

Address: G/72 Kings Park Road West Perth, Western Australia Postal: PO Box 1787 West Perth, Western Australia 6872 Tel: +61 8 9322 6974 Fax: +61 8 9486 9393 email: dcrook@PIOresources.com.au

LITHIUM-FOCUSSED DRILLING UPDATE THE SINCLAIR PEGMATITE CONTINUES TO RETURN THICK ZONES OF LITHIUM MINERALISATION

Perth Western Australia, 26 July 2018: Pioneer Resources Limited ("Company" or "Pioneer", ASX: PIO) is pleased to provide the following update for its 100%-held Pioneer Dome Project in the Eastern Goldfields of Western Australia, which includes the proposed Sinclair Zone Caesium Mine.

On 25 July 2018 the Company announced that it had received approval for the Mining Proposal to undertake the Sinclair Caesium Mine.

LITHIUM DRILLING UPDATE AT THE SINCLAIR ZONE

The Company recently completed 44 drill holes which returned the following significant lithium intersections:

- PDRC187: 27m at 1.86% Li₂O from 46m (Lepidolite)
- PDRC190: 11m at 3.15% Li₂O from 52m (Mixed)
- PDRC199: 22m at 1.98% Li₂O from 37m (Petalite)
- PDRC202: 27m at 1.60% Li₂O from 35m (Petalite)
- PDRC207: 15m at 2.47% Li₂O from 36m (Petalite)
- PDRC210: 17m at 1.90% Li₂O from 39m (Lepidolite)
- PDRC211: 21m at 1.83% Li₂O from 33m (Petalite)
- PDRC212: 15m at 2.59% Li₂O from 39m (Petalite)
- PDRC215: 21m at 1.65% Li₂O from 42m (Mixed)

The Company has fielded enquiries from third parties interested in purchasing parcels of lepidolite, petalite or mixed lithium mineralisation from Pioneer that can be excavated from the Stage 1 Sinclair Caesium Mine or from an extended Stage 2 Pit.

About the Sinclair Pegmatite and its Prospectivity for Lithium and Potassium in addition to Caesium

The Sinclair Pegmatite is classed as a "Complex LCT Pegmatite" due to it exhibiting extreme mineral differentiation. This has resulted in the formation of a suite of monomineralic phases in the pegmatite core zone. These minerals include pollucite (Cs), petalite and lepidolite (Li), microcline (K) and silica (Si).

The Company has provided summaries of lithium (Li) and potassium (K) results in announcements and quarterly activities reports to ASX.

Most recently, on 19 April 2018, the Company announced results for holes PDD161 to PDD180, which included 12 holes directed at pollucite and funded by Pioneer's caesium offtake Partner, Cabot Corporation. An additional 8 holes were drilled for geotechnical information. A number of these holes returned significant lithium intersections, (in petalite and lepidolite).

The Company subsequently completed 44 drill holes, PDRC181-PDRC224, targeting lithium and potassium. Of these, 27 holes were funded by a potential offtake partner specifically targeting lithium.

Quantities of microcline, petalite and lepidolite will be excavated while accessing the pollucite and can be stockpiled while commercial opportunities for each mineral are advanced.

Figure 1: Pioneer Dome Project Location Pioneer 100%, Lithium, Caesium, Potassium, Nickel Sulphide.

The Pioneer Dome Project is in the Eastern Goldfields of WA. The Project is approximately 130km south of Kalgoorlie, and 200km north of the port of Esperance, in WA.

Figure 2: Cross Section at 6,468,615mN, immediately south of the Sinclair Stage 1 Pit. Drill holes have intersected monomineralic phases that comprise the Sinclair Pegmatite Core Zone. A well- formed zone of microcline (yellow) overlies the lithium zones: petalite (green) and lepidolite (purple).

Pioneer's Managing Director, David Crook, said "The Company's first proposed mining operation, the Sinclair Caesium Mine, is advancing rapidly with approvals now in place.

"Recent drilling results have confirmed the continuity of the pollucite mineralisation, and the potential to derive further income from the sale of potassium and lithium minerals significantly de-risks the project from an ore supply perspective and enhances the economic returns."

puroch

Managing Director Pioneer Resources Limited

For further information please contact:

David CrookJames MosesPioneer Resources LimitedMedia and Investor RelationsT: +61 8 9322 6974M: +61 420 991 574E: dcrook@pioresources.com.auE: james@mandatecorporate.com.au

About Pioneer Resources Limited

Pioneer is a soon-to-be miner and active explorer focused on key global demand-driven commodities. The Company operates a portfolio of strategically located lithium, caesium, potassium ("alkali metals"), nickel, cobalt and gold projects in mining regions in Western Australia, plus a portfolio of high quality lithium assets in Canada. Drilling is in progress, or has been recently completed, at each of these Projects:

Pioneer Dome Project and the Sinclair Zone Caesium Deposit: In early 2017 Pioneer reported the discovery of Australia's first caesium (in the mineral 'pollucite') deposit.

Pollucite is a high value mineral and global supply is very constrained. It is a rare caesium mineral that forms in extremely differentiated LCT pegmatite systems. The primarily use of pollucite is in the manufacture of Caesium Formate brine used in high temperature/high pressure oil and gas drilling.

The Project has seen well developed thicknesses of microcline mineralisation intersected in drilling. Also, the lithium minerals petalite and lepidolite have been intersected in drilling.

Lithium: Mavis Lake and Raleigh Projects, Canada; Pioneer Dome Project, WA: Lithium has been classed as a 'critical metal' meaning it has a number of important uses across various parts of the modern, globalised economy including communication, electronic, digital, mobile and battery technologies; and transportation, particularly aerospace and automotive emissions reduction. Critical metals seem likely to play an important role in the nascent green economy, particularly solar and wind power; electric vehicle and rechargeable batteries; and energy-efficient lighting.

Cobalt: Golden Ridge Project, WA: Cobalt demand is expanding in response to its requirement in the manufacture of cobaltbased lithium batteries in certain electric vehicles and electricity stabilisation systems (powerwalls). Other uses for cobalt include in the manufacture of super-alloys, including jet engine turbine blades, and for corrosion resistant metal applications.

Nickel: Blair Dome/Golden Ridge Project: The price for nickel is steadily improving. The Company owns the closed Blair Nickel Sulphide Mine located between Kalgoorlie and Kambalda, WA, where near-mine target generation is continuing. The Company recently announced a significant new nickel sulphide drilling intersection at the Leo's Dam Prospect, highlighting the prospectivity of the greater project area.

REFERENCES

- Pioneer Dome: Refer Company's quarterly technical reports, and announcements to ASX 19 May 2016, 27 July 2016, 28 August 2016, 1 September 2016, 4 October 2016, 17 October 2016, 14 November 2016, 2 December 2016, 13 December 2016, 13 January 2017, 24 January 2017, 23 February 2017, 20 March 2017, 22 March 2017 (Sinclair Measured Resource Statement), 20 June 2017, 22 August 2017, 9 October 2017, 2 November 2017, 17 January 2018, 21 February 2018, 19 April 2018, 25 July 2018.
- Downs, J. D., Blaszczynski, M., Turner, J., and Harris, M. (2006): "Drilling and Completing Difficult HP/HT Wells with the aid of Cesium Formate Brines – A Performance review."
- London, David (2016) Pegmatites, Minerological Association of Canada.

The Company is not aware of any new information or data that materially affects the information included in this Report.

COMPETENT PERSON

The information in this report that relates to Exploration Results is based on information supplied to and compiled by Mr David Crook.

Mr Crook is a fulltime employee of Pioneer Resources Limited. Mr Crook is a member of The Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists and has sufficient experience which is relevant to the exploration processes undertaken to qualify as a Competent Person as defined in the 2012 Editions of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Crook consents to the inclusion of the matters presented in the announcement in the form and context in which they appear.

CAUTION REGARDING FORWARD LOOKING INFORMATION

This Announcement may contain forward looking statements concerning the projects owned or being earned in by the Company. Statements concerning mining reserves and resources may also be deemed to be forward looking statements in that they involve estimates based on specific assumptions.

Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes.

Forward looking statements in this document are based on the Company's beliefs, opinions and estimates of the Company as of the dates the forward looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

There can be no assurance that the Company's plans for development of its mineral properties will proceed as currently expected. There can also be no assurance that the Company will be able to confirm the presence of additional mineral deposits, that any mineralisation will prove to be economic or that a mine will successfully be developed on any of the Company's mineral properties. Circumstances or management's estimates or opinions could change. The reader is cautioned not to place undue reliance on forward-looking statements.

APPENDIX 1. Drill Hole Information and Results Summary

	Table 1 Drill Hole Collar Locations										
Hole ID	Hole Type	East	North	RL	Depth	Dip	Azimuth				
		(m)	(m)	(m)	(m)	(°)	(°)				
PDRC181	RC	371,148.8	6,468,782.0	333.3	66	-60	90				
PDRC182	RC	371,139.0	6,468,782.0	333.0	72	-60	90				
PDRC183	RC	371,128.5	6,468,782.2	332.5	78	-60	90				
PDRC184	RC	371,097.3	6,468,782.3	331.7	60	-60	90				
PDRC185	RC	371,114.2	6,468,756.6	333.0	96	-60	90				
PDRC186	RC	371,104.1	6,468,755.7	332.9	90	-60	90				
PDRC187	RC	371,134.2	6,468,739.7	333.8	78	-60	90				
PDRC188	RC	371,124.6	6,468,739.7	333.7	84	-60	90				
PDRC189	RC	371,158.3	6,468,730.0	333.2	72	-60	90				
PDRC190	RC	371,147.2	6,468,729.9	333.8	72	-60	90				
PDRC191	RC	371,138.0	6,468,730.0	333.8	84	-60	90				
PDRC192	RC	371,124.0	6,468,730.0	333.6	90	-60	90				
PDRC193	RC	371,169.6	6,468,719.0	332.5	72	-60	90				
PDRC194	RC	371,124.1	6,468,718.0	333.5	84	-60	90				
PDRC195	RC	371,138.8	6,468,709.5	332.9	78	-60	90				
PDRC196	RC	371,138.9	6,468,701.9	332.6	90	-60	90				
PDRC197	RC	371,119.8	6,468,702.1	333.0	84	-60	90				
PDRC198	RC	371,179.3	6,468,691.4	331.0	66	-60	90				
PDRC199	RC	371,179.1	6,468,680.9	330.5	73	-60	90				
PDRC200	RC	371,139.2	6,468,681.3	331.7	72	-60	90				
PDRC201	RC	371,178.9	6,468,671.7	330.0	60	-60	90				
PDRC202	RC	371,139.1	6,468,670.8	331.2	72	-60	90				
PDRC203	RC	371,169.6	6,468,660.7	329.7	54	-60	90				
PDRC204	RC	371,169.7	6,468,651.3	329.4	54	-60	90				
PDRC205	RC	371,110.3	6,468,650.0	331.5	84	-60	90				
PDRC206	RC	371,161.5	6,468,641.1	329.6	54	-60	90				
PDRC207	RC	371,149.3	6,468,631.7	330.1	60	-60	90				
PDRC208	RC	371,160.9	6,468,614.8	330.2	54	-60	90				
PDRC209	RC	371,140.0	6,468,614.8	330.9	60	-60	90				
PDRC210	RC	371,129.5	6,468,615.1	331.2	66	-60	90				
PDRC211	RC	371,120.2	6,468,615.1	331.5	78	-60	90				
PDRC212	RC	371,109.3	6,468,615.2	332.4	66	-60	90				
PDRC213	RC	371,098.7	6,468,615.4	332.8	72	-60	90				
PDRC214	RC	371,169.3	6,468,632.4	329.5	48	-60	90				
PDRC215	RC	371,108.4	6,468,630.8	331.7	72	-60	90				
PDRC216	RC	371,098.9	6,468,631.1	332.2	72	-60	90				
PDRC217	RC	371,183.3	6,468,651.5	329.0	48	-60	90				
PDRC218	RC	371,188.0	6,468,672.0	329.9	48	-60	90				
PDRC219	RC	371,128.7	6,468,670.7	331.4	72	-60	90				
PDRC220	RC	371,188.4	6,468,691.3	330.8	60	-60	90				
PDRC221	RC	371,185.8	6,468,710.2	331.7	48	-60	90				
PDRC222	RC	371,168.3	6,468,729.6	332.7	66	-60	90				

	Table 1											
	Drill Hole Collar Locations											
Hole ID	Hole TypeEastNorthRLDepthDipAzimuth(m)(m)(m)(m)(°)(°)											
PDRC223	RC	371,181.5	6,468,757.5	331.8	60	-60	90					
PDRC224	DRC224 RC 371,177.8 6,468,632.5 329.2 48 -60 90											

Notes:

• Hole locations were measured by a licenced surveyor in MGA 94 zone 51 using a DGPS.

• The azimuth is in true north degrees.

	Table 2											
		Selected	d Li2O Inter	rvals								
Hole ID	North	East	From	То	Intersection	Li2O						
PDRC181	6,468,782.0	371,148.8	43	58	15	1.24						
PDRC182	6,468,782.0	371,139.0	54	63	9	1.45						
PDRC183	6,468,782.2	371,128.5	49	66	17	1.08						
PDRC187	6,468,739.7	371,134.2	46	73	27	1.86						
PDRC188	6,468,739.7	371,124.6	67	78	11	1.48						
PDRC190	6,468,729.9	371,147.2	52	63	11	3.15						
PDRC191	6,468,730.0	371,138.0	49	59	10	1.51						
PDRC191	6,468,730.0	371,138.0	62	80	18	1.28						
PDRC198	6,468,691.4	371,179.3	37	61	24	1.31						
PDRC199	6,468,680.9	371,179.1	37	59	22	1.97						
PDRC200	6,468,681.3	371,139.2	56	66	10	1.48						
PDRC201	6,468,671.7	371,178.9	37	52	15	1.76						
PDRC202	6,468,670.8	371,139.1	35	62	27	1.60						
PDRC206	6,468,641.1	371,161.5	36	45	9	1.88						
PDRC207	6,468,631.7	371,149.3	36	51	15	2.47						
PDRC209	6,468,614.8	371,140.0	37	46	9	2.35						
PDRC210	6,468,615.1	371,129.5	39	56	17	1.90						
PDRC211	6,468,615.1	371,120.2	33	54	21	1.83						
PDRC212	6,468,615.2	371,109.3	39	49	10	3.23						
PDRC212	6,468,615.2	371,109.3	52	60	8	1.36						
PDRC215	6,468,630.8	371,108.4	42	63	21	1.65						
PDRC219	6,468,670.7	371,128.7	48	63	15	1.18						

Notes

• Selected Assay results as received from chemical analysis by Intertek-Genalysis

• The elemental oxide concentrations are calculated by multiplying Li by 2.153 to derive Li_2O

• Intersections noted are 'down-hole' and do not necessarily represent a true width.

Figure 3: Drill Hole Location Plan

Table 2 Selected Assay Recults										
Hole ID	From	То	Cs	K	Li2O calc	Li	Rb	Та	Al	
	(m)	(m)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	
PDRC181	48	49	11	788	0.05	220	26	0	2,455	
PDRC181	49	50	118	1,927	0.54	2,507	77	0	46,175	
PDRC181	50	51	2,281	33,239	1.77	8,219	7,012	46	52,556	
PDRC181	51	52	3,466	56,285	2.88	13,393	11,611	76	81,971	
PDRC181	52	53	1,710	28,194	1.88	8,742	4,604	28	61,657	
PDRC181	53	54	2,739	47,496	2.18	10,131	8,944	54	75,746	
PDRC181	54	55	4,273	75,664	3.39	15,730	13,961	97	109,009	
PDRC181	55	56	1,024	19,882	0.96	4,461	3,425	64	47,437	
PDRC182	52	53	26	249	0.04	185	25	1	2,825	
PDRC182	53	54	48,870	6,108	0.31	1,427	1,733	52	41,468	
PDRC182	54	55	66,644	22,530	1.12	5,213	5,582	78	52,405	
PDRC182	55	56	105,892	26,413	1.31	6,103	6,944	84	54,229	
PDRC182	56	57	160,217	17,752	0.82	3,806	5,101	33	63,599	
PDRC182	57	58	9,400	41,958	2.03	9,407	9,146	140	66,381	
PDRC182	58	59	2,394	29,057	1.67	7,772	6,247	112	46,476	
PDRC182	59	60	3,387	38,399	2.19	10,160	8,677	244	60,364	
PDRC182	60	61	3,548	37,099	2.1	9,761	8,487	229	48,753	
PDRC182	61	62	1,864	23,531	1.14	5,290	4,833	93	32,835	
PDRC182	62	63	4,388	15,975	0.66	3,079	2,834	74	39,894	
PDRC183	47	48	362	12,721	0.41	1,906	908	14	57,030	
PDRC183	48	49	186	6,948	0.48	2,210	392	16	61,226	
PDRC183	49	50	546	7,475	1.2	5,585	553	31	56,069	
PDRC183	50	51	214	6,398	1.22	5,682	399	23	49,187	
PDRC183	51	52	651	7,615	1.56	7,266	423	4	56,325	
PDRC183	52	53	623	14,682	0.78	3,629	1,439	26	63,244	
PDRC183	53	54	1,279	16,728	1.12	5,195	4,018	36	43,645	
PDRC183	54	55	1,027	16,369	0.87	4,024	3,619	37	43,380	
PDRC183	55	56	818	15,732	1.4	6,501	2,357	22	56,832	
PDRC183	56	57	576	12,040	0.85	3,928	971	21	56,055	
PDRC183	57	58	1,940	31,984	1.7	7,876	7,107	104	31,511	
PDRC183	58	59	1,254	19,333	2.57	11,935	4,265	100	33,864	
PDRC183	59	60	88	943	0.05	232	84	7	5,499	
PDRC183	60	61	763	12,921	0.51	2,385	1,528	89	28,122	
PDRC183	61	62	411	9,685	1.58	7,359	1,091	33	33,153	
PDRC183	62	63	1,040	25,517	1.06	4,933	4,741	76	35,476	
PDRC183	63	64	574	16,228	0.54	2,521	1,841	68	42,203	
PDRC183	64	65	650	13,056	0.67	3,132	1,419	62	57,997	
PDRC187	47	48	1,079	23,034	0.84	3,903	3,401	14	44,618	
PDRC187	48	49	635	13,213	0.61	2,833	1,726	29	54,476	
PDRC187	49	50	917	16,070	0.9	4,161	3,519	21	40,153	
PDRC187	50	51	2,966	59,430	2.95	13,725	12,320	69	104,819	
PDRC187	51	52	3,323	62,149	3.19	14,839	12,991	72	110,555	
PDRC187	52	53	414	6,213	0.47	2,196	855	8	40,868	
PDRC187	53	54	3,523	41,997	2.5	11,617	9,793	72	65,100	
PDRC187	54	55	5,685	66,383	3.86	17,906	15,619	130	96,282	

Table 2 Selected Assay Results										
Hole ID	From	То	Cs	K	Li2O_calc	Li	Rb	Та	Al	
	(m)	(m)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	
PDRC187	55	56	3,083	36,493	1.96	9,095	7,970	96	56,523	
PDRC187	56	57	5,316	67,139	3.63	16,866	14,456	255	98,585	
PDRC187	57	58	5,377	69,204	3.72	17,258	14,718	324	110,362	
PDRC187	58	59	2,337	29,162	1.39	6,464	5,524	386	59,823	
PDRC187	59	60	2,805	34,928	1.68	7,783	6,925	422	60,896	
PDRC187	60	61	1,660	15,818	0.72	3,331	3,201	152	39,851	
PDRC187	61	62	1,892	23,918	1.06	4,913	4,777	234	53,747	
PDRC187	62	63	2,739	32,969	1.7	7,893	7,556	279	53,944	
PDRC187	63	64	3,439	47,054	2.77	12,857	10,895	181	81,628	
PDRC187	64	65	3,955	47,177	2.99	13,884	11,638	236	63,707	
PDRC187	65	66	3,102	37,875	2.1	9,744	9,400	154	34,802	
PDRC187	66	67	3,969	41,236	2.54	11,804	10,397	216	54,863	
PDRC187	67	68	3,685	37,790	2.06	9,588	9,272	261	48,587	
PDRC187	68	69	3,217	30,068	1.82	8,452	7,622	169	25,340	
PDRC187	69	70	2,454	24,535	1.45	6,714	5,804	132	28,101	
PDRC187	70	71	1,156	20,295	1	4,645	4,414	54	33,244	
PDRC187	71	72	1,179	19,181	0.88	4,101	3,960	107	26,244	
PDRC188	65	66	26	882	0.03	122	81	3	4,635	
PDRC188	66	67	521	7,603	0.32	1,508	1,095	91	25,052	
PDRC188	67	68	2,158	25,531	1.26	5,869	6,137	155	52,044	
PDRC188	68	69	1,681	24,296	1	4,657	5,039	184	49,015	
PDRC188	69	70	3,561	38,337	2.03	9,452	8,935	327	58,728	
PDRC188	70	71	2,334	26,191	1.44	6,665	6,232	233	50,998	
PDRC188	71	72	2,987	32,938	1.8	8,366	7,883	195	63,030	
PDRC188	72	73	2,747	29,767	1.73	8,024	7,494	151	44,484	
PDRC188	73	74	1,442	18,945	0.98	4,561	4,363	145	69,911	
PDRC188	74	75	2,866	40,521	2.08	9,667	9,424	194	78,594	
PDRC188	75	76	2,748	40,632	2.03	9,438	9,338	147	80,677	
PDRC188	76	77	1,796	28,361	1.31	6,088	6,287	104	58,665	
PDRC188	77	78	938	13,844	0.62	2,899	1,883	114	51,760	
PDRC189	50	51	245	10,848	0.11	493	1,077	1	32,509	
PDRC189	51	52	4,127	24,969	0.28	1,288	3,820	7	97,058	
PDRC189	52	53	117,422	18,401	0.19	864	4,686	2	72,438	
PDRC189	53	54	107,759	26,097	1.18	5,469	7,366	36	70,719	
PDRC189	54	55	8,676	30,906	0.41	1,890	3,620	16	70,217	
PDRC189	55	56	7,740	39,625	2.06	9,585	9,388	68	61,257	
PDRC189	56	57	6,270	40,476	2.89	13,422	9,912	70	77,557	
PDRC189	57	58	3,833	24,442	1.32	6,142	6,528	56	37,780	
PDRC189	58	59	1,982	9,375	0.32	1,488	1,173	13	26,419	
PDRC189	59	60	1,317	17,550	0.77	3,565	3,288	39	55,268	
PDRC190	50	51	20	388	0.01	63	21	1	2,025	
PDRC190	51	52	359	9,666	0.17	785	1,054	10	20,398	
PDRC190	52	53	1,340	55,690	0.69	3,184	4,702	80	86,478	
PDRC190	53	54	4,906	69,960	3.09	14,354	12,642	361	120,026	
PDRC190	54	55	4,464	60,132	2.87	13,339	11,879	315	113,236	

Table 2 Selected Assay Results										
Hole ID	From	То	Cs	K	Li2O calc	Li	Rb	Та	Al	
	(m)	(m)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	
PDRC190	55	56	5,506	69,803	3.39	15,752	13,912	260	116,882	
PDRC190	56	57	2,898	36,520	2.83	13,156	6,661	246	83,892	
PDRC190	57	58	172	2,420	8.6	39,924	217	309	113,540	
PDRC190	58	59	1,137	22,186	2.66	12,370	2,291	130	64,340	
PDRC190	59	60	797	6,410	7.74	35,961	779	270	90,356	
PDRC190	60	61	731	18,166	1	4,661	1,180	33	24,041	
PDRC190	61	62	756	9,831	0.51	2,387	1,825	57	25,599	
PDRC190	62	63	1,510	30,194	1.23	5,701	5,313	113	30,262	
PDRC190	63	64	408	7,757	0.32	1,470	1,190	56	82,639	
PDRC190	64	65	323	6,996	0.29	1,356	1,171	23	79,959	
PDRC191	46	47	504	16,642	0.4	1,839	1,235	9	60,373	
PDRC191	47	48	347	14,226	0.21	957	870	8	75,301	
PDRC191	48	49	606	26,854	0.27	1,240	1,122	21	78,170	
PDRC191	49	50	915	24,423	0.72	3,322	3,094	27	65,002	
PDRC191	50	51	2,621	43,404	2.13	9,903	8,669	75	78,943	
PDRC191	51	52	2,471	35,091	1.95	9,037	7,721	81	58,268	
PDRC191	52	53	687	10,469	0.46	2,134	1,869	20	24,123	
PDRC191	53	54	1,342	16,587	0.86	3,989	3,442	35	35,136	
PDRC191	54	55	1,098	15,843	0.66	3,078	2,971	54	39,463	
PDRC191	55	56	4,322	30,311	2.71	12,586	11,322	206	79,651	
PDRC191	56	57	3,298	24,958	2	9,291	8,627	427	69,562	
PDRC191	57	58	4,177	22,530	2.65	12,300	11,047	285	79,371	
PDRC191	58	59	1,566	22,117	0.91	4,220	4,018	1,135	45,317	
PDRC191	59	60	334	4,464	0.21	964	807	457	9,405	
PDRC191	60	61	45	830	0.03	142	96	18	1,887	
PDRC191	61	62	281	11,346	0.16	765	815	99	15,457	
PDRC191	62	63	1,294	15,853	0.74	3,420	3,055	65	25,709	
PDRC191	63	64	1,489	19,879	0.87	4,025	3,893	165	37,959	
PDRC191	64	65	206	3,791	0.11	521	593	43	25,623	
PDRC191	65	66	3,083	34,438	1.76	8,180	6,310	297	62,497	
PDRC191	66	67	3,941	50,095	2.51	11,657	10,145	399	76,774	
PDRC191	67	68	2,579	49,822	1.49	6,942	6,967	365	78,925	
PDRC191	68	69	2,242	24,467	1.25	5,792	4,938	286	60,009	
PDRC191	69	70	3,322	35,565	1.8	8,381	7,444	272	69,893	
PDRC191	70	71	2,698	30,371	1.57	7,275	6,586	228	70,942	
PDRC191	71	72	2,661	36,381	1.83	8,490	7,450	219	65,570	
PDRC191	72	73	2,155	28,970	1.44	6,690	5,959	158	63,830	
PDRC191	73	74	1,569	28,203	1.26	5,868	5,407	128	54,323	
PDRC191	74	75	1,315	19,917	0.93	4,338	3,988	77	29,244	
PDRC191	75	76	2,384	32,697	1.61	7,474	7,004	122	50,173	
PDRC191	76	77	2,421	34,130	1.68	7,808	7,080	145	52,414	
PDRC191	77	78	1,183	20,936	0.9	4,183	3,788	141	63,244	
PDRC191	78	79	830	16,687	0.66	3,078	2,757	118	58,995	
PDRC196	72	73	406	23,059	0.26	1,186	1,465	170	81,775	
PDRC197	30	31	111	55,106	0.05	253	947	97	80,727	

Table 2 Selected Assay Recults										
Hole ID	From	То	Cs	K	Li2O calc	Li	Rb	Та	Al	
	(m)	(m)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	
PDRC198	36	37	298	51,667	0.14	638	2,005	6	96,567	
PDRC198	37	38	1,313	41,534	1.36	6,337	4,087	34	75,029	
PDRC198	38	39	303	12,306	1.82	8,443	1,050	7	68,695	
PDRC198	39	40	303	21,227	2.04	9,477	1,451	7	69,392	
PDRC198	40	41	477	14,509	2.15	9,978	1,610	17	77,132	
PDRC198	41	42	196	7,826	2.14	9,929	803	11	67,443	
PDRC198	42	43	459	16,465	2.83	13,142	1,881	18	93,201	
PDRC198	43	44	117	4,499	2.33	10,811	405	22	80,667	
PDRC198	45	46	302	48,499	0.52	2,394	2,520	13	79,363	
PDRC198	46	47	47	1,704	0.09	399	109	29	60,145	
PDRC198	47	48	453	7,782	1.74	8,079	790	20	77,659	
PDRC198	48	49	903	9,586	1.23	5,736	440	19	61,117	
PDRC198	49	50	163	5,465	0.91	4,248	276	7	75,616	
PDRC198	50	51	410	3,274	2.21	10,243	205	16	68,540	
PDRC198	51	52	427	8,939	1	4,650	829	58	47,438	
PDRC198	52	53	278	7,401	0.94	4,363	536	38	74,994	
PDRC198	53	54	300	13,378	1.37	6,342	1,248	14	88,066	
PDRC198	54	55	259	10,034	1.43	6,650	889	41	83,935	
PDRC198	55	56	230	7,217	1.11	5,178	746	39	52,986	
PDRC198	56	57	404	8,135	0.67	3,122	1,213	21	78,553	
PDRC198	57	58	254	11,070	0.52	2,411	1,078	16	76,442	
PDRC198	58	59	320	14,532	0.49	2,295	1,157	21	61,050	
PDRC198	59	60	293	12,220	0.53	2,482	1,179	45	78,176	
PDRC198	60	61	142	8,208	1.91	8,880	624	8	75,357	
PDRC198	61	62	419	7,570	0.31	1,458	968	87	89,940	
PDRC198	62	63	292	12,021	0.28	1,284	1,200	22	48,760	
PDRC199	35	36	323	41,805	0.25	1,154	2,137	11	90,446	
PDRC199	36	37	374	22,574	0.48	2,219	2,020	15	54,338	
PDRC199	37	38	281	14,026	1.89	8,769	1,131	9	71,577	
PDRC199	38	39	302	42,698	0.83	3,833	2,178	6	84,705	
PDRC199	39	40	370	14,515	2.32	10,769	686	7	73,151	
PDRC199	40	41	536	94,153	0.22	1,009	5,176	3	99,929	
PDRC199	41	42	815	24,552	1.88	8,725	3,178	20	60,037	
PDRC199	42	43	265	6,408	3.44	16,000	818	7	75,323	
PDRC199	43	44	137	3,360	3.74	17,370	408	8	79,782	
PDRC199	44	45	264	5,520	2.4	11,126	786	20	75,700	
PDRC199	45	46	208	4,758	3.24	15,040	655	10	80,933	
PDRC199	46	47	238	4,454	2.45	11,370	644	18	79,572	
PDRC199	47	48	150	3,364	1.64	7,636	394	24	71,269	
PDRC199	48	49	84	2,533	3.59	16,688	213	5	71,458	
PDRC199	49	50	220	8,261	2.01	9,328	846	17	75,466	
PDRC199	50	51	349	8,935	1.7	7,884	1,082	17	72,051	
PDRC199	51	52	353	3,912	2.09	9,719	294	8	53,231	
PDRC199	52	53	464	10,650	2.53	11,761	1,651	15	69,135	
PDRC199	53	54	342	6,637	3.18	14,783	1,033	9	76,775	

Table 2 Selected Assay Results										
Hole ID	From	То	Cs	K	Li2O calc	Li	Rb	Та	Al	
	(m)	(m)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	
PDRC199	54	55	538	11,679	1.14	5,287	1,252	21	77,817	
PDRC199	55	56	551	16,742	0.96	4,476	2,504	30	71,592	
PDRC199	56	57	407	10,034	0.85	3,964	780	59	67,171	
PDRC200	54	55	3,990	3,848	0.04	178	236	1	32,996	
PDRC200	55	56	3,573	37,440	0.13	610	1,604	19	84,534	
PDRC200	56	57	4,511	56,486	2.49	11,543	9,995	375	105,261	
PDRC200	57	58	4,980	64,867	3.13	14,538	12,272	389	100,417	
PDRC200	58	59	1,645	56,975	0.74	3,434	4,807	178	113,643	
PDRC200	59	60	2,086	35,565	1.19	5,537	5,605	174	86,208	
PDRC200	60	61	1,422	18,038	0.82	3,822	3,430	97	28,878	
PDRC200	61	62	1,828	31,650	1.43	6,660	5,907	145	43,106	
PDRC200	62	63	1,641	28,784	1.23	5,696	5,356	156	51,234	
PDRC200	63	64	1,858	34,161	1.52	7,057	6,603	165	45,643	
PDRC200	64	65	2,224	37,551	1.7	7,888	7,096	148	72,889	
PDRC200	65	66	754	13,373	0.55	2,574	2,260	69	87,946	
PDRC200	66	67	667	31,923	0.31	1,425	2,042	64	87,121	
PDRC200	69	70	489	34,246	0.2	922	1,961	15	97,149	
PDRC201	35	36	190	48,538	0.08	356	1,780	7	92,524	
PDRC201	36	37	578	60,235	0.47	2,198	3,512	16	66,381	
PDRC201	37	38	243	17,871	2.45	11,370	1,044	12	61,245	
PDRC201	38	39	92	6,386	1.41	6,571	372	10	41,665	
PDRC201	39	40	2,301	3,812	0.68	3,140	340	8	52,238	
PDRC201	40	41	345	1,943	0.21	966	122	2	12,469	
PDRC201	41	42	1,594	4,770	0.53	2,449	346	5	38,148	
PDRC201	42	43	486	2,040	0.3	1,409	129	1	15,757	
PDRC201	43	44	515	8,967	2.9	13,492	1,242	8	76,614	
PDRC201	44	45	679	5,888	1.97	9,161	566	9	68,679	
PDRC201	45	46	571	7,688	1.62	7,518	458	4	68,838	
PDRC201	46	47	415	8,647	2.88	13,382	1,069	7	82,279	
PDRC201	47	48	634	11,552	1.93	8,948	1,301	14	73,755	
PDRC201	48	49	243	4,333	3.23	15,021	371	17	68,172	
PDRC201	49	50	186	3,194	3.2	14,852	263	8	67,047	
PDRC201	50	51	261	6,307	1.08	5,036	573	60	48,055	
PDRC201	51	52	165	4,713	1.95	9,044	338	22	55,815	
PDRC201	52	53	291	11,128	0.3	1,384	938	18	37,472	
PDRC201	53	54	111	3,245	0.14	652	266	9	49,582	
PDRC201	54	55	131	11,349	0.18	816	641	12	40,724	
PDRC202	33	34	402	76,307	0.1	471	3,807	8	91,419	
PDRC202	34	35	280	66,988	0.04	176	3,684	1	65,434	
PDRC202	35	36	162	5,637	1.77	8,228	419	11	44,421	
PDRC202	36	37	6,730	2,022	0.66	3,069	445	1	82,228	
PDRC202	37	38	509	4,820	3.55	16,471	455	4	77,077	
PDRC202	38	39	666	5,498	2.86	13,296	499	8	54,680	
PDRC202	39	40	585	7,372	3.04	14,103	969	9	46,410	
PDRC202	40	41	1,811	7,700	1.49	6,909	1,030	7	66,586	

Table 2 Selected Assay Results										
Hole ID	From	То	Cs	K	Li2O calc	Li	Rb	Та	Al	
	(m)	(m)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	
PDRC202	41	42	874	1,404	2.01	9,342	68	1	73,907	
PDRC202	42	43	322	1,711	1.22	5,669	238	2	74,076	
PDRC202	43	44	1,001	30,143	1.17	5,413	4,565	41	92,402	
PDRC202	44	45	470	14,027	1.01	4,677	1,635	15	70,557	
PDRC202	45	46	256	6,817	1.04	4,808	806	11	75,802	
PDRC202	46	47	1,063	9,102	1.52	7,046	818	12	74,550	
PDRC202	47	48	3,543	12,628	1.43	6,662	1,705	22	72,679	
PDRC202	48	49	1,744	9,077	2.66	12,343	1,322	22	69,072	
PDRC202	49	50	800	15,261	1.47	6,832	2,756	16	49,965	
PDRC202	50	51	3,630	63,594	3.16	14,680	12,448	85	101,540	
PDRC202	51	52	17,010	4,011	0.92	4,267	555	8	57,589	
PDRC202	52	53	5,715	1,022	0.08	369	207	2	10,456	
PDRC202	53	54	94,958	3,682	0.19	879	938	3	57,068	
PDRC202	54	55	24,607	12,717	0.69	3,221	2,411	218	40,671	
PDRC202	55	56	2,942	37,337	0.33	1,518	2,610	142	96,754	
PDRC202	56	57	1,122	15,661	3.56	16,558	1,136	293	27,563	
PDRC202	57	58	3,276	34,454	1.87	8,701	7,245	145	30,624	
PDRC202	58	59	2,494	32,239	1.55	7,201	6,561	205	48,599	
PDRC202	59	60	2,320	39,230	1.81	8,423	7,716	234	45,939	
PDRC202	60	61	2,432	35,770	1.55	7,198	7,037	152	42,637	
PDRC202	61	62	655	16,236	0.63	2,923	2,624	58	43,498	
PDRC202	62	63	759	13,381	0.45	2,071	1,557	81	49,719	
PDRC204	51	52	245	13,363	0.12	578	829	28	82,188	
PDRC205	47	48	723	20,051	0.49	2,262	1,931	23	64,794	
PDRC205	48	49	466	18,544	0.55	2,570	1,610	41	73,945	
PDRC205	49	50	1,392	13,747	1.25	5,784	1,143	35	69,031	
PDRC205	50	51	1,166	12,514	1.54	7,172	1,675	36	74,463	
PDRC205	51	52	677	10,868	1.37	6,377	1,431	41	60,971	
PDRC205	52	53	749	11,736	1.49	6,921	1,724	22	54,922	
PDRC205	53	54	510	9,659	0.77	3,568	1,157	25	53,833	
PDRC205	54	55	741	6,101	0.92	4,255	463	15	48,209	
PDRC206	25	26	274	66,180	0.09	427	3,095	4	86,183	
PDRC206	26	27	201	40,993	0.08	380	1,823	2	78,544	
PDRC206	36	37	1,785	73,086	1.35	6,293	9,354	57	128,728	
PDRC206	37	38	1,784	76,569	1.58	7,353	10,541	60	142,331	
PDRC206	38	39	1,510	57,729	1.15	5,345	7,969	49	112,744	
PDRC206	39	40	1,507	49,485	1.24	5,739	7,383	39	97,902	
PDRC206	40	41	204	6,534	3.34	15,531	871	4	74,918	
PDRC206	41	42	185	5,629	3.49	16,232	606	6	65,602	
PDRC206	42	43	936	14,698	2.55	11,828	2,235	119	75,021	
PDRC206	43	44	382	7,158	1.72	7,995	673	50	69,711	
PDRC206	44	45	361	16,603	0.54	2,512	1,448	32	51,525	
PDRC207	34	35	689	80,711	0.08	353	6,667	3	85,931	
PDRC207	35	36	183	6,104	0.31	1,425	530	9	27,419	
PDRC207	36	37	2,149	2,701	3.59	16,687	116	8	51,899	

Table 2 Selected Assay Pocults										
Hole ID	From	То	Cs	K	Li2O calc	Li	Rb	Та	Al	
	(m)	(m)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	
PDRC207	37	38	1,596	2,206	2.12	9,848	91	8	42,217	
PDRC207	38	39	226	1,349	0.58	2,681	126	4	40,359	
PDRC207	39	40	1,214	22,702	1.09	5,076	4,238	27	45,950	
PDRC207	40	41	1,557	34,416	1.44	6,692	5,979	118	67,866	
PDRC207	41	42	1,217	26,297	2.51	11,672	4,246	103	87,136	
PDRC207	42	43	1,130	21,716	2.78	12,906	3,592	51	82,702	
PDRC207	43	44	1,077	10,728	2.96	13,742	1,757	31	73,202	
PDRC207	44	45	268	3,480	3.85	17,888	510	9	75,708	
PDRC207	45	46	540	6,292	3.64	16,914	987	16	81,005	
PDRC207	46	47	423	5,998	3.35	15,557	772	21	67,357	
PDRC207	47	48	261	3,894	3.08	14,328	446	15	64,978	
PDRC207	48	49	246	4,371	2.64	12,239	408	26	52,302	
PDRC207	49	50	191	4,227	2.86	13,278	461	20	59,206	
PDRC207	50	51	341	7,184	0.61	2,822	597	77	60,443	
PDRC208	45	48	162	17,088	0.35	1,643	629	17	52,419	
PDRC209	37	38	142	12,035	3.15	14,624	1,032	3	72,679	
PDRC209	38	39	48	1,728	1.13	5,263	170	2	39,029	
PDRC209	39	40	23	340	0.06	270	43	1	2,097	
PDRC209	40	41	5	271	0.05	209	16	0	1,597	
PDRC209	41	42	39	1,286	4.23	19,649	130	1	75,975	
PDRC209	42	43	87	2,378	4.14	19,228	317	4	74,996	
PDRC209	43	44	165	4,323	3.35	15,538	588	25	73,940	
PDRC209	44	45	100	2,563	3.37	15,638	316	5	73,521	
PDRC209	45	46	163	4,145	1.66	7,719	360	37	63,086	
PDRC209	46	47	178	12,573	0.4	1,864	952	25	64,863	
PDRC209	47	48	345	52,821	0.2	927	1,917	9	83,288	
PDRC209	48	51	405	40,608	0.22	1,005	1,584	22	82,352	
PDRC210	36	37	107	787	0.31	1,452	66	2	45,910	
PDRC210	37	38	149	1,058	0.77	3,568	106	29	62,253	
PDRC210	38	39	105	1,939	0.18	856	319	12	20,864	
PDRC210	39	40	3,290	58,571	2.98	13,857	12,532	70	93,298	
PDRC210	40	41	1,788	33,095	1.7	7,895	6,912	79	66,250	
PDRC210	41	42	3,446	62,885	3.01	13,980	13,094	105	103,416	
PDRC210	42	43	3,645	68,453	3.26	15,123	13,851	110	100,191	
PDRC210	43	44	3,602	73,365	3.39	15,726	14,558	95	118,709	
PDRC210	44	45	3,040	64,088	2.91	13,533	12,545	63	109,641	
PDRC210	45	46	1,935	78,330	1.59	7,388	9,638	36	111,419	
PDRC210	46	47	2,278	43,962	2.13	9,904	8,136	45	75,489	
PDRC210	47	48	1,317	22,763	1.22	5,684	4,509	39	32,187	
PDRC210	48	49	957	17,156	2.15	10,007	3,269	52	58,620	
PDRC210	49	50	1,369	28,808	1.31	6,065	5,571	72	99,298	
PDRC210	50	51	788	20,641	1.11	5,173	3,392	35	55,016	
PDRC210	51	52	474	11,972	1.34	6,209	1,710	23	71,051	
PDRC210	52	53	510	7,615	1.56	7,266	953	23	54,624	
PDRC210	53	54	665	15,146	1.16	5,397	2,457	47	48,044	

Table 2 Selected Assay Results										
Hole ID	From	То	Cs	K	Li2O_calc	Li	Rb	Та	Al	
	(m)	(m)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	
PDRC210	54	55	881	13,566	0.58	2,671	1,978	87	61,978	
PDRC211	31	32	106	9,748	0.21	958	845	5	22,198	
PDRC211	32	33	94	1,874	0.14	650	213	2	6,954	
PDRC211	33	34	136	3,846	2.41	11,175	186	1	71,113	
PDRC211	34	35	104	1,303	3.99	18,547	50	0	68,024	
PDRC211	35	36	3,031	1,077	4	18,595	66	1	60,170	
PDRC211	36	37	22,523	2,269	0.87	4,027	71	1	71,687	
PDRC211	37	38	16,303	2,917	0.89	4,138	65	2	64,663	
PDRC211	38	39	4,434	1,852	1.53	7,094	34	1	48,825	
PDRC211	39	40	6,265	1,600	2.21	10,263	27	0	59,783	
PDRC211	40	41	1,888	948	1.29	6,002	36	1	68,659	
PDRC211	41	42	1,703	762	1.26	5,845	27	1	71,328	
PDRC211	42	43	2,380	551	2.54	11,818	20	0	74,345	
PDRC211	43	44	1,647	388	1.66	7,695	19	6	52,209	
PDRC211	44	45	6,905	1,485	2.68	12,443	54	13	41,823	
PDRC211	45	46	421	5,811	0.54	2,517	296	124	73,120	
PDRC211	46	47	724	6,510	1.21	5,615	436	207	78,395	
PDRC211	47	48	472	8,497	1.08	5,019	930	8	88,530	
PDRC211	48	49	629	12,757	1.61	7,487	1,697	19	84,824	
PDRC211	49	50	3,075	50,915	2.53	11,728	10,134	81	99,166	
PDRC211	50	51	2,978	47,602	2.38	11,041	9,426	162	85,603	
PDRC211	51	52	1,533	29,836	1.59	7,382	5,271	54	58,152	
PDRC211	52	53	536	9,750	1.22	5,650	1,362	13	69,352	
PDRC211	53	54	946	20,833	0.98	4,557	3,587	75	59,015	
PDRC212	37	38	142	10,425	0.19	892	641	18	70,465	
PDRC212	38	39	431	7,040	0.38	1,775	675	17	51,283	
PDRC212	39	40	923	12,793	1.63	7,575	1,548	20	57,120	
PDRC212	40	41	685	9,881	3.33	15,485	1,087	11	63,542	
PDRC212	41	42	953	22,532	2.35	10,905	1,899	9	81,869	
PDRC212	42	43	359	4,475	3.85	17,867	583	9	78,592	
PDRC212	43	44	391	1,516	4.55	21,144	225	2	79,940	
PDRC212	44	45	338	1,427	3.84	17,825	122	1	74,132	
PDRC212	45	46	47	761	1.5	6,951	50	1	40,391	
PDRC212	46	47	8,653	562	4.02	18,666	23	0	66,843	
PDRC212	47	48	731	366	4.28	19,856	9	0	79,844	
PDRC212	48	49	46	1,355	2.94	13,661	78	2	67,744	
PDRC212	49	50	8	61	0.06	256	2	0	3,552	
PDRC212	50	51	9	42	0.03	158	2	0	821	
PDRC212	51	52	6	124	0.06	302	6	0	2,124	
PDRC212	52	53	26	886	3.72	17,297	54	1	79,873	
PDRC212	53	54	48	2,053	2.74	12,731	117	4	68,873	
PDRC212	54	55	332	7,660	0.43	2,016	887	16	34,917	
PDRC212	55	56	1,151	22,907	1.01	4,710	3,715	60	77,494	
PDRC212	56	57	1,494	31,243	1.42	6,605	5,349	60	57,558	
PDRC212	57	60	715	30,049	0.53	2,458	2,179	61	88,118	

Table 2 Selected Assay Results										
Hole ID	From	То	Cs	K	Li2O calc	Li	Rb	Та	Al	
	(m)	(m)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	
PDRC215	38	41	174	11,360	0.22	1,015	619	10	76,092	
PDRC215	41	42	356	17,531	0.41	1,889	1,093	13	65,532	
PDRC215	42	43	595	14,028	0.58	2,683	1,567	17	48,411	
PDRC215	43	44	543	12,017	1.89	8,792	1,475	20	57,250	
PDRC215	44	45	475	9,005	2.22	10,293	1,211	14	55,541	
PDRC215	45	46	360	7,654	2.75	12,751	1,155	8	56,425	
PDRC215	46	47	258	4,322	0.69	3,227	844	6	21,767	
PDRC215	47	48	150	2,191	3.37	15,673	376	4	68,244	
PDRC215	48	49	4,774	68,294	3.84	17,833	14,768	88	118,106	
PDRC215	49	50	5,844	79,035	4.21	19,577	16,919	112	133,710	
PDRC215	50	51	4,360	59,999	2.9	13,482	11,857	92	116,437	
PDRC215	51	52	3,618	42,838	1.66	7,710	8,616	105	90,836	
PDRC215	52	53	3,307	50,617	1.73	8,015	8,881	287	83,964	
PDRC215	53	54	486	9,219	0.36	1,666	1,292	51	19,979	
PDRC215	54	55	76	1,234	0.1	460	202	6	3,997	
PDRC215	55	56	2,177	28,420	1.29	5,995	4,426	353	54,289	
PDRC215	56	57	3,823	55,228	1.62	7,515	8,413	750	104,190	
PDRC215	57	58	2,277	32,165	0.94	4,373	4,009	628	64,213	
PDRC215	58	59	1,292	13,159	0.46	2,132	1,763	1,142	38,484	
PDRC215	59	60	404	14,550	0.24	1,135	1,191	232	43,216	
PDRC215	60	61	2,350	37,571	1.65	7,675	6,708	226	75,342	
PDRC215	61	62	610	12,368	0.43	1,985	1,638	117	59,237	
PDRC215	62	63	1,895	37,512	1.82	8,450	6,783	106	69,602	
PDRC215	63	64	192	12,506	0.21	965	882	28	92,906	
PDRC215	64	65	179	12,648	0.77	3,577	733	203	70,158	
PDRC219	46	47	184	19,120	0.28	1,316	996	16	49,483	
PDRC219	47	48	271	17,327	0.29	1,356	1,522	14	59,097	
PDRC219	48	49	719	8,487	1.8	8,364	669	13	59,942	
PDRC219	49	50	481	8,810	0.54	2,498	744	62	63,567	
PDRC219	50	51	513	18,094	0.77	3,597	1,744	21	55,115	
PDRC219	51	52	306	7,779	0.97	4,513	621	44	58,187	
PDRC219	52	53	444	5,919	2.63	12,225	589	71	65,886	
PDRC219	53	54	1,032	5,788	1.26	5,863	639	33	64,469	
PDRC219	54	55	397	2,165	3.62	16,825	245	12	74,809	
PDRC219	55	56	989	8,970	1.04	4,842	1,266	18	58,926	
PDRC219	56	57	1,264	11,379	1.08	5,006	1,866	26	54,231	
PDRC219	57	58	1,256	15,262	1.16	5,391	2,914	23	59,158	
PDRC219	58	59	116	2,179	0.11	525	315	166	73,634	
PDRC219	59	60	369	7,037	0.32	1,468	1,176	94	67,389	

Notes:

• Selected Assay results derived from chemical analysis by Intertek-Genalysis.

• The element assays were determined by 4 acid digest and ICP analysis.

• Calculated oxide fields comprise the actual element oxide value when determined, or the oxide value calculated from the elemental value using the following formula: Li * 2.153 to derive Li₂O.

• Intersections noted are 'down-hole' and do not necessarily represent a true width.

Section 1 - Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Pioneer Dome Project, Sinclair Prospect.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut Faces, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	 Reverse circulation (RC) samples from holes drilled from surface reported. Single meter samples were collected in calico bags via a cone splitter directly from the cyclone on the RC drill rig. Three-meter composite samples for intervals that were considered to have low LCT element concentrations from the pXRF data were collected from the sample piles via an aluminium scoop. pXRF analysis was undertaken on each sample using a Bruker S1 Titan 800 hand held portable XRF analyser for internal use, and not reported herein.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	 Industry-standard reverse circulation drining, using a race-sampling name with a booster and auxiliary compressors used to ensure dry samples. Individual one meter samples were collected using a cyclone and a cone splitter into sub samples of approximately 3.5kg weight, the cyclone was regularly cleaned to minimise contamination. Duplicate samples and Certified Reference Standards were inserted at regular intervals to provide assay quality checks. The standards and duplicates reported within acceptable limits.
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse circulation drilling was used to obtain 1 m samples from which approximately 3.5 kg sampled. 3.5kg samples were crushed and pulverised by pulp mill to nominal P80/75um to produce a 50 gram charge for analysis. Lithium exploration package of elements were analysed by a four acid digestion with a Mass Spectrometer (MS) determination (Intertek analysis code 4A Li48-MS). The quoted detection limits for this method are a lower detection limit of 0.1ppm and an upper detection of 5000ppm Li. Most other elements have a similar analytical range. Any over range samples were re analysed by a sodium peroxide zirconium crucible fusion with a detection range of 1ppm to 20% Li.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Reverse Circulation Drilling. 4.5 inch drill string. Face-sampling hammer. Auxiliary and Booster compressors used to exclude ground water.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	• During drilling the geologist recorded occasions when sample quality is poor, sample return was low, when the sample was wet or compromised in another way.

Criteria	JORC Code explanation	Commentary
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	 Sample recovery is generally good for RC drilling using the equipment described. Sample recovery is mostly under the control of the drill operator and is generally influenced by the experience and knowledge of the operator.
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	• Because the sample recoveries are assumed to be high, any possible relationship between sample recovery and grade has not been investigated.
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	• Lithological logs exist for these holes in a database. Fields captured include lithology, mineralogy, sulphide abundance and type, alteration, texture, recovery, weathering and colour.
	• Whether logging is qualitative or quantitative in nature. Core (or costean, Face, etc) photography.	 Logging has primarily been qualitative. Qualitative litho-geochemistry based on pXRF analyses is used to confirm rock types. A representative sample of each meter is sieved and retained in chip trays for future reference. Petrology of chips from selected samples is underway to determine the mineralogy of the intervals. XRD analysis of selected pulps retained from the chemical analysis will be undertaken once all chemical assays have been received.
	The total length and percentage of the relevant intersections logged.	The entire length of the drill holes were geologically logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 Individual one meter samples were collected via a cone splitter directly attached to the cyclone when dry. All samples were dry. Individual samples were approximate 3.5kg. The bulk residue was collected via plastic drums and laid out in order on the drill pad. Individual meter samples of the pegmatite that were enriched in elements typically associated with lithium in LCT pegmatites, as determined by a portable XRF (Bruker pXRF) were submitted to the laboratory. Three meter composites were collected for the remainder of the drill holes in areas where the pXRF analysis indicated low associated element concentrations. In some drill holes the sampling (on a three meter composite basis) was undertaken prior to the pXRF analysis. Any three meter composite samples that returned anomalous LCT elements will be re sampled using the original single meter samples. The sample collection, splitting and sampling for this style of drilling is considered to be standard industry practise.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	 Cyclones are routinely cleaned after each 6m rod. Geologist looks for evidence of sample contamination, which was recorded where present. The use of booster and auxiliary compressors ensures samples are dry, which best ensures a quality sample.

Criteria	JORC Code explanation	Commentary
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	 Standard Reference Material is included at a rate of 1 per 30 samples. Duplicate field samples are routinely inserted at a 1 per 30 samples. Laboratory quality control samples were inserted by the laboratory with the performance of these control samples monitored by the laboratory and the company.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	• The sample size is considered appropriate for the style of deposit being sampled.
Quality of assay data and laboratory tests	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	• The sample preparation and assay method used is considered to be standard industry practice and is appropriate for the deposit.
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	 Pioneer owns a Bruker S1 Titan 800 handheld XRF instrument which it used to assist with selecting zones for initial one meter sampling. Zones have been selected due to elevated caesium, niobium, tantalum, gallium, rubidium, thallium or tin. Intervals not identified as elevated from the pXRF have been sampled with three meter composites. Standards, blanks and duplicates have been analysed with the Bruker to ensure the instrument is operating as expected and correctly calibrated.
	 Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	• Standards and laboratory checks have been assessed. Most of the standards show results within acceptable limits of accuracy, with good precision in most cases. Internal laboratory checks indicate very high levels of precision.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	 Significant intersections are calculated by experienced staff with these intersections checked by other staff. No holes have been twinned
	• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 Pioneer has a digital SQL drilling database where information is stored. The Company uses a range of consultants to load and validate data, and appraise quality control samples.
	Discuss any adjustment to assay data.	 Pioneer has adjusted the lithium(Li), tantalum (Ta) and caesium (Cs)assay results to determine Li₂O, Ta₂O₅ and Cs₂O grades. This adjustment is a multiplication of the elemental Li, Ta and Cs assay results by 2.153, 1.221 and 1.06 to determine Li₂O, Ta₂O₅ and Cs₂O grades respectively.
Location of data points	• Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 Collar surveys were completed using a hand-held GPS with an accuracy of +-3 metres.
	Specification of the grid system used.	• MGA94 (Zone 51)
	Quality and adequacy of topographic control.	• Topographic control is from a Digital Terrain Model (DTM). Once all exploration has been completed the RL of each drill collar and soil sampling points will be assigned from this DTM. This is considered adequate for work at the early exploration stage.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	Data spacing for reporting of Exploration Results.	 Individual drill hole traverses were initially drilled on a 160m x 40m drill pattern. Selected infill has been completed on a 80m x 40m drill spacing in prospective zones.
	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	• There has been insufficient work conducted to allow the estimation of a mineral resource.
	Whether sample compositing has been applied.	All reported assays are of 1m samples.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The strike of the mineralisation is estimated at to be broadly north – south, therefore the angled RC holes have been drilled at either 270° to 090°. Scissor holes have been drilled to determine the overall dip of the pegmatite bodies. The pegmatites dip toward the east on the southern line of drilling and to the west on all other drill traverses. Cross sections were drawn as the holes progressed to ensure the drilling was optimal to the interpreted orientation of the intrusions. Down hole intercept widths are estimated to closely approximately true widths based on the interpretation of the pegmatite bodies and the orientation of the drilling.
Sample security	The measures taken to ensure sample security.	 Pioneer uses standard industry practices when collecting, transporting and storing samples for analysis. Drilling pulps are retained by Pioneer off site.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Sampling techniques for assays have not been specifically audited but follow common practice in the Western Australian exploration industry. The assay data and quality control samples are periodically audited by an independent consultant.

Section 2 - Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites	 The Pioneer Dome drilling reported herein is entirely within E63/1669 which is a granted Exploration Licence. The tenement is located approximately 40km N of Norseman WA. Pioneer Resources Limited is the registered holder of the tenement and holds a 100% unencumbered interest in all minerals within the tenement. The tenement is on vacant crown land. The Ngadju Native Title Claimant Group has a determined Native Title Claim which covers the Pioneer Dome project.
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	• At the time of this Statement E63/1669 is in Good Standing. To the best of the Company's knowledge, other than industry standard permits to operate there are no impediments to Pioneer's operations within the tenement.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	• There has been no previous lithium exploration drilling or sampling on the Pioneer Dome project. Previous mapping by the Western Australian Geological Survey and Western Mining Corporation (WMC) in the 1970's identified several pegmatite intrusions however these were not systematically explored for Lithium or associated elements.
Geology	• Deposit type, geological setting and style of mineralisation.	• The Pioneer Dome pegmatite exploration is at an early stage however the pegmatite body at PEG08 appears based on rock chip and soil samples, to be a highly differentiated Lithium Caesium Tantalum (LCT) pegmatite intrusion. This type of pegmatite intrusions are the target intrusions of hard rock lithium deposits.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including easting and northing of the drill hole collar, elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole, down hole length and interception depth plus hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to Appendix 1 of this announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation 	 Intercepts noted are from 1m sample intervals or from three meter composite samples where so noted. Intersections are based on a 0.5% (lower) cut-off for lithium, 17% for caesium and 100ppm for tantalum with a minimum width of 1m, a maximum of two meters of internal and no external dilution. No metal equivalent values have been used.

Criteria	JORC Code explanation	Commentary
	 should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	• Downhole lengths are reported in Appendix 1. The current geological interpretation, based on RC drilling and mapping, suggests that the true widths are similar to the down hole widths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to figures in this report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	• Comprehensive reporting of drill details has been provided in Appendix 1 of this announcement.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	All meaningful and material exploration data has been reported.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Diamond Drilling and infill RC will be conducted to allow the completion of a resource estimate for the mineralised body.