

ASX Announcement ASX: SUP 03 July 2018 superiorlake.com.au

High Grade Zinc Resource Exceeds Expectations

Highlights

- Maiden JORC (2012) resource for the Superior Lake Project of <u>2.15 Mt</u> at <u>17.7% Zn</u>, <u>0.9%</u>
 <u>Cu</u>, <u>0.4 g/t Au</u> and <u>33.5 g/t Ag</u> (Table 1).
- The Superior Lake Project in Canada, based on the Company's research, ranks as the highest-grade zinc resource on the ASX¹ and one of the highest-grade projects globally.
- This resource has over 90% in the Indicated Mineral Resource category which has led to the acceleration of a re-start study.
- Existing infrastructure includes mine development to resource, tailings dam, site power and all-weather access road.
- The mineralisation is very robust and continuous at the various cut-off grades (Table 2).
- Multiple brownfields exploration targets have been identified in close proximity to the existing resource.

Table 1 : Superior Lake Total Mineral Resource at 3% Zn cut-off grade								
Classification	Tonnage	Zn %	Cu %	Au g/t	Ag g/t			
Indicated	1,992,000	17.8%	0.9%	0.4 g/t	33.7 g/t			
Inferred	152,000	15.4%	0.9%	0.4 g/t	31.2 g/t			
Total	2,145,000	17.7%	0.9%	0.4 g/t	33.5 g/t			

Superior Lake Resources CEO David Woodall states:

"This is an excellent achievement for the Company as this resource has exceeded expectations on all accounts. Most notably with a zinc grade of 17.7%, in addition to copper, gold and silver by-product credits, Superior Lake ranks as one of the highest-grade zinc projects in the world.

In addition, with the resource exceeding 2Mt and over 90% within the indicated category, we believe this is sufficient to commence a Re-start Study for the Project immediately.

Furthermore, numerous high priority brownfield exploration targets close to the existing resource have been identified from the extensive review of historical drill results and will be tested in the near future."

Superior Lake Resource Limited (ASX:SUP) is an ASX listed company focused on the redevelopment of the Superior Lake Project which incorporates the Winston and Pick Lake Mines (Project). These deposits rank amongst the highest-grade zinc deposits globally.

The Project is located in North Western Ontario, Canada which is rated one of the best mining jurisdictions in the world. The Project has significant infrastructure in place which includes underground mine development to the existing mineralisation, tailings dams, site power connected to the grid and an all-weather road. The Project historically produced over 3Mt of ore up until 1999 where mining was suspended due to low commodity prices.

Maiden JORC Resource – Superior Lake Zinc Project

The completed JORC (2012) resource confirms and demonstrates that the mineralisation is robust and continuous with over 90 % of the resource classified in the Indicated Mineral Resource category.

Table 2–Superior Lake Resources–Comparison at 3 % and 6 % Cut-Off Grade										
Classification	Cut-off Grade	Tonnage Mt	Zn %	Cu %	Au g/t	Ag g/t	Tonnes Zn	Tonnes Cu	Ounces Au	Ounces Ag
Indicated	3% Zn	1.99	17.8	0.9	0.4	33.7	355,000	17,000	25,800	2,157,000
	6% Zn	1.88	18.7	0.9	0.4	35.3	350,000	16,700	24,300	2,129,000
Inferred	3% Zn	0.15	15.4	0.9	0.4	31.2	23,000	1,000	1,800	153,000
	6% Zn	0.13	16.9	0.9	0.4	33.2	22,700	1,200	1,700	144,000
Total	3% Zn	2.15	17.7	0.9	0.4	33.5	378,000	18,000	27,600	2,309,000
	6% Zn	2.01	18.5	0.9	0.4	35.1	373,000	17,900	25,500	2,273,000

The quality of this maiden resource shows that the project, based on the company's research has the highest zinc grade of any ASX-listed zinc company (Figure 1). This high-grade zinc resource provides a solid foundation to accelerate the project Re-Start Plan.

Source: ASX, Company data (excludes JORC resources of less than 1 million tonnes)

The resource estimate confirms the robustness and the continuity of the mineralisation at various cut-off grades as shown in Figure 2 with minimal variation in the tonnage and grade between cut-off grades of 3% and 6% Zn.

Mineral Resource Description and Methodology

The Superior Lake Zinc Project consists of two deposits, Pick Lake and Winston Lake, and is located approximately 150 kilometres east of the city of Thunder Bay Ontario, Canada. This is the highest-grade zinc project in Canada. The Project was mined for a decade (3Mt of ore mined) before closing in 1999, due to a sustained period of a low zinc price. Due to suppressed zinc pricing, no significant exploration has been completed on the Project since its closure.

Geology and Geological Interpretation

SUPERIOR LAI

Winston and Pick Lake are recognised as Noranda-style VMS deposits which are characterised by the presence of the zinc – copper (+/- gold, +/- galena, +/- tetrahedrite) mineralisation composed of sphalerite-chalcopyrite-pyrrhotite-pyrite which can be surrounded by pyrite-pyrrhotite halo with minor sphalerite, tetrahedrite and galena. Confidence in the model is high as the mineralisation of the deposits essentially occurred as a single massive sulphide seam distributed along the VMS horizon. The mineralisation and the host rock stratigraphy can be delineated between the drill holes.

Geological interpretation and the resource model are based on the drill holes data (approximately 1787 drill holes) and digitised underground drive maps and cross sections. The distances between drill holes intersecting the mineralisation in the Winston Lake deposit is 10 to 30m and 20 to 40m at the Pick Lake deposit. The interpretation of the mineralisation was confirmed by plans and section showing the mapping and sampling of the underground development.

Sampling and Sub-Sampling Techniques

The mineralisation was defined by intervals logged as massive and semi-massive sulphides within the Pick clotted rhyolite or tuff units and within Winston the rhyolites, tuffs and chert units. The assay values for zinc were compared to these intervals and found to correlate well. The zinc percent assay values were used to select intersections where no logging information was present. The interpretation of continuity was based on ore drive level plans that showed mapping information for the sulphide horizon.

A nominal cut-off grade of 1% Zn was used to define the mineralised intervals which were used to construct a vein model. Edge boundaries were applied from ore drive extents and long-section mine plans that indicated the conductor boundary position from geophysical surveys.

Data from these logs were entered into an Excel spreadsheet, subjected to QAQC and manual error correction and then uploaded into an Access database. Subsequent loading errors in 3D mining software were then corrected. The consistency of the assay data from the very high density of historic sampling suggests that industry-standard QAQC procedures were adopted at the time. The dataset is considered to be acceptable for use in Mineral Resource estimation by the Competent Person.

Drilling Techniques

Diamond drillholes were used to sample the mineralisation at Pick and Winston was based on 1603 holes drill from both underground and surface. Detailed drill logs were recovered from archives in Schrieber, Ontario.

The distances between drillholes intersecting the mineralisation are commonly from 10–30m (at the Winston Lake deposit to 20–40m at the Pick Lake deposit which is sufficient for a confident delineation of the mineralised bodies. The interpretation of the VMS bodies was confirmed by mapping and sampling of the underground developments which are also used for constraining VMS mineralised bodies in 3D.

Sample Analysis Method

Samples were composited to 1m lengths using a best fit algorithm. Statistical continuity analysis of the samples was carried out using Istatis[®] geostatistical software to produce variograms for each element. The block models were constructed using parent cell sizes of 20mE by 20mN by 1mRL with sub-cell sizes of 0.5mE by 0.5mN by 0.5mRL for Pick and 1mE by 1mN by 1mRL for Winston. The composite data was unflattened and two pass estimation of grades was carried out in unfolded space using Ordinary Kriging or Simple Kriging.

Criteria Used for Classification and Estimation Methodology

The mineralised domains have demonstrated sufficient confidence in both geological and grade continuity to support the definition of Mineral Resources. The nominal drill spacing of 20 to 30m, together with geological mapping and sampling from ore development, alimak raises and stoping is considered to be sufficient to assign an Indicated Mineral Resource classification to the majority of the Mineral Resource. Material classified as Inferred Mineral Resources is located on the margins of the Indicated Mineral Resources and the extents of the mineralisation, where sampling and control on the domain geometry are less confident.

The input data is comprehensive in its coverage of the deposits and does not favour or misrepresent the in-situ mineralisation. No assumptions have been made as to mining methods other than it will be by underground methods.

Cut-Off Grade, Mining and Metallurgical Parameters

A nominal grade of 1% Zn was used to interpret continuity for mineralisation domains. There is a sharp boundary contact with unmineralised host rock and there is no halo (disseminated) mineralisation.

Historically Winston Lake and Pick Lake deposits have been mined using the mechanised AVOCA mining method predominately used at Winston and Alimak initially at the upper Pick area. Superior will evaluate the adaption of sublevel longhole stoping with paste fill as part of the Re-Start Plan.

Past production was successful and has demonstrated that mineralisation is amenable for processing using conventional flotation technologies and the valuable metals are recovered as the sulphide concentrates. The ore was hoisted via a vertical shaft into a fine ore bin and processed and processed using a combination of crushing, grinding, flotation and dewatering to produce two separate high-grade concentrates, zinc and copper. The concentrate was trucked to a rail siding in the town of Schrieber and loaded onto rail cars for shipment to smelters.

Historical Recoveries during the 11 years of processing in the concentrator at the site were:

- Zn 93.7%
- Cu 78.3%
- Au 38%
- Ag 37%

Brownfields Exploration Strategy and Plan

Superior has completed a key milestone with the completion of the JORC 2012 resource and a 3D model. This 3D model, together with the fact that there has been no follow-up on previously identified geophysical (EM) conductors provides the basis of the planned brownfield exploration programs. Other work will include structural mapping, modern geophysics and geochemical methods as part of the planned program. Superior will commence the planning and implementation strategy to test and understand the true potential of this highly prospective VMS deposit.

Superior Lake's near-term brownfields exploration strategy will focus on:

- 1.Downhole geophysical program using existing surface holes to test up and down plunge extensions of both the Pick and Winston Lake deposits and to test the 2.2 km of prospective ground between these deposits (Figure 3);
- 2. Target areas within the Inferred area of the resource for drilling from underground once the dewatering and access is regained to the mine (Figure 3);
- 3.Test near surface EM conductors up-dip from Pick Lake and ~500m west of Winston Lake with ground geophysics and follow-up drilling;
- 4.Continue to compile all geological, geophysical and geochemical data into an integrated GIS database.

The planned exploration planning will utilise previously drilled holes to complete a comprehensive downhole EM and modern surface program to target near surface, extensions and possible hidden mineralisation between and adjacent to the Winston and Pick deposits (Figure 3).

Figure 4 – Near Surface Brownfields Targets

SUPERIOR LAKE

In addition to the underground extensions and possible stratigraphic repetitions that will be tested as part of the brownfield exploration program, work on several previously defined targets approximately 500m from the Winston and Pick Deposits.

These areas will be initially tested with ground-based EM.

Competent Person Statement

The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code') sets out minimum standards, recommendations and guidelines for Public Reporting in Australasia of Exploration Results, Mineral Resources and Ore Reserves.

The Information contained in this announcement is an accurate representation of the available data and studies for the Pick and Winston Lake Projects.

The information contained in this announcement that relates to exploration results and mineral resource estimates is based on, and fairly reflects, information compiled by Dr Marat Abzalov, an independent consultant for MASSA Geoservices. Dr Marat Abzalov is a Fellow of the Australian Institute of Mining and Metallurgy and was engaged as a consultant to Superior Lake Resources to complete the JORC (2012) resource. Dr Abzalov has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Abzalov consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears. Dr Abzalov holds securities in Superior Lake Resources Limited.

Superior Lake Resources Limited ACN 139 522 553 Suite 8/1297 Hay Street West Perth WA 6005 T: +61 8 9322 6009 F: +61 8 9322 6128

JORC (2012) TABLE 1 Checklist of Assessment and Reporting Criteria

Section 1 Sampling Techniques and Data

Criteria	Explanation	Commentary
Sampling Techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 Sampling of the Pick Lake and Winston Lake deposits has been carried out using diamond drilling that was carried out during the period of mining operations from 1988 to January 1999. There is a total of 229 surface and underground diamond drillholes have been drilled at Pick Lake and a total of 1,539 surface and underground diamond drillholes have been drilled at Winston Lake. Historic sampling was typically carried out using half cut core. Historic core for two holes was accessed at the Ontario Ministry of Northern Development and Mines (NMDM) in Thunder Bay. This core comprised half core samples over continuous lengths of typical Winston Lake mineralisation. This core was resampled using quarter core sampling for QAQC analyses in order to compare historic assays with modern assays. Sampling of the core is considered to be to industry standards for this type of deposit.
	Aspects of the determination of mineralisation that are Material to the Public Report.	 The determination of mineralisation has been by a combination of geological observations (logging and mapping) in conjunction with assay results from the surface and underground database. Information from mine level plans and cross-sections along with reports and studies was used to compile a 3D geological model of the VMS system at Pick and Winston. This was used as the framework for the mineralisation models.

Criteria	Explanation	Commentary
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 All drilling completed at both Pick Lake and Winston Lake was diamond drilling which has been drilled from both surface or underground. The resource is defined by a total of 222,643m of drilling in 1,768 holes. Pick Lake: No. and total metres surface holes 39 holes for 35,492m Pick Lake: No. and total metres underground holes 190 holes for 18,930m Winston: No. and total metres surface holes 92 holes for 50,565m Winston: No. and total metres underground holes 1,447 holes for 117,656m Core size recorded as either BQ, TT46, LTK46, AW34, or AQTK. Core Size Diameter (mm) BQ 36.5 TT46 35.3 LTK46 35.6 AW34 33.5
		AQ1A 30.5

Criteria	Explanation	Commentary
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples.	 Inspection of core at the Ministry of Northern Development and Mines (MNDM) in Thunder Bay and at the core shack on site showed high core recoveries estimated at >98%. Due to grade consistency in this style base-metal deposit there is no relationship between the sample size and grade.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	

Criteria	Explanation	Commentary										
Logging	Whether core and	Detailed drill logs were recovered from archives in Schrieber, Ontario. Data from these logs were entered into										
	chip samples have	n Excel spreadsheet, subjected to QAQC and manual error correction and then uploaded into an Access										
	been geologically and	database. Subsequent loading errors in 3D mining software were then corrected. The dataset is considered to										
	geotechnically logged	be acceptable for use in Mineral Resource estimation by the Competent Person.										
	to a level of detail to											
	support appropriate	Example of Historic Data Header Sheet:										
	Mineral Resource											
	estimation, mining	HOLE NUMBER: U-1050 DRILL HOLE RECORD										
	studies and	PROJECT NAME: VINSTON PLOTTING COORDS GRID: MINE ALTERNATE COORDS GRID: PROJECT NUMBER: NORTH: 10275.00N NORTH: 0+ 0										
	metallurgical studies.	CLAIM NUMBER: EAST: 10162.50E EAST: 0+ 0 LOCATION: 455 L 10275 N ELEV: 9999.50 ELEV: 0.00										
		COLLAR GRID AZIMUTH: 270° 0' 0" COLLAR ASTRONOMIC AZIMUTH: 250° 0' 0"										
		DATE STARTED: March 16, 1993 COLLAR SURVEY: NO PULSE EM SURVEY: NO DATE COMPLETED: March 19, 1993 MULTISHOT SURVEY: NO PLUGGED: YES DATE LOGGED: March 31, 1993 ROLLOG: NO										
		Example of Historic Data Assay Sheet:										
		HOLE NUMBER: U-1050 ASSAY SHEET										
		ESTIMATES ASSAYS										
		(m)										
		WU-9755 85.30 85.48 0.18 10 0.5 15 0.73 6.50 24.00 1.06 3.22 53.90 0.10										
		AVE. 85.30 87.60 2.30 0.78 0.04 1.17 0.06 0.51 1.88 0.08 2.70 2.76 4.22 0.01										

Criteria	Explanation	Comm	Commentary				
	Whether logging is	Drill co	Fill core has been geologically logged to a high standard and includes lithology descriptions, texture,				
	qualitative or	structu	ire, altera	tion, sulphide percentages, colour,	and gra	ainsize.	
	quantitative in						
	nature. Core (or	Examp	le of Hist	oric Data Geological Log Sheet:			
	costean, channel,						
	etc) photography.						
		HOLE NUM	IBER: U-1050			MINNOVA INC.	
		FROM	ROCK		ANGLE	DRILL HOLE RECORD	
				76.7 - 77.5 weekly magnetic:	ALTERATION		MINERALIZATION
		17		77.5 - 81.15 mod to strongly magnetic;			
		81.15 T0 82.50	«HY GB/CRT» HYBRID GABBRO AND BIMODAL ASH	<pre>f g; alternating light to dark coloured bands up to 2mm wide at bands are sharp to diffused; this unit is a mixture of contaminated gabbro and broken bimodal ash; some of the bands are weakly epidotized; as a pale green colour; 81.54m 4cm zone with mod jointing producing a micro insitu bx set in pale green ep alt matrix;</pre>	55		tr v f g diss py;
	The total length and	 100% of the core has been geologically logged. 					
	percentage of the						
	relevant						
	intersections logged.						

Criteria	Explanation	Commentary				
	Sub-Sampling	All historical sampling has been carried out using half cut diamond core.				
	techniques and	 Laboratory sub-sampling methodology in typically to the highest industry standards. 				
	sample preparation.	 Recent comparative QAQC results indicate that the sampling is accurate and precise. 				
	If core, whether cut					
	or sawn and whether					
	quarter, half or all					
	core taken.					
	If non-core, whether	All sampling was carried with diamond core				
	riffled, tube sampled,					
	rotary split, etc and					
	whether sampled					
	wet or dry.					
	For all sample types,					
	the nature, quality	 The use of diamond core drillholes is considered to provide representative samples of the in-situ mineralisation, particularly the true thickness (sampling was done to geological boundaries). 				
	and appropriateness	mineralisation, particularly the true thickness (sampling was done to geological boundaries).				
	of the sample	 Recent comparative QAQC results indicate that the sampling is accurate and precise. 				
	preparation					
	technique.					
	Quality control	No new drilling has taken place				
	procedures adopted	• The consistency of the assay data from the very high density of historic sampling suggests that standard				
	for all sub-sampling	QAQC procedures were adopted in the past. Further verification is required, but recent comparative QAQC results indicate that the sampling is accurate and precise. Further, the 10-year production history at the				
	stages to maximise	mines supports the magnitude of the assay values and location of the drill holes. The data set is				
	representivity of	considerable to be acceptable for use in mineral resource estimation.				
	samples.					

Criteria	Explanation	Commentary
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	 The use of diamond core drillholes is considered to provide representative samples of the insitu mineralisation, particularly the true thickness (sampling was done to geological boundaries). Recent comparative QAQC results indicate that the sampling is accurate and precise. The consistency of the assay data from the very high density of historic sampling suggests that standard QAQC procedures were adopted in the past. Further verification is required.
Quality of assay	The nature, quality and	Two external laboratories used historically: Swastika Laboratories (Swastika, Ontario) and
data and	appropriateness of the assaying	MetricLab (Thunder Bay, Ontario).
laboratory tests	and laboratory procedures used	
	and whether the technique is	
	considered partial or total.	
	For geophysical tools,	No geophysical tools, spectrometers, handheld XRF instruments, have been used in determining
	spectrometers, handheld XRF	the results that are being reported in this announcement.
	instruments, etc, the parameters	
	used in determining the analysis	
	including instrument make and	
	model, reading times, calibrations	
	factors applied and their	
	derivation, etc.	
	Nature of quality control	The consistency of the assay data from the very high density of historic sampling suggests that
	procedures adopted (eg	standard QAQC procedures were adopted in the past. The consistency of the assay data from
	standards, blanks, duplicates,	the very high density of historic sampling suggests that standard QAQC procedures were adopted
	external laboratory checks) and	in the past. Further verification is required, but recent comparative QAQC results indicate that
	whether acceptable levels of	the sampling is accurate and precise. Further, the 10-year production history at the mines
	accuracy (ie lack of bias) and	supports the magnitude of the assay values and location of the drill holes. The data set is
	precision have been established.	considerable to be acceptable for use in mineral resource estimation.

Criteria	Explanation	Comme	entary											
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	 Superior Lake submitted 64 drill core samples from historic drilling to ALS Canada Ltd Laboratorie (preparation done at Thunder Bay, analysis done in Vancouver) as an independent check in June 2 Samples were quarter core, crushed to 70% passing 2mm, and pulverised to 85% passing <75um. Analysis for Zn and Cu were carried out using Inductively Coupled Plasma- Atomic Emission Spect (ICP-AES), Au by 30gram Fire Assay with an Atomic Absorption Spectroscopy finish, Ag was by Aqu with an AAS finish. Additionally, 4 standards and 4 blank samples were submitted with the samples for analysis. The results confirmed the historic values for these intervals 					ies ≥ 2018. n. ctroscopy qua Regia							
		FRO M	TO	LEN GTH	SAMPLE	ZN % ALS	ZN % ORIG	CU % ALS	CU % ORIG	AG PPM ALS	AG PPM ORIG	AU PPM ALS	AU PPM ORIG	
				(M)			ondo		onao		onad		ondo	
		47	48.5	1.5	W1120901	0.02	0.03	0.047	0.01	0.8	0.69	0.014	0.069	
		48.5	50	1.5	W1120902	25.6	24.9	1.16	1.34	28.3	30.86	1.225	1.954	
		50	51.55	1.55	W1120903	28.4	24.3	0.741	0.94	22.9	25.37	1.125	1.234	
		51.55	53.3	1.75	W1120904	0.383	0.36	0.286	0.22	23.4	30.17	0.297	0.171	
		53.3	55	1.7	W1120905	0.198	0.19	0.079	0.05	1.5	1.37	0.03	0.034	
		55	56.7	1.7	W1120906	0.614	0.54	0.544	0.54	7.8	8.91	0.261	0.411	
		56.7	58.7	2.0	W1120908	14.15	13.76	1.375	1.46	32.1	35.66	1.47	1.783	
		58.7	60.3	1.6	W1120909	16.7	16.54	0.893	0.96	15.5	14.4	1.03	0.926	
		60.3	61.7	1.4	W1120910	14.1	14.88	2.5	2.54	32.8	32.91	0.895	1.714	
		61.7	63.2	1.5	W1120911	19.55	19.94	2.48	2.5	37.6	39.77	1.045	0.686	
		63.2	64.7	1.5	W1120912	15.85	10.1	1.79	1.64	31.4	32.23	1.01	1.954	
		65.0	67.15	1.2	W1120913	20.7	11.52	1.315	1.72	32.9	34.29	0.82	0.411	
		67.15	69.95	1.20	W1120915	20.7	19.92	0.97	0.9	19.9	28.8	0.793	0.585	
		07.15	00.00	1.7	W1120910	2.45	0.80	0.907	0.9	13.4	17.14	0.577	0.514	
	The use of twinned holes.	No twir	holes	have be	een drilled.									

Criteria	Explanation	Commentary
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Superior Lake has compiled, verified and established a validated Access database of drilling information, together with scanned images of interpreted level plans, sections, maps and other production related plans used in the preparation of the Mineral Resource estimate.
	assay data.	No adjustment to assay data has been made.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 The method for surveying historical surface drillhole collars is not known but it is assumed that the Mine Surveyors were responsible for the underground drilling. The downhole survey methods used are Eastman single shot and multishot, Tropari, acid etch and gyro survey at nominal 30m intervals. Superior Lake is in the process of compiling all hard copy drillhole data. Details regarding downhole surveys will be provided once data has been compiled. Superior Lake is planning on resurveying all surface drillhole collars by DGPS. This is scheduled to take place during Q2, 2018.
	Specification of the grid system used	 Historical mining and exploration activities were carried out in local mine grids. The Winston local mine grid is oriented approximately -20 degrees to UTM grid north and the Pick local mine is oriented at -60 degrees to UTM grid north. The information had been transformed from local grid co-ordinates into UTM NAD83 Zone 16 grid via a two-point transformation. Drillhole locations have been validated against mine workings and plans.
	Quality and adequacy of topographic control	• A topographic surface was generated from SSTM data and has had the surface drill collar location points added in to provide local control. No part of the mineralisation intersects the surface.

Criteria	Explanation	Commentary
Data spacing and distribution	Data spacing for reporting of Exploration Results.	 Pick Lake has been drilled from surface at 200m centres. Underground drilling at both Pick Lake and Winston Lake has been drilled on a much tighter grid of down to less than 10m in places.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Superior Lake consider the database to be of sufficient quality to be acceptable for Mineral Resource estimation. The production history and information available from the mining operations forms part of the confidence criteria used to classify the Mineral Resource.
	been applied.	metre.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	• Based on cross sections sighted to-date the angle of drilling from surface appears appropriate and the intersection angles are close to perpendicular. Some of the underground drilling has low intersection angles due to the location of the drill sites, but these are still considered to be representative.

Criteria	Explanation	Commentary
Sample	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 As drillholes were generally drilled perpendicular to the strike of mineralisation, there has not been any sampling bias introduced based on the current understanding of the structural orientations and the dip and strike of mineralisation.
Security	sample security.	 As was standard practice on an operating mine, it is assumed that innet wining organised delivery of samples directly to assay laboratories and other previous explorers followed industry guidelines current at the time.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	• Superior Lake has carried out independent checks of 64 drill core samples but has not recovered information to review the historical sampling techniques and data at this stage.

Section 2 Reporting of Exploration Results

Criteria	Explanation	Commentary
Mineral	Type, reference	The Pick Lake Project comprises 297 claim units (each claim unit is 400mx400m or 16Ha in area)
tenement and	name/number, location and	totalling 47.5km2. The claims are made up of a number of claims acquired in August 2016 and claims
land tenure	ownership including	recently staked and registered in October 2017. The total of all claim areas is >17,000Ha.
status	agreements or material issues	
	with third parties such as joint	Superior is the legal and beneficial owner of 70% of the issue capital of Ophiolite Holdings Pty Ltd
	ventures, partnerships,	(ACN 617 182 966) (Ophiolite). Ophiolite is a proprietary exploration company and is the legal and
	overriding royalties, native	beneficial owner of the zinc and copper prospective "Pick Lake Project", located in Ontario. Please see
	title interests, historical sites,	ASX announcement dated 6 December 2017.
	wilderness or national park	
	and environmental settings.	Superior Lake currently has an option over the Winston Lake project claims. These claims are owned
		by FQM. For further details please refer to ASX announcement dated 21 st February 2018.
	The security of the tenure held	The claims are in good standing.
	at the time of reporting along	
	with any known impediments	
	to obtaining a licence to	
	operate in the area.	
Exploration done	Acknowledgment and	The Pick Lake deposit was discovered in 1983 and the Winston Lake deposit was discovered in 1982.
by other parties	appraisal of exploration by	The Pick Lake and Winston Lake project areas have been the subject of a variety of exploration
	other parties.	campaigns.
		Some of the previous explorers include Zenamc Metal Mines Limited, Falconbridge Copper
		Corporation, Minnova, Inmet Mining, Noranda, and Silvore Fox.
		Please refer report filed on SEDAR for further details - Independent Technical Report on the Pick Lake
		Property, Pays Plat Lake and Rope Lake Area, Ontario, Canada, dated June 19, 2013 prepared by
		Bruno Turcotte, MSc, P. Geo and Remi Verschelden, BSc, P. Geo (filed June 21, 2013 on SEDAR). This
		report can be accessed via the url: http://www.sedar.com under the company name "Silvore Fox".

Criteria	Explanation	Commentary
Geology	Deposit type, geological	Pick Lake
	setting and style of	
	mineralisation	The Pick Lake deposit occurs at the extreme western edge of the Winston-Big Duck Lake sequence of
		volcanic rocks, approximately 35 metres above a granitic contact. Aeromagnetics within the Project
		area depicts a distinctive v snaped sequence of magnetic and non-magnetic units converging to a
		Archean Warriedar Fold Belt in Western Australia which hosts the Golden Grove VMS deposits
		A chean warnedar rold bele in western Adstralid which hosts the Golden Grove vivis deposits.
		The Pick Lake deposit occurs as a large sheet like zone of massive sulphides within a series of bedded pyroclastic rocks. Hydrothermal alteration exists in both footwall and hangingwall rocks resulting in varying assemblages of quartz, cordierite, biotite, anthonbyllite, garnet, chlorite, and sericite with
		minor disseminated sulphides. The hydrothermal alteration zone appears to be spatially related to the
		Winston Lake deposit; recent structural mapping provides evidence that Pick Lake and Winston Lake
		are hosted within the same stratigraphic horizon.
		The Anderson showing located near the southeast shore of Winston Lake, appears to be the surface
		expression of the Pick Lake deposit. This is a rusty pyritic weakly altered series of himodal volcanics
		Massive sulphides of the Pick Lake deposit occur from approximately 300m to 1200m vertically and
		over a strike length averaging 250 metres. The lower portion of the deposit appears to increase in
		strike length to approximately 500 metres. The deposit strikes at 20 degrees and dips to the east at 50
		degrees. The thickness of the deposit is generally between 2 and 4m, however, locally it is up to 14
		metres in width.
		Sulphide mineralisation is generally very consistent, composed of a fine-grained mixture of sphalerite
		(50-80%) and pyrrhotite (5-35%) with minor chalcopyrite (0-5%) and pyrite (0-3%). Commonly
		contained within the sulphides is up to 5% transparent rounded quartz inclusions up to 3mm in size as
		well as rare (1-3%) sub-rounded biotitic volcanic inclusions. The contacts to the deposit are typically knife sharp and commonly show the presence of minor amounts of silica.

Criteria	Explanation	Commentary
		Winston Lake
		The Winston Lake deposit lies at the top of the Winston Lake sequence within cherty exhalite and altered felsic-to-intermediate laminated ash tuff. In places, gabbro forms the hanging wall for the deposit. The footwall consists of altered mafic flow rocks and felsic-to-intermediate volcaniclastic rocks which are underlain by altered quartz and feldspar porphyritic rhyolite and feldspar pyritic basalt with intercalated sulphide-rich, bedded, tuffaceous rocks which, in turn, are underlain by the "Main" quartz fledspar porphyry which is intruded by gabbro and pyroxenite.
		Hydrothermal alteration, confined to the Winston Lake sequence, and later metamorphism of altered rock have resulted in spectacular assemblages of cordierite, anthophyllite, biotite, garnet, sillimanite, staurolite, muscovite and quartz coincident with an increase in iron, magnesium, and potassium and a decrease in sodium and calcium. Zinc content is directly proportional to the intensity of alteration.
		High copper values occur at the flanks and top of the alteration "pipe" with the core of the pipe containing relatively depleted copper values. The most common forms of ore are finely banded sphalerite and pyrrhotite and massive-to-coarsely banded sphalerite and pyrrhotite with minor pyrite and chalcopyrite and up to 45% of sub-angular mafic and felsic fragments averaging 3cm in diameter.
		The north-striking and 50 degrees eastwardly dipping deposit has a strike length of 750m and width of 350m. It has an average true thickness of 6m and is open to depth.

Criteria	Explanation	Commentary
Drill hole	A summary of all information	Please refer to Appendix 2 for drillhole information available at this stage.
Information	material to the understanding	
	of the exploration results	
	including a tabulation of the	
	following information for all	
	Material drill holes:	
	easting and northing of the	
	drill hole collar elevation or RL	
	(Reduced Level – elevation	
	above sea level in metres) of	
	the drill hole collar dip and	
	azimuth of the hole down hole	
	length and interception depth	
	hole length.	
Data aggregation	In reporting Exploration	 Intercept grades are length weighted.
methods	Results, weighting averaging	 No cut-off grades have been used.
	techniques, maximum and/or	
	minimum grade truncations	
	(eg cutting of high grades) and	
	cut-off grades are usually	
	Material and should be stated	

Criteria	Explanation	Commentary
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	 Downhole intercepts have been reported. The true width is not confirmed at this stage but most surface hole are close to perpendicular to the mineralisation. Historical mining at Pick Lake and Winston Lake report mineralisation widths at Pick Lake to average of 2 to 4m and at Winston Lake to average 7m. True widths will be established once the compilation of all historical data has been completed.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	

Criteria	Explanation	Commentary
Diagrams		 Refer to body of announcement for figures. A plan of the drilling and geology with Mineral Resource areas is shown below.

Criteria	Explanation	Commentary
Balanced	Where comprehensive	Assay results for significant intercepts sourced from Inmet Mining Corp figures have been tabulated in
reporting	reporting of all Exploration	Appendix 2.
	Results is not practicable,	
	representative reporting of	
	both low and high grades	
	and/or widths should be	
	practiced to avoid misleading	
	reporting of Exploration	
	Results.	
Other	Other exploration data, if	Exploration activities carried out by other parties include surface geochemistry, drilling, surface
substantive	meaningful and material,	geology mapping, VTEM, structural mapping.
exploration data	should be reported including	
	(but not limited to): geological	Please refer to the report filed on SEDAR for further details - Independent Technical Report on the
	observations; geophysical	Pick Lake Property, Pays Plat Lake and Rope Lake Area, Ontario, Canada, dated June 19, 2013
	survey results; geochemical	prepared by Bruno Turcotte, MSc, P. Geo and Remi Verschelden, BSc, P. Geo (filed June 21, 2013 on
	survey results; bulk samples –	SEDAR). This report can be accessed via the url: http://www.sedar.com under the company name
	size and method of treatment;	"Silvore Fox".
	metallurgical test results; bulk	
	density, groundwater,	
	geotechnical and rock	
	characteristics; potential	
	deleterious or contaminating	
	substances.	

Criteria	Explanation	Commentary
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling).	 The following work is planned for the Pick Lake and Winston Lake Projects: DGPS pick-up of all existing surface drillhole collars. Downhole survey measurements of existing surface drillholes (if possible) Down the hole geophysics Focused diamond drilling to test brownfield exploration targets.

Section 3 - Estimation and Reporting of Mineral Resources

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project
Database integrity (3.1)	Measures taken to ensure that data has not been corrupted by, for example, transcription or	 Drill holes data were digitised from the mine plans and cross-sections entry from hardcopy logs into Excel. All data in Excel was then checked against the original hardcopy logs including collar information, downhole surveying, geology logging and assays. Any errors detected in the Excel files was corrected.
	keying errors, between its initial	 Intervals not sampled were assigned a zero-grade value.
	collection and its use for Mineral Resource estimation purposes.	 Drillholes were uploaded to 3D mining software packages for error detection and on and on-screen inspection and validation.
	Data validation procedures used.	 Data were loaded into 3D mining software packages and validation checks for location, downhole surveys, intervals and integrity were made. The data was also checked against plans, cross sections and long sections to detect any errors in data entry for both locations and downhole data.
Site visits (3.2)	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	 Superior Lake's technical due diligence team comprising Mr Alfred Gillman, F.AusIMM (CP Geology) and Mr Keith Bowes – Project Director visited the site in January 2018. The team undertook a helicopter survey of the project area and visited several shafts and the on-site core shack. The Competent Person has not visited the project site.
	<i>If no site visits have been undertaken indicate why this is the case.</i>	 Based on the satisfactory inspection by the due diligence team it was not considered necessary for the Competent Person to travel from Perth to visit the site.

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project
Geological interpretation (3.3)	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	Pick-Winston Lakes camp VMS deposits, are a Noranda-style of the VMS-type deposits which are characterised by presence of the zinc - copper (+/- gold, +/- galena, +/- tetrahedrite) core composed of sphalerite- chalcopyrite-pyrrhotite-pyrite which can be surrounded by pyrite-pyrrhotite halo with minor sphalerite, tetrahedrite and galena. The zoned distribution of the sulphide minerals is coupled with alteration patterns developed in the host rocks, with Mg-chlorite distributed at the core of the alteration pipe under the Cu-Zn deposit surrounded by sericite- quartz outer halo. Rocks at the vicinity to mineralisation appear a pervasive Na and to less extent Ca depletion, whereas Mg-rich core is also depleted in SiO2. Mineralisation of the studied deposits is essentially occurring as single massive sulphides seam distributed along the VMS horizon.
		A VMS type model was used as a basis for constraining the mineralisation using the Leapfrog methodology. The geological characteristics of the VMS type mineralisation are well understood and applied for delineating the mineralised bodies at the project.
		This implies that base-metal sulphide precipitates from volcanic exhalates on a sea floor or at a shallow depth close to the floor and forming the beds and lenses of massive and semi-massive sulphide mineralisation.
		Confidence in the model is high because the mineralisation of the studied deposits is essentially occurring as single massive sulphides seam distributed along the VMS horizon. The mineralisation and the host rocks stratigraphy can be delineated between the drill holes.
		The distances between drillholes intersecting the mineralisation are commonly from 10-30m (at the Winston Lake deposit to 20-40m at the Pick Lake deposit which is sufficient for a confident delineation of the mineralised bodies. The interpretation of the VMS bodies was confirmed by mapping and sampling of the underground developments which are also used for constraining VMS mineralised bodies in 3D.
		The different interpretations can be suggested for extension of the mineralised bodies where they are not terminated by the barren drill holes

Criteria of JORC Code	Explanation given in the JORC Code 2012	Details of the Reported Project
2012	Nature of the data used and of any assumptions made.	Geological interpretation and the resource model are based on the drillholes data (1787 drill holes) and underground developments
	The effect, if any, of alternative interpretations on Mineral Resource	Not applicable. Mineral Resource domains are defined and constrained in 3D by the drillholes and the underground mapping/sampling data which has allowed to generate a robust geological interpretation of the mineralised bodies.
	estimation.	The close distances between the drillholes intersecting the VMS strata and reasonably simple geometry of the mineralised bodies does not leave too much rooms for alternative geological interpretations. The differences can be related to the distances of extrapolation of the drillhole grades to the peripheral parts of the VMS bodies. In the current estimation this was approximately 75m with a minimum of 4 samples available for averaging the extrapolated grade.
	The use of geology in guiding and controlling Mineral Resource estimation.	The Pick mineralisation was defined by intervals logged as massive and semi-massive sulphides within the Pick clotted rhyolite or tuff units. The assay values for zinc were compared to these intervals and found to correlate well. The zinc percent assay values were used to select intersections where no logging information was present. The interpretation of continuity was based on ore drive level plans that showed mapping information for the sulphide horizon. A nominal cut-off grade of 1% Zn was used to define the mineralised intervals which were used to construct a vein model. Edge boundaries were applied from ore drive extents and long-section mine plans that indicated the conductor boundary position from geophysical surveys.
	The factors affecting continuity both of grade and geology.	Mineralisation of the studied deposits occur as single massive sulphides seams (Pick Lake and Winston) distributed along the VMS horizon which controls the continuity of geology. This zoning, in particular zoned distribution of the Cu-rich and Zn-rich mineralisation, is observed at the studied deposits. Thickness and grade decreases to the peripheral parts of the VMS seams

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project
2012 Dimensions (3.4)	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The project includes two deposits, Pick Lake and Winston. Location and dimensions of the mineralisation is shown on the longitudinal sections (Figures 1 and 2). The diagrams also contain the drillhole intersections Fig.1 Longitudinal section of the Winston Lake deposit

Criteria of	Explanation							
JORC Code	given in the	Details of the Reported Project						
2012	IORC Code 2012							
Estimation	The nature and	Estimation of the mineralisation grade was made using Ordinary Kriging (OK) technique that was applied to Zn, Cu, Au and Ag						
and	annronriateness							
modelling	of the	and Ag.						
nouenng	0j lile			N ¹ I I I				
techniques	estimation			Pick Lake	I		Winston	
(3.5)	technique(s)	Model Parameters	Y	X	Z	Y	X	Z
	applied and key	Origin Coordinates (block corner)	5423760	470600	9270	5424800	472300	960
	assumptions,	Rotation	740. 11	not used	4000 7	1000 11	not used	700 7
	includina	Model Extent	740mN	1200mE	1090m2	1000mN	400mE	700m2
	treatment of	Parent Block Size (m)	20	1	20	20	1	20
	extreme grade	Transformation (flattening)	0.5	Onto V-7 plan (cetre line mode	0.5		⊥ 7 nlan (cetre line m	
		Attribute	Туре	Description		Description		ouej
	values,	Domains	assigned	Upper or Lower Pick				
	domaining,	Subzone	assigned	Reference to wireframe (10, 11, 12, 13, 14)		Refererence to wireframe (21)		
	interpolation	Density (CSG)	calc	Kriging		Kriging		
	parameters and	VOID	assigned	mined		mined		
	maximum	ZN	calc	Kriging		Kriging		
	distance of	CU	calc	Kriging		Kriging		
	extrapolation	AU	calc	Kriging		Kriging		
	Extrupolation	AG	calc	Kriging		Kriging		
	from data	Volume (m3)	calc	n.a		volume of cell within solid		
	points. If a	Pass-1	assigned	Interpolation first pass (1)		Interpolation first pass (1)		
	computer	RESCAI	assigned	INDICAT, INFER		INDICAT, INFER		
	assisted	Tonnage	caic	volume x density		volume x density		
	estimation							
	Estimation procedure included several steps:							
	choson includo a	Mineralisation was interpre	eted and constr	rained using 3D wirefi	rames. This wa	s made by exte	ernal consulta	nts (Optiro
	chosen include a group) who used the Leapfrog [®] program for developing the wireframes of the mineralised bodi					es.		
	aescription of	Wireframes were imported into Micromine [®] where the blank block model was created						
	computer							
	software and	when ames were imported into which online where the blank block model was created.						
	parameters	In order to assure the good fit of the block model to the wireframes the following sub-cells were used:						
	used.							

 Pick Lake deposit 0.5x0.5x0.5m (this is sub-cell size)
 Winston lake deposit: 1 x 1 x 1m (this is sub-cell size)
Drillholes data have been obtained from the central database stored on the Superior Lake's server. The database was
monitored by a database administrator.
The definition of the term of term of the term of term
The drillholes samples have been marked by assigning the codes corresponding to the wireframe that includes that
sample. Samples located outside of the wireframes have not been coded.
At the Dick Lake E wireframes present referred as 10, 11, 12, 12, 14
At the Winston Lake only one wireframe, referred as 21
At the whiston take only one when ane, referred as 21.
The drillhole samples have been coded accordingly to the wireframes: 10, 11, 12, 13, 14 and 21
The code was written in the field denoted as SUBZONE (drill holes assay file).
Because the sample lengths were different the samples have been composited to 1m composites. Compositing was made
using optimal compositing algorithm of Datamine [®] .
In order to accurately reproduce in the resource model, the internal zoning of the VMS mineralisation the estimation was
facilitated applying the unfolding techniques to the block model and drillholes. The central line flattening algorithm of
Micromine [®] was used for this purpose.
After flattening, the data have been transferred to Isatis [®] where the metal grades have been estimated into the block of
20(X) x 20(Y) x 1(Z)m. Coordinates were in the unfolded space.
I wo passes of estimation were used:
PICK LAKE
Alin complex 4
IVIIII samples 4 Max samples 16 (no doclustoring used)
iviax samples 16 (no declustering used)

2 nd pass: search radii 75x60x4m
Min samples 4
Max samples 12 (no declustering used)
WINSTON Lake
1 st pass: search radii 30x30x4m
Min samples 8
Max samples 16 (no declustering used)
2 nd pass: search radii 60x60x6m
Min samples 6
Max samples 16 (no declustering used)
For the Winston Lake deposit second pass estimation was made using Simple Kriging with a local mean. Local mean grades were estimated by averaging all samples located with the 80x80x10m panels.
Variograms of the studied metals are presented in the Appendix 1.
After completion of the estimation the block model have been transferred back to Micromine and estimated block grades
have been copied to corresponding them sub-cells.

Criteria ofExplanation given in theJORC CodeJORC Code 201220122012		Details of the Reported Project		
	The availability of check	Previous estimate of the Lower Pick resources was made using the polygonal method and was 1.3 Mt @		
	estimates, previous	16%Zn for Lower Pick		
	estimates and/or mine	The 2018 estimate is 1.41 Mt @ 19.1 % Zn		
	production records and	The differences are related to the use of geostatistical estimation techniques		
	whether the Mineral			
	Resource estimate takes			
	appropriate account of such data.			
	The assumptions made regarding recovery of by- products.	The main metals are Zn and Cu. Mineralisation also contains Au and Ag which are by-products. All four metals were estimated into the block model. Cu, Au and Ag grades are reported within the Zn resource ie., the associated minerals are not reported as separate domains.		
		It is likely that silver will have a similar recovery to that of the copper. This assumption is made because of strong correlation between these metals indicating that silver is likely present as a mixture of chalcopyrite which is the main copper mineral at this project.		
		Historical Recoveries or by-products during the 11 years of processing in the concentrator at the site were: Copper 78.3 %		
		Gulu 38 %		
	Estimation of deleterious	Deleterious elements were not analysed and were not used in the current estimation		
	elements or other non-			
	arade variables of	From production records and environmental monitoring of water discharge the concentrates were known		
	economic significance	to not host deleterious material, and after 30 years there is no record or indication of heavy metal impacts		
	(e.g. sulphur for acid mine	to the environment from water discharge.		
	drainage			
	characterisation).			

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	The distances between drillholes intersecting the mineralisation are commonly from 10-30m (at the Winston Lake deposit to 20-40m at the Pick Lake deposit which is sufficient for a confident delineation of the mineralised bodies. The parent blocks were 10x2.5x5m which is in a good accordance with the underground drilling density. At the peripheral parts of the Pick Lake deposit the drill spacing is wider.
	Any assumptions behind modelling of selective mining units.	The mining methods used at this project include mechanised AVOCA and Alimak stoping. Neither of these methods are planned to be used, with the adoption of a sublevel longhole stoping method with introduced paste fill being proposed on the resumption of operations. It is assumed that mining selectivity will be approximately in the range of 10x10x1 to 20x20x1m. The used block size for estimation resources was 20x20x1m, which corresponds to assumed size of the SMU blocks
	Any assumptions about correlation between variables.	Fig. 3: Ag vs Cu diagram, Pick Lake deposit drill hole data Cu and Ag appear a strong correlation (Fig.3), with coefficient of correlation (rho) equal to 0.87. Between other metals correlation is insignificant or lacking

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project
	Description of how the geological interpretation was used to control the resource estimates.	VMS type model was used as a basis for constraining the mineralisation using the LeapFrog methodology. According to this model the base-metal sulphides precipitate from volcanic exhalates on a sea floor and form the planar beds and lenses of massive sulphide mineralisation.
		This interpretation was implemented as 3D wireframes of the VMS seams that were created using Leapfrog software
	Discussion of basis for using or not using grade cutting or capping.	High grade cut-off was applied to all metals: Zn - 38% Cu - 3.5% Au - 1.5 g/t Ag - 140 g/t
		Cut-off value was determined approximately at 2% on the probability curve

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project
2012	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	Estimation was validated by plotting the block grades vs corresponding them sample grades. The data have been grouped into 40m panels drawn across the VMS bodies.
		Fig. 4. Swath plot comparing block model and sample grades, Pick Lake deposit

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project
Moisture (3.6)	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnage is estimated using the dry bulk density (DBD). Moisture was not determined and was not used
Cut-off parameters (3.7)	The basis of the adopted cut-off grade(s) or quality parameters applied.	A nominal grade of 1% Zn was used to interpret continuity for mineralisation domains. There is a sharp boundary contact with unmineralised host rock and there is no halo mineralisation

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project
Mining factors or assumptions (3.8)	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made	Winston Lake and Pick Lake deposits have been mined using mechanised underground mining with the AVOCA mining method predominately used at Winston and Alimak initially at the upper Pick area. The use of Alimak was adopted above the 615 m level as no development was in place at the time of stoping and given the low price of zinc a decision was made to reduce ramp access costs. Historical mining used a minimum mining width of 2m (horizontal thickness) based on the designed development on ore of 4m x 4m. Superior will evaluate a sublevel longhole stoping with paste fill. Instead of using unconsolidated waste fill, the mining method will use cemented paste fill better controlling the hanging wall radius of the stopes and crucially the time to fill.

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project	
Metallurgical factors or assumptions (3.9)The basis for as or predictions re metallurgical and It is always nece part of the proc 	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods	Past production was successful and has demonstrated that mineralisation is amenal conventional flotation technologies and the valuable metals are recovered as the su The concentrator process combined crushing, grinding, flotation and dewatering to high-grade concentrates, zinc and copper. The ore was hoisted via a vertical shaft in processed at a rate of 1,000 tpd. Concentrates were produced at 250 to 350 tpd wh were trucked to a rail siding in the town of Schrieber and loaded onto rail cars for sh	ole for processing using Iphide concentrate. produce two separate nto a fine ore bin and here the concentrate hipment to smelters.
	but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Image: State stat	Historical Recoveries during the 11 years of processing in the concentrator at the site were: Zn – 93.7% Cu – 78.3% Au – 38% Ag – 37%

Criteria of JORC Code	Explanation given in the	
2012	JORC Code 2012	Details of the Reported Project
Environmental factors or assumptions (3.10)	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	The Winston Lake - Pick Lake project is free of environmental liabilities. The environmental considerations are limited to the site rehabilitation, including the stockpile area, sedimentation basins, and building foundations. Restoration works have been completed except for the building foundations. Monitoring of the water quality from the mine started at mine closure and will be required for a period of 10 years The CP has been advised there are no impediments to recommencement of mining activities.
	explanation of the environmental assumptions made.	

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project
Bulk density (3.11)	Whether assumed or determined. If assumed,	654 samples have measured SG and 714 samples have CSG (calculated SG) where:
	the basis for the assumptions. If	CSG = (((100-S%)*2.7+R%*5+(R%*(Po%+0.001)/(Py%+0.001))*4.6) +Cu%/0.3*4.1+Zn%/0.6*3.9)/100
	determined, the method used, whether wet or dry, the frequency of the	S% =Sulphide % calc, R%= re-Py%
	measurements, the nature, size and representativeness of the samples.	

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project
	The bulk density for bulk material must have been measured by methods that adequately account for yoid spaces (yuas	The Superior Lake Ltd geological team believes that the techniques used for measuring the rock density are compliant with the Canadian mining industry practices. The measured values have been confirmed by the mine production. Estimated (CSG) densities well correlates with measured densities (SG) (Fig. 7) and they are suitable for resource estimation.
	porosity, etc), moisture and differences between	Pick-Winston SG/CSG Comparison
	and differences between rock and alteration zones within the deposit.	5.5 5 4.5 9 1 3.5
		3 3 3 3 4 4.5 5 5.5 2.5 3 3.5 4 4.5 5 5.5 Measured

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	The density values have been estimated into the block model using ordinary kriging. This has allowed to obtain the more accurate local estimates of the densities, in particular in the high- grade areas
Classification (3.12)	The basis for the classification of the Mineral Resources into varying confidence categories.	The blocks were classified as Indicated Resource if the block is located at the distance in the unfolded space is not farther then 40(X) x 40(Y)m from the nearest drillhole. Other blocks, that were estimated by the pass-2 of kriging (Pick Lake: search radii 75x60x4m and minimum 4 samples) (Winston lake: search radii 60x60x6m and minimum 6 samples) and located outside of the 40x40m area were classified as Inferred (Figs. 8 and 9).

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project
	Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	All relevant data and factors were taken into account for this resource estimation.
	Whether the result appropriately reflects the Competent Person's view of the deposit.	Based on the data provided, the result appropriately reflects the Competent Person's view of the deposit.
Audits or reviews (3.13)	The results of any audits or reviews of Mineral Resource estimates.	An alternate resource estimation was completed by independent consultant Mr Alfred Gillman, using an inverse squared estimation methodology. The results are consistent with the reported tonnes and grade and support the 2018 Mineral Resource estimate.

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Details of the Reported Project
Discussion of	Where appropriate a	Confidence in this Mineral Resource estimate was assessed using conditional simulation technique (SGS
relative accuracy/	statement of the relative	method) applied to the data of the central part of the Lower Pick domain, which was prepared for
confidence (3.14)	accuracy and confidence	production by developing the underground drives. The distribution of the drillhole in this area is
	level in the Mineral	approximately 35 x 35m grid.
	Resource estimate using	
	an approach or procedure	A 2D model was constructed for estimation uncertainty in estimated metal accumulations, GT-Zn m%. (GT
	deemed appropriate by	denotes the product of Zn grade by horizontal thickness of the intersection).
	the Competent Person.	
	For example, the	Two estimation errors were deduced from the SGS model, the global error for entire Lower Pick domain
	application of statistical	and local estimate. The latter was obtained for 50m panels drawn through the entire strike length of the
	or geostatistical	Lower Pick domain (Fig. 10). These 50m panels correspond to approximately 1 year of the mine production,
	procedures to quantify	therefore the estimated error corresponds to uncertainty in the estimated annual production.
	the relative accuracy of	
	the resource within stated	Results of the SGS method are as follows:
	confidence limits, or, if	
	such an approach is not	Average GT-Zn of the Lower Pick domain is estimated with an error +/- 7.7% (at 0.95 CL)
	deemed appropriate, a	
	qualitative discussion of	Average GT-Zn of the 50m panels (annual production) are estimated with an average error +/-14.6% (range
	the factors that could	11.1 – 20.4%).
	affect the relative	
	accuracy and confidence	These results were a basis for choosing a drill grid of approximately 30-40 x 30-40m grid as criteria for
	of the estimate.	classification mineralisation as Indicated resource

These statements of	
relative accuracy and	
confidence of the	
estimate should be	
compared with	
production data, where	
available.	

Appendix 2: All known drillhole intercepts as sourced from Inmet Mining Corp figures.

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
WL-072	2	0.13	2.41	Pick Lake
UP-1A	1.9	0.39	14.65	Pick Lake
UP-114	2	0.11	6.69	Pick Lake
UP-115	2	0.1	6.27	Pick Lake
UP-116	2	0.03	2.85	Pick Lake
UP-117	2	0.22	21.81	Pick Lake
WL-075A	0.16	0.31	4.03	Pick Lake
WL-032A	4.45	0.73	18.48	Pick Lake
WL-065	2	0	0	Pick Lake
WL-023	2	0.3	5.34	Pick Lake
WL-076	0.17	0.28	24.95	Pick Lake
WL-029	2	0.02	0.46	Pick Lake
WL-058A	3.51	0.48	18.34	Pick Lake
WL-025A	2	0.02	1.28	Pick Lake
WL-024	2	0.09	5.29	Pick Lake
WL-078	2	0	0	Pick Lake
WL-079	2	0.3	0.24	Pick Lake
WL-070A	2	0	0	Pick Lake
WL-069	2	0	0	Pick Lake
WL-069A	2	0	0	Pick Lake
WL-026	2	0	0	Pick Lake
WL-026B	2	0	0	Pick Lake
WL-025	3.42	0.78	9.24	Pick Lake
WL-081	1.87	0.38	20.4	Pick Lake
WL-032	2	0.08	5.37	Pick Lake
UP-3A	2.8	1.39	26.59	Pick Lake
WL-077A	4.4	0.86	22.82	Pick Lake
UP-3B	3	1.74	27.42	Pick Lake
WL-067C	5	1.26	34.98	Pick Lake
UP-4	11	0.28	8.04	Pick Lake
UP-36	2	0	0	Pick Lake
WL-071A	2	0.01	0.08	Pick Lake
WL-071	2	0.06	0.18	Pick Lake
WL-067	17.86	2.22	22.89	Pick Lake
UP-6	0.79	28.5	5.5	Pick Lake
WL-067A	2	0.69	24.48	Pick Lake
UP-5	5	0.6	22.09	Pick Lake
UP-5A	5	1.3	14.73	Pick Lake
UP-2	3.3	0.86	15.71	Pick Lake
WL-042	2	0.01	0.11	Pick Lake
WL-010	2	0	0	Pick Lake

SUPERIC	DRLA JRCE	s s

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
WL-021	2	0.03	0.39	Pick Lake
WL-009	2	0.02	0.29	Pick Lake
WL-013	2	0.07	0.89	Pick Lake
WL-031	2	0.06	1.26	Pick Lake
WL-034	2	0.13	0.06	Pick Lake
WL-016	2	0.18	1.44	Pick Lake
WL-059	2	0.01	0.08	Pick Lake
WL-018	2	0.08	0.78	Pick Lake
UP-111	2	1.02	16.43	Pick Lake
UP-109	2.5	1.86	27	Pick Lake
UP-110	2	0.8	14.82	Pick Lake
UP-106	2	0.81	14.09	Pick Lake
UP-107	2	0.12	8.79	Pick Lake
UP-105	2	0.95	16.5	Pick Lake
UP-103	2	0.21	8.25	Pick Lake
UP-102	2	0.14	3.19	Pick Lake
UP-108	2	0.35	10.46	Pick Lake
UP-56	2	0.97	14.36	Pick Lake
WL-012	2	0.87	12.34	Pick Lake
UP-55	2	1.32	15.74	Pick Lake
UP-58	2.6	1.91	28.35	Pick Lake
UP-51	2.5	1.49	21.34	Pick Lake
UP-57	2	0.4	7.58	Pick Lake
UP-68	2	0.28	2.55	Pick Lake
WL-047	2	0.13	2.35	Pick Lake
UP-67	2	0.22	3.45	Pick Lake
WL-027	2	0.58	7.15	Pick Lake
UP-70	2	0.02	1.23	Pick Lake
UP-79	2	0.27	2.66	Pick Lake
UP-74	2	0.04	1.43	Pick Lake
UP-64	2	0.14	2.31	Pick Lake
UP-65	2	0.34	6.55	Pick Lake
UP-69	2	0.4	8.54	Pick Lake
UP-65	2	1.17	13.61	Pick Lake
WL-045	2	0.69	9.83	Pick Lake
UP-22	2	0	0	Pick Lake
UP-104	2	0.05	5.84	Pick Lake
UP-60	2	0.15	3.96	Pick Lake
UP-50	2	0.33	8.93	Pick Lake
UP-62	2	0.5	2.88	Pick Lake
UP-54	2	1.16	12.73	Pick Lake
UP-49	2	0.35	3.26	Pick Lake
UP-59	2	0.04	1.71	Pick Lake
WL-033	2	0	0	Pick Lake

SUPERIC R E S O U	DR LAKE J R C E S	

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
UP-48	2	0.51	15.26	Pick Lake
UP-52	2	0.4	8.2	Pick Lake
UP-53	3.4	1.7	20.83	Pick Lake
UP-19	5	1.76	24.27	Pick Lake
UP-78	2	0	0	Pick Lake
UP-72	2	0.21	3.71	Pick Lake
UP-73	2	0.19	3.33	Pick Lake
UP-75	2	0.59	10.02	Pick Lake
UP-77	2	0.38	5.37	Pick Lake
WL-028	2	0.51	1.67	Pick Lake
UP-76	2	0.32	5.33	Pick Lake
UP-07	2	0.81	8.44	Pick Lake
UP-09	2	1.02	11.89	Pick Lake
WL-048	3.26	1.85	24.35	Pick Lake
UP-10	2	0.65	9.44	Pick Lake
UP-11	3	1.79	25.65	Pick Lake
UP-12	2	1.53	18.35	Pick Lake
UP-13	2	1.57	21.93	Pick Lake
UP-38	2	1.4	26.26	Pick Lake
UP-37	2	1.16	22.58	Pick Lake
UP-15	2	0.17	2.48	Pick Lake
UP-34	2	0.01	1.23	Pick Lake
UP-33	2.6	1.48	24.55	Pick Lake
UP-14	3.6	1.33	27.08	Pick Lake
UP-35	2	0.11	12.33	Pick Lake
UP-26	2	0.13	13.2	Pick Lake
UP-32	2	0.07	0.93	Pick Lake
UP-40	2	0.05	4.02	Pick Lake
UP-17	2	0.12	3.06	Pick Lake
UP-20	2	0.54	10.6	Pick Lake
UP-61	2	0.02	1.22	Pick Lake
UP-47	2	1.38	14.03	Pick Lake
UP-08	2	0	0	Pick Lake
UP-16	3.6	0.89	26.58	Pick Lake
UP-39	2	0	0.2	Pick Lake
UP-18	2.7	1.84	24.79	Pick Lake
UP-46	2	0.52	10.41	Pick Lake
UP-63	2	0.53	8.73	Pick Lake
UP-45	2	0.48	6.46	Pick Lake
UP-21	2	0	0	Pick Lake
UP-80	2	0.44	10.6	Pick Lake
UP-81	2	1.44	27.92	Pick Lake
WL-011	2.29	1.49	21.95	Pick Lake
UP-83	2	1.27	18.34	Pick Lake

SUPERIC R E S O U	DR LAKE J R C E S	

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
UP-82	2	1.47	23.05	Pick Lake
UP-84	2	0.55	8.55	Pick Lake
WL-049	2	0.15	2.42	Pick Lake
UP-86	2	0.25	5.23	Pick Lake
UP-88	2	0.23	5.22	Pick Lake
WL-030	2	0.71	12.44	Pick Lake
UP-91	2	0.37	4.61	Pick Lake
UP-93	2	0.26	3.93	Pick Lake
UP-95	2	0.52	8.32	Pick Lake
UP-98	2	0.39	6.97	Pick Lake
UP-97	2	0.41	1.9	Pick Lake
UP-100	2	0.24	3.38	Pick Lake
UP-101	2	0.04	1.09	Pick Lake
UP-94	2	0.1	1.56	Pick Lake
UP-96	2	0.07	3.41	Pick Lake
UP-92	2	0.16	4.83	Pick Lake
UP-99	2	0.15	2.41	Pick Lake
UP-90	2	0.09	3.14	Pick Lake
UP-89	2	0.03	0.99	Pick Lake
UP-87	2	0.28	5.94	Pick Lake
UP-85	2	0.04	1.68	Pick Lake
UP-186	2	0.22	19.99	Pick Lake
UP-183	1.5	0.58	24.87	Pick Lake
UP-171	3	0.57	34.87	Pick Lake
UP-170	2	0.78	26.35	Pick Lake
UP-168	2	0.63	17.89	Pick Lake
UP-180	1.5	1.08	27.32	Pick Lake
UP-166	3.3	0.97	30.83	Pick Lake
UP-172	3.5	0.27	22.65	Pick Lake
UP-165	5.5	1.16	28.92	Pick Lake
UP-164	6	1.06	30.01	Pick Lake
UP-169	3	1.13	27.21	Pick Lake
UP-167	1.2	0.55	31	Pick Lake
UP-179	4.3	0.99	32.9	Pick Lake
UP-181	4.5	1.65	31.69	Pick Lake
UP-182	2.4	1.6	28.54	Pick Lake
UP-176	3.2	0.18	7.64	Pick Lake
UP-14	0.5	0.23	18.14	Pick Lake
UP-143	0.3	0.67	19.54	Pick Lake
UP-145	2	1.33	16.58	Pick Lake
UP-146	0.7	0.56	13.97	Pick Lake
UP-155	0.6	0.93	19.58	Pick Lake
UP-184	1	0.28	26.4	Pick Lake
UP-185	2.2	0.7	28.9	Pick Lake

SUPERIC R E S O U	DR LAKE J R C E S	

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
UP-162	1	0.62	18.07	Pick Lake
UP-160	0.3	0.38	10.54	Pick Lake
UP-174	5.5	0.94	24.32	Pick Lake
UP-175	3.3	1.6	30.73	Pick Lake
UP-161	6	1.77	27.6	Pick Lake
UP-149	10.5	1.33	24.8	Pick Lake
UP-173	9	1	29.48	Pick Lake
UP-151	0.8	1.71	22.26	Pick Lake
UP-178	4.3	1.25	36.35	Pick Lake
UP-152	1.5	0.36	11.32	Pick Lake
UP-177	3.5	0.25	9.25	Pick Lake
UP-119	0.03	0.16	10.56	Pick Lake
UP-120	0.01	0	0	Pick Lake
UP-159	0.3	0.88	13.4	Pick Lake
UP-158	1.2	1.58	30.43	Pick Lake
UP-147	33.2	2.26	18.77	Pick Lake
UP-156	0.7	0	0	Pick Lake
UP-154	15.8	1.44	30.47	Pick Lake
UP-148	15.8	1.91	30.05	Pick Lake
UP-135	15	0.25	7.54	Pick Lake
UP-135	0.01	0	0	Pick Lake
UP-133	0.02	0	0	Pick Lake
UP-136	0.3	0.35	26.46	Pick Lake
UP-157	0.1	0	0	Pick Lake
UP-134	0.3	0	0	Pick Lake
UP-153	1.7	1.2	29.44	Pick Lake
UP-126	1	0.63	26.53	Pick Lake
UP-163	0.03	0	0	Pick Lake
U-1387	2	0	0	Winston Lake
U-1386	2	0	0	Winston Lake
U-1384	2	0	0	Winston Lake
U-1449	2	0	0	Winston Lake
U-1376	2	0	0	Winston Lake
U-1443	2	0	0	Winston Lake
U-1379	3	1.06	34.47	Winston Lake
U-1445	2	0	0	Winston Lake
U-1441	2	0	0	Winston Lake
U-1437	2	0.26	8.12	Winston Lake
U-1434	2	0.12	1.72	Winston Lake
U-1439	2	0.04	0.43	Winston Lake
U-1433	2	0.09	2.31	Winston Lake
U-1438	2	0.04	0.03	Winston Lake
U-1435	2	1.13	15.02	Winston Lake
U-1432	2	0.49	6.51	Winston Lake

SUPERIC	PR LAKE
Resou	J R C E S

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-1435	2	1.13	15.02	Winston Lake
U-1185	2	0.44	10.67	Winston Lake
U-1032	2	0	0	Winston Lake
U-1436	2	0.02	2.98	Winston Lake
U-1391	2	0.06	0.65	Winston Lake
U-1395	2	0.09	1.32	Winston Lake
U-1427	2	0.66	18.02	Winston Lake
U-1446	2	1.05	2.97	Winston Lake
U-1394	2	0.05	0.55	Winston Lake
U-1390	2	0.08	3.03	Winston Lake
U-1418	2	0.17	6.13	Winston Lake
U-1247	2	0.42	2.96	Winston Lake
U-1031	2.5	0.32	7.09	Winston Lake
U-1188	2	0.12	1.7	Winston Lake
U-1197	2	0.06	1.77	Winston Lake
U-1196	2	0.03	0.07	Winston Lake
U-1194	2	0.23	2.57	Winston Lake
U-1193	2	0.11	0.89	Winston Lake
U-1201	2.9	0.84	9.22	Winston Lake
U-1200	2	0.05	0.33	Winston Lake
U-1026	2.4	0.62	14.8	Winston Lake
U-1010	2	0.69	2.21	Winston Lake
U-1195	2	0.35	0.71	Winston Lake
U-1028	2.5	0.54	17.13	Winston Lake
U-1187	2	0.05	0.62	Winston Lake
U-1239	2	0.29	0.36	Winston Lake
U-1199	2	0.13	0.08	Winston Lake
U-1198	2	0	0	Winston Lake
U-1192	2	0.41	0.85	Winston Lake
U-1027	2	0.56	0.5	Winston Lake
U-1025	2	0	0	Winston Lake
U-1030	2	0	0	Winston Lake
U-1414	2	0.52	4.5	Winston Lake
U-1184	2	0.07	3.2	Winston Lake
U-1417	2	0.02	0.41	Winston Lake
U-1388	2	0.08	1.15	Winston Lake
U-1249	2	0.47	4.81	Winston Lake
U-1389	2	0.31	11.95	Winston Lake
U-1231	9	1.17	18.52	Winston Lake
U-1230	9.2	1.43	12.87	Winston Lake
U-1392	7.7	1.01	11.2	Winston Lake
U-110	5.4	1.23	11.5	Winston Lake
U-1393	2	0.15	2.01	Winston Lake
U-1224	2	0.01	0.31	Winston Lake

SUPERIC R E S O U	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-1396	2	0.02	0.38	Winston Lake
U-1220	2	1.36	17.81	Winston Lake
U-1397	2	1.22	8.16	Winston Lake
U-1260	2.6	0.97	10.54	Winston Lake
U-1259	2	1.41	7.71	Winston Lake
U-1399	2	0.41	7.95	Winston Lake
U-1398	2	0.43	10.01	Winston Lake
U-1268	2	0.67	10.26	Winston Lake
U-1406	2.2	1.77	22.47	Winston Lake
U-1258	2	0.96	7.35	Winston Lake
U-1276	2	1.42	2.75	Winston Lake
U-1253	11.8	1.19	13.78	Winston Lake
U-1280	2	0.61	5.21	Winston Lake
U-1257	6	1.45	30.37	Winston Lake
U-1367	2	0.87	14.78	Winston Lake
U-1364	2	0.66	17.82	Winston Lake
U-1267	2	0.34	15.71	Winston Lake
U-1368	2	0.18	3.71	Winston Lake
U-1256	2	0.03	0.28	Winston Lake
U-1365	2	0.32	0.82	Winston Lake
U-1369	2	0.39	4.77	Winston Lake
U-1366	2	0.6	8.72	Winston Lake
U-1370	2	0.08	4.3	Winston Lake
U-1371	2	0	0.1	Winston Lake
U-1334	2	0.09	2.1	Winston Lake
U-1331	2	0.07	0.16	Winston Lake
U-1431	2	1.37	13.75	Winston Lake
U-1428	2	1.38	2.82	Winston Lake
U-1430	2	0.15	0.29	Winston Lake
U-1381	2	0.37	3.92	Winston Lake
U-1440	3	1.47	36.79	Winston Lake
U-1380	2.8	2.1	28.29	Winston Lake
U-1444	2	0.08	6.37	Winston Lake
U-1429	2	1.45	9.51	Winston Lake
U-1392	2	1.13	18.62	Winston Lake
U-1447	2	1.44	21.09	Winston Lake
U-1408	3	1.82	16.59	Winston Lake
U-1378	2	0.96	16.55	Winston Lake
U-1407	2.4	1.76	12.18	Winston Lake
U-1448	3.5	1.24	18.45	Winston Lake
U-1377	2.6	1.52	24.79	Winston Lake
U-1373	3.5	0.84	24.52	Winston Lake
U-1375	2	0.41	16.71	Winston Lake
U-1383	2	0.02	0.18	Winston Lake

SUPERIC R E S O U	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-1244A	7.3	0.96	9.44	Winston Lake
U-1238	12	1.01	11.41	Winston Lake
U-1246	9.8	0.23	1.56	Winston Lake
U-1237	7.2	0.59	8.11	Winston Lake
U-996	10.5	1.04	9.34	Winston Lake
U-1223	5.4	1.1	12.6	Winston Lake
U-1244	2	1.33	3.79	Winston Lake
U-1243	2	0.66	0.88	Winston Lake
U-1006	2	0.59	1.5	Winston Lake
U-1183	2	0.23	0.07	Winston Lake
U-1248	2.6	1.4	17.15	Winston Lake
U-1235	2	0.01	0.42	Winston Lake
U-1000	2	0.39	16.57	Winston Lake
U-1228	2	0.09	2.83	Winston Lake
U-1226	3.8	1.11	16.38	Winston Lake
U-1190	6	1.77	18.82	Winston Lake
U-1189	3.3	1.4	17.06	Winston Lake
U-1175	3.9	1.17	24.16	Winston Lake
U-1272	2	1.37	21.07	Winston Lake
U-1174	2.6	1.08	28.42	Winston Lake
U-1167	3.7	0.7	31.59	Winston Lake
U-121	9.1	0.68	8.46	Winston Lake
U-1166	6.5	0.69	13.11	Winston Lake
U-1219	3.8	1.24	16.74	Winston Lake
U-1250	2	1.51	29.15	Winston Lake
U-1251	2	1.07	5.43	Winston Lake
U-1274	2	0.45	9.29	Winston Lake
U-1275	2	0.17	1.85	Winston Lake
U-1279	2	0.8	7.2	Winston Lake
U-1284	7.8	2.02	21.25	Winston Lake
U-1252	9.8	0.21	5.35	Winston Lake
U1338	6.4	0.84	16.08	Winston Lake
U-1164	5.8	1.64	27.69	Winston Lake
U-1266	2	0.29	5.25	Winston Lake
U-1266	2	0.06	0.69	Winston Lake
U-1332	2	0.35	7.14	Winston Lake
U-1261	2	0.03	2.2	Winston Lake
U-1333	2	0.08	4.5	Winston Lake
U-1330	2	0.07	0.12	Winston Lake
U-1321	2	0	0	Winston Lake
U-1261	2	0.03	2.2	Winston Lake
U-1217	2	0.29	12.74	Winston Lake
U-1325	2	0.4	17.9	Winston Lake
U-1215	2	0.02	0.49	Winston Lake

SUPERIC R E S O U	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-792	2	0.21	0.26	Winston Lake
U-1213	2	0.02	0.11	Winston Lake
U-1326	2	0.52	5.55	Winston Lake
U-1327	2	0.04	0.37	Winston Lake
U-1211	3.9	0.64	18.65	Winston Lake
U-789	2	0.04	0.29	Winston Lake
U-1328	2	0.09	0.11	Winston Lake
U-1208	2.8	0.59	33.71	Winston Lake
U-1204	2	0.49	2.68	Winston Lake
U-1206	2	1.43	9.63	Winston Lake
U-784	2	0.55	1.1	Winston Lake
U-1322	2	0.21	0.63	Winston Lake
U-1323	2	0.38	0.34	Winston Lake
U-1324	2	0.17	3.22	Winston Lake
U-794	2	0.57	1.83	Winston Lake
U-791	2	0.05	0.56	Winston Lake
U-790	2	0.01	0.01	Winston Lake
U-785	2	0.01	0.01	Winston Lake
ZO-23	-	-	-	Winston Lake
U-1363	2	0.48	2.75	Winston Lake
U-1359	2	0.01	0.57	Winston Lake
U-1362	2	0.37	4.58	Winston Lake
U-1357	2	0.04	1.25	Winston Lake
U-1423	2	0.01	1.1	Winston Lake
U-1355	2	0.03	9.82	Winston Lake
U-799	2	0.38	21.31	Winston Lake
U-1356	2	0.03	0.03	Winston Lake
U-1360	2	0.01	5.83	Winston Lake
U-797	2	0.03	0.02	Winston Lake
U-1424	2	0.04	0.07	Winston Lake
U-801	2	0	0	Winston Lake
U-1421	2	0	0	Winston Lake
U-787	2	0.43	0.08	Winston Lake
U-1094	2	0.04	1.14	Winston Lake
U-1093	2	0.01	0.17	Winston Lake
U-1422	4.4	1	34.96	Winston Lake
U-1352	2	0.35	0.09	Winston Lake
U-800	2	0.69	0.48	Winston Lake
U-1354	2	0.74	13.1	Winston Lake
U-1345	5.3	1.11	14.79	Winston Lake
U-1346	6.8	1.9	35.43	Winston Lake
U-798	2	1.31	6.5	Winston Lake
U-1350	4.7	0.82	39.59	Winston Lake
U-1351	6.6	0.97	18.53	Winston Lake

SUPERIC R E S O L	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-796	2	1.38	2.77	Winston Lake
U-1361	2	0.26	10.18	Winston Lake
U-793	2	0.65	3.22	Winston Lake
U-1358	2	0.01	1.13	Winston Lake
U-1312	2	0.5	2.98	Winston Lake
U-1339	2	0.04	0.6	Winston Lake
U-1341	2	0.13	1.15	Winston Lake
U-1342	2	1.07	3.92	Winston Lake
U-1349	2	1.26	21.13	Winston Lake
U-1348	2	0.05	0.33	Winston Lake
U-1337	2	0.23	1.35	Winston Lake
U-1340	2	0.05	2.48	Winston Lake
U-1353	8.2	1.03	13.93	Winston Lake
U-006	2	0.37	8.27	Winston Lake
U-948	2	0.51	4.73	Winston Lake
U-1343	2	0.08	3.38	Winston Lake
U-955	2	0.31	2.98	Winston Lake
U-021	2	0.5	4.94	Winston Lake
U-1347	2	0.75	3.63	Winston Lake
U-1344	2	0.09	1.69	Winston Lake
U-1092	2	0.49	8.32	Winston Lake
U-1077	2	0.05	3.25	Winston Lake
U-1091	2	0.85	6.62	Winston Lake
U-1085	3.3	0.82	18.48	Winston Lake
U-786	2.6	1.58	9.61	Winston Lake
U-1082	6	0.56	10.03	Winston Lake
U-003	2.1	0.72	9.14	Winston Lake
U-1081	2	0.46	19.31	Winston Lake
U-1088	3	1.15	18.13	Winston Lake
U-1080	2.2	0.87	26.84	Winston Lake
U-016	2	0.87	8.77	Winston Lake
U-1075	2.3	1.11	10.2	Winston Lake
U-1074	3.5	0.82	24.37	Winston Lake
U-1072	2	0.03	0.67	Winston Lake
U-1071	2	0.02	0.38	Winston Lake
U-1051	2	0.02	0.18	Winston Lake
U-025	2	0.36	0.52	Winston Lake
U-1048	2	0.27	9.26	Winston Lake
U-1070	2	0.02	0.13	Winston Lake
U-1050	2	0.06	0.51	Winston Lake
U-1047	2	0.91	9.19	Winston Lake
U-1046	2	0.05	4.83	Winston Lake
U-029	2	0.52	3.97	Winston Lake
U-1040	2	0.79	10.28	Winston Lake

SUPERIC R E S O L	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-1039	2	0.08	0.3	Winston Lake
U-1042	2	0.07	1.66	Winston Lake
U-1044	2	0.01	0.07	Winston Lake
U-1043	2	0.11	2.25	Winston Lake
U-1036	6	1.23	23.3	Winston Lake
U-1134	2	0.05	0.17	Winston Lake
U-061	2	0.06	0.04	Winston Lake
U-1038	2	0.03	1.3	Winston Lake
U-1035	2.8	1.76	23.32	Winston Lake
U-1133	2	0.01	1.99	Winston Lake
U-1132	2	0.35	0.6	Winston Lake
U-1141	2	0	0	Winston Lake
U-1140	2	0	0	Winston Lake
U-1137	2	0	0	Winston Lake
U-1139	2	0.01	3.19	Winston Lake
U-1136	2	0	0	Winston Lake
U-066	2	0.24	0.21	Winston Lake
U-1147	2	0	0	Winston Lake
U-1144	2	0.11	1.02	Winston Lake
U-1146	2	0.59	1.24	Winston Lake
U-1143	2	1	3.92	Winston Lake
U-1142	5.8	1.99	24.41	Winston Lake
U-1145	2	1.71	14.13	Winston Lake
U-087	1.4	0.37	3.1	Winston Lake
U-842	2	0.62	0.41	Winston Lake
U-836	8.6	1.52	19.45	Winston Lake
U-839	4.5	1.19	23.74	Winston Lake
U-067	5	1.03	8.34	Winston Lake
U-833	2	0.4	1.56	Winston Lake
U-835	10	1.46	20.73	Winston Lake
U-838	9.8	1.09	29.93	Winston Lake
U-841	11	0.79	21.46	Winston Lake
U-845	2	0.35	1.93	Winston Lake
U-849	2	0	0	Winston Lake
U-854	2	0.44	3.74	Winston Lake
U-850	2	0.01	0.68	Winston Lake
U-848	2	0.02	4.2	Winston Lake
U-083	2	0.15	1.3	Winston Lake
U-855	2	0	0	Winston Lake
U-853	2	0.03	0.7	Winston Lake
U-858	2	0	0	Winston Lake
U-856	2	0	0	Winston Lake
U-852	2	0.14	8.5	Winston Lake
U-851	2	0	0	Winston Lake

SUPERIC R E S O U	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-846	4.8	0.17	48.28	Winston Lake
U-847	10	0.34	40.06	Winston Lake
U-844	11.2	0.59	39	Winston Lake
U-843	6	2.2	47.09	Winston Lake
U-837	11	2.9	25.79	Winston Lake
U-088	5.8	2.56	32.49	Winston Lake
U-840	7	1.54	26.09	Winston Lake
U-8334	4.6	1.95	24.34	Winston Lake
U-084	4.7	4.52	37.21	Winston Lake
U-857	2	0	0	Winston Lake
U-1316	2	0	0	Winston Lake
U-859	2	0	0	Winston Lake
U-045	3.4	0.76	7.91	Winston Lake
U-1034	2	0.73	29.86	Winston Lake
U-1131	3.2	0.59	11.82	Winston Lake
U-1045	2	0.12	2.3	Winston Lake
U-979	2	0.01	1.65	Winston Lake
U-1041	2	0.12	0.73	Winston Lake
U-1037	2	0.14	0.78	Winston Lake
U-976	2	0.01	1.83	Winston Lake
U-972	2	1.27	8.42	Winston Lake
U-024	2	0.49	11.52	Winston Lake
U-968	2	0.02	0.34	Winston Lake
U-967	2	0.05	0.07	Winston Lake
U-971	2	0.23	1.24	Winston Lake
U-981	3.5	1.36	12.7	Winston Lake
U-1087	5.7	1.22	15	Winston Lake
U-1079	2	0.81	14.81	Winston Lake
U-1073	4.8	1.03	20.36	Winston Lake
U-1086	2	0.26	15.07	Winston Lake
U-1078	2.6	1.04	4.84	Winston Lake
U-013	2	0.81	25.04	Winston Lake
U-969	3	0.73	20.31	Winston Lake
U-1069	2	0.25	4.53	Winston Lake
U-1049	2	0.11	8.96	Winston Lake
U-1084	2	0.25	0.56	Winston Lake
U-1076	2	1.07	4.75	Winston Lake
U-1090	2	0.25	0.95	Winston Lake
U-1083	2	0.02	1.38	Winston Lake
U-007	2	0.07	4.85	Winston Lake
U-1089	2	0.17	3.12	Winston Lake
U-795	2	0.22	6.7	Winston Lake
U-1179	2	0.15	3.07	Winston Lake
U-949	2	0.04	1.14	Winston Lake

SUPERIC R E S O U	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-863	2	0.52	0.73	Winston Lake
U-947	4.2	1.33	17.83	Winston Lake
U-102	2	1.26	23.6	Winston Lake
U-946	8	1.77	17.75	Winston Lake
U-1178	2	0.09	14.43	Winston Lake
U-033	8.3	0.69	14.78	Winston Lake
U-1180	2	1.11	19.78	Winston Lake
U-954	2	0.27	4.85	Winston Lake
U-954	2	0.69	0.61	Winston Lake
U-1020	2	0.36	5.38	Winston Lake
U-1022	2	1.11	13.99	Winston Lake
U-945	8.4	1.2	19.07	Winston Lake
U-1018	2.5	1.1	20.89	Winston Lake
U-1019	6.94	1.98	21.89	Winston Lake
U-1021	3.7	1.44	22.8	Winston Lake
U-433	2.8	0.28	14.97	Winston Lake
U-433	3	2.62	14.9	Winston Lake
U-1023	2	0.28	43.46	Winston Lake
U-019	5.9	1.04	14.88	Winston Lake
U-019	8	1.94	17.66	Winston Lake
U-1016	2.5	1.43	16.81	Winston Lake
U-1014	2	0.98	15.02	Winston Lake
U-940	2.4	1.89	20.32	Winston Lake
U-940	7	0.13	3.1	Winston Lake
U-432	8	0.62	13.68	Winston Lake
U-432	2.5	1.85	5.42	Winston Lake
U-937	23.5	0.61	10.98	Winston Lake
U-931	22	0.98	14.73	Winston Lake
U-934	19	1.02	16.14	Winston Lake
U-1205	2	0.59	8.71	Winston Lake
U-038	2	0.71	4.73	Winston Lake
U-867	2	0.39	2.25	Winston Lake
U-871	2	1.05	3.11	Winston Lake
U-866	2	0.41	1.99	Winston Lake
U-862	2	0.24	3.37	Winston Lake
U-964	2	0.24	3.37	Winston Lake
U-963	5	0.17	1.23	Winston Lake
U-965	17.2	0.75	5.18	Winston Lake
U-929	13.6	0.78	10.04	Winston Lake
U-861	16	0.68	7.53	Winston Lake
U-865	3	1.05	7.91	Winston Lake
U-927	12.7	1.42	22.57	Winston Lake
U-974	2	0.72	6.43	Winston Lake
U-002	7	0.72	8.75	Winston Lake

SUPERIO R E S O U	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-974	2	0.72	6.43	Winston Lake
U-440	2	0.73	1.73	Winston Lake
U-973	2	0.34	4.33	Winston Lake
U-440	2	0.73	1.73	Winston Lake
U-465	2	0.63	6.67	Winston Lake
U-457	2	0.11	0.56	Winston Lake
U-464	4.6	1.14	7.03	Winston Lake
U-456	2	1.19	4.45	Winston Lake
U-439	8.6	0.93	11.32	Winston Lake
U-448	2	1.26	20.4	Winston Lake
U-438	6	1.13	9.4	Winston Lake
U-1236	2	0.1	0.06	Winston Lake
U-1234	2	0.32	0.91	Winston Lake
U-999	2.2	0.62	28.3	Winston Lake
U-1227	2	0.3	20.24	Winston Lake
U-995	2	0.59	0.4	Winston Lake
U-1225	2	0.16	2.98	Winston Lake
U-1222	5.2	1.02	6.3	Winston Lake
U-1221	2	0	0	Winston Lake
U-1245	2	0.51	0.79	Winston Lake
U-1005	2.6	0.84	13.33	Winston Lake
U-1242	2	0.75	1.08	Winston Lake
U-1241	2	0.12	0.03	Winston Lake
U-1009	2.95	0.83	1.52	Winston Lake
U-1191	2	0.58	7.29	Winston Lake
U-1182	2	0.39	5.17	Winston Lake
U-1004	2	0.43	6.92	Winston Lake
U-1233	2	0.02	0.77	Winston Lake
U-1232	2	0.16	1.48	Winston Lake
U-998	2	0.03	0.54	Winston Lake
U-993	2	0.13	1.52	Winston Lake
U-994	2	0.22	5.16	Winston Lake
U-111	2	0.44	1.4	Winston Lake
U-984	2	0.27	3.55	Winston Lake
U-983	2	0.11	0.35	Winston Lake
U-916	2	0.25	0.25	Winston Lake
U-917	2	0.09	0.34	Winston Lake
U-992	2	0.17	1.7	Winston Lake
U-997	5.8	1.05	10.94	Winston Lake
U-911	2	0.41	4.13	Winston Lake
U-991	2	0.53	4.36	Winston Lake
U-921	2	0.48	8.42	Winston Lake
U-1003	2	0.37	0.29	Winston Lake
U-1002	2	0	-	Winston Lake

SUPERIC	DR LAKE
R E S O L	JRCES

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-1001	2	0	0	Winston Lake
U-1008	2	0.01	0.66	Winston Lake
U-1024	2	0.08	0.13	Winston Lake
U-1029	2	0	0	Winston Lake
U-1007	2	0	0	Winston Lake
U-920	2	0.49	0.1	Winston Lake
U-909	2	0.21	0.59	Winston Lake
U-910	2.6	0.61	11.63	Winston Lake
U-990	3.4	0.66	6.94	Winston Lake
U-112	8.9	0.85	12.78	Winston Lake
U-912	4	0.32	5.16	Winston Lake
U-914	2	0.41	18.61	Winston Lake
U-915	2.8	0.29	9.26	Winston Lake
U-925	9	0.95	16.16	Winston Lake
U-982	6.4	0.56	16.8	Winston Lake
U-122	7	0.8	11.87	Winston Lake
U-1066	2	0.21	1.42	Winston Lake
U-924	5.4	0.56	39.68	Winston Lake
U-895	12.3	2.05	30.16	Winston Lake
U-885	8.2	1.47	51.61	Winston Lake
U-117	13.7	2.18	34.31	Winston Lake
U-894	12.8	1.74	24.9	Winston Lake
U-884	11.2	1.53	33.61	Winston Lake
U-893	10.6	1.61	26.66	Winston Lake
U-819	8	0.67	16.36	Winston Lake
U-926	11.8	1.37	25.48	Winston Lake
U-923	10.6	0.51	14.17	Winston Lake
U-123	2.1	0.48	6.57	Winston Lake
U-818	2	0.41	8.39	Winston Lake
U-817	2.7	0.2	4.51	Winston Lake
U-815	2	0.21	2.12	Winston Lake
U-816	2	0.44	4.01	Winston Lake
U-814	3.5	0.54	7.58	Winston Lake
U-813	2	0.18	5.28	Winston Lake
U-812	3.8	0.37	8.41	Winston Lake
U-913	2	0	0	Winston Lake
U-918	2	0.06	5.95	Winston Lake
U-919	2	0.12	1.13	Winston Lake
U-908	2	0.16	3.94	Winston Lake
U-1218	2.2	1.55	10.01	Winston Lake
U-1063	2.6	1.22	26.63	Winston Lake
U-1061	6.1	0.94	21.74	Winston Lake
U-1058	3.2	0.8	21.85	Winston Lake
U-1059	7.2	0.44	7.12	Winston Lake

SUPERIOR LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-1052	7.2	1.81	35.32	Winston Lake
U-1053	6.3	0.26	2.2	Winston Lake
U-1176	5.2	1.26	29.93	Winston Lake
U-096	3.6	0.45	4.6	Winston Lake
U-1181	4.1	1.55	30.02	Winston Lake
U-1254	11.5	0.99	12.15	Winston Lake
U-1177	6.3	1.57	23.75	Winston Lake
U-1163	7.2	0.62	6.74	Winston Lake
U-1165	4	1.85	14.45	Winston Lake
U-115	8.4	1.34	9.72	Winston Lake
U-1173	6.8	2.44	29.93	Winston Lake
U-1170	3.3	1.09	25.06	Winston Lake
U-1169	2	0.9	25.64	Winston Lake
U-091	4.8	1.6	15.21	Winston Lake
U-1155	2	0.18	9.93	Winston Lake
U-1320	2	0.42	7.23	Winston Lake
U-1160	2	0.38	7.74	Winston Lake
U-1216	2	0.42	4.86	Winston Lake
U-1159	11.6	0.94	15.54	Winston Lake
U-076	13.7	0.98	14.24	Winston Lake
U-1168	6.5	1.93	22.91	Winston Lake
U-958	6.6	1.9	26.16	Winston Lake
U-1172	8.8	1.65	33.9	Winston Lake
U-1171	11.4	1.84	21.42	Winston Lake
U-962	7.9	1.26	21.52	Winston Lake
U-1161	8.7	1.06	19.55	Winston Lake
U-092	8.4	1.49	16.49	Winston Lake
U-957	12.8	1.07	16.78	Winston Lake
U-956	5.8	0.75	20.08	Winston Lake
U-101	9.7	1.92	27.44	Winston Lake
U-880	15	1.28	18.97	Winston Lake
U-1153	11.4	1.54	21.85	Winston Lake
U-1154	9.2	1.39	20.93	Winston Lake
U-905	8	0.91	18.93	Winston Lake
U-1149	4.9	2	16.16	Winston Lake
U-1148	4.3	2	16.16	Winston Lake
U-055	3.3	1.78	26.34	Winston Lake
U-879	2.9	1.76	17.95	Winston Lake
U-1157	2	0.96	22.33	Winston Lake
U-875	3.5	1.44	10.24	Winston Lake
U-1202	2	0.78	19.34	Winston Lake
U-049	2.4	1.26	23.52	Winston Lake
U-1203	2	1.05	9.35	Winston Lake
U-1207	2	1.17	10.54	Winston Lake

SUPERIC R E S O U	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-788	4	2.09	23.84	Winston Lake
U-1210	2	1.13	17.88	Winston Lake
U-1209	2.2	1.42	26.7	Winston Lake
U-1311	2	0.67	12.65	Winston Lake
U-1212	2	0.43	11.77	Winston Lake
U-1214	2	0.87	8.33	Winston Lake
U-070	2	1.03	12.66	Winston Lake
U-1150	2	0.08	10.98	Winston Lake
U-1151	3.2	1.49	26.52	Winston Lake
U-892	17.3	0.78	11.55	Winston Lake
U-1152	11.8	0.52	21.01	Winston Lake
U-891	16.1	2.01	14.16	Winston Lake
U-1158	5.6	1.66	16.54	Winston Lake
U-878	9.3	0.77	20.2	Winston Lake
U-877	11.6	1.47	18.99	Winston Lake
U-903	2	0.79	10.82	Winston Lake
U-1156	4.6	0.56	16.98	Winston Lake
U-902	9.6	1.05	12.13	Winston Lake
U-050	10.2	0.86	10.2	Winston Lake
U-874	8.8	0.64	10.65	Winston Lake
U-870	9.1	1.02	10.63	Winston Lake
U-869	13.4	0.96	17.51	Winston Lake
U-873	10.8	1.02	23.6	Winston Lake
U-901	12.8	1.29	19.29	Winston Lake
U-056	16.3	1.38	22.8	Winston Lake
U-134	15.1	1.12	17.4	Winston Lake
U-135	9.4	1	13.27	Winston Lake
U-071	8.6	1.24	23.32	Winston Lake
U-904	11.6	0.76	28.3	Winston Lake
U-137	5.7	1.05	25.01	Winston Lake
U-136	6.1	1.14	24.94	Winston Lake
U-077	6.8	1.52	23.63	Winston Lake
U-953	3	1.11	14.43	Winston Lake
U-883	5.3	1.52	23.01	Winston Lake
U-906-	5.6	0.27	10.09	Winston Lake
U-889	2	0.62	22.99	Winston Lake
U-1062	4.8	0.53	20.45	Winston Lake
U-959	2	0.45	5.16	Winston Lake
U-960	2	0.25	7.49	Winston Lake
U-1054	2	0.19	7.93	Winston Lake
U-1064	2.6	0.97	8.63	Winston Lake
U-1060	7.8	0.67	17.37	Winston Lake
U-1065	3.3	1.24	9.46	Winston Lake
U-890	17	0.81	11.54	Winston Lake

SUPERIC R E S O U	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-138	10.6	1.93	18.42	Winston Lake
U-726	9.4	1.43	21.76	Winston Lake
U-730	5.4	1.03	22.97	Winston Lake
U-735	2	0.28	3.19	Winston Lake
U-882	2	0.58	3.11	Winston Lake
U-881	13.1	1.67	22.8	Winston Lake
U-907	19	1.08	11.34	Winston Lake
U-888	13.8	0.68	15.2	Winston Lake
U-097	7.6	0.7	7.58	Winston Lake
U-944	10.9	0.97	37.38	Winston Lake
U-898	9.2	1.19	26.18	Winston Lake
U-887	15	0.82	15.24	Winston Lake
U-886	6.35	1.02	24.29	Winston Lake
U-897	11.9	1.08	43.4	Winston Lake
U-093	15.5	1.59	24.04	Winston Lake
U-734	9.5	1.83	26.51	Winston Lake
U-729	7.5	2.34	26.5	Winston Lake
U-725	11.1	1.84	20.64	Winston Lake
U-721	14.3	1.21	20.76	Winston Lake
U-702	15.3	2.13	20.35	Winston Lake
U-719	13.5	1.35	20.6	Winston Lake
U-876	14.2	1.61	12.68	Winston Lake
U-900	15.7	0.86	13.19	Winston Lake
U-107	16.4	1.85	21.34	Winston Lake
U-868	16	1.33	19.7	Winston Lake
U-622	11.4	1.03	15.16	Winston Lake
U-621	12	0.65	9.37	Winston Lake
U-051	12.7	0.69	9.5	Winston Lake
U-872	16	0.78	6.13	Winston Lake
U-712	16	1.06	18.98	Winston Lake
U-715	11.1	0.57	13.61	Winston Lake
U-711	2.6	0.57	9.94	Winston Lake
U-057	7.8	0.76	22.7	Winston Lake
U-116	2	0.6	12.32	Winston Lake
U-1162	2	0.55	17.29	Winston Lake
U-952	2	0.69	19.1	Winston Lake
U-1068	2	0.72	8.32	Winston Lake
U-986	8.6	0.87	24.94	Winston Lake
U-985	2	0.16	1.31	Winston Lake
U-985	2	0.13	0.73	Winston Lake
U-1067	10	0.13	2.08	Winston Lake
U-896	2	0.23	43.97	Winston Lake
U-1057	6.2	0.52	44.54	Winston Lake
U-951	5.4	0.68	23.79	Winston Lake
BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
--------	----------	------	-------	--------------
U-988	6.3	0.57	29.85	Winston Lake
U-1055	5.6	0.56	39.43	Winston Lake
U-1056	2	0.54	21.18	Winston Lake
U-987	3	0.54	29.72	Winston Lake
U-987	3	0.54	29.72	Winston Lake
U-950	5.2	1.29	22.49	Winston Lake
U-950	5.3	0.44	21.28	Winston Lake
U-989	2	0.42	14.01	Winston Lake
U-752	-	-	-	Winston Lake
U-754	-	-	-	Winston Lake
U-753	-	-	-	Winston Lake
U-125	2	0.17	0.98	Winston Lake
U-292	2	0.02	0.64	Winston Lake
U-267	2	0.31	5.99	Winston Lake
U-330	2.4	0.21	7.36	Winston Lake
U-114	2	0.37	5.51	Winston Lake
U-275	2	0.04	0.34	Winston Lake
U-113	3.5	0.22	3.11	Winston Lake
U-124	2	0.22	4.49	Winston Lake
U-297	2	0.15	1.46	Winston Lake
U-296	2.2	0.33	9.95	Winston Lake
U-295	3.9	0.83	30.3	Winston Lake
U-274	2	1.04	17.8	Winston Lake
U-287	2	0.33	13.8	Winston Lake
U-329	2	0.2	6.69	Winston Lake
U-300	2	0.95	11.4	Winston Lake
U-294	5.4	1.07	19.33	Winston Lake
U-301	3	1.3	17.4	Winston Lake
U-293	7	0.65	38.25	Winston Lake
U-241	3.4	0.64	21.07	Winston Lake
U-269	5.4	0.41	18	Winston Lake
U-270	5.4	1.04	9.54	Winston Lake
U-271	10.8	0.82	25.78	Winston Lake
U-119	5.6	1.13	20.32	Winston Lake
U-272	6.8	1.09	24.7	Winston Lake
U-273	4	0.91	35.24	Winston Lake
U-266	9	0.92	34.68	Winston Lake
U-260	5.3	0.93	32.35	Winston Lake
U-310	4	2.6	25.29	Winston Lake
U-311	22	0.52	34.01	Winston Lake
U-259	2.7	0.62	16	Winston Lake
U-265	10	0.67	36.06	Winston Lake
U-264	9	0.86	35.05	Winston Lake
U-263	2	0.19	0.14	Winston Lake

SUPERIC R E S O L	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-100	4.6	0.71	25.9	Winston Lake
U-313	7.3	0.47	24.1	Winston Lake
U-314	6	0.95	22.2	Winston Lake
U-257	2	0.94	11.39	Winston Lake
U-253	5.4	1.04	9.54	Winston Lake
U-554	2	0.24	6.04	Winston Lake
U-551	2	0.18	5.87	Winston Lake
U-238	2.1	0.68	16.6	Winston Lake
U-547	2	0.16	4.19	Winston Lake
U-133	2	0.23	4.44	Winston Lake
U-242	7.6	0.42	13.95	Winston Lake
U-243	9.2	0.39	9.35	Winston Lake
U-247	11.3	0.36	21.52	Winston Lake
U-248	12.4	0.57	40.07	Winston Lake
U-126	18.8	0.42	40.45	Winston Lake
U-251	11.1	0.84	19.71	Winston Lake
U-075	12.9	1.74	35.29	Winston Lake
U-252	19.1	1.4	45.3	Winston Lake
U-367	8	1.81	35.79	Winston Lake
U-080	10.2	0.58	45.01	Winston Lake
U-374	7	2.02	40.96	Winston Lake
U-109	4.8	2	36.47	Winston Lake
U-240	10.9	0.52	13.03	Winston Lake
U-239	8.2	0.65	14.84	Winston Lake
U-244	13.8	0.54	22.53	Winston Lake
U-268	2	0.27	3.94	Winston Lake
U-262	2	0.06	2.56	Winston Lake
U-261	2	0.28	4.59	Winston Lake
U-258	6.5	0.48	29.3	Winston Lake
U-312	8.8	0.44	32.45	Winston Lake
U-312	9.6	0.55	42.74	Winston Lake
U-325	16.5	3.08	41.61	Winston Lake
U-326	8.8	1.51	37.14	Winston Lake
U-341	7	3.05	33.55	Winston Lake
U-342	6.5	2.39	50.43	Winston Lake
U-366	4.5	1.81	34.46	Winston Lake
U-365	3.2	1.08	27.89	Winston Lake
U-128	9	0.59	23.26	Winston Lake
U-364	7.8	0.59	47.94	Winston Lake
U-520	8	1.16	30.61	Winston Lake
U-521	2	2.5	14.09	Winston Lake
U-340	5.8	0.62	19.1	Winston Lake
U-327	4	2.6	25.29	Winston Lake
U-519	8	0.47	28.15	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-371	3.7	0.24	48.08	Winston Lake
U-390	12	0.88	27.88	Winston Lake
U-391	7	0.51	10.67	Winston Lake
U-372	8.1	0.55	13.77	Winston Lake
U-392	2.5	0.6	30.39	Winston Lake
U-373	5	0.69	48.78	Winston Lake
U-250	9.7	0.57	6.39	Winston Lake
U-236	13	1.04	21.06	Winston Lake
U-098	6.5	1.17	24.71	Winston Lake
U-829	13	0.87	13.22	Winston Lake
U-826	9.6	2.02	24.43	Winston Lake
U-822	9.6	1.58	41.79	Winston Lake
U-118	7.2	0.94	42.08	Winston Lake
U-825	15.8	2.31	26.95	Winston Lake
U-828	12	1.04	16.28	Winston Lake
U-831	20.4	1.19	19.38	Winston Lake
U-738	13.6	1.37	23.87	Winston Lake
U-739	14.4	1.21	20.82	Winston Lake
U-733	9.7	0.94	18.27	Winston Lake
U-078	9.4	2.11	24.89	Winston Lake
U-724	16.6	2.1	26.69	Winston Lake
U-718	9.7	0.9	14	Winston Lake
U-714	2	0.47	17.59	Winston Lake
U-710	2	0.49	18.45	Winston Lake
U-108	4	1.02	12.28	Winston Lake
U-620	4.8	0.23	3.56	Winston Lake
U-040	2.1	1.18	21.7	Winston Lake
U-616	12	0.23	9.64	Winston Lake
U-864	15.8	0.86	20.91	Winston Lake
U-615	2	0.86	12.45	Winston Lake
U-614	3	0.84	22.39	Winston Lake
u-041	3.6	0.71	30.64	Winston Lake
U-617	2	0.56	12.32	Winston Lake
U-543	2	0.3	4.93	Winston Lake
U-618	3.2	0.59	9.46	Winston Lake
U-619	3.6	0.74	7.68	Winston Lake
U-709	4	0.67	17.89	Winston Lake
U-713	6.2	0.74	18.74	Winston Lake
U-717	2.7	0.54	15.53	Winston Lake
U-073	2	0.64	17.57	Winston Lake
U-720	15.5	0.58	16.41	Winston Lake
U-723	7.6	1.15	23.11	Winston Lake
U-728	13	0.62	7.24	Winston Lake
U-732	11.4	1	17.26	Winston Lake

SUPERIC R E S O U	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-737	18.9	1.3	23.13	Winston Lake
U-071	9.7	1.21	24.65	Winston Lake
U-094	14.6	2.28	20.61	Winston Lake
U-727	11	1.05	17.49	Winston Lake
U-722	5.6	0.59	18.48	Winston Lake
U-750	10.2	0.81	16.76	Winston Lake
U-074	3.8	1.08	26.33	Winston Lake
U-405	7.4	0.88	18.43	Winston Lake
U-749	6.5	1.06	8.38	Winston Lake
U-058	2	0.61	11.62	Winston Lake
U-410	3.1	1.29	12.69	Winston Lake
U-417	2	0.37	9.2	Winston Lake
U-708	2	0.88	16.07	Winston Lake
U-716	6.2	0.85	15.69	Winston Lake
U-751	10	1.37	16.86	Winston Lake
U-079	2	4.26	13.6	Winston Lake
U-671	7.3	1.64	19.57	Winston Lake
U-736	12.9	0.74	15.82	Winston Lake
U-673	11.5	1.31	23.52	Winston Lake
U-670	5.8	1.11	18.4	Winston Lake
U-672	9	1.74	27.8	Winston Lake
U-674	8.9	1.79	23.18	Winston Lake
U-830	15	1.12	23.15	Winston Lake
U-827	15	2.56	22.38	Winston Lake
U-099	11.3	1.65	24.56	Winston Lake
U-824	14.4	2.32	25.94	Winston Lake
U-823	10.6	0.67	14.24	Winston Lake
U-821	11.7	0.81	32.14	Winston Lake
U-820	10.2	1.2	28.99	Winston Lake
U-246	8.5	0.71	20.01	Winston Lake
U-245	2	0.44	5.99	Winston Lake
U-541	2	0.22	2.83	Winston Lake
U-542	2	0.01	0.89	Winston Lake
U-545	2	0.25	2.78	Winston Lake
U-544	2	0.23	3.31	Winston Lake
U-546	2	0.25	2.4	Winston Lake
U-539	2	0.04	0.53	Winston Lake
U-538	2	0.11	5.13	Winston Lake
U-537	6	0.32	21.67	Winston Lake
U-234	5.3	1.18	26.6	Winston Lake
U-540	2	0.21	1.52	Winston Lake
U-1419	2	0.18	3.56	Winston Lake
U-1416	2	0.1	5.03	Winston Lake
U-706	2	-	-	Winston Lake

SUPERIC R E S O U	DR LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-1412	3.6	0.48	14.25	Winston Lake
U-1413	2	0.33	6.4	Winston Lake
U-502	2	0.1	1.24	Winston Lake
U-1309	2	0.13	3.42	Winston Lake
U-210	2	0.2	3.6	Winston Lake
U-1415	2	0.09	2.02	Winston Lake
U-707	2.7	0.8	10.36	Winston Lake
U-1411	2	0.73	14.03	Winston Lake
U-492	6.5	0.86	10.73	Winston Lake
U-481	3	1.06	8.18	Winston Lake
U-561	6	0.51	16.3	Winston Lake
U-560	4.5	0.77	14.64	Winston Lake
U-559	5.5	1.33	8.9	Winston Lake
U-500	5.5	0.55	6.28	Winston Lake
U-501	7.4	0.81	12.67	Winston Lake
U-497	2.6	0.91	11.67	Winston Lake
U-498	2.5	0.29	3.07	Winston Lake
U-211	2	0.36	5.5	Winston Lake
U-495	2	0.1	1.37	Winston Lake
U-499	2	0.32	3.57	Winston Lake
U-478	3	0.98	5.26	Winston Lake
U-479	3	1.06	8.87	Winston Lake
U-480	2.5	0.79	10.3	Winston Lake
U-489	6	1.67	6.89	Winston Lake
U-490	6.5	1.14	10.49	Winston Lake
U-491	6	1.23	9.69	Winston Lake
U-475	6	1.33	16.02	Winston Lake
U-476	7	0.99	15.27	Winston Lake
U-485	7	1.03	15.5	Winston Lake
U-486	3	0.68	12.98	Winston Lake
U-493	2	0.84	7.25	Winston Lake
U-692	6.9	0.75	18.85	Winston Lake
U-536	8.5	1.08	15.62	Winston Lake
U-249	9.3	0.73	18.95	Winston Lake
U-693	9.4	0.9	16	Winston Lake
U-237	12.5	1.07	20.03	Winston Lake
U-482	16	0.85	27.86	Winston Lake
U-483	16.5	1.19	18.86	Winston Lake
U-484	10	1.13	20.23	Winston Lake
U-232	12.8	0.63	30.11	Winston Lake
U-473	14.5	1.12	18.22	Winston Lake
U-474	11	1.3	12.73	Winston Lake
U-487	10.5	1.05	15.54	Winston Lake
U-488	8	1.01	7.43	Winston Lake

SUPERIC R E S O U	DR LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-477	10	1.26	10.32	Winston Lake
U-224	7.9	1.46	9.78	Winston Lake
U-228	8.4	1.48	12.62	Winston Lake
U-231	9.4	0.83	32.71	Winston Lake
U-235	13.6	1.19	38.86	Winston Lake
U-230	3.8	0.56	23.38	Winston Lake
U-229	2	0.52	8.98	Winston Lake
U-059	2	0.58	13.33	Winston Lake
U-233	2.1	0.98	17.98	Winston Lake
U-407	2	0.02	0.99	Winston Lake
U-412	2.5	0.5	4.2	Winston Lake
U-413	2	0.6	11.14	Winston Lake
U-420	3.2	0.89	19.84	Winston Lake
U-419	3.6	0.65	21.85	Winston Lake
U-418	2	0.01	0.52	Winston Lake
U-132	3	0.52	11.5	Winston Lake
U-411	2	0.67	4.33	Winston Lake
U-406	3.4	0.24	11.61	Winston Lake
U-548	2	0.25	7.09	Winston Lake
U-552	2	0.13	0.74	Winston Lake
U-555	2	0.5	2.47	Winston Lake
U-556	2	0.12	0.59	Winston Lake
U-553	2	0.2	0.84	Winston Lake
U-549	2	0.18	5.14	Winston Lake
U-550	2	0.01	0.08	Winston Lake
U-1304	2	0.03	0.47	Winston Lake
U-1307	2	0.12	2.02	Winston Lake
U-1255	2	0.73	5.49	Winston Lake
U-705	2	-	-	Winston Lake
U-704	2	-	-	Winston Lake
U-1296	2	0.02	0.32	Winston Lake
U-1297	2	0.13	0.85	Winston Lake
U-1283	2	0.51	6.33	Winston Lake
U-1306	2	0.09	2.18	Winston Lake
U-703	-	-	-	Winston Lake
U-1301	3.8	0.72	13.39	Winston Lake
U-506	2	0.25	1.89	Winston Lake
U-507	2	0.2	3.25	Winston Lake
U-511	5	1	7.3	Winston Lake
U-512	5	0.74	11.18	Winston Lake
U-1294	8.5	0.89	10.09	Winston Lake
U-194	14	1.29	8.4	Winston Lake
U-523	13	1.3	9.44	Winston Lake
U-509	7	1.11	16.09	Winston Lake

SUPERIC R E S O U	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-510	10	1.37	11.92	Winston Lake
U-505	14	1.5	6.51	Winston Lake
U-208	2	0.79	3.03	Winston Lake
U-202	6.5	0.69	11.59	Winston Lake
U-203	6.2	1.11	13.92	Winston Lake
U-212	10	1.2	13.86	Winston Lake
U-213	8	0.95	8.83	Winston Lake
U-216	12.4	1.25	9.65	Winston Lake
U-219	10.8	1.19	15.51	Winston Lake
U-222	10	1.67	9.86	Winston Lake
U-225	2.8	0.71	16.06	Winston Lake
U-226	2	0.77	9.91	Winston Lake
U-0	2	0.58	3.86	Winston Lake
U-227	3.8	0.56	23.38	Winston Lake
U-0.43	11.5	1.8	10.69	Winston Lake
U-223	10	1.49	9.86	Winston Lake
U-220	10.7	1.56	10.7	Winston Lake
U-557	8.5	1.49	9.63	Winston Lake
U-558	7.5	1.24	11.29	Winston Lake
U-221	3.4	1.5	7.45	Winston Lake
U-496	7	1.47	7.15	Winston Lake
U-217	12.4	1.33	12.62	Winston Lake
U-494	4	0.92	12.32	Winston Lake
U-200A	5.8	1.09	11.67	Winston Lake
U-207	10	0.74	9.99	Winston Lake
U-204	6.5	1.06	11.97	Winston Lake
U-205	2.4	1.29	7.59	Winston Lake
U-214	3.5	1.3	10.67	Winston Lake
U-215	8.1	1.12	13.07	Winston Lake
U-321	3.5	1.39	13.95	Winston Lake
U-037	2	1.72	3.46	Winston Lake
U-218	5.3	1	12.43	Winston Lake
U-196	4.7	1.34	9.95	Winston Lake
U-023	2.5	1.22	18.59	Winston Lake
U-011	4	1.18	15.54	Winston Lake
U-400	2.8	1.55	14.18	Winston Lake
U-195	4	1.47	14.73	Winston Lake
U1859	2	0.9	4.69	Winston Lake
U-190	2	0.9	17.24	Winston Lake
U-187	2	0.62	1.59	Winston Lake
U-188-	2	0.28	0.66	Winston Lake
U-185	6	0.89	12.8	Winston Lake
U-186	2	0.26	1.48	Winston Lake
U-129	2	0.49	4.99	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-191	2	1.54	13.09	Winston Lake
U-192	6.4	1.26	12.01	Winston Lake
U-197	6.7	1.43	14.44	Winston Lake
U-198	9.7	1.45	7.03	Winston Lake
U-193	8.9	1.75	7.6	Winston Lake
U-522	8	1.58	8.16	Winston Lake
U-508	10	1.03	9.62	Winston Lake
U-201	8.7	1.16	13.11	Winston Lake
U-139	4	1.38	13.2	Winston Lake
U-119	2.8	1.27	12.69	Winston Lake
U-1120	7.4	1.1	16.06	Winston Lake
U-1121	2	0.57	10.15	Winston Lake
U-1122	2	0.03	0.77	Winston Lake
U-1123	2	0.18	3.61	Winston Lake
U-1124	2	0.05	1.68	Winston Lake
U-1125	2	0.07	0.48	Winston Lake
U-1288	2	0.06	1.39	Winston Lake
U-1281	2	0.11	3.44	Winston Lake
U-1285	2	0.14	4.31	Winston Lake
U-1289	2	0.77	5.17	Winston Lake
U-1282	2	0.03	1.25	Winston Lake
U-1295	2	0.07	0.91	Winston Lake
U-206	2.2	0.91	9.63	Winston Lake
U-404	2.5	0.77	15.14	Winston Lake
U-397	2	0.13	1.3	Winston Lake
U-005	20	0.8	12.85	Winston Lake
U-401	2	1.01	7.59	Winston Lake
U-402	8	1.25	14.68	Winston Lake
U-344	2	0.91	7.3	Winston Lake
U-022	2	0.8	8.72	Winston Lake
U-381	2	0.71	8.85	Winston Lake
U-403	2.5	1.3	13.15	Winston Lake
U-380	2	0.23	6.15	Winston Lake
U-308	2	0.56	13.72	Winston Lake
U-307	2	0.76	6.43	Winston Lake
U-322	2	0.36	1.9	Winston Lake
U-323	2.6	0.97	15.3	Winston Lake
U-042	2.2	0.86	7.26	Winston Lake
U-053	4.8	1.23	21.14	Winston Lake
U-422	2.6	0.97	7.86	Winston Lake
U-421	3	0.56	21.15	Winston Lake
U-415	2	0.62	1.62	Winston Lake
U-424	6	0.81	13.54	Winston Lake
U-324	2.4	1.45	16.94	Winston Lake

SUPERIO R E S O U	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-0.36	8.1	0.84	8.64	Winston Lake
U-382	2.8	0.74	17	Winston Lake
U-602	3.4	0.95	26.57	Winston Lake
U-603	9.2	0.86	22.28	Winston Lake
U-020	5	1.24	20.1	Winston Lake
U-604	3.3	0.64	21.55	Winston Lake
u-608	3.5	0.73	22.1	Winston Lake
U-309	4.5	1.13	16.4	Winston Lake
U-416	5.8	0.8	12.26	Winston Lake
U-345	2.8	1.21	17.63	Winston Lake
U-010	9.9	0.72	12.53	Winston Lake
U-346	3.5	1.03	14.29	Winston Lake
U-592	5	1	21.45	Winston Lake
U-591	5.2	1.29	23.76	Winston Lake
U-460	6.2	1.48	15.83	Winston Lake
U-451	6.5	1.36	18.26	Winston Lake
U-459	5.6	0.93	14.82	Winston Lake
U-450	7.5	1.19	16.78	Winston Lake
U-458	7.4	0.66	12.49	Winston Lake
U-408	6	1.14	18.38	Winston Lake
U-349	5	1.32	15.36	Winston Lake
U-399	19.8	1.06	14.92	Winston Lake
U-398	16	0.9	23.89	Winston Lake
U-004	2.2	0.62	9.17	Winston Lake
U-589	2	0.68	1.45	Winston Lake
U-409	12.8	1.51	21.41	Winston Lake
U-466	2	0.7	22.2	Winston Lake
U-015	2	0.31	4.5	Winston Lake
U-587	0.3	2	1.32	Winston Lake
U-588	2	0.92	14.71	Winston Lake
U-389	5.5	1.34	17.94	Winston Lake
U-386	9	1.24	20.09	Winston Lake
U-388	2	1.07	13.63	Winston Lake
U-385	6.5	1.3	20.49	Winston Lake
U-028	2	1.37	20.4	Winston Lake
U-3884	6	1.63	12.72	Winston Lake
U-383	3.5	1.18	16.64	Winston Lake
U-177	2	0.67	0.7	Winston Lake
U-387	2	0.96	13.27	Winston Lake
U-181	2	0.52	24.04	Winston Lake
U-377	2	0.76	9.62	Winston Lake
U-378	3.6	0.94	21.11	Winston Lake
U-393	3	1.65	19.54	Winston Lake
U-376	2	0.23	4.53	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-396	11	1.09	12.71	Winston Lake
U-395	8.5	1.43	11.86	Winston Lake
U-017	2.2	1.28	11.61	Winston Lake
U-394	3	0.8	19.2	Winston Lake
U-130	15.5	1.09	18.05	Winston Lake
U-348	20.5	1.48	15.46	Winston Lake
U-347	16.6	1.43	10.72	Winston Lake
U-18	6.8	0.91	27.02	Winston Lake
U-375	2.2	0.72	15.71	Winston Lake
U-039	7	1.16	8.2	Winston Lake
U-860	9.2	1.22	19.59	Winston Lake
U-613	10	0.91	16.47	Winston Lake
U-612	9	0.82	7.31	Winston Lake
U-611	6	1.09	22.18	Winston Lake
U-606	9	0.86	29.52	Winston Lake
U-607	10.2	0.9	25.39	Winston Lake
U-034	15.4	1.66	16.87	Winston Lake
U-922	12.4	1.28	19.87	Winston Lake
U-928	20	0.98	14.24	Winston Lake
U-930	20.8	1.05	13.17	Winston Lake
U-597	29	1.3	12.51	Winston Lake
U-936	22	0.93	9.54	Winston Lake
U-939	9.4	0.98	14.61	Winston Lake
U-939	2	0.54	12.35	Winston Lake
U-431	8	1.14	11.74	Winston Lake
U-938	16.8	1.13	18.38	Winston Lake
U-103	18	0.96	13.79	Winston Lake
U-935	20.5	1.03	14.26	Winston Lake
U-932	19.4	1.11	14.02	Winston Lake
U-008	6.5	1.34	12.56	Winston Lake
U-430	8.6	1.08	32.22	Winston Lake
U-593	19	0.86	14.34	Winston Lake
U-598	17.2	1.17	19.63	Winston Lake
U-018	8.5	0.53	6.56	Winston Lake
U-594	10	0.9	11.02	Winston Lake
U-429	9.4	2.15	19.41	Winston Lake
U-428	6.2	0.92	20.02	Winston Lake
U-590	5.4	1.23	16.25	Winston Lake
U-595	7.1	2.1	18.02	Winston Lake
U-596	2.5	1.44	20.19	Winston Lake
U-600	2.4	1.74	19.71	Winston Lake
U-599	10.4	1.21	21.7	Winston Lake
U-605	5.8	1.04	16.99	Winston Lake
U-610	5.2	0.71	21.13	Winston Lake

SUPERIOR LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-609	3.2	1.45	18.91	Winston Lake
U-035	2	1.39	18.05	Winston Lake
U-601	3.6	1.06	17.73	Winston Lake
U-009	3.9	1.51	19.91	Winston Lake
U-461	6.6	1.34	21.88	Winston Lake
U-453	6.8	0.81	18.33	Winston Lake
U-452	4	0.84	16.85	Winston Lake
U-463	2.2	0.48	5.79	Winston Lake
U-437	2	1.02	4.69	Winston Lake
U-001	6	0.87	12.37	Winston Lake
U-455	6.2	1.72	18.5	Winston Lake
U-463	5.8	1.07	15.85	Winston Lake
U-462	5.6	1.33	20.29	Winston Lake
U-454	5	1.35	18.8	Winston Lake
U-435	2.4	0.57	15.9	Winston Lake
U-444	2.2	0.74	17.91	Winston Lake
U-014	2	0.67	14.86	Winston Lake
U-468	2	0.4	1.18	Winston Lake
U-467	2	0.67	3.11	Winston Lake
U-443	2	0.68	9.63	Winston Lake
U-442	2	0.58	2.89	Winston Lake
U-434	3.2	0.97	16.13	Winston Lake
U-052	2.7	1.11	9.27	Winston Lake
U-447	9.2	1.11	15.04	Winston Lake
U-012	8.5	1.25	12.89	Winston Lake
U-970	2	0.92	9.88	Winston Lake
U-980	2	0.44	11.77	Winston Lake
U-578	6.5	1.36	13.63	Winston Lake
U-582	3.5	1.52	18.73	Winston Lake
U-471	8.8	1.13	17.91	Winston Lake
U-470	4.2	1.27	19	Winston Lake
U-446	3.6	0.9	20.47	Winston Lake
U-445	2	0.23	3.88	Winston Lake
U-469	2	0.05	1.08	Winston Lake
U-583	3.8	1.13	19.65	Winston Lake
U-026	7.2	1.17	19.18	Winston Lake
U-579	5.2	1.02	14.77	Winston Lake
U-584	3.6	1.03	19.26	Winston Lake
U-104	2.6	1.26	15.76	Winston Lake
U-1130	3.2	1.05	13.33	Winston Lake
U-1033	2	1.24	16.8	Winston Lake
U-975	2	1.63	23.51	Winston Lake
U-030	2	0.65	1.21	Winston Lake
U-977	2	0.61	6.19	Winston Lake

SUPERIC R E S O U	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-978	3.5	1.09	12.6	Winston Lake
U-742	2	0.74	10.68	Winston Lake
U-759	3.5	1.4	26.63	Winston Lake
U-062	2.8	1.17	9.61	Winston Lake
U-1138	2	0.62	6.45	Winston Lake
U-1135	2	0.06	0.07	Winston Lake
U-758	2	0.34	1.02	Winston Lake
U-120	2	0.62	7.41	Winston Lake
U-776	2	0.74	6.25	Winston Lake
U-762	2.2	1.45	14.51	Winston Lake
#NAME?	18	1.71	13.86	Winston Lake
U-748	16.2	1.92	12.91	Winston Lake
U-747	33	1.7	8.89	Winston Lake
U-046	21.9	1.19	13.02	Winston Lake
U-741	8.8	1.06	9.29	Winston Lake
U-569	3.2	1.27	14.43	Winston Lake
U-570	10.6	0.75	13.12	Winston Lake
U-106	7.4	1.19	9.4	Winston Lake
U-573	18.5	1.2	12.75	Winston Lake
U-574	7.3	1.24	13.24	Winston Lake
U-575	7.2	1.37	16.13	Winston Lake
U-571	15.5	1.55	23.21	Winston Lake
U-576	11	0.77	10.81	Winston Lake
U-580	5.6	1.05	17.87	Winston Lake
U-585	3.5	1.17	15.74	Winston Lake
U-027	5	1.63	15.78	Winston Lake
U-581	4.8	1.09	17.01	Winston Lake
U-586	2	1.04	1.43	Winston Lake
U-577	13	0.83	7.68	Winston Lake
U-031	15.6	1.41	12.69	Winston Lake
U-740	14.1	1.31	31.41	Winston Lake
U-640	20	2.23	14.41	Winston Lake
U-105	17	2.07	24.21	Winston Lake
U-743	14.2	1.92	24.76	Winston Lake
U-746	34.4	2.49	18.48	Winston Lake
U-765	39.4	2.06	12.23	Winston Lake
U-767	37	1.91	15.77	Winston Lake
U-764	35.8	1.59	13.21	Winston Lake
U-761	45.6	1.17	14.07	Winston Lake
U-775	30	0.26	4.53	Winston Lake
U-757	2	0.3	7.87	Winston Lake
U-756	2.8	1.49	16.55	Winston Lake
U-639	19.8	1.19	38.31	Winston Lake
U-572	14.1	0.28	3.04	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-414	8.8	1.13	14.93	Winston Lake
U-359	9	0.77	13.13	Winston Lake
U-638	18.3	0.62	4.89	Winston Lake
U-637	20.8	0.6	9.53	Winston Lake
U-363	17.4	0.72	14.7	Winston Lake
UU-032	11	0.92	17.24	Winston Lake
U-358	9	1.25	18.62	Winston Lake
U-362	6.5	1.03	23.77	Winston Lake
U-370	12.6	1.3	21.48	Winston Lake
U-048	12.3	1.08	21.12	Winston Lake
U-354	3.1	1.11	13.35	Winston Lake
U-352	7.4	1.81	15.98	Winston Lake
U-065	3	1.32	14.24	Winston Lake
U-680	5.2	1.74	18.26	Winston Lake
U-646	19	2.25	20.64	Winston Lake
U-643	17.8	1.61	33.53	Winston Lake
U-353	12.6	1.7	23.14	Winston Lake
U-641	18.5	1.32	12.58	Winston Lake
U-644	21.6	2.02	24.6	Winston Lake
U-744	22.5	1.97	16.44	Winston Lake
U-642	19.4	2.82	13.46	Winston Lake
U-768	21.4	2.61	19.5	Winston Lake
U-047	20.1	1.13	28.97	Winston Lake
U-745	31.6	2.24	17.84	Winston Lake
U-832	2	0.65	9.07	Winston Lake
U-686	2.18	7.5	10.04	Winston Lake
U-774	35	1.32	16.42	Winston Lake
U-063	30.7	0.94	10.7	Winston Lake
U-645	26.7	1.7	17.23	Winston Lake
U-763	32.8	1.69	15.35	Winston Lake
U-682	18.5	1.28	13	Winston Lake
U-760	38	1.65	14.39	Winston Lake
U-773	37.8	1.69	21.36	Winston Lake
U-772	29.6	1.29	12.6	Winston Lake
U-755	33	2.33	12.8	Winston Lake
U-685	14.7	1.52	14.96	Winston Lake
U-068	8.3	1.47	20.48	Winston Lake
U-064	27.2	1.29	12.56	Winston Lake
U-681	35.8	1.84	19.84	Winston Lake
U-357	10.5	1.25	15.99	Winston Lake
U-044	7.7	1.76	14.39	Winston Lake
U-172	2.1	0.92	22.3	Winston Lake
U-360	2	1	21.6	Winston Lake
U-361	4	1.08	20.63	Winston Lake

SUPERIC R E S O U	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-369	2	0.45	28.26	Winston Lake
U-368	2.3	1.08	7.19	Winston Lake
U-060	5.5	1	25.98	Winston Lake
U-356	2	0.85	23.67	Winston Lake
U-355	2	0.6	5.19	Winston Lake
U-351	2	0.05	3.39	Winston Lake
U-350	2	0.11	9.33	Winston Lake
U-337	7.2	0.9	18.72	Winston Lake
U-338	4.6	1.12	29.7	Winston Lake
U-339	4	1.1	19.71	Winston Lake
U-684	2	2.21	21.68	Winston Lake
U-336	2.4	2.06	29.62	Winston Lake
U-335	3.8	0.74	40.39	Winston Lake
U-069	8.9	0.52	19.51	Winston Lake
U-334	9.5	0.59	20.34	Winston Lake
U-333	2	0.65	18.83	Winston Lake
U-081	3.5	0.57	18.9	Winston Lake
U-3	2	0.16	5.86	Winston Lake
U-153	2	0.59	15.74	Winston Lake
U-157	2	0.74	9.28	Winston Lake
U-158	2.8	0.37	22.03	Winston Lake
U-163	2	0.69	20.05	Winston Lake
U-166	2	0.62	4.03	Winston Lake
U-170	9.9	0.79	14.32	Winston Lake
U-173	4.8	1	21.91	Winston Lake
U-178	2	0.37	7.57	Winston Lake
U-182	6.9	0.55	10.56	Winston Lake
U-284	8.5	3.06	42.02	Winston Lake
U-281	10	1.11	44.44	Winston Lake
U-306	11	0.89	11.45	Winston Lake
U-683	9.1	1.25	19.86	Winston Lake
U-328	9.4	0.95	26.19	Winston Lake
U-331	4.6	1.56	13.75	Winston Lake
U-305	5.9	1.17	15.62	Winston Lake
U-304	8.7	0.3	46.71	Winston Lake
U-089	10.5	0.77	25.03	Winston Lake
U-291	2	0.52	4.21	Winston Lake
U-280	9.7	0.85	35.94	Winston Lake
U-085	11.1	1.82	46.4	Winston Lake
U-277	9	2.21	41.11	Winston Lake
U-276	2	0.25	1.19	Winston Lake
U-286	8.5	0.75	47.46	Winston Lake
U-283	4.5	1.32	47.93	Winston Lake
U-3	3.4	0.54	28.43	Winston Lake

SUPERIC R E S O U	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-299	4.2	1.28	14.76	Winston Lake
U-127	2	0.19	4.84	Winston Lake
U-1314	2	0.02	4.12	Winston Lake
U-285	2	0.13	0.23	Winston Lake
U-086	2	0.37	14.52	Winston Lake
U-282	2	1	2.19	Winston Lake
U-316	2	0.45	32.91	Winston Lake
U-279	2.2	0.87	0.64	Winston Lake
U-320	2	0.81	2.22	Winston Lake
U-303	3	0.46	7.49	Winston Lake
U-302	2	0.43	18.68	Winston Lake
U-149	2.3	0.8	28.44	Winston Lake
U-090	2.2	0.47	33.68	Winston Lake
U-144	2	0.23	2.25	Winston Lake
U-140	2	0.72	3.35	Winston Lake
U-315	2	0.6	24.95	Winston Lake
U-278	2.4	0.56	43	Winston Lake
U-298	5.7	1.88	13.86	Winston Lake
U-319	2	0.31	13.49	Winston Lake
U-318	2	0.59	14.53	Winston Lake
U-289	2	0.47	45.6	Winston Lake
U-288	2.8	0.54	37.25	Winston Lake
U-290	6	0.37	8.94	Winston Lake
U-1315	2	0	0	Winston Lake
U-669	2	0.04	0.05	Winston Lake
U-679	2	0.01	0.01	Winston Lake
U-678	2	0.01	0.01	Winston Lake
U-808	2	0.15	0.04	Winston Lake
U-807	2	0	0	Winston Lake
U-676	2	0.21	17.35	Winston Lake
U-677	2	0.01	0.01	Winston Lake
U-668	2	0.11	0.11	Winston Lake
U-667	2	0.07	0.08	Winston Lake
U-666	2	0.66	2.59	Winston Lake
U-661	2	1.15	0.36	Winston Lake
U-660	2	0.12	2.37	Winston Lake
U-662	2	0.53	0.04	Winston Lake
U-663	2	0.12	0.3	Winston Lake
U-664	2	0.04	4.13	Winston Lake
U-141	2	0.4	5.68	Winston Lake
U-656	2	0.38	2.41	Winston Lake
U-146	2	0.54	6.14	Winston Lake
U-651	2	0.58	4.46	Winston Lake
U-145	3.8	0.43	23.72	Winston Lake

SUPERIC R E S O U	DR LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-147	2.4	0.64	18.55	Winston Lake
U-150	2.1	1.24	26	Winston Lake
U-151	2	0.22	2.51	Winston Lake
U-152	2	0.42	0.57	Winston Lake
U-148	2.3	1.06	16.54	Winston Lake
U-632	2	1.03	5.44	Winston Lake
U-1554	2	0.19	1.47	Winston Lake
U-159	2	0.16	4.6	Winston Lake
U-256	4.37	0.98	22.75	Winston Lake
U-164	2	0.69	2.88	Winston Lake
U-165	2	0.71	1.57	Winston Lake
U-160	2.4	0.94	25.94	Winston Lake
U-162	3.5	0.96	24.2	Winston Lake
U-532	2	0.59	3.62	Winston Lake
U-533	2	0.87	10.53	Winston Lake
U-161	2.6	0.98	18.7	Winston Lake
U-624	3.6	1.3	2.87	Winston Lake
U-623	2	0.18	1.29	Winston Lake
U-155	2	0.45	1.13	Winston Lake
U-627	2	0.31	3.24	Winston Lake
U-633	2	0.71	3.27	Winston Lake
U-647	2	0.4	1.21	Winston Lake
U-652	10.2	0.52	13.07	Winston Lake
U-142	2	0.89	8.02	Winston Lake
U-657	2	0.45	4.37	Winston Lake
U-658	2.4	0.54	5.86	Winston Lake
U-653	8.4	0.73	8.76	Winston Lake
U-648	2	0.3	7.26	Winston Lake
U-649	4.7	0.46	14.82	Winston Lake
U-654	10.8	0.78	13.21	Winston Lake
U-655	4.8	0.99	4.53	Winston Lake
U-650	7.4	0.62	19.32	Winston Lake
U-634	2.5	1.4	14.36	Winston Lake
U-628	2.6	0.52	7.32	Winston Lake
U-625	3.2	0.58	14.31	Winston Lake
U-254	2	0.81	7.14	Winston Lake
U-179	2	0.72	20.19	Winston Lake
U-180	2	0.51	0.86	Winston Lake
U-696	2	0.14	0.28	Winston Lake
U-695	4	1	11.45	Winston Lake
U-699	2	0.12	0.21	Winston Lake
U-698	2	0.14	0.17	Winston Lake
U-525	2	1.58	13.2	Winston Lake
U-524	2	0.84	5.64	Winston Lake

SUPERIC R E S O U	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-255	2.85	0.92	24.8	Winston Lake
U-174	5.4	0.98	20.52	Winston Lake
U-171	2	0.68	15.13	Winston Lake
U-167	2	0.52	1.12	Winston Lake
U-564	2.3	0.41	20.9	Winston Lake
U-527	2.5	0.73	16.99	Winston Lake
U-176	8.2	0.64	27.69	Winston Lake
U-528	6	0.96	23.26	Winston Lake
U-168	2	0.43	4.34	Winston Lake
U-565	3.5	0.65	10.88	Winston Lake
U-530	10	0.83	23.46	Winston Lake
U-529	5	0.6	6.9	Winston Lake
U-175	2	0.48	12.37	Winston Lake
U-1117	5.7	1.23	10.51	Winston Lake
U-1116	6.9	1.09	13.09	Winston Lake
U-694	9	1.6	12.99	Winston Lake
U-1115	5.1	0.67	7.81	Winston Lake
U-118	2.5	1.06	6.72	Winston Lake
U-183	3.4	1.09	10.94	Winston Lake
U-1112	4.4	1.28	8.99	Winston Lake
U-1108	7.4	1.05	11.17	Winston Lake
U-1109	8.2	0.82	14.27	Winston Lake
U-1110	5.8	1.02	16.28	Winston Lake
U-563	9	0.88	12.22	Winston Lake
U-562	10	0.82	18.06	Winston Lake
U-531	10	1.06	16.64	Winston Lake
U-169	3.2	1.25	11.11	Winston Lake
U-1098	2	0.92	6.73	Winston Lake
U-534	2	0.42	1.3	Winston Lake
U-535	2	0.42	1.55	Winston Lake
U-566	0.74	2	6.71	Winston Lake
U-626	2.4	0.64	20.47	Winston Lake
U-631	3.6	0.41	12	Winston Lake
U-567	2	0.85	2.89	Winston Lake
U-1264	2	0.29	2.5	Winston Lake
U-1262	2.5	1.01	10.88	Winston Lake
U-1095	3.5	1.18	15.71	Winston Lake
U-1096	2	0.6	5.93	Winston Lake
U-1099	3.4	1.64	7.1	Winston Lake
U-568	7.2	1.59	8.79	Winston Lake
U-1104	6.15	1.28	14.69	Winston Lake
U-1107	4.4	1.13	23.67	Winston Lake
U-1103	6.9	1.01	7.44	Winston Lake
U-1111	2	0.24	4.03	Winston Lake

SUPERIC R E S O L	R LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-1106	2	0.27	3.93	Winston Lake
U-1113	2	1.09	9.03	Winston Lake
U-1126	2	0.12	2.76	Winston Lake
U-1127	2	0.1	0.27	Winston Lake
U-1128	2	0.39	3.84	Winston Lake
U-1129	2	0.25	3.87	Winston Lake
U-688	2	0.83	6.99	Winston Lake
U-1114	2	0.19	1.24	Winston Lake
U-1105	2	0.23	2.51	Winston Lake
U-1102	6.1	1	6.85	Winston Lake
U-687	1	0.99	2.93	Winston Lake
u-1101	3.2	1.02	4.75	Winston Lake
U-1100	2	0.14	1.84	Winston Lake
U-780	3	0.74	6.71	Winston Lake
U-1097	2	1.21	8.64	Winston Lake
U-689	2	0.34	3.49	Winston Lake
U-1278	2	0.61	2.1	Winston Lake
U-777	-	-	-	Winston Lake
U-778	-	-	-	Winston Lake
U-779	-	-	-	Winston Lake
U-779	-	-	-	Winston Lake
U-1270	2	0.33	5.93	Winston Lake
U-783	2	0.42	20.51	Winston Lake
U-1310	2	0.11	2.21	Winston Lake
U-1313	2	0.67	18.01	Winston Lake
U-143	2	0.69	8.89	Winston Lake
U-1269	2	0.04	1.45	Winston Lake
U-1271	2	0.22	1.23	Winston Lake
U-1265	2	0.22	5.1	Winston Lake
U-1273	2	0.07	2.2	Winston Lake
U-781	3	0.96	8.55	Winston Lake
U-782	2	0.65	2.22	Winston Lake
U-1277	2	0.02	0.59	Winston Lake
U-700	2	0.08	1.76	Winston Lake
U-1263	2	0.1	2.09	Winston Lake
U-665	2	0.34	2.95	Winston Lake
U-659	2	0.15	0.7	Winston Lake
U-635	2	1.08	6.28	Winston Lake
U-636	2	0.64	1.97	Winston Lake
U-630	2	0.21	5.5	Winston Lake
U-629	2.1	0.65	5.85	Winston Lake
U-675	2	0.05	1.98	Winston Lake
U-806	2	0.1	0.84	Winston Lake
U-805	2	0	0	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-804	2	0	0	Winston Lake
U-803	2	0	0	Winston Lake
U-802	2	0	0	Winston Lake
U-1308	2	0	0	Winston Lake
U-1305	2	0	0	Winston Lake
ZO-1	-	-	-	Winston Lake
ZO-3	-	-	-	Winston Lake
U-1442	2	0	0	Winston Lake
U-1385	2	0	0	Winston Lake
U-1317	2	0.02	0.1	Winston Lake
ZO-68	-	-	-	Winston Lake
ZO-2	-	-	-	Winston Lake
ZO-28	-	-	-	Winston Lake
U-899	11.5	1.11	21.63	Winston Lake
U-987	3	0.54	29.72	Winston Lake
U-426	4.4	1.09	15.61	Winston Lake
U-939	18.5	1.09	13.6	Winston Lake
U-933	22.6	1.16	23.19	Winston Lake