP114	3	4	0.008
								AHP114	4 5	5	0.003
AHP112	11	12	0.003	AHP112	47	48	0.008	AHP114	5	6	0.003

Page 7 of 23

Hole Id	From m	To m	Au ppm	H	lole Id	From m	To m	Au ppm	Hole Id	From m	To m	Au ppm
AHP114	6	7	0.008	А	HP114	50	51	0.003	AHP115	19	20	0.010
AHP114	7	8	0.008	А	HP114	51	52	0.012	AHP115	20	21	0.015
AHP114	8	9	0.003	А	HP114	52	53	0.016	AHP115	21	22	0.014
AHP114	9	10	0.003	А	HP114	53	54	0.011	AHP115	22	23	0.012
AHP114	10	11	0.013	А	HP114	54	55	0.005	AHP115	23	24	0.008
AHP114	11	12	0.003	А	HP114	55	56	0.015	AHP115	24	25	0.017
AHP114	12	13	0.003	А	HP114	56	57	0.013	AHP115	25	26	0.015
AHP114	13	14	0.014	А	HP114	57	58	0.009	AHP115	26	27	0.014
AHP114	14	15	0.013	А	HP114	58	59	0.018	AHP115	27	28	0.014
AHP114	15	16	0.011	А	HP114	59	60	0.003	AHP115	28	29	0.006
AHP114	16	17	0.011	А	HP114	60	61	0.006	AHP115	29	30	0.003
AHP114	17	18	0.006	А	HP114	61	62	0.008	AHP115	30	31	0.091
AHP114	18	19	0.012	А	HP114	62	63	0.015	AHP115	31	32	0.076
AHP114	19	20	0.014	А	HP114	63	64	0.013	AHP115	32	33	0.019
AHP114	20	21	0.010	А	HP114	64	65	0.007	AHP115	33	34	0.003
AHP114	21	22	0.016	А	HP114	65	66	0.017	AHP115	34	35	0.007
AHP114	22	23	0.003	А	HP114	66	67	0.003	AHP115	35	36	0.032
AHP114	23	24	0.017	А	HP114	67	68	0.017	AHP115	36	37	0.013
AHP114	24	25	0.008	А	HP114	68	69	0.011	AHP115	37	38	0.011
AHP114	25	26	0.011	А	HP114	69	70	0.003	AHP115	38	39	0.011
AHP114	26	27	1.064	А	HP114	70	71	0.158	AHP115	39	40	0.007
AHP114	27	28	1.018	А	HP114	71	72	0.003	AHP115	40	41	0.014
AHP114	28	29	0.276	А	HP114	72	73	0.012	AHP115	41	42	0.071
AHP114	29	30	0.094	А	HP114	73	74	0.006	AHP115	42	43	0.003
AHP114	30	31	0.052	А	HP114	74	75	0.005	AHP115	43	44	0.039
AHP114	31	32	0.036	А	HP115	0	1	0.025	AHP115	44	45	0.003
AHP114	32	33	0.008	А	HP115	1	2	0.016	AHP115	45	46	0.003
AHP114	33	34	0.003	А	HP115	2	3	0.031	AHP115	46	47	0.016
AHP114	34	35	0.174	А	HP115	3	4	0.003	AHP115	47	48	0.012
AHP114	35	36	0.263	А	HP115	4	5	0.005	AHP115	48	49	0.006
AHP114	36	37	0.003		HP115	5	6	0.009	AHP115	49	50	0.008
AHP114	37	38	0.059		HP115	6	7	0.003	AHP115	50	51	0.005
AHP114	38	39	0.232	А	HP115	7	8	0.073	AHP115	51	52	0.014
AHP114	39	40	1.507	А	HP115	8	9	0.011	AHP115	52	53	0.013
AHP114	40	41	0.083		HP115	9	10	0.006	AHP115	53	54	0.010
AHP114	41	42	0.006	А	HP115	10	11	0.003	AHP115	54	55	0.012
AHP114	42	43	0.003		HP115	11	12	0.008	AHP115	55	56	0.019
AHP114	43	44	0.054		HP115	12	13	0.003	AHP115	56	57	0.013
AHP114	44	45	0.125		HP115	13	14	0.003	AHP115	57	58	0.015
AHP114	45	46	0.003		HP115	14	15	0.003	AHP115	58	59	0.013
AHP114	46	47	0.003		HP115	15	16	0.006	AHP115	59	60	0.010
AHP114	47	48	0.008		HP115	16	17	0.011	AHP115	60	61	0.010
AHP114	48	49	0.010		HP115	17	18	0.011	AHP115	61	62	0.010
AHP114	49	50	0.009	А	HP115	18	19	0.021	AHP115	62	63	0.012

Page 8 of 23

Hole Id	From m	To m	Au ppm	Hole Id	From m	To m	Au ppm	Hole Id	From m	To m	Au ppm
AHP115	63	64	0.007	AHP116	23	24	0.557	AHP117	37	38	0.003
AHP115	64	65	0.012	AHP116	24	25	0.259	AHP117	38	39	0.013
AHP115	65	66	0.016	AHP116	25	26	0.313	AHP117	39	40	0.065
AHP115	66	67	0.019	AHP116	26	27	0.209	AHP117	40	41	0.040
AHP115	67	68	0.018	AHP116	27	28	129.319	AHP117	41	42	0.081
AHP115	68	69	0.003	AHP116	28	29	5.046	AHP117	42	43	0.156
AHP115	69	70	0.010	AHP116	i 29	30	0.339	AHP117	43	44	0.025
AHP115	70	71	0.008	AHP117	0	1	1.225	AHP117	44	45	0.008
AHP115	71	72	0.013	AHP117	' 1	2	0.276	AHP117	45	46	0.128
AHP115	72	73	0.014	AHP117	2	3	0.073	AHP117	46	47	0.215
AHP115	73	74	0.019	AHP117	3	4	0.026	AHP117	47	48	0.020
AHP115	74	75	0.011	AHP117	4	5	0.014	AHP117	48	49	0.257
AHP115	75	76	0.003	AHP117	5	6	0.013	AHP117	49	50	0.055
AHP115	76	77	0.008	AHP117	6	7	0.031	AHP117	50	51	0.366
AHP115	77	78	0.019	AHP117	7	8	0.014	AHP117	51	52	0.268
AHP115	78	79	0.003	AHP117	8	9	0.012	AHP117	52	53	0.049
AHP115	79	80	0.008	AHP117	9	10	0.007	AHP117	53	54	0.031
AHP115	80	81	0.012	AHP117	10	11	0.007	AHP117	54	55	0.074
AHP115	81	82	0.003	AHP117	' 11	12	0.032	AHP117	55	56	0.056
AHP115	82	83	0.017	AHP117	′ 12	13	0.009	AHP117	56	57	0.026
AHP115	83	84	0.012	AHP117	′ 13	14	0.010	AHP117	57	58	0.051
AHP116	0	1	0.130	AHP117	′ 14	15	0.015	AHP117	58	59	0.009
AHP116	1	2	0.203	AHP117	' 15	16	0.009	AHP117	59	60	0.003
AHP116	2	3	0.141	AHP117	' 16	17	0.003	AHP117	60	61	0.166
AHP116	3	4	0.033	AHP117	' 17	18	0.003	AHP117	61	62	0.445
AHP116	4	5	1.729	AHP117	′ 18	19	0.003	AHP117	62	63	0.038
AHP116	5	6	3.956	AHP117	' 19	20	0.003	AHP117	63	64	0.012
AHP116	6	7	0.102	AHP117	20	21	0.003	AHP117	64	65	0.042
AHP116	7	8	0.013	AHP117	21	22	0.003	AHP117	65	66	0.016
AHP116	8	9	0.003	AHP117	22	23	0.003	AHP117	66	67	0.106
AHP116	9	10	0.003	AHP117	23	24	0.003	AHP117	67	68	0.038
AHP116	10	11	0.006	AHP117	24	25	0.006	AHP117	68	69	0.100
AHP116	11	12	0.003	AHP117		26	0.015	AHP117	69	70	0.008
AHP116	12	13	0.003	AHP117		27	0.254	AHP117	70	71	0.005
AHP116	13	14	0.025	AHP117		28	0.026	AHP117	71	72	0.003
AHP116	14	15	0.032	AHP117	28	29	0.005	AHP117	72	73	0.173
AHP116	15	16	0.206	AHP117		30	0.006	AHP117	73	74	0.003
AHP116	16	17	0.135	AHP117		31	0.003	AHP117	74	75	0.003
AHP116	17	18	0.196	AHP117		32	0.003	AHP117	75	76	0.003
AHP116	18	19	0.040	AHP117		33	0.003	AHP117	76	77	0.003
AHP116	19	20	0.046	AHP117		34	0.003	AHP117	77	78	0.003
AHP116	20	21	0.719	AHP117		35	0.009	AHP117	78	79	0.024
AHP116	21	22	1.977	AHP117		36	0.136	AHP117	79	80	0.003
AHP116	22	23	0.742	AHP117		37	0.123	AHP117	80	81	0.014

Page 9 of 23

Hole Id	From m	To m	Au ppm	Hole Id	From m	To m	Au ppm	Hole Id	From m	To m	Au ppm
AHP117	81	82	0.075	AHP118	42	43	0.028	AHP119	2	3	0.023
AHP117	82	83	0.007	AHP118	43	44	0.007	AHP119	3	4	0.030
AHP117	83	84	0.003	AHP118	44	45	0.006	AHP119	4	5	0.019
AHP118	0	1	0.045	AHP118	45	46	0.008	AHP119	5	6	0.018
AHP118	1	2	0.039	AHP118	46	47	0.062	AHP119	6	7	0.021
AHP118	2	3	0.011	AHP118	47	48	0.070	AHP119	7	8	0.021
AHP118	3	4	0.009	AHP118	48	49	0.986	AHP119	8	9	0.017
AHP118	4	5	0.009	AHP118	49	50	0.114	AHP119	9	10	0.036
AHP118	5	6	0.007	AHP118	50	51	0.026	AHP119	10	11	0.044
AHP118	6	7	0.016	AHP118	51	52	1.383	AHP119	11	12	0.012
AHP118	7	8	0.010	AHP118	52	53	3.042	AHP119	12	13	0.053
AHP118	8	9	0.003	AHP118	53	54	2.999	AHP119	13	14	0.052
AHP118	9	10	0.010	AHP118	54	55	0.192	AHP119	14	15	0.174
AHP118	10	11	0.008	AHP118	55	56	0.117	AHP119	15	16	0.463
AHP118	11	12	0.013	AHP118	56	57	0.057	AHP119	16	17	0.024
AHP118	12	13	0.019	AHP118	57	58	1.479	AHP119	17	18	0.020
AHP118	13	14	0.005	AHP118	58	59	0.079	AHP119	18	19	0.286
AHP118	14	15	0.010	AHP118	59	60	0.034	AHP119	19	20	24.412
AHP118	15	16	0.014	AHP118	60	61	0.047	AHP119	20	21	8.662
AHP118	16	17	0.003	AHP118	61	62	0.905	AHP119	21	22	0.066
AHP118	17	18	0.003	AHP118	62	63	1.440	AHP119	22	23	3.224
AHP118	18	19	0.016	AHP118	63	64	0.928	AHP119	23	24	0.265
AHP118	19	20	0.003	AHP118	64	65	0.072	AHP119	24	25	0.090
AHP118	20	21	0.079	AHP118	65	66	0.258	AHP119	25	26	0.125
AHP118	21	22	0.020	AHP118	66	67	0.025	AHP119	26	27	0.062
AHP118	22	23	0.005	AHP118	67	68	0.022	AHP119	27	28	0.036
AHP118	23	24	0.016	AHP118	68	69	0.668	AHP119	28	29	0.052
AHP118	24	25	0.003	AHP118	69	70	0.176	AHP119	29	30	3.050
AHP118	25	26	0.017	AHP118	70	71	0.093	AHP119	30	31	0.026
AHP118	26	27	0.012	AHP118	71	72	0.189	AHP119	31	32	0.026
AHP118	27	28	0.015	AHP118	72	73	0.051	AHP119	32	33	0.009
AHP118	28	29	0.013	AHP118	73	74	0.089	AHP119	33	34	0.037
AHP118	29	30	0.087	AHP118	74	75	0.196	AHP119	34	35	0.020
AHP118	30	31	0.024	AHP118	75	76	0.108	AHP119	35	36	0.014
AHP118	31	32	1.334	AHP118	76	77	0.076	AHP120	0	1	0.106
AHP118	32	33	0.089	AHP118	77	78	6.798	AHP120	1	2	0.099
AHP118	33	34	0.116	AHP118	78	79	0.076	AHP120	2	3	0.028
AHP118	34	35	0.063	AHP118	79	80	0.007	AHP120	3	4	0.008
AHP118	35	36	0.035	AHP118	80	81	0.124	AHP120	4	5	0.014
AHP118	36	37	1.125	AHP118	81	82	0.011	AHP120	5	6	0.021
AHP118	38	39	0.012	AHP118	82	83	0.003	AHP120	6	7	0.013
AHP118	39	40	0.006	AHP118	83	84	0.003	AHP120	7	8	0.008
AHP118	40	41	0.055	AHP119	0	1	0.061	AHP120	8	9	0.007
AHP118	41	42	0.034	AHP119	1	2	0.043	AHP120	9	10	0.006

Page 10 of 23

Hole Id	From m	To m	Au ppm	Hole Id	From m	To m	Au ppm	Hole Id	From m	To m	Au ppm
AHP120	10	11	0.063	AHP120	54	55	0.117	AHP126	20	21	0.010
AHP120	11	12	0.023	AHP120	55	56	0.053	AHP126	21	22	0.003
AHP120	12	13	0.021	AHP120	56	57	0.013	AHP126	22	23	0.010
AHP120	13	14	0.028	AHP120	57	58	0.206	AHP126	23	24	0.012
AHP120	14	15	0.005	AHP125	64	65	5.817	AHP126	24	25	0.014
AHP120	15	16	0.003	AHP125	65	66	0.291	AHP126	25	26	0.028
AHP120	16	17	0.003	AHP125	66	67	0.075	AHP126	26	27	0.016
AHP120	17	18	0.008	AHP125	67	68	0.071	AHP126	27	28	0.003
AHP120	18	19	0.003	AHP125	68	69	0.031	AHP126	28	29	0.003
AHP120	19	20	0.003	AHP125	69	70	0.015	AHP126	29	30	0.006
AHP120	20	21	0.009	AHP125	70	71	0.022	AHP126	30	31	0.006
AHP120	21	22	0.042	AHP125	71	72	0.045	AHP126	31	32	0.022
AHP120	22	23	0.003	AHP125	72	73	0.006	AHP126	32	33	0.003
AHP120	23	24	0.003	AHP125	73	74	0.003	AHP126	33	34	0.059
AHP120	24	25	0.003	AHP125	74	75	0.003	AHP126	34	35	0.003
AHP120	25	26	0.032	AHP125	75	76	0.017	AHP126	35	36	0.047
AHP120	26	27	0.017	AHP125	76	77	0.057	AHP126	36	37	0.020
AHP120	27	28	0.049	AHP125	77	78	0.005	AHP126	37	38	0.003
AHP120	28	29	0.246	AHP125	78	79	0.013	AHP126	38	39	0.023
AHP120	29	30	0.018	AHP125	79	80	0.007	AHP126	39	40	0.003
AHP120	30	31	0.017	AHP125	80	81	0.003	AHP126	40	41	0.010
AHP120	31	32	0.034	AHP125	81	82	0.044	AHP126	41	42	0.043
AHP120	32	33	0.136	AHP125	82	83	0.075	AHP126	42	43	0.034
AHP120	33	34	0.031	AHP125	83	84	0.038	AHP126	43	44	0.009
AHP120	34	35	0.028	AHP126	0	1	0.027	AHP126	44	45	0.016
AHP120	35	36	0.044	AHP126	1	2	0.019	AHP126	45	46	0.011
AHP120	36	37	0.003	AHP126	2	3	0.051	AHP126	46	47	0.003
AHP120	37	38	0.016	AHP126	3	4	0.006	AHP126	47	48	0.006
AHP120	38	39	0.003	AHP126	4	5	0.003	AHP126	48	49	0.006
AHP120	39	40	0.003	AHP126	5	6	0.003	AHP126	49	50	0.008
AHP120	40	41	0.044	AHP126	6	7	0.010	AHP126	50	51	0.008
AHP120	41	42	0.006	AHP126	7	8	0.005	AHP126	51	52	0.005
AHP120	42	43	0.021	AHP126	8	9	0.003	AHP126	52	53	0.022
AHP120	43	44	0.037	AHP126	9	10	0.003	AHP126	53	54	0.025
AHP120	44	45	0.017	AHP126	10	11	0.003	AHP126	54	55	0.833
AHP120	45	46	0.331	AHP126	11	12	0.003	AHP126	55	56	0.151
AHP120	46	47	0.072	AHP126	12	13	0.003	AHP126	56	57	0.346
AHP120	47	48	0.016	AHP126	13	14	0.003	AHP126	57	58	2.084
AHP120	48	49	0.010	AHP126	14	15	0.003	AHP126	58	59	0.768
AHP120	49	50	0.145	AHP126	15	16	0.003	AHP126	59	60	0.420
AHP120	50	51	0.062	AHP126	16	17	0.003	AHP126	60	61	0.019
AHP120	51	52	1.413	AHP126	17	18	0.013	AHP126	61	62	0.069
AHP120	52	53	1.037	AHP126	18	19	0.009	AHP126	62	63	0.523
AHP120	53	54	0.279	AHP126	19	20	0.003	AHP126	63	64	0.225

Page 11 of 23

AHP1266465AHP1266566AHP1266667AHP1266768AHP1266970AHP1267071AHP1267172AHP1267273AHP1267374AHP1267475AHP1267576AHP1267677AHP1267677AHP1267879AHP1267879AHP1267881AHP1268182AHP1268182AHP1268384AHP1268384AHP1268485AHP1268586AHP1268788AHP1268889AHP1269091AHP1269192AHP1269394AHP1269495AHP1269596AHP1269798	0.463 AHP1 4.714 AHP1 0.009 AHP1 0.006 AHP1 0.014 AHP1 0.024 AHP1 0.027 AHP1 0.079 AHP1 0.007 AHP1 0.007 AHP1 0.007 AHP1 0.007 AHP1 0.007 AHP1 0.006 AHP1 0.007 AHP1 0.006 AHP1 0.007 AHP1 0.004 AHP1 0.009 AHP1 0.009 AHP1 0.009 AHP1 0.009 AHP1	26 109 26 110 26 111 26 112 26 113 27 0 27 1 27 2 27 3 27 4 27 5 27 6 27 7 27 8 27 9 27 10 27 11	109 110 111 112 113 114 1 2 3 4 5 6 7 8 9 10 11	0.111 0.047 0.030 0.036 0.062 0.122 0.169 0.079 0.126 0.195 31.377 5.088 0.538 0.099 0.143 0.719	AHP127 AHP127 AHP127 AHP128 AHP128 AHP128 AHP128 AHP128 AHP128 AHP128 AHP128	39 40 41 0 1 2 3 4 5 6 7 8	40 41 42 1 2 3 4 5 6 7 8 9	0.00 0.01 0.12 0.06 0.03 0.06 0.04 0.04 0.02 0.02 0.02
AHP1266667AHP1266768AHP1266970AHP1267071AHP1267172AHP1267273AHP1267374AHP1267475AHP1267576AHP1267677AHP1267879AHP1267879AHP1267880AHP1268081AHP1268182AHP1268384AHP1268384AHP1268586AHP1268586AHP1268586AHP1268788AHP1268889AHP1268990AHP1269091AHP1269394AHP1269596AHP1269596AHP1269596	0.009 AHP1 0.006 AHP1 0.014 AHP1 0.024 AHP1 0.027 AHP1 0.079 AHP1 0.007 AHP1 0.007 AHP1 0.007 AHP1 0.007 AHP1 0.003 AHP1 0.004 AHP1 0.005 AHP1 0.006 AHP1 0.011 AHP1 0.041 AHP1 0.049 AHP1	26 110 26 111 26 112 26 113 27 0 27 1 27 2 27 3 27 4 27 5 27 6 27 7 27 8 27 9 27 10 27 11	111 112 113 114 1 2 3 4 5 6 7 8 9 10 11	0.030 0.036 0.062 0.122 0.169 0.079 0.126 0.195 31.377 5.088 0.538 0.099 0.143 0.719	AHP127 AHP128 AHP128 AHP128 AHP128 AHP128 AHP128 AHP128 AHP128	41 0 1 2 3 4 5 6 7	42 1 2 3 4 5 6 7 8	0.01 0.12 0.06 0.03 0.04 0.04 0.04 0.02 0.02
AHP1266667AHP1266768AHP1266970AHP1267071AHP1267172AHP1267273AHP1267374AHP1267475AHP1267576AHP1267677AHP1267879AHP1267879AHP1267880AHP1268081AHP1268182AHP1268384AHP1268384AHP1268586AHP1268586AHP1268788AHP1268889AHP1268990AHP1269091AHP1269394AHP1269596AHP1269596AHP1269596	0.009 AHP1 0.006 AHP1 0.014 AHP1 0.024 AHP1 0.027 AHP1 0.079 AHP1 0.007 AHP1 0.007 AHP1 0.007 AHP1 0.007 AHP1 0.003 AHP1 0.004 AHP1 0.005 AHP1 0.006 AHP1 0.011 AHP1 0.041 AHP1 0.049 AHP1	26 110 26 111 26 112 26 113 27 0 27 1 27 2 27 3 27 4 27 5 27 6 27 7 27 8 27 9 27 10 27 11	111 112 113 114 1 2 3 4 5 6 7 8 9 10 11	0.030 0.036 0.062 0.122 0.169 0.079 0.126 0.195 31.377 5.088 0.538 0.099 0.143 0.719	AHP127 AHP128 AHP128 AHP128 AHP128 AHP128 AHP128 AHP128 AHP128	41 0 1 2 3 4 5 6 7	42 1 2 3 4 5 6 7 8	0.03 0.12 0.06 0.03 0.04 0.04 0.04 0.02
AHP1266869AHP1267071AHP1267071AHP1267172AHP1267273AHP1267475AHP1267475AHP1267677AHP1267677AHP1267879AHP1267879AHP1268081AHP1268182AHP1268384AHP1268384AHP1268586AHP1268586AHP1268586AHP1268485AHP1268586AHP1268788AHP1268990AHP1269091AHP1269192AHP1269394AHP1269596AHP1269596AHP1269596	0.014 AHP1 0.024 AHP1 0.079 AHP1 0.079 AHP1 0.007 AHP1 0.007 AHP1 0.003 AHP1 0.003 AHP1 0.006 AHP1 0.006 AHP1 0.011 AHP1 0.041 AHP1 0.049 AHP1	26 112 26 113 27 0 27 1 27 2 27 3 27 4 27 5 27 6 27 7 27 8 27 9 27 10 27 11	113 114 1 2 3 4 5 6 7 8 9 10 11	0.036 0.062 0.122 0.169 0.079 0.126 0.195 31.377 5.088 0.538 0.099 0.143 0.719	AHP128 AHP128 AHP128 AHP128 AHP128 AHP128 AHP128	1 2 3 4 5 6 7	2 3 4 5 6 7 8	0.00 0.00 0.00 0.00 0.00 0.00
AHP126 69 70 AHP126 70 71 AHP126 71 72 AHP126 72 73 AHP126 73 74 AHP126 74 75 AHP126 75 76 AHP126 76 77 AHP126 76 77 AHP126 76 77 AHP126 78 79 AHP126 79 80 AHP126 79 80 AHP126 81 82 AHP126 81 82 AHP126 81 82 AHP126 84 85 AHP126 84 85 AHP126 85 86 AHP126 87 88 AHP126 89 90 AHP126 91 92 AHP126 91 92 AHP126 93 94 AHP126 95 96 AHP126 95 96 AHP126	0.024 AHP1 7.777 AHP1 0.079 AHP1 0.007 AHP1 0.007 AHP1 0.003 AHP1 0.009 AHP1 0.006 AHP1 0.011 AHP1 0.041 AHP1 0.049 AHP1	26 113 27 0 27 1 27 2 27 3 27 4 27 5 27 6 27 7 27 8 27 9 27 10 27 11	114 1 2 3 4 5 6 7 8 9 10 11	0.062 0.122 0.169 0.079 0.126 0.195 31.377 5.088 0.538 0.099 0.143 0.719	AHP128 AHP128 AHP128 AHP128 AHP128 AHP128	2 3 4 5 6 7	3 4 5 6 7 8	0.0 0.0 0.0 0.0 0.0
AHP1267071AHP1267172AHP1267273AHP1267374AHP1267475AHP1267576AHP1267677AHP1267879AHP1267879AHP1268081AHP1268182AHP1268182AHP1268384AHP1268586AHP1268586AHP1268586AHP1268788AHP1268889AHP1268990AHP1269091AHP1269192AHP1269394AHP1269596AHP1269596AHP1269596	7.777 AHP1 0.079 AHP1 0.007 AHP1 0.007 AHP1 0.003 AHP1 0.009 AHP1 0.006 AHP1 0.011 AHP1 0.041 AHP1 0.049 AHP1	27 0 27 1 27 2 27 3 27 4 27 5 27 6 27 7 27 8 27 9 27 10 27 11	1 2 3 4 5 6 7 8 9 10 11	0.122 0.169 0.079 0.126 0.195 31.377 5.088 0.538 0.099 0.143 0.719	AHP128 AHP128 AHP128 AHP128 AHP128	3 4 5 6 7	4 5 6 7 8	0.0 0.0 0.0 0.0 0.0
AHP1267172AHP1267273AHP1267374AHP1267475AHP1267576AHP1267677AHP1267879AHP1267879AHP1267880AHP1268081AHP1268182AHP1268384AHP1268384AHP1268586AHP1268586AHP1268586AHP1268788AHP1268889AHP1268990AHP1269091AHP1269192AHP1269394AHP1269596AHP1269596AHP1269596	0.079 AHP1 0.007 AHP1 0.007 AHP1 0.003 AHP1 0.009 AHP1 0.006 AHP1 0.011 AHP1 0.041 AHP1 0.009 AHP1 0.049 AHP1	27 1 27 2 27 3 27 4 27 5 27 6 27 7 27 8 27 9 27 10 27 11	2 3 4 5 6 7 8 9 10 11	0.169 0.079 0.126 0.195 31.377 5.088 0.538 0.099 0.143 0.719	AHP128 AHP128 AHP128 AHP128	4 5 6 7	5 6 7 8	0.0 0.0 0.0
AHP1267273AHP1267374AHP1267475AHP1267576AHP1267677AHP1267879AHP1267980AHP1268182AHP1268182AHP1268384AHP1268384AHP1268384AHP1268485AHP1268586AHP1268485AHP1268485AHP1268485AHP1268687AHP1268687AHP1269091AHP1269192AHP1269192AHP1269394AHP1269495AHP1269596AHP1269596AHP1269697	0.007 AHP1 0.007 AHP1 0.003 AHP1 0.009 AHP1 0.006 AHP1 0.011 AHP1 0.041 AHP1 0.009 AHP1 0.0049 AHP1	27 2 27 3 27 4 27 5 27 6 27 7 27 8 27 9 27 10 27 11	3 4 5 7 8 9 10 11	0.126 0.195 31.377 5.088 0.538 0.099 0.143 0.719	AHP128 AHP128 AHP128	5 6 7	6 7 8	0.0 0.0 0.0
AHP1267374AHP1267475AHP1267576AHP1267677AHP1267778AHP1267879AHP1267980AHP1268081AHP1268182AHP1268384AHP1268384AHP1268485AHP1268586AHP1268485AHP1268586AHP1268687AHP1268788AHP1268990AHP1269091AHP1269192AHP1269394AHP1269495AHP1269596AHP1269596AHP1269697	0.007 AHP1 0.003 AHP1 0.009 AHP1 0.006 AHP1 0.006 AHP1 0.011 AHP1 0.041 AHP1 0.009 AHP1 0.004 AHP1 0.049 AHP1	27 3 27 4 27 5 27 6 27 7 27 8 27 9 27 10 27 11	4 5 7 8 9 10 11	0.195 31.377 5.088 0.538 0.099 0.143 0.719	AHP128 AHP128	6 7	7 8	0.0 0.0
AHP1267374AHP1267475AHP1267576AHP1267677AHP1267778AHP1267879AHP1267980AHP1268081AHP1268182AHP1268384AHP1268384AHP1268485AHP1268586AHP1268788AHP1268788AHP1268990AHP1269091AHP1269192AHP1269394AHP1269495AHP1269596AHP1269596AHP1269596	0.003 AHP1 0.009 AHP1 0.006 AHP1 0.066 AHP1 0.011 AHP1 0.041 AHP1 0.009 AHP1 0.004 AHP1 0.049 AHP1	27 4 27 5 27 6 27 7 27 8 27 9 27 10 27 11	5 6 7 8 9 10 11	0.195 31.377 5.088 0.538 0.099 0.143 0.719	AHP128 AHP128	7	8	0.0
AHP1267475AHP1267576AHP1267677AHP1267778AHP1267879AHP1267980AHP1268182AHP1268182AHP1268384AHP1268384AHP1268485AHP1268586AHP1268788AHP1268687AHP1268990AHP1269192AHP1269192AHP1269394AHP1269495AHP1269596AHP1269596	0.003 AHP1 0.009 AHP1 0.006 AHP1 0.066 AHP1 0.011 AHP1 0.041 AHP1 0.009 AHP1 0.004 AHP1 0.049 AHP1	27 4 27 5 27 6 27 7 27 8 27 9 27 10 27 11	5 6 7 8 9 10 11	31.377 5.088 0.538 0.099 0.143 0.719	AHP128	7		0.0
AHP1267576AHP1267677AHP1267778AHP1267879AHP1267980AHP1268081AHP1268182AHP1268283AHP1268384AHP1268485AHP1268586AHP1268788AHP1268788AHP1268788AHP1268990AHP1269091AHP1269192AHP1269394AHP1269394AHP1269596AHP1269596	0.009 AHP1 0.006 AHP1 0.066 AHP1 0.011 AHP1 0.041 AHP1 0.009 AHP1 0.041 AHP1 0.042 AHP1	27 5 27 6 27 7 27 8 27 9 27 10 27 11	7 8 9 10 11	5.088 0.538 0.099 0.143 0.719		8		
AHP1267677AHP1267778AHP1267879AHP1267980AHP1268081AHP1268182AHP1268283AHP1268384AHP1268485AHP1268586AHP1268788AHP1268788AHP1268990AHP1269192AHP1269394AHP1269495AHP1269596AHP1269596	0.006 AHP1 0.066 AHP1 0.011 AHP1 0.041 AHP1 0.009 AHP1 0.049 AHP1	27 6 27 7 27 8 27 9 27 10 27 11	7 8 9 10 11	0.538 0.099 0.143 0.719	AHP128			-
AHP126 77 78 AHP126 78 79 AHP126 79 80 AHP126 80 81 AHP126 81 82 AHP126 81 82 AHP126 81 82 AHP126 83 84 AHP126 83 84 AHP126 85 86 AHP126 85 86 AHP126 87 88 AHP126 87 88 AHP126 89 90 AHP126 91 92 AHP126 91 92 AHP126 93 94 AHP126 95 96 AHP126 95 96	0.066 AHP1 0.011 AHP1 0.041 AHP1 0.009 AHP1 0.049 AHP1	27 7 27 8 27 9 27 10 27 11	8 9 10 11	0.099 0.143 0.719	AHP128	9	10	0.0
AHP1267879AHP1267980AHP1268081AHP1268182AHP1268283AHP1268384AHP1268485AHP1268586AHP1268788AHP1268788AHP1268990AHP1269091AHP1269192AHP1269394AHP1269495AHP1269596AHP1269597	0.011 AHP1 0.041 AHP1 0.009 AHP1 0.049 AHP1	27 8 27 9 27 10 27 11	9 10 11	0.143 0.719	AHP128	10	11	0.0
AHP1267980AHP1268081AHP1268182AHP1268283AHP1268384AHP1268485AHP1268586AHP1268788AHP1268788AHP1268990AHP1269192AHP1269192AHP1269394AHP1269596AHP1269597	0.041 AHP1 0.009 AHP1 0.049 AHP1	27 9 27 10 27 11	10 11	0.719	AHP128	11	12	0.6
AHP1268081AHP1268182AHP1268283AHP1268384AHP1268485AHP1268586AHP1268788AHP1268788AHP1268990AHP1269091AHP1269192AHP1269192AHP1269394AHP1269495AHP1269596AHP1269597	0.009 AHP1 0.049 AHP1	27 10 27 11	11		AHP128	12	13	0.6
AHP1268182AHP1268283AHP1268384AHP1268485AHP1268586AHP1268788AHP1268788AHP1268990AHP1269192AHP1269192AHP1269394AHP1269495AHP1269596AHP1269597	0.049 AHP1	27 11		1.844	AHP128	13	14	0.0
AHP1268283AHP1268384AHP1268485AHP1268586AHP1268687AHP1268788AHP1268990AHP1269091AHP1269192AHP1269394AHP1269495AHP1269596AHP1269597			12	0.445	AHP128	14	15	5.2
AHP1268384AHP1268485AHP1268586AHP1268687AHP1268788AHP1268990AHP1269091AHP1269192AHP1269192AHP1269394AHP1269394AHP1269495AHP1269596AHP1269596		_/	13	0.018	AHP128	15	16	0.0
AHP1268485AHP1268586AHP1268687AHP1268788AHP1268990AHP1269091AHP1269192AHP1269192AHP1269394AHP1269495AHP1269596AHP1269597	0.006 AHP1		14	0.104	AHP128	16	17	0.0
AHP1268586AHP1268687AHP1268788AHP1268990AHP1269091AHP1269192AHP1269293AHP1269394AHP1269495AHP1269596AHP1269697	0.012 AHP1		15	0.060	AHP128	17	18	0.0
AHP126 86 87 AHP126 87 88 AHP126 88 89 AHP126 89 90 AHP126 90 91 AHP126 91 92 AHP126 91 92 AHP126 91 92 AHP126 93 94 AHP126 94 95 AHP126 95 96 AHP126 96 97	0.107 AHP1		16	0.008	AHP128	18	19	0.0
AHP126 87 88 AHP126 88 89 AHP126 89 90 AHP126 90 91 AHP126 91 92 AHP126 91 92 AHP126 92 93 AHP126 93 94 AHP126 94 95 AHP126 95 96 AHP126 96 97	0.218 AHP1		17	0.098	AHP128	19	20	0.0
AHP126 88 89 AHP126 89 90 AHP126 90 91 AHP126 91 92 AHP126 91 92 AHP126 93 94 AHP126 94 95 AHP126 95 96 AHP126 96 97	0.053 AHP1		18	0.023	AHP128	20	21	0.1
AHP1268990AHP1269091AHP1269192AHP1269293AHP1269394AHP1269495AHP1269596AHP1269697	0.030 AHP1		19	0.006	AHP128	21	22	0.0
AHP126 90 91 AHP126 91 92 AHP126 92 93 AHP126 93 94 AHP126 93 94 AHP126 94 95 AHP126 95 96 AHP126 96 97	0.005 AHP1		20	0.081	AHP128	22	23	7.7
AHP126 91 92 AHP126 92 93 AHP126 93 94 AHP126 94 95 AHP126 95 96 AHP126 96 97	0.033 AHP1		21	0.003	AHP128	23	24	0.0
AHP1269293AHP1269394AHP1269495AHP1269596AHP1269697	0.011 AHP1		22	0.006	AHP128	24	25	0.1
AHP126 93 94 AHP126 94 95 AHP126 95 96 AHP126 96 97	0.018 AHP1		23	0.003	AHP128	25	26	0.2
AHP126 94 95 AHP126 95 96 AHP126 96 97	0.300 AHP1		24	0.005	AHP128	26	27	0.2
AHP126 95 96 AHP126 96 97	0.025 AHP1		25	0.165	AHP128	27	28	0.0
AHP126 96 97	0.062 AHP1		26	0.047	AHP128	28	29	0.0
	5.341 AHP1		27	0.030	AHP128	29	30	0.0
	0.381 AHP1		28	0.395	AHP128	30	31	0.0
AHP126 98 99	0.186 AHP1		30	0.041	AHP128	31	32	0.8
AHP126 99 100	0.101 AHP1		31	0.036	AHP128	32	33	0.0
AHP126 100 101	0.356 AHP1		32	0.109	AHP128	33	34	0.0
AHP126 101 102	0.473 AHP1		33	0.041	AHP128	34	35	0.1
AHP126 102 103	0.028 AHP1		34	0.033	AHP128	35	36	0.0
AHP126 103 104			35	0.003	AHP128	36	37	31.4
AHP126 104 105			36	0.005	AHP128	37	38	0.0
AHP126 105 106	0.019 AHP1		37	0.003	AHP128	38	39	0.0
AHP126 106 107	0.019 AHP1 0.016 AHP1		38	0.003	AHP128	39	40	0.0
AHP126 107 108	0.019 AHP1	27 37		0.000	AHP128	40	41	0.0

Hole Id	From m	To m	Au ppm	Hol	e Id	From m	To m	Au ppm		Hole Id	From m	To m	Au ppm
AHP128	41	42	0.026	AHF	P129	31	32	0.025		AHP129	77	78	0.085
AHP128	42	43	0.448	AHF	P129	32	33	0.022		AHP130	0	1	0.060
AHP128	43	44	0.012	AHF	P129	33	34	0.342		AHP130	1	2	0.027
AHP128	44	45	0.396	AHF	P129	34	35	1.192		AHP130	2	3	0.012
AHP128	45	46	0.542	AHF	P129	35	36	0.022		AHP130	3	4	0.009
AHP128	46	47	2.014	AHF	P129	36	37	0.006		AHP130	4	5	0.009
AHP128	47	48	0.974	AHF	P129	37	38	0.003		AHP130	5	6	0.008
AHP128	48	49	0.988	AHF	P129	38	39	0.003		AHP130	6	7	0.006
AHP128	49	50	2.342	AHF	P129	39	40	0.003		AHP130	7	8	0.003
AHP128	50	51	0.684	AHF	P129	40	41	0.003		AHP130	8	9	0.006
AHP128	51	52	0.488	AHF	P129	41	42	0.003		AHP130	9	10	0.007
AHP128	52	53	0.193	AHF	P129	42	43	0.017		AHP130	10	11	0.007
AHP128	53	54	0.181	AHF	P129	43	44	0.099		AHP130	11	12	0.003
AHP129	0	1	0.081	AHF	P129	44	45	0.010		AHP130	12	13	0.003
AHP129	1	2	0.032	AHF	P129	45	46	18.963		AHP130	13	14	0.008
AHP129	2	3	0.023	AHF	P129	46	47	3.157		AHP130	14	15	0.008
AHP129	3	4	0.003	AHF	P129	47	48	0.418		AHP130	15	16	0.007
AHP129	4	5	0.003	AHF	P129	49	50	0.314		AHP130	16	17	0.007
AHP129	5	6	0.005	AHF	P129	50	51	0.132		AHP130	17	18	0.003
AHP129	6	7	0.011	AHF	P129	51	52	0.486		AHP130	18	19	0.003
AHP129	7	8	0.003	AHF	P129	52	53	0.858		AHP130	19	20	0.003
AHP129	8	9	0.003	AHF	P129	53	54	0.630		AHP130	20	21	0.003
AHP129	9	10	0.008	AHF	P129	54	55	0.052		AHP130	21	22	0.008
AHP129	10	11	0.018	AHF	P129	55	56	0.374		AHP130	22	23	0.007
AHP129	11	12	0.005	AHF	P129	56	57	0.039		AHP130	23	24	0.007
AHP129	12	13	0.022	AHF	P129	57	58	0.025		AHP130	24	25	0.113
AHP129	13	14	0.003	AHF	P129	58	59	0.156		AHP130	25	26	0.008
AHP129	14	15	0.003	AHF	P129	60	61	0.724		AHP130	26	27	0.060
AHP129	15	16	0.003	AHF	P129	61	62	8.753		AHP130	27	28	0.206
AHP129	16	17	0.003	AHF	P129	62	63	3.176		AHP130	28	29	0.152
AHP129	17	18	0.003	AHF	°129	63	64	0.235		AHP130	29	30	0.008
AHP129	18	19	0.003	AHF	P129	64	65	0.113		AHP130	30	31	0.006
AHP129	19	20	0.003	AHF	P129	65	66	0.069		AHP130	31	32	0.009
AHP129	20	21	0.003	AHF	P129	66	67	0.287		AHP130	32	33	0.003
AHP129	21	22	0.003	AHF	P129	67	68	0.017		AHP130	33	34	0.003
AHP129	22	23	0.003	AHF	P129	68	69	0.012		AHP130	34	35	0.003
AHP129	23	24	0.003	AHF	°129	69	70	0.044		AHP130	35	36	0.007
AHP129	24	25	0.007	AHF	129	70	71	0.077	1	AHP130	36	37	0.010
AHP129	25	26	0.124	AHF	P129	71	72	0.026		AHP130	37	38	0.011
AHP129	26	27	0.079	AHF	P129	72	73	0.024		AHP130	38	39	0.011
AHP129	27	28	0.041		P129	73	74	0.007		AHP130	39	40	0.003
AHP129	28	29	0.062	AHF	P129	74	75	0.003	1	AHP130	40	41	0.012
AHP129	29	30	0.055	AHF	P129	75	76	0.053	1	AHP130	41	42	0.010
AHP129	30	31	0.010		P129	76	77	0.019	1	AHP130	42	43	0.245

Page 13 of 23

Hole Id	From m	To m	Au ppm	Hole Id	From m	To m	Au ppm	Hole Id	From m	To m	Au ppm
AHP130	43	44	0.016	AHP130	89	90	0.018	AHP131	39	40	0.026
AHP130	44	45	0.003	AHP130	90	91	0.606	AHP131	40	41	0.021
AHP130	45	46	0.019	AHP130	91	92	0.065	AHP131	41	42	0.011
AHP130	46	47	0.292	AHP130	92	93	0.034	AHP131	42	43	0.109
AHP130	47	48	0.022	AHP130	93	94	0.011	AHP131	43	44	0.034
AHP130	49	50	1.524	AHP130	94	95	0.014	AHP131	44	45	0.051
AHP130	50	51	0.958	AHP130	95	96	0.019	AHP131	45	46	0.015
AHP130	51	52	1.498	AHP131	0	1	0.028	AHP131	46	47	0.006
AHP130	52	53	0.006	AHP131	1	2	0.037	AHP131	47	48	0.008
AHP130	53	54	0.204	AHP131	2	3	0.020	AHP131	48	49	0.020
AHP130	54	55	0.036	AHP131	3	4	0.012	AHP131	49	50	2.132
AHP130	55	56	0.338	AHP131	4	5	0.015	AHP131	50	51	2.060
AHP130	56	57	0.216	AHP131	5	6	0.017	AHP131	51	52	4.333
AHP130	57	58	0.066	AHP131	6	7	0.017	AHP131	52	53	0.757
AHP130	58	59	0.044	AHP131	7	8	0.011	AHP131	53	54	0.782
AHP130	60	61	0.055	AHP131	8	9	0.127	AHP132	0	1	0.052
AHP130	61	62	0.084	AHP131	10	11	0.038	AHP132	1	2	0.035
AHP130	62	63	0.233	AHP131	11	12	0.013	AHP132	2	3	0.016
AHP130	63	64	0.012	AHP131	12	13	0.003	AHP132	3	4	0.011
AHP130	64	65	0.134	AHP131	13	14	0.014	AHP132	4	5	0.040
AHP130	65	66	0.354	AHP131	14	15	0.009	AHP132	5	6	0.030
AHP130	66	67	1.419	AHP131	15	16	0.003	AHP132	6	7	0.041
AHP130	67	68	2.956	AHP131	16	17	0.003	AHP132	7	8	0.021
AHP130	68	69	0.075	AHP131	17	18	0.003	AHP132	8	9	1.289
AHP130	69	70	0.026	AHP131	18	19	0.003	AHP132	9	10	0.339
AHP130	70	71	0.024	AHP131	19	20	0.003	AHP132	10	11	0.138
AHP130	71	72	0.017	AHP131	21	22	0.003	AHP132	11	12	0.764
AHP130	72	73	0.018	AHP131	22	23	0.003	AHP132	12	13	0.010
AHP130	73	74	0.010	AHP131	23	24	0.013	AHP132	13	14	0.021
AHP130	74	75	0.016	AHP131	24	25	0.451	AHP132	14	15	0.009
AHP130	75	76	0.010	AHP131	25	26	0.012	AHP132	15	16	0.015
AHP130	76	77	0.071	AHP131	26	27	0.032	AHP132	16	17	0.005
AHP130	77	78	0.104	AHP131	27	28	0.016	AHP132	17	18	0.009
AHP130	78	79	0.006	AHP131	28	29	0.049	AHP132	18	19	4.908
AHP130	79	80	0.018	AHP131	29	30	0.108	AHP132	19	20	0.486
AHP130	80	81	0.555	AHP131	30	31	0.047	AHP132	20	21	0.047
AHP130	81	82	4.411	AHP131	31	32	0.053	AHP132	21	22	0.329
AHP130	82	83	21.270	AHP131	32	33	0.238	AHP132	22	23	0.919
AHP130	83	84	1.225	AHP131	33	34	0.013	AHP132	23	24	0.051
AHP130	84	85	0.602	AHP131	34	35	0.050	AHP132	24	25	0.043
AHP130	85	86	0.298	AHP131	35	36	0.005	AHP132	25	26	0.066
AHP130	86	87	0.157	AHP131	36	37	0.006	AHP132	26	27	0.116
AHP130	87	88	0.050	AHP131	37	38	1.029	AHP132	27	28	0.143
AHP130	88	89	0.027	AHP131	38	39	0.040	AHP132	28	29	0.257

Page 14 of 23

Hole Id	From m	To m	Au ppm	Hole Id	From m	To m	Au ppm	Hole Id	From m	To m	Au ppm
AHP132	29	30	0.221	AHP133	43	44	0.003	AHP133	87	88	1.387
AHP133	0	1	0.015	AHP133	44	45	0.386	AHP133	88	89	1.555
AHP133	1	2	0.014	AHP133	45	46	0.003	AHP133	89	90	0.241
AHP133	2	3	0.036	AHP133	46	47	0.010	AHP133	90	91	0.977
AHP133	3	4	0.015	AHP133	47	48	0.011	AHP133	91	92	0.213
AHP133	4	5	0.007	AHP133	48	49	0.014	AHP133	92	93	0.078
AHP133	5	6	0.003	AHP133	49	50	0.014	AHP133	93	94	0.199
AHP133	6	7	0.003	AHP133	50	51	0.018	AHP133	94	95	0.039
AHP133	7	8	0.005	AHP133	51	52	0.003	AHP133	95	96	0.040
AHP133	8	9	0.059	AHP133	52	53	0.003	AHP133	96	97	0.025
AHP133	9	10	0.019	AHP133	53	54	0.008	AHP133	97	98	0.060
AHP133	10	11	0.138	AHP133	54	55	0.008	AHP133	98	99	0.060
AHP133	11	12	0.028	AHP133	55	56	0.205	AHP133	99	100	0.022
AHP133	12	13	0.059	AHP133	56	57	0.239	AHP133	100	101	0.097
AHP133	13	14	0.036	AHP133	57	58	0.036	AHP133	101	102	0.317
AHP133	14	15	0.008	AHP133	58	59	0.008	AHP133	102	103	0.059
AHP133	15	16	0.006	AHP133	59	60	0.003	AHP133	103	104	0.029
AHP133	16	17	0.007	AHP133	60	61	0.003	AHP133	104	105	0.027
AHP133	17	18	0.009	AHP133	61	62	0.010	AHP133	105	106	0.010
AHP133	18	19	0.028	AHP133	62	63	0.003	AHP133	106	107	0.081
AHP133	19	20	0.206	AHP133	63	64	0.003	AHP133	107	108	0.027
AHP133	20	21	0.072	AHP133	64	65	0.003	AHP133	108	109	0.006
AHP133	21	22	0.013	AHP133	65	66	0.003	AHP133	109	110	0.009
AHP133	22	23	0.042	AHP133	66	67	0.003	AHP133	110	111	0.014
AHP133	23	24	1.331	AHP133	67	68	0.006	AHP133	111	112	0.024
AHP133	24	25	0.476	AHP133	68	69	0.003	AHP133	112	113	0.003
AHP133	25	26	0.297	AHP133	69	70	0.003	AHP133	113	114	0.003
AHP133	26	27	0.025	AHP133	70	71	0.006	AHP133	114	115	0.003
AHP133	27	28	0.017	AHP133	71	72	0.003	AHP133	115	116	0.003
AHP133	28	29	0.016	AHP133	72	73	0.009	AHP133	116	117	0.003
AHP133	29	30	0.003	AHP133	73	74	0.087	AHP133	117	118	0.003
AHP133	30	31	0.123	AHP133	74	75	0.164	AHP133	118	119	0.003
AHP133	31	32	0.015	AHP133	75	76	0.008	AHP133	119	120	0.003
AHP133	32	33	0.009	AHP133	76	77	0.006	AHP134	0	1	0.013
AHP133	33	34	0.006	AHP133	77	78	0.006	AHP134	1	2	0.022
AHP133	34	35	0.003	AHP133	78	79	0.003	AHP134	2	3	0.021
AHP133	35	36	0.009	AHP133	79	80	0.003	AHP134	3	4	0.011
AHP133	36	37	0.003	AHP133	80	81	0.021	AHP134	4	5	0.015
AHP133	37	38	0.003	AHP133	81	82	0.013	AHP134	5	6	0.017
AHP133	38	39	0.003	AHP133	82	83	0.017	AHP134	6	7	0.029
AHP133	39	40	0.003	AHP133	83	84	0.069	AHP134	7	8	0.027
AHP133	40	41	0.003	AHP133	84	85	0.220	AHP134	8	9	0.286
AHP133	41	42	0.003	AHP133	85	86	0.717	AHP134	9	10	0.664
AHP133	42	43	0.003	AHP133	86	87	3.667	AHP134	10	11	13.303

Page 15 of 23

Hole Id	From m	To m	Au ppm	Hole Id	From m	To m	Au ppm	Hole Id	From m	To m	Au ppm
AHP134	11	12	0.349	AHP134	55	56	0.032	AHP135	33	34	0.003
AHP134	12	13	0.301	AHP134	56	57	0.058	AHP135	34	35	0.006
AHP134	13	14	0.589	AHP134	57	58	0.009	AHP135	35	36	0.176
AHP134	14	15	0.484	AHP134	58	59	0.010	AHP135	36	37	0.106
AHP134	15	16	0.182	AHP134	59	60	0.012	AHP135	37	38	0.007
AHP134	16	17	0.027	AHP134	60	61	0.005	AHP135	38	39	0.189
AHP134	17	18	0.060	AHP134	61	62	0.008	AHP135	39	40	0.006
AHP134	18	19	0.034	AHP134	62	63	0.010	AHP135	40	41	0.003
AHP134	19	20	0.011	AHP134	63	64	0.011	AHP135	41	42	0.003
AHP134	20	21	0.011	AHP134	64	65	0.003	AHP135	42	43	0.003
AHP134	21	22	0.021	AHP134	65	66	0.008	AHP135	43	44	0.003
AHP134	22	23	0.017	AHP135	0	1	0.013	AHP135	44	45	0.003
AHP134	23	24	0.011	AHP135	1	2	0.017	AHP135	45	46	0.055
AHP134	24	25	0.007	AHP135	2	3	0.010	AHP135	46	47	0.129
AHP134	25	26	0.007	AHP135	3	4	0.010	AHP135	47	48	0.044
AHP134	26	27	0.007	AHP135	4	5	0.010	AHP135	48	49	0.020
AHP134	27	28	0.017	AHP135	5	6	0.008	AHP135	49	50	0.013
AHP134	28	29	0.072	AHP135	6	7	0.017	AHP135	50	51	0.024
AHP134	29	30	0.140	AHP135	7	8	0.008	AHP135	51	52	0.003
AHP134	30	31	0.501	AHP135	8	9	0.018	AHP135	52	53	0.007
AHP134	31	32	0.435	AHP135	9	10	0.046	AHP135	53	54	0.008
AHP134	32	33	95.089	AHP135	10	11	0.003	AHP135	54	55	0.013
AHP134	33	34	202.794	AHP135	11	12	0.003	AHP135	55	56	0.017
AHP134	34	35	15.289	AHP135	12	13	0.010	AHP135	56	57	0.010
AHP134	35	36	1.486	AHP135	13	14	0.014	AHP135	57	58	0.007
AHP134	36	37	0.809	AHP135	14	15	0.015	AHP135	58	59	0.003
AHP134	37	38	0.061	AHP135	15	16	0.012	AHP135	59	60	0.042
AHP134	38	39	0.061	AHP135	16	17	0.003	AHP135	60	61	0.526
AHP134	39	40	0.050	AHP135	17	18	0.066	AHP135	61	62	0.400
AHP134	40	41	1.482	AHP135	18	19	0.026	AHP135	62	63	0.402
AHP134	41	42	0.011	AHP135	19	20	0.143	AHP135	63	64	0.078
AHP134	42	43	0.048	AHP135	20	21	0.191	AHP135	64	65	0.012
AHP134	43	44	0.050	AHP135	21	22	0.193	AHP135	65	66	0.028
AHP134	44	45	0.026	AHP135	22	23	0.121	AHP135	66	67	0.047
AHP134	45	46	0.038	AHP135	23	24	0.069	AHP135	67	68	0.094
AHP134	46	47	0.011	AHP135	24	25	0.087	AHP135	68	69	0.125
AHP134	47	48	0.007	AHP135	25	26	0.015	AHP135	69	70	0.083
AHP134	48	49	0.872	AHP135	26	27	0.008	AHP135	70	71	0.032
AHP134	49	50	0.295	AHP135	27	28	0.006	AHP135	71	72	0.028
AHP134	50	51	0.181	AHP135	28	29	0.011	AHP135	72	73	0.022
AHP134	51	52	0.038	AHP135	29	30	0.017	AHP135	73	74	0.301
AHP134	52	53	0.044	AHP135	30	31	0.068	AHP135	74	75	0.036
AHP134	53	54	0.023	AHP135	31	32	0.003	AHP135	75	76	0.356
AHP134	54	55	0.050	AHP135	32	33	0.006	AHP135	76	77	1.518

Page 16 of 23

CE	RV	N	Т	E	S
	Corporation	Limit	ed		

Hole Id	From m	To m	Au ppm		Hole Id	From m	To m	Au ppm
AHP135	77	78	1.794		AHP136	13	14	0.031
AHP135	78	79	0.140		AHP136	14	15	0.019
AHP135	79	80	0.091		AHP136	15	16	0.009
AHP135	80	81	0.030		AHP136	16	17	0.003
AHP135	81	82	0.016		AHP136	17	18	0.016
AHP135	82	83	0.026		AHP136	18	19	0.003
AHP135	83	84	2.112		AHP136	19	20	0.003
AHP135	84	85	0.285		AHP136	20	21	0.042
AHP135	85	86	0.063		AHP136	21	22	0.027
AHP135	86	87	0.176		AHP136	22	23	0.003
AHP135	87	88	46.135		AHP136	23	24	0.249
AHP135	88	89	57.367		AHP136	24	25	0.137
AHP135	89	90	5.447		AHP136	25	26	0.206
AHP135	90	91	11.350		AHP136	26	27	0.954
AHP135	91	92	0.807		AHP136	27	28	0.396
AHP135	92	93	0.283		AHP136	28	29	0.305
AHP135	93	94	0.601		AHP136	29	30	3.536
AHP135	94	95	0.611		AHP136	30	31	2.816
AHP135	95	96	0.092		AHP136	31	32	0.136
AHP135	96	97	0.039		AHP136	32	33	0.121
AHP135	97	98	0.063		AHP136	33	34	0.026
AHP135	98	99	0.074		AHP136	34	35	0.003
AHP135	99	100	0.046		AHP136	35	36	0.079
AHP135	100	101	0.833		AHP136	36	37	0.472
AHP135	101	102	0.064		AHP136	37	38	0.039
AHP135	102	103	0.020		AHP136	38	39	0.006
AHP135	103	104	0.027		AHP136	39	40	0.015
AHP135	104	105	0.040		AHP136	40	41	0.110
AHP135	105	106	0.021		AHP136	41	42	0.717
AHP135	106	107	0.017					
AHP135	107	108	0.022					
AHP136	0	1	0.034					
AHP136	1	2	0.018					
AHP136	2	3	0.009					
AHP136	3	4	0.009					
AHP136	4	5	0.006					
AHP136	5	6	0.010					
AHP136	6	7	0.010					
AHP136	7	8	0.009					
AHP136	8	9	0.020					
AHP136	9	10	0.016					
AHP136	10	11	0.006					
AHP136	11 12	12	0.013					
AHP136	12	13	0.003	l				

Page 17 of 23

JORC Code, 2012 Edition

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse circulation (RC) drilling samples were collected through a rig-mounted cyclone with cone splitter attachment and split in even metre intervals. Wet sample was speared or scoop-sampled. RC drill chips (from each metre interval) were examined visually and logged by the geologist. Any visual observation of alteration or of mineralisation was noted on the drill logs. Duplicate samples comprise approximately 4% of total samples taken (ie one duplicate submitted for every 25 samples). A company contract geologist supervised the drilling and sampling to ensure representativeness. Drilling was done by industry standard techniques. Duplicates, standards, and blanks were submitted to ensure assaying reliability and accuracy. Hole locations were surveyed by hand held GPS. No downhole surveys were undertaken.
Drilling techniques	• Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	Drilling was by Reverse Circulation (RC) with NQ sized bit and rods.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC sample recovery and sample quality was recorded via visual estimation of sample volume and condition of the drill spoils. RC sample recovery typically ranges from 90 to 100%, with only very occasional samples with less than 90% recovery. RC sample recovery was maximised by endeavoring to maintain a dry drilling conditions as much as practicable; the RC samples were predominantly dry. Relationships between recovery and grade are not evident and are not

Page 18 of 23

Criteria	JORC Code explanation	Commentary
		 expected given the generally excellent and consistently high sample recovery. RC results are not utilised for Mineral Resource estimations.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 RC chips were geologically logged at one metre intervals into a digital database that was kept with sample numbers. Logging is qualitative.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 One metre samples were collected from a cyclone into a plastic bucket and then laid out on the ground in rows of 10. No compositing was used. All samples are pulverised at the laboratory to produce material for assay. Mineralisation style is late stage quartz veins. The one metre samples are likely to downgrade actual grades intersected, but are commensurate with minimum mining requirements; sample size is considered appropriate for resource estimation work.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Fire assay is a total digest technique and is considered appropriate for gold. Certified references material standards as 1 every 20 samples, duplicates 1 every 25 samples. Lab using random pulp duplicates and certified reference material standards. Accuracy and precision levels have been determined to be satisfactory after analysis of these QA/QC samples.
Verification of sampling and	The verification of significant intersections by either independent or alternative company	 Analysis was by acqua regia using Intertck's FA50/OE procedure:

Criteria	JORC Code explanation	Commentary
assaying	 personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 samples were pulverised to minus 75 microns before a split of 10g was taken and analysed using standard Fire Assay procedures. The method is an accepted industry analytical process appropriate for the nature and style of mineralisation under investigation. There were no twinned holes. No adjustments were made to assay data
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All samples sites have been located using a hand held GPS unit with an accuracy of +/-5m. The GPS recorded locations used MGA94/GDA zone 50 as the datum. The drilling co-ordinates are all in GDA94 MGA Zone 50 co-ordinates. Azimuth was set by hand held compass. Drill hole inclination is set by the driller using a clinometer on the drill mast and checked by the geologist prior to commencement of drilling. No downhole surveys are undertaken for RC drill holes. No RL data were collected; the area is generally flat at an RL of approximately 360m.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 RC holes were drilled on an existing grid set up for resource drill out. Drill spacing was in fill only. Together with historic data, the data spacing and distribution will be sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling followed the geometry of existing holes. Previous resource estimation defined the strike and dip of ore zones. Current drilling utilised that information. It is not anticipated that, on current interpretation, any bias has been

Criteria	JORC Code explanation	Commentary
		introduced to the sampling.
Sample security	The measures taken to ensure sample security.	• All samples were collected in calico sample bags with sample number tickets included in each bag and the same identification externally on the bag.
		• Samples were delivered to the lab by a company representative.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Standards, blanks, repeats, and check assays are undertaken to ensure data robustness.

Section 2 Reporting of Exploration Results. (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	• Exploration results relate to work carried out over a package of tenements comprising mining and prospecting leases. The tenements are 100% owned and controlled by Cervantes Corporation Limited. All tenements and leases are currently in good standing with DMP with no known impediments to further exploration or development.
Exploration done by other	 Acknowledgment and appraisal of exploration by other parties. 	Historical drill holes exist at the project area.
parties		 Giralia Ltd was the main proponent of previous work that resulted in an Inferred Resource being defined.
Geology	• Deposit type, geological setting and style of mineralisation.	The mineralisation is seen as predominantly metavolcanics metasediments and granitic Archean rocks of Western Australian Yilgarn Craton. This is a recognised style of mineralisation and one that is common to the district.
Drill hole Information	• A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	 See tables and Appendices in this release.
	$\circ~$ easting and northing of the drill hole collar	
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	\circ dip and azimuth of the hole	
	\circ down hole length and interception depth	

Page 21 of 23

Criteria	JORC Code explanation	Commentary
	 hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly attend. 	 Simple averages are used where aggregates are provided. Reported aggregated intervals have been weighted by length. No density weighting has been applied when calculating aggregated intervals. No top-cuts have been applied (unless specified otherwise). Higher grade intervals of mineralisation internal to broader zones of mineralisation are reported
	stated.	as included intervals.Metal equivalence is not used in this report.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, 	 The intervals reported are the initial drill intervals and intercepts. No adjustment has been completed on the intervals to accommodate the declination of drilling. Drilling is generally inclined at 60°to the NW (TN). Ore shoots are generally dipping approximately 80°
Diagrams	 true width not known'). Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	to the SE. Relevant location maps and figures are included in the body of this announcement. Cross-sections will be constructed once all data is received.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	This announcement includes the results of Au assays for the holes drilled as a follow-up programme to existing (reported) historic drilling. The reporting of the results to hand is preliminary only and should be viewed as such pending delivery of final data.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of 	The area is covered by a 50m line spaced aeromagnetic survey. Previous workers undertook sufficient drilling to define an Inferred Resource.

Page 22 of 23

Criteria	JORC Code explanation	Commentary	
	treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No bulk samples, metallurgical results, groundwater or geotechnical studies have been carried out yet.	
Further work	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Work programmes currently under review include further drilling, metallurgical testing, resource	
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	estimation, and pit optimisation studies. Any interpreted extension of the existing resource is commercially sensitive.	

Section 3 Estimation and Reporting of Mineral Resources

No Mineral Resources are being reported.