

EXCEPTIONAL HIGH-GRADE DIAMOND DRILL ASSAYS CONFIRM EXTENSIVE BASE METAL DISCOVERY AT MT HARDY

Deepest hole to date hits 13.45m @ 15.9% Zn, 5.75% Pb and 0.9% Cu extending the EM1 discovery to over 200m of continuous mineralisation down-dip

Highlights:

- <u>New laboratory assays from key step-out diamond drill hole MHDD0021A have returned</u> <u>multiple zones of mineralisation including</u>:
 - o <u>13.45m @ 15.9% Zn, 5.75% Pb, 0.90% Cu and 89 g/t silver from 358.55m down-hole</u>
- The thick, high grade intersection in hole MHDD0021A is the deepest mineralised interval drilled at Mt Hardy to date, extending the mineralisation to over 200m down-dip from hole MHDD0040.

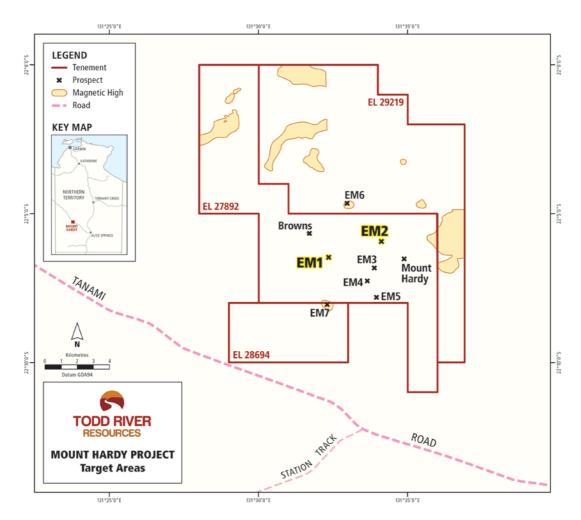
In addition:

- New diamond drill holes MHDDH0039 and MHDDH0040 just completed also intersected multiple zones of base metal mineralisation with sulphides observed of chalcopyrite, sphalerite and galena with pXRF readings presented in table 2.
- The mineralisation intersected to date remains open up-dip from hole MHDD0040 to the surface where mineralisation outcrops, and down-dip below hole MHDD0021A, with a total extent in excess of 200m
- Initial interpretation of the recently collected down-hole geophysical data shows further continuity of mineralisation and additional off-hole targets which require drilling.

"The exceptional intercept in this key step-out hole is a major breakthrough for the emerging discovery at Mt Hardy. We have now extended the mineralisation to more than 200m of continuous dip extent, mainly below the discovery hole of 25m at 2.4% copper and 4% zinc, and we are now confirming exceptionally high grades and tenor of mineralisation persist to significant depths.

"Together with the strong zones of mineralisation encountered in the additional holes MHDDH0039 and MHDDH0040 and the highly encouraging indications from down-hole geophysics, we believe we are onto a new high-grade base metal system which warrants a major exploration push by the Company. While we await outstanding assays, we are completing a full re-interpretation of the geophysics which, together with an new geochemical interpretation, will lay the foundations for our next phase of expanded drilling." – Todd River CEO Will Dix

Todd River Resources Limited (ASX: TRT; "Todd River" or "the Company") is pleased to advise that the key step-out drill hole at its 100%-owned **Mt Hardy Copper-Zinc Project** in the Northern Territory, Figure 1, (MHDD0021A – see ASX announcement, 10 July 2018) has returned exceptional high-grade assay results.


www.trrltd.com.au

The hole has successfully extended the high-grade mineralisation to over 200m down-dip and confirms that the Mount Hardy EM1 prospect is an important emerging base metal discovery. MHDD0021A intersected several zones of mineralisation as shown in Table 1 including 13.45m of brecciated zinc-rich massive sulphide from 358.55m downhole (Figure 2).

				Cu	Pb	Zn	Ag		
Hole	FROM	то	INTERVAL	(%)	(%)	(%)	(g/t)	SumBM%	%BM*m
MHDD0021A	278.45	281.3	2.85	1.2	2.0	9.8	27	12.99	37
MHDD0021A	334.6	336.4	1.80	0.4	1.4	2.9	14.8	4.73	9
MHDD0021A	341.1	343.4	2.30	0.3	3.4	7.5	37.4	11.21	26
MHDD0021A	352	353	1.00	0.1	1.0	0.7	8.8	1.78	2
MHDD0021A	358.55	372	13.45	0.9	5.8	15.9	89	22.6	304

Samples are sent to Intertek Laboratories in Alice Springs for sample preparation and then on to their Perth laboratory for digestion by full 4 acid digest with assays read using the ICP technique.

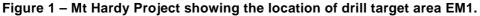
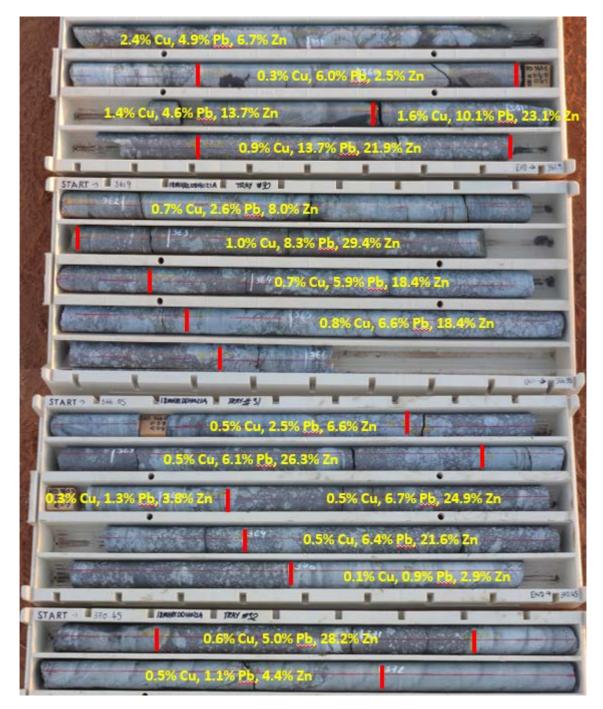
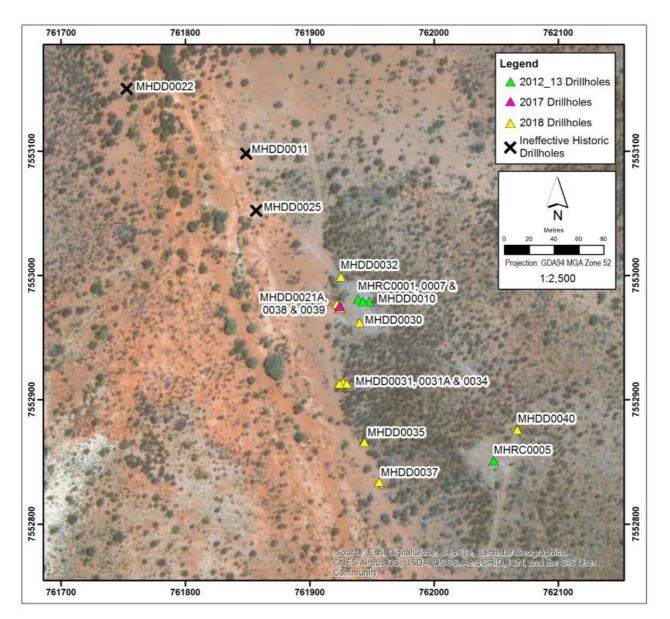



Figure 2 – Assay results from the sphalerite-dominated massive breccia sulphides, which form the lower mineralised zone in MHDD0021A. Core photography from 358.5 to 372.4m.



New Drilling

Figure 3 shows collar locations of the holes at the EM1 Prospect at Mt Hardy and Table 2 gives their locations. Two additional holes have been completed up-dip of hole MHDD0021A to test for continuity of the various mineralised horizons. Portable XRF scanning of both MHDD0039 and MHDD0040 indicates that both holes successfully intersected multiple zones of base metal mineralisation at the target depths. This confirms the

presence of high-grade mineralisation over >200m of dip extent, with the mineralisation remaining open updip, down-dip and along strike. Figure 4 shows the combined base metal % and the thickness of the mineralised interval in long projection.

Figure 3 Drill hole location plan for the EM1 Prospect at Mt Hardy.

Significantly, in hole MHDD0040 broad zones of stringer sulphides comprising mainly chalcopyrite (the copper bearing sulphide) were logged over a 50m interval down-hole. The distribution of this mineralisation is difficult to capture with a portable XRF analyser, however a better indication of the amount of barren sediment will be evident once analytical results are received in the coming weeks.

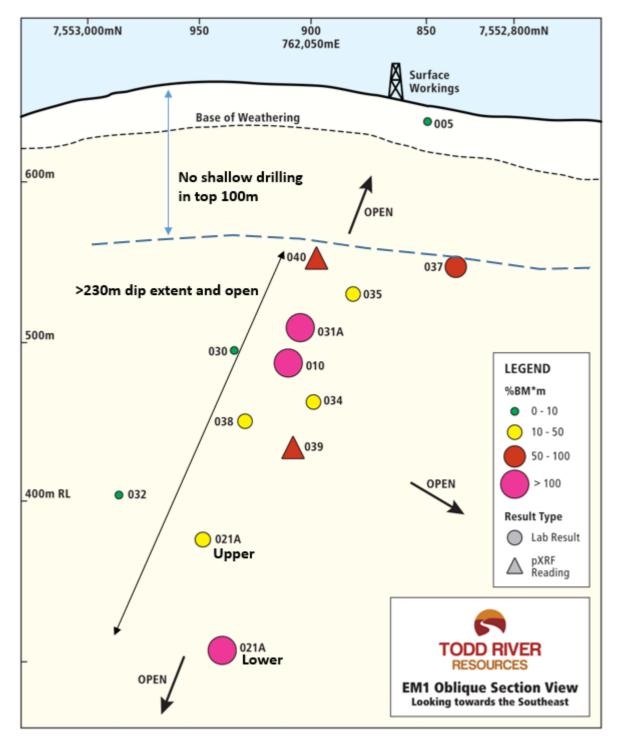


Figure 4 – Oblique Long Projection of the EM1 Prospect showing combined base metal % X Interval thickness. Recent results confirm that mineralisation is open in most directions.

The summary of the portable XRF readings are tabulated below and samples have now been submitted for laboratory analysis.

Importantly, the most significant mineralisation encountered in MHDD0040 is located above all previous diamond drilling and without a clear corresponding EM plate. This opens up the potential for significant near-surface mineralisation (Figure 3) in addition to the spectacular mineralisation encountered at depth.

The next phase of drilling will include several holes designed to test for the continuity of shallow mineralisation at EM1 and the appropriate ground disturbing approval documents are currently being prepared

pXRF Results for MHDD0039 and MHDD0040

The following intervals are reported based on averaging several (minimum of three readings) pXRF readings taken systematically at 0.5m intervals through the mineralised zones. Analyses were taken on an Olympus Delta Pro unit on GEOCHEM mode with a 60 second read time.

Standards and Blank samples were used to calibrate the results. Details of the sampling are provided in Appendix A and all pXRF results used in the composite intervals below are included in Appendix D.

Table 2 : Signific	ant port	аріе хкі	F readings	(Pxrt) ot no	ies wihl	00039	and MHDD0040
HOLEID	FROM	то	INTERVA	L	Cu%	Pb%	Zn%	Combined BM%
	(m)	(m)	(m)					
18MHDDH039	138.0	141.0	3.0		0.8	0.2	1.5	2.5%
	261.0	269.0	8.0		0.7	1.8	9.7	12.2%
			E	Based (on avera	aging 3 a	nd 8 rea	dings
18MHDDH040	137.25	141.25	4.0		2.5	0.5	0.8	3.8%
	149.75	151.75	2.0		2.4	1.6	4.0	8.0%
	179.25	187.25	8.0		1.9	1.6	8.7	12.2%
			E	Based (on avera	aging 8,	4, and d	16 readings

Table 2 : Significant portable XRF readings (Pxrf) of holes MHDD0039 and MHDD0040

All intervals are straight-length averages of systematic readings above a 1% combined base metal cut-off grade.

All analyses by Olympus portable XRF, Delta Professional. 60 second read time (30/30 sec). Values are point data and not representative of the full intervals quoted in the report text. Representative values for base metals will await the half core sampled laboratory results.

The intervals for all holes in either assay or pXRF context is illustrated in long section in Figure 4. The intervals from holes MHDD0039 and 0040 are plotted on this Figure, and extend The continuity of high grade mineralisation to over 200m down dip, significantly extending the known high-grade mineralisation at EM1.

HOLE_ID	PROSPECT	EASTING (GDA94Z52)	NORTHING (GDA94Z52)	AHD (m ASL)	DEPTH (m)	DIP	AZIMUTH (True)
18MHRCDDH030	EM1	761940	7552962	638	245.9	-48	99
18MHRCDDH031	EM1	761927	7552914	638	35.0	-62	94
18MHRCDDH031A	EM1	761930	7552913	635	261.8	-47	90
18MHRCDDH032	EM1	761925	7552999	635	315.2	-62	95
18MHRCDDH033	EM2	764994	7554079	636	55.5	-66	125
18MHRCDDH034	EM1	761924	7552913	635	252.6	-58	90
18MHDDH035	EM1	761946	7552867	637	228.3	-50	86
18MHDDH037	EM1	761956	7552834	636	188.8	-47	91
18MHDDH038	EM1	761924	7552977	635	315.2	-52	102
18MHDDH039	EM1	761925	7552970	637	289.5	-60	108
18MHDDH040	EM1	762064	7552875	648	228.0	-80	27
18MHRCDDH021A	EM1	761923	7552974	636	405.2	-73	94

Table 3 – Collar information of the completed holes at Mt Hardy

Down-hole EM Interpretation

Initial interpretation of the down-hole TEM data has been able to connect sulphide mineralisation between holes and has also highlighted several areas both along strike and down-dip where the data indicates additional conductive bodies.

The full interpretation of the down-hole geophysical data is ongoing and will be completed over the coming weeks along with a series of oblique and sectional representations of the mineralisation that will put the geology, mineralisation and geophysical targets in to context. This work will form the basis of the planning for the next round of deep diamond drilling at the project.

Next Steps at Mt Hardy

Along with the interpretation of the recently acquired down-hole geophysics, and given the poly-metallic nature of the EM1 mineralisation, a full review of the geochemical data from all drill-holes will commence once final assays from MHDD0039 and 0040 are received.

The intent of this review is to understand the mineral zonation observed in the drill core from the analytical results and look at a number of different trace elements to see if there is a way to vector in on higher grades within the mineralised system and also whether low level pathfinder elements may be useful in identifying additional areas to focus drilling across the greater Mt Hardy Project area.

It is expected that the completion of this study will coincide with the recommencement of drilling at Mt Hardy once an expanded MMP outlining further drilling of both shallow and deep targets is approved.

Will Dix, CEO – Todd River Resources

Enquiries:

Will Dix, CEO	+ 61 (0) 8 9327 0950
Nicholas Read Read Corporate	+ 61 (0) 8 9388 1474
Read Corporate	+ 01 (0) 8 9388 1474

Competent Person Statements

The information in this report that relates to Exploration Results is based on, and fairly represents, information and supporting documentation compiled by Exploration Manager Mr Kim Grey B.Sc. and M. Econ. Geol. Mr Grey is a member of the Australian Institute of Geoscientists, and an employee of Todd River Resources Limited. Mr Grey has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Grey consents to the inclusion in the report of the matters based on his information in the form and context in which it appear.

About Todd River Resources

Todd River Resources (ASX: TRT) is an Australian-based resources company that holds a large, highly prospective zinc and base metals exploration portfolio in the Northern Territory. The Company, which was formerly a subsidiary of ASX-listed strategic metals company TNG Ltd (ASX: TNG), was spun-out of TNG in 2016 to advance and develop TNG's significant portfolio of non-core base metal assets.

With a strong management team and tight capital structure, Todd River is well placed to pursue exploration activities across its exploration portfolio, which are aimed at establishing the Company as a leading force in Australian zinc exploration and development.

Todd River's extensive base metal portfolio includes the large Manbarrum Zinc Project, the Mount Hardy Copper-Zinc Project, the Rover Copper-Gold Project and the McArthur Copper-Zinc Project, as well as a number of other exploration projects covering base metals and other commodities.

Appendix A JORC Table One – Section One. Sampling Techniques and Data Mount Hardy Drilling – Reverse Circulation and Diamond Drilling – assay and pXRF Results

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report.	Reverse Circulation (RC) drill samples were taken from the rotary splitter mounted on the rig cyclone. Diamond drill samples were half core cut and sampled on 1m intervals. All samples from 2018 drilling have been submitted to Genalysis/Intertek Laboratories for industry standard preparation (whole sample crushed to >85% <75um) and analysis by both ICP for base metals and Fire Assay for precious metals. Portable XRF results eported here are taken from whole core analyses at 0.5m intervals.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Reverse Circulation (RC) drilling of pre-collars with NQ sized diamond drill tails. Most intervals has been oriented, except where broken ground in encountered.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Average of >90% recovery in all intervals. No issues of fines loss were observed. No issues relating to preferential loss/gain of grade material have been noted.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	RC chips and core was geologically logged for lithology, mineralogy, colour, weathering, alteration, structure and mineralisation. All holes were logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	Portable XRF analyses reported here are taken with CRM Standard samples and Blanks samples inserted into the sequence at 1 in 25 and 1 in 50 samples respectively. Results reported here are averages of multiple pXRF analyses to give a reasonable representative result. All RC holes were sampled from the rotating splitter under the drill cyclone, taking a 2-4kg split from the bulk 15-25kg 1m interval. All sampled core was sawn and half core submitted. The sample preparation for all samples follows industry best practice, with oven drying of samples prior to coarse crushing and pulverization (to >85% passing 75 microns) of the entire sample Field duplicates have been taken every 50 th sample. Further sampling (second half, lab umpire assay) will be conducted if it is considered necessary. The sample size (2-5 kg) is considered to be adequate for the material and grainsize being

		sampled and the style of mineralisation being drilled.			
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Portable XRF results reported here are taken with an Olympus Delta Pro unit (2014) with a 60 second read time (30 seconds beam 1 and 30 seconds beam 2) in GEOCHEM mode. Three certified base metal standards and a certified blank sample were analysed during pXRF sampling, at a rate of 1 in 25 samples. Standards were GBM399-7, GBM399-2, and GBM908-10 – low, medium and high grade for base metal respectively. Blank GLG312-2 was used. pXRF results for the standards and the blank were acceptable, and no calibration factors have been applied.			
		All samples are to be analysed at Genalysis Intertek by ICP technique, lab codes 4A/OE33 and FA25/OE04. The four acid digest for the ICP data is considered a "total" result. Base metal standards and Blanks were inserted into the laboratory batch, results are awaited.			
		Given the above QA/QC work the pXRF soil data is considered to be a total result for the base metals reported (Cu, Pb, Zn), and to have acceptable levels of accuracy and precision.			
		Analytical results for the standards and the blank were acceptable, and no calibration factors have been applied. All samples were analysed at Genalysis Intertek by ICP technique, lab codes 4A/OE33 and FA25/OE04. The four acid digest for the ICP data is considered a "total" result. Given the above QA/QC work the results are considered to be a total result for the base metals reported (Cu, Pb, Zn), and to have acceptable levels of accuracy and precision.			
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Sampling was conducted by the field geologist and verified by the Exploration Manager on site prior to cutting/dispatch. All data was entered into standardized spreadsheets on field laptops and uploaded into the company database. No adjustments have been made to the primary assay data			
Locations of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	All drilling collars were located up using a standard GPS unit with accuracy of ca. 5m for Easting, Northing and RL All coordinate data for the Mount Hardy project are in MGA_GDA94 Zone 52.			
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	At this early stage of exploration hole spacings vary as dictated by target size and position. No compositing has been applied to the exploration results. Sampling was of an exploratory and reconnaissance nature and spacings are			

		insufficient to establish continuity or define Resources.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drilling intersections at Mount Hardy vary in the relationship to the mineralisation orientation. All holes were designed to give the best possible (as close to perpendicular) intersection, however most drilled prospects only have a few holes and so the orientation is not well defined. In practise the intersections are at worst oriented at 45 degrees to the plane of the mineralisation (when it is known).
Sample security	The measures taken to ensure sample security.	All core and samples were under company supervision at all times prior to delivering to Genalysis/Intertek laboratories in Alice Springs
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No sampling audits have been conducted at Mount Hardy

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. Acknowledgment and appraisal of exploration by other parties.	The Mount Hardy prospects are located on tenements EL 27892, E EL 29219 held by Todd River Metals Pty Ltd, which is wholly-owne River Resources Limited. All tenements are in good standing with no know impediments Between 2012 and 2016 significant work was
done by other parties		conducted by TNG Limited, and has been reported to the ASX in several ASX Releases (Mentioned in the text). In 2017 Todd River completed one drilling program and has reported results in several ASX releases (such as
Geology	Deposit type, geological setting and style of mineralisation.	Exploration at Mount Hardy conducted by Todd River Resources has aimed to identify structurally controlled base metal mineralisation, similar to that already outlined at Mount Hardy and elsewhere in the Arunta at Jervois or Barrow Creek. Both areas are underlain by the Paleoproterozoic Lander Rock Beds schists and gneisses and have been intruded by Mesoproterozoic granites and are cut be major shear zones.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Three holes have been completed to date in 2018 at Mount Hardy. Hole location details are shown in Table 1. Interval and grade values reported here have been determined from averages of multiple portable XRF results and so approach a representative result. Laboratory analyses will be reported as available.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No grade results are reported here. No maximum or minimum cuts applied.
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results.	Orientation not well defined. Expected true thickness ca. 60-80% or drill/intercept interval.

If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Detailed diagrams and sectional views of the mineralisation will await final laboratory results ASX release in late June - July 2018.
Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Portable XRF results are reported here. ALL data used is included in Appendix B.
Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No substantial new information is available other than that reported above.
The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Samples from the EM2 drilling have been submitted for analysis and will be reported when available. Drilling will continue at EM1 at Mount Hardy over the coming few weeks, with sample submission and analytical results reported as available.
	 known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided

Appendix B

Summary table of significant mineralised intersections at Mt Hardy based on alaytical results from 2018 drilling at 1% combined base metal cut-off.

HOLE ID	FROM	то	INTERVAL	Cu %	Pb %	Zn %	Ag_g/t	Sum BM%	%BM*m
MHDD0033	324	324.7	0.70	0.0	0.5	1.1	2.3	1.61	0
MHDD0033	357	358	1.00	0.0	0.5	1.0	2.5	1.57	2
MHDD0032	278.8	279.8	1.00	1.3	0.1	0.2	13.2	1.55	2
MHDD0032	288.08	289.1	1.02	0.0	0.7	0.5	3.1	1.00	1
MHDD0030	223	224	1.00	0.0	0.0	1.2	0	1.27	1
MHDD0031A	159.00	161.00	2.00	0.3	0.4	1.3	9.1	2.04	4
MHDD0031A	184	195.55	11.55	1.4	0.7	1.8	26	3.90	45
MHDD0031A	200	209.15	9.15	4.8	8.1	9.3	173.5	22.16	203
MHDD0034	189	190	1.00	0.8	1.8	9.0	18.7	11.65	12
MHDD0034	213.6	214.84	1.24	0.2	0.9	3.6	13.9	4.71	6
MHDD0034	219.6	220.3	0.70	0.4	0.8	0.3	28.3	1.48	1
MHDDH035	136	137.55	1.55	0.3	2.1	5.4	29.9	7.84	12
MHDD0035	141.9	143	1.10	0.1	0.5	0.9	6	1.60	2
MHDD0035	146	146.55	0.55	0.8	3.4	8.1	58.3	12.40	7
MHDD0035	157.5	158.6	1.10	0.4	2.3	7.3	36.5	10.05	11
MHDD0037	134	139.05	5.05	0.6	2.9	7.1	44.2	10.63	54
MHDD0038	129.95	131.55	1.60	0.5	0.2	0.6	2.45	1.25	2
MHDD0038	246.1	247.67	1.57	4.1	5.5	7.0	119.7	16.57	26
MHDD0021A	278.45	281.3	2.85	1.2	2.0	9.8	27	12.99	37
MHDD0021A	334.6	336.4	1.80	0.4	1.4	2.9	14.8	4.73	9
MHDD0021A	341.1	343.4	2.30	0.3	3.4	7.5	37.4	11.21	26
MHDD0021A	352	353	1.00	0.1	1.0	0.7	8.8	1.78	2
MHDD0021A	358.55	377	18.45	0.7	4.5	12.6	68.6	17.82	329

Appendix C Laboratory Analytical Results for Hole MHDDH021A

					-	-		_	
HOLE_ID	FROM	TO (m)	INTERVAL	SAMPLE NO	Ag	Cu (mmm)	Pb (mmm)	Zn (mmm)	Sum BM
18MHRCDDH021A	(m) 246.00	(m) 247.00	(m) 1.00	MU181420	(g/t) -1	(ppm) 10	(ppm) 38	(ppm) 60	(%) 0.01%
18MHRCDDH021A	246.00	253.85	0.40	MH181420 MH181421	-1	10	38 1519	452	0.20%
18MHRCDDH021A	270.30	270.90	0.40	MH181421 MH181422	-1	768	49	193	0.10%
18MHRCDDH021A	276.45	277.45	1.00	MH181423	-1	58	201	220	0.05%
18MHRCDDH021A	277.45	278.45	1.00	MH181424	-1	214	201	217	0.06%
18MHRCDDH021A	278.45	279.40	0.95	MH181426	10	10191	5590	24780	4.06%
18MHRCDDH021A	279.40	280.40	1.00	MH181427	56	18410	44176	237533	30.01%
18MHRCDDH021A	280.40	281.30	0.90	MH181428	15	8519	9068	32463	5.01%
18MHRCDDH021A	281.30	282.30	1.00	MH181429	1	651	950	1415	0.30%
18MHRCDDH021A	282.30	283.30	1.00	MH181430	-1	214	421	827	0.15%
18MHRCDDH021A	293.00	294.00	1.00	MH181431	-1	29	171	109	0.03%
18MHRCDDH021A	301.60	302.20	0.60	MH181432	4	35	2135	1613	0.38%
18MHRCDDH021A	322.00	323.00	1.00	MH181433	-1	7	90	222	0.03%
18MHRCDDH021A	332.00	333.00	1.00	MH181434	-1	10	209	134	0.04%
18MHRCDDH021A	333.00	334.00	1.00	MH181435	-1	36	927	794	0.18%
18MHRCDDH021A	334.00	334.60	0.60	MH181436	-1	71	923	719	0.17%
18MHRCDDH021A	334.60	335.20	0.60	MH181437	23	4509	32568	50235	8.73%
18MHRCDDH021A	335.20	335.90	0.70	MH181438	-1	476	816	6210	0.75%
18MHRCDDH021A	335.90	336.40	0.50	MH181439	7	7894	9154	30107	4.72%
18MHRCDDH021A	336.40	337.10	0.70	MH181440	-1	598	1433	504	0.25%
18MHRCDDH021A	337.10	338.10	1.00	MH181441	-1	21	491	152	0.07%
18MHRCDDH021A	338.10	339.10	1.00	MH181442	-1	9	128	53	0.02%
18MHRCDDH021A	339.10	340.10	1.00	MH181443	-1	6	47	42	0.01%
18MHRCDDH021A	340.10	341.10	1.00	MH181444	-1	18	416	113	0.05%
18MHRCDDH021A	341.10	342.10	1.00	MH181445	9	1703	5385	51522	5.86%
18MHRCDDH021A	342.10	343.40	1.30	MH181446	65	5045	62321	98148	16.55%
18MHRCDDH021A	343.40	344.00	0.60	MH181447	4	102	4308	2064	0.65%
18MHRCDDH021A	344.00	345.00	1.00	MH181448	-1	36	727	360	0.11%
18MHRCDDH021A	345.00	346.00	1.00	MH181449	-1	15	131	131	0.03%
18MHRCDDH021A	346.00	347.00	1.00	MH181451	-1	6	39	96	0.01%
18MHRCDDH021A	347.00	348.00	1.00	MH181452	-1	5	21	75	0.01%
18MHRCDDH021A	348.00 349.00	349.00 350.00	1.00	MH181453	-1 -1	16	38 26	107	0.02%
18MHRCDDH021A 18MHRCDDH021A	350.00	351.00	1.00	MH181454 MH181455	-1	5	41	75 82	0.01%
18MHRCDDH021A	351.00	352.00	1.00	MH181455	-1	11	99	100	0.01%
18MHRCDDH021A	352.00	353.00	1.00	MH181450	9	720	10321	6802	1.78%
18MHRCDDH021A	353.00	354.00	1.00	MH181458	3	390	5509	3899	0.98%
18MHRCDDH021A	354.00	355.00	1.00	MH181459	-1	25	225	1629	0.19%
18MHRCDDH021A	355.00	356.00	1.00	MH181460	-1	1253	223	423	0.19%
18MHRCDDH021A	356.00	356.90	0.90	MH181461	1	4237	324	804	0.54%
18MHRCDDH021A	356.90	357.55	0.65	MH181462	1	3581	427	1175	0.52%
18MHRCDDH021A	357.55	358.55	1.00	MH181463	1	863	1002	2531	0.44%
18MHRCDDH021A	358.55	359.70	1.15	MH181464	122	24449	48995	66789	14.02%
18MHRCDDH021A	359.70	360.20	0.50	MH181465	49	2566	60094	24618	8.73%
18MHRCDDH021A	360.20	360.75	0.55	MH181466	125	14161	46071	137378	19.76%
18MHRCDDH021A	360.75	361.25	0.50	MH181467	110	16177	100722	230783	34.77%
18MHRCDDH021A	361.25	361.90	0.65	MH181468	139	9193	136634	219366	36.52%
18MHRCDDH021A	361.90	362.80	0.90	MH181469	43	7219	25896	80089	11.32%
18MHRCDDH021A	362.80	363.80	1.00	MH181470	172	10404	82772	293611	38.68%
18MHRCDDH021A	363.80	364.80	1.00	MH181471	94	7421	59203	183555	25.02%
18MHRCDDH021A	364.80	365.80	1.00	MH181472	103	7637	65650	183572	25.69%
18MHRCDDH021A	365.80	366.70	0.90	MH181473	32	5016	25208	65519	9.57%
18MHRCDDH021A	366.70	367.70	1.00	MH181474	89	5239	60715	262651	32.86%
18MHRCDDH021A	367.70	368.10	0.40	MH181476	19	3046	12886	37908	5.38%
18MHRCDDH021A	368.10	369.00	0.90	MH181477	89	4658	66906	248557	32.01%
18MHRCDDH021A	369.00	370.00	1.00	MH181478	97	4974	63565	215572	28.41%
18MHRCDDH021A	370.00	370.65	0.65	MH181479	17	1264	9163	28945	3.94%
18MHRCDDH021A	370.65	371.20	0.55	MH181480	80	5515	50399	282289	33.82%
18MHRCDDH021A	371.20	372.00	0.80	MH181481	28	4751	10805	44223	5.98%
18MHRCDDH021A	372.00	373.00	1.00	MH181482	3	441	1864	5344	0.76%
18MHRCDDH021A	373.00	374.00	1.00	MH181483	14	1604	6859	19300	2.78%
18MHRCDDH021A	374.00	375.00	1.00	MH181484	14	5551	7991	12540	2.61%
18MHRCDDH021A	375.00	376.00	1.00	MH181485	4	1421	3693	10818	1.59%
18MHRCDDH021A	376.00	377.00	1.00	MH181486	-1	26	162	202	0.04%
18MHRCDDH021A	377.00	378.00	1.00	MH181487	-1	10	59	118	0.02%
18MHRCDDH021A	382.25	383.25	1.00	MH181488	1	82	1304	573	0.20%

Appendix D Portable XRF base metal analyses from holes 18MHDDH039 and 18MHDDH040

	- base metal a	maryses		IE2 TOIM		
	Hole ID	DEPTH (m)	Cu_ppm	Zn_ppm	Pb_ppm	SumBM (%)
ľ	18MHDDH039	130.50	0	131	39	0.02%
Ì	18MHDDH039	131.50	0	44	47	0.01%
Ì	18MHDDH039	132.50	0	140	34	0.02%
ľ	18MHDDH039	133.50	0	91	285	0.04%
ľ	18MHDDH039	134.50	0	905	41	0.09%
Ì	18MHDDH039	135.50	0	171	42	0.02%
	18MHDDH039	136.50	7211	357	89	0.77%
	18MHDDH039	137.50	0	70	34	0.01%
	18MHDDH039	138.50	3775	40743	4914	4.94%
Ì	18MHDDH039	139.50	6522	4211	229	1.10%
Ì	18MHDDH039	140.50	12703	328	614	1.36%
Ī	18MHDDH039	141.50	0	87	192	0.03%
Ì	18MHDDH039	142.50	0	118	81	0.02%
Ì	18MHDDH039	143.50	223	52311	867	5.34%
ĺ	18MHDDH039	144.50	0	101	50	0.02%
Ī	18MHDDH039	145.50	0	23	41	0.01%
Ī	18MHDDH039	146.50	0	42	24	0.01%
Ī	18MHDDH039	147.50	0	212	165	0.04%
Ī	18MHDDH039	148.50	0	59	42	0.01%
	18MHDDH039	149.50	410	104	47	0.06%
Ì	18MHDDH039	209.50	0	12	47	0.01%
Ī	18MHDDH039	210.50	503	226	79	0.08%
Ì	18MHDDH039	211.50	0	200	11	0.02%
	18MHDDH039	212.50	0	461	1739	0.22%
ĺ	18MHDDH039	213.50	0	15	149	0.02%
ĺ	18MHDDH039	214.50	0	19	488	0.05%
ĺ	18MHDDH039	215.50	1199	16028	19	1.72%
	18MHDDH039	216.50	0	81	34	0.01%
	18MHDDH039	217.50	0	19	55	0.01%
	18MHDDH039	218.50	0	139	59	0.02%
	18MHDDH039	219.50	0	89	146	0.02%
	18MHDDH039	219.50	0	81	136	0.02%
	18MHDDH039	220.50	0	62	287	0.03%
	18MHDDH039	221.50	0	36	46	0.01%
	18MHDDH039	222.50	0	52	287	0.03%
	18MHDDH039	223.50	0	88	60	0.01%
	18MHDDH039	224.50	0	59	45	0.01%
	18MHDDH039	225.50	0	51	47	0.01%
	18MHDDH039	226.50	0	52	34	0.01%
	18MHDDH039	227.50	0	91	20	0.01%
	18MHDDH039	228.50	0	42	263	0.03%
	18MHDDH039	229.50	0	8	39	0.00%
	18MHDDH039	230.50	438	262	1450	0.21%
	18MHDDH039	231.50	0	17	335	0.04%
	18MHDDH039	232.50	5666	2258	307	0.82%
	18MHDDH039	233.00	5911	9943	790	1.66%
	18MHDDH039	233.50	0	42	50	0.01%
	18MHDDH039	234.50	0	68	41	0.01%

Hole ID	DEPTH	Cu_ppm	Zn_ppm	Pb_ppm	SumBM
	(m)				(%)
18MHDDH039	235.50	0	61	33	0.01%
18MHDDH039	236.50	0	368	43	0.04%
18MHDDH039	237.50	0	81	88	0.02%
18MHDDH039	238.50	0	71	49	0.01%
18MHDDH039	239.50	0	89	16	0.01%
18MHDDH039	240.50	0	120	10	0.01%
18MHDDH039	241.50	0	149	11	0.02%
18MHDDH039	242.50	0	113	19	0.01%
18MHDDH039	243.50	0	36	19	0.01%
18MHDDH039	244.50	0	800	46	0.08%
18MHDDH039	245.50	0	38	28	0.01%
18MHDDH039	246.50	0	35	25	0.01%
18MHDDH039	247.50	0	177	36	0.02%
18MHDDH039	248.50	0	108	127	0.02%
18MHDDH039	249.50	0	82	45	0.01%
18MHDDH039	250.50	5635	33404	31454	7.05%
18MHDDH039	251.50	0	80	35	0.01%
18MHDDH039	252.50	0	154	131	0.03%
18MHDDH039	253.50	0	88	81	0.02%
18MHDDH039	254.50	0	160	379	0.05%
18MHDDH039	255.50	0	62	54	0.01%
18MHDDH039	256.50	0	22	36	0.01%
18MHDDH039	257.50	0	121	91	0.02%
18MHDDH039	258.50	0	94	26	0.01%
18MHDDH039	259.50	0	11	38	0.00%
18MHDDH039	260.50	0	97	97	0.02%
18MHDDH039	261.50	3565	306685	46749	35.70%
18MHDDH039	262.50	20167	150209	33522	20.39%
18MHDDH039	263.50	0	417	509	0.09%
18MHDDH039	264.50	27590	23636	19905	7.11%
18MHDDH039	265.50	508	407	654	0.16%
18MHDDH039	266.50	0	124	309	0.04%
18MHDDH039	267.50	359	197	288	0.08%
18MHDDH039	268.50	2751	291358	40504	33.46%
18MHDDH039	269.50	0	585	169	0.08%
18MHDDH039	270.50	69	124	401	0.06%
18MHDDH039	271.50	0	170	172	0.03%
18MHDDH039	272.50	0	102	104	0.02%
18MHDDH039	273.50	0	186	73	0.03%
18MHDDH039	274.50	107	869	82	0.11%
18MHDDH039	275.50	0	65	91	0.02%
18MHDDH039	276.50	0	50	79	0.01%
18MHDDH039	277.50	0	44	71	0.01%
18MHDDH039	278.50	0	54	24	0.01%
18MHDDH039	279.50	0	50	27	0.01%
18MHDDH039	280.50	0	72	27	0.01%
18MHDDH039	281.50	0	58	91	0.01%
18MHDDH039	282.50	0	92	24	0.01%

Hole ID	DEPTH	Cu_ppm	Zn_ppm	Pb_ppm	SumBM
	(m)				(%)
18MHDDH039	283.50	0	65	13	0.01%
18MHDDH039	284.50	0	48	82	0.01%
18MHDDH039	285.50	0	57	15	0.01%
18MHDDH039	286.50	0	125	50	0.02%
18MHDDH039	287.50	0	86	20	0.01%
18MHDDH039	289.50	0	109	18	0.01%
18MHDDH040	3.50	1384	5068	174	0.66%
18MHDDH040	4.50	84	2625	80	0.28%
18MHDDH040	5.50	949	6440	83	0.75%
18MHDDH040	6.50	263	2273	437	0.30%
18MHDDH040	7.50	356	1906	353	0.26%
18MHDDH040	8.50	247	2164	93	0.25%
18MHDDH040	9.50	603	2559	227	0.34%
18MHDDH040	10.50	635	2789	390	0.38%
18MHDDH040	11.50	434	3363	784	0.46%
18MHDDH040	12.50	3557	4752	2556	1.09%
18MHDDH040	13.50	1405	1918	148	0.35%
18MHDDH040	14.50	1321	2540	202	0.41%
18MHDDH040	15.50	1994	2909	144	0.50%
18MHDDH040	16.50	1848	3240	659	0.57%
18MHDDH040	17.50	1065	765	3556	0.54%
18MHDDH040	18.50	4475	5764	1115	1.14%
18MHDDH040	19.50	2518	6643	430	0.96%
18MHDDH040	20.50	250	887	322	0.15%
18MHDDH040	21.50	217	1217	315	0.17%
18MHDDH040	22.50	1485	3848	86	0.54%
18MHDDH040	23.50	426	171	115	0.07%
18MHDDH040	24.50	454	1620	106	0.22%
18MHDDH040	25.50	283	1385	227	0.19%
18MHDDH040	26.50	240	928	218	0.14%
18MHDDH040	27.50	123	1611	144	0.19%
18MHDDH040	28.50	469	1249	72	0.18%
18MHDDH040	29.50	148	1292	27	0.15%
18MHDDH040	30.50	329	1893	27	0.22%
18MHDDH040	31.50	86	593	31	0.07%
18MHDDH040	32.50	0	488	21	0.05%
18MHDDH040	33.50	93	621	19	0.07%
18MHDDH040	34.50	120	679	21	0.08%
18MHDDH040	35.50	99	2486	24	0.26%
18MHDDH040	36.50	78	1317	70	0.15%
18MHDDH040	22.80	2047	5131	862	0.80%
18MHDDH040	25.00	2169	2091	3653	0.79%
18MHDDH040	37.50	205	1232	38	0.15%
18MHDDH040	38.50	122	893	23	0.10%
18MHDDH040	39.50	134	614	20	0.08%
18MHDDH040	40.50	0	447	46	0.05%
18MHDDH040	41.50	0	744	36	0.08%
18MHDDH040	42.50	0	862	33	0.09%

Hole ID	DEPTH	Cu_ppm	Zn_ppm	Pb_ppm	SumBM
401411001040	(m)				(%)
18MHDDH040	80.50	0	92	94	0.02%
18MHDDH040	81.50	183	2609	160	0.30%
18MHDDH040	82.50	0	123	135	0.03%
18MHDDH040	83.50	0	44	33	0.01%
18MHDDH040	84.50	0	60	58	0.01%
18MHDDH040	85.50	0	88	163	0.03%
18MHDDH040	85.95	614	84	52	0.07%
18MHDDH040	86.50	4035	3127	72	0.72%
18MHDDH040	86.95	1568	1460	79	0.31%
18MHDDH040	87.50	3740	5710	3927	1.34%
18MHDDH040	87.95	0	673	10	0.07%
18MHDDH040	88.50	141	894	221	0.13%
18MHDDH040	88.95	0	248	68	0.03%
18MHDDH040	89.50	0	157	61	0.02%
18MHDDH040	90.50	0	47	54	0.01%
18MHDDH040	91.50	0	74	51	0.01%
18MHDDH040	92.50	0	51	68	0.01%
18MHDDH040	93.50	0	46	150	0.02%
18MHDDH040	94.50	0	70	38	0.01%
18MHDDH040	95.50	0	52	83	0.01%
18MHDDH040	96.50	0	60	20	0.01%
18MHDDH040	97.50	0	28	13	0.00%
18MHDDH040	98.50	0	50	31	0.01%
18MHDDH040	99.50	0	41	24	0.01%
18MHDDH040	100.50	0	44	53	0.01%
18MHDDH040	101.50	0	35	22	0.01%
18MHDDH040	102.50	0	32	47	0.01%
18MHDDH040	103.50	0	83	27	0.01%
18MHDDH040	104.50	0	81	38	0.01%
18MHDDH040	105.50	0	66	94	0.02%
18MHDDH040	106.50	0	76	30	0.01%
18MHDDH040	107.50	0	92	18	0.01%
18MHDDH040	108.50	0	207	27	0.02%
18MHDDH040	109.50	0	48	20	0.01%
18MHDDH040	110.50	0	36	134	0.02%
18MHDDH040	111.50	0	63	28	0.01%
18MHDDH040	112.50	0	71	18	0.01%
18MHDDH040	113.50	0	67	12	0.01%
18MHDDH040	114.50	0	106	30	0.01%
18MHDDH040	115.50	0	69	29	0.01%
18MHDDH040	116.50	0	51	20	0.01%
18MHDDH040	117.50	0	53	120	0.02%
18MHDDH040	118.50	175	75	150	0.04%
18MHDDH040	119.50	0	63	8	0.01%
18MHDDH040	120.50	0	81	17	0.01%
18MHDDH040	121.50	0	0	17	0.00%
18MHDDH040	122.50	0	99	14	0.01%
18MHDDH040	123.50	0	137	296	0.04%

Hole ID	DEPTH	Cu_ppm	Zn_ppm	Pb_ppm	SumBM
	(m)				(%)
18MHDDH040	124.50	0	52	28	0.01%
18MHDDH040	125.50	0	62	47	0.01%
18MHDDH040	126.50	0	60	10	0.01%
18MHDDH040	127.50	0	181	39	0.02%
18MHDDH040	128.50	249	90	10	0.03%
18MHDDH040	129.50	66	74	27	0.02%
18MHDDH040	130.50	0	133	58	0.02%
18MHDDH040	131.50	0	71	46	0.01%
18MHDDH040	131.95	902	280	1412	0.26%
18MHDDH040	132.50	0	58	35	0.01%
18MHDDH040	132.95	2492	130	88	0.27%
18MHDDH040	133.50	410	430	93	0.09%
18MHDDH040	133.95	2232	251	99	0.26%
18MHDDH040	134.50	436	4289	110	0.48%
18MHDDH040	134.95	37388	777	781	3.89%
18MHDDH040	135.50	857	855	484	0.22%
18MHDDH040	135.95	0	2279	31	0.23%
18MHDDH040	136.50	5073	866	704	0.66%
18MHDDH040	136.95	7998	548	907	0.95%
18MHDDH040	137.50	28999	6111	1694	3.68%
18MHDDH040	137.95	1881	1443	419	0.37%
18MHDDH040	138.50	4945	1443	12951	1.93%
18MHDDH040	138.95	2475	9928	12383	2.48%
18MHDDH040	139.50	18970	506	114	1.96%
18MHDDH040	139.95	3218	30770	5492	3.95%
18MHDDH040	140.50	19651	651	3960	2.43%
18MHDDH040	140.95	118019	15686	396	13.41%
18MHDDH040	141.50	0	0	0	0.00%
18MHDDH040	141.95	38	44	0	0.01%
18MHDDH040	142.50	1813	4775	1213	0.78%
18MHDDH040	142.95	1752	781	276	0.28%
18MHDDH040	143.50	16086	7074	2719	2.59%
18MHDDH040	143.95	2175	2234	1167	0.56%
18MHDDH040	144.50	158	82	69	0.03%
18MHDDH040	144.95	215	191	91	0.05%
18MHDDH040	145.50	324	287	613	0.12%
18MHDDH040	145.95	118	590	556	0.13%
18MHDDH040	145.51	7168	10153	366	1.77%
18MHDDH040	145.95	471	1675	740	0.29%
18MHDDH040	146.50	0	120	742	0.09%
18MHDDH040	146.95	0	444	455	0.09%
18MHDDH040	147.50	0	174	315	0.05%
18MHDDH040	147.95	271	2456	354	0.31%
18MHDDH040	148.50	246	218	155	0.06%
18MHDDH040	148.95	131	4692	85	0.49%
18MHDDH040	149.50	752	468	114	0.13%
18MHDDH040	149.95	35814	56835	19806	11.25%
18MHDDH040	150.50	2814	300	103	0.32%

Hole ID	DEPTH (m)	Cu_ppm	Zn_ppm	Pb_ppm	SumBM (%)
18MHDDH040	150.95	30679	5018	22129	5.78%
18MHDDH040	151.50	25071	97972	23934	14.70%
18MHDDH040	151.95	0	150	23531	0.02%
18MHDDH040	152.95	83	193	42	0.03%
18MHDDH040	153.50	0	169	54	0.02%
18MHDDH040	153.95	84	134	448	0.07%
18MHDDH040	154.50	4673	33415	2960	4.10%
18MHDDH040	155.95	3540	2763	520	0.68%
18MHDDH040	156.50	150756	30199	33636	21.46%
18MHDDH040	156.95	136306	98289	30548	26.51%
18MHDDH040	157.50	45929	14096	3320	6.33%
18MHDDH040	157.95	69	42	152	0.03%
18MHDDH040	158.50	74	158	28	0.03%
18MHDDH040	158.95	1959	445	505	0.29%
18MHDDH040	159.50	9905	766	1102	1.18%
18MHDDH040	159.95	9731	175460	39316	22.45%
18MHDDH040	160.50	5751	28	13	0.01%
18MHDDH040	160.95	0	149	13	0.01%
18MHDDH040	161.50	632	2073	2699	0.54%
18MHDDH040	161.95	270	103	285	0.07%
18MHDDH040	162.50	44720	79079	9032	13.28%
18MHDDH040	162.95	3056	456	642	0.42%
18MHDDH040	163.50	506	622	743	0.19%
18MHDDH040	163.95	1459	992	3684	0.19%
18MHDDH040	164.50	1455	192	345	0.01%
18MHDDH040	164.95	68	132	113	0.03%
18MHDDH040	165.50	2852	2653	8975	1.45%
18MHDDH040	165.95	1049	1765	1539	0.44%
18MHDDH040	166.50	961	1139	1535	
18MHDDH040	166.95	0	1135	1354	0.02%
18MHDDH040	167.50	0	9	1139	0.11%
18MHDDH040	167.95	0	35	46	0.01%
18MHDDH040	168.50	0	23	303	0.01%
18MHDDH040	168.95	0	69	143	0.03%
18MHDDH040	169.50	0	9	521	0.05%
18MHDDH040	169.95	0	27	57	0.01%
18MHDDH040	170.50	0	27	139	0.01%
18MHDDH040	170.95	0	27	537	0.02%
18MHDDH040	170.93	119	142	1490	0.18%
18MHDDH040	171.95	71	71	20	0.18%
18MHDDH040	172.50	0	87	101	0.02%
18MHDDH040	172.95	0	48	335	0.02%
18MHDDH040	172.93	88	82	183	0.04%
18MHDDH040	173.95	239	87	356	0.04%
18MHDDH040	173.95	31	0	<u></u> 0	0.00%
18MHDDH040	174.50	8120	395	39	0.00%
18MHDDH040	174.95	577	104	 0	0.88%
		-			
18MHDDH040	175.95	0	33	45	0.01%

Hole ID	DEPTH (m)	Cu_ppm	Zn_ppm	Pb_ppm	SumBM (%)
18MHDDH040	176.50	313	458	0	0.08%
18MHDDH040	176.95	2026	114	16	0.22%
18MHDDH040	177.50	0	29	247	0.03%
18MHDDH040	177.95	136	28	110	0.03%
18MHDDH040	178.50	522	109	107	0.07%
18MHDDH040	178.95	0	114	220	0.03%
18MHDDH040	179.50	10060	201429	33241	24.47%
18MHDDH040	179.95	133352	130201	23956	28.75%
18MHDDH040	180.50	190	540	264	0.10%
18MHDDH040	180.95	86092	149133	46952	28.22%
18MHDDH040	181.50	0	1363	151	0.15%
18MHDDH040	181.95	0	231	22	0.03%
18MHDDH040	182.50	60	151	128	0.03%
18MHDDH040	182.95	0	119	389	0.05%
18MHDDH040	183.50	6395	80744	15297	10.24%
18MHDDH040	183.95	5221	33631	5753	4.46%
18MHDDH040	184.50	22308	16508	2282	4.11%
18MHDDH040	184.95	0	294977	66988	36.20%
18MHDDH040	185.50	0	359	33	0.04%
18MHDDH040	185.95	19088	46190	9922	7.52%
18MHDDH040	186.50	10883	291873	34169	33.69%
18MHDDH040	186.95	12737	138758	14943	16.64%
18MHDDH040	187.50	0	130730	24	0.02%
18MHDDH040	187.95	0	2346	117	0.25%
18MHDDH040	188.50	1252	129	746	0.23%
18MHDDH040	188.95	0	50	33	0.21%
18MHDDH040	188.55	176	102	24	0.01%
18MHDDH040	189.95	0	88	24	0.03%
18MHDDH040	190.50	16427	316	119	
18MHDDH040	190.95	10427	58	115	0.01%
18MHDDH040	191.50	0	48	21	0.01%
18MHDDH040	191.90	0	205	54	0.01%
18MHDDH040	191.93	0	342	22	0.03%
18MHDDH040	192.50	41	26	43	0.04%
18MHDDH040	192.93	41	89	68	0.01%
18MHDDH040	193.95	106895	8761	805	11.65%
18MHDDH040	193.95	100893	258	55	0.03%
18MHDDH040	194.95	231	71	33	0.03%
18MHDDH040	194.95	231	178	90	0.03%
18MHDDH040	195.50	371	67	24	0.05%
18MHDDH040 18MHDDH040	195.95	2521			0.05%
18MHDDH040 18MHDDH040		2521	344	180	0.30%
	196.95	-	370	66 50	
18MHDDH040	197.50	0	260	50 56	0.03%
18MHDDH040	197.95	0	144	56	0.02%
18MHDDH040	198.50	0	171	19	0.02%
18MHDDH040	198.95	0	134	29	0.02%
18MHDDH040	199.50	41	95	97	0.02%
18MHDDH040	199.95	0	106	23	0.01%

Note:All analyses by Olympus portable XRF, Delta Professional. 60 second read time (30/30 sec).Values are point data and not representative of the full intervals quoted in the report text.
Representative values for base metals will await the half core sampled laboratory results.