

#### ASX Code: HMX

#### **CAPITAL STRUCTURE:**

| 0.02 |
|------|
| 69m  |
| 5.4m |
| lm   |
|      |

| Significant Shareholders |       |
|--------------------------|-------|
| Deutsche Rohstoff        | 13.19 |
| Resource Capital Fund VI | 9.3%  |
| Management               | 8.8%  |

#### HAMMER METALS LTD:

ABN 87 095 092 158 Suite 1, 827 Beaufort Street Mt Lawley WA 6052

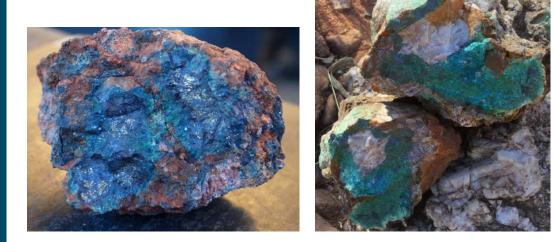
T: +61 8 6369 1195 E: <u>info@hammermetals.com.au</u> W: <u>www.hammermetals.com.au</u>

# DIRECTORS / MANAGEMENT:

Russell Davis Executive Chairman

Alex Hewlett Managing Director

Nader El Sayed Non–Executive Director


Simon Bodensteiner Non-Executive Director

Mark Pitts Company Secretary

Mark Whittle Exploration Manager

# NEW COPPER SYSTEM DISCOVERED PRODUCES ROCK CHIPS UP TO 36%CU

## FOUR NEW COPPER-GOLD DISCOVERIES AT PERENTIE



Secondary copper mineralisation (chalcocite and malachite) encountered at the Judith Prospect (left) and Susan Prospect (right)

- Four previously undiscovered copper-gold prospects discovered by 2015
   AMEC Prospector of The Year Ziggy Lubieniecki Judith, Paddy B, Susan and Spiros identified by rock chip sampling at the newly-termed Perentie Project.
- Multiple high-grade copper-gold assays in rock chips with up to 36% Cu, 6.8g/t Au and 23g/t Ag maximum individual rock chip assays returned to date from Spiros and Paddy B.
- Of 100 rock chip assays to date 56 returned copper values greater that 1% Cu
- Mineralisation occurs in veined and "red-rock" altered Williams-age Wimberu Granite coincident with magnetic lows developed along and at fault intersections.
- **Multiple other targets identified** with a similar geophysical signature in the Perentie area. Ground investigation of these targets is underway.
- Assay results for samples from the Judith and Susan prospects are expected next week.
- Hammer is extremely excited with this find which has potential for a significant new copper discovery within Hammer's existing portfolio with more results expected within the next 2 weeks.
- Drilling anticipated to commence late this quarter.



AMEC 2015 Prospector of the year Ziggy Lubieniecki with chalcocite samples from Paddy B

Hammer's CEO, Alexander Hewlett said: "This is an exciting development for Hammer's Mount Isa Project. Four new copper-gold systems have been identified in a short period of time and our targeting is indicating the potential for multiple similar zones within the Perentie area. This work has opened a new frontier for Hammer's exploration in this prolific metalliferous region."

### **PERENTIE PROJECT**

The Perentie Project incorporates an area of approximately 50km<sup>2</sup> centred on the north-western corner of the highly magnetic Wimberu Granite, a Williams-aged granite that is considered to be associated with the development of iron oxide copper-gold (IOCG) mineralisation within the Mount Isa Inlier. Perentie forms part of the Dronfield Joint Venture on EPM 18084 between Hammer Metals (80%) and Kabiri Pty Ltd (20%). Previous exploration by Hammer in this area has focussed on strong magnetic and gravity features along the northern margin of the granite.

Recent prospecting south of this area by Hammer along demagnetised northerly trending structural zones has so far located four new prospects with visible copper mineralisation at surface. Three of these prospects Judith, Paddy B and Susan are located along one of these north-south structures where they intersect north-westerly faults. The demagnetisation is caused by alteration of magnetite to hematite and is often accompanied by quartz-carbonate veining, brecciation and red-rock alteration.

#### PADDY B

At Paddy B, the copper-gold mineralisation is hosted by multiple veins within a quartz-carbonatehematite-magnetite vein breccia, occupying a de-magnetitsed structural corridor. Maximum width is 10 metres over a strike length of 650 metres with widths of up to 30 metres where the veins coalesce. Rock chip results are tabulated below.

#### JUDITH

At Judith, which is located in a similar structural setting north of Paddy B, alteration with mineralisation up to 30 metres in thickness occurs over a 450 metres strike length. Extensive portable XRF readings have been conducted for Judith with assay results expected in 7 days.

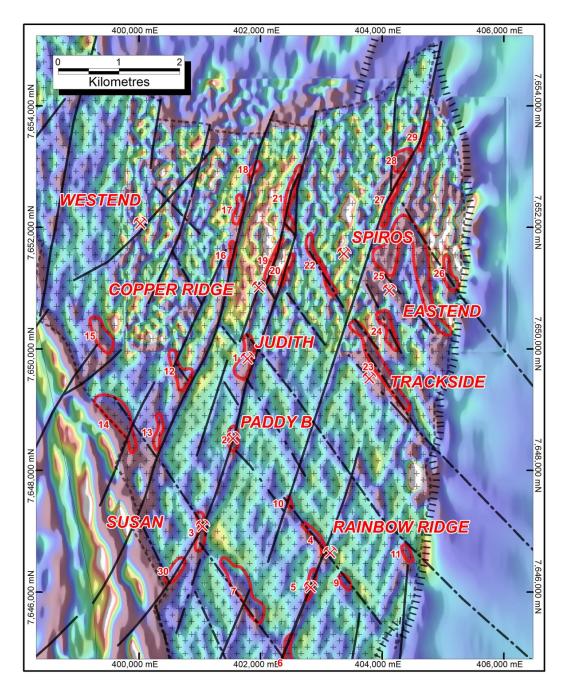
#### **SUSAN**

Susan is also located south of Paddy B within the same demagnetised structure. Copper mineralisation is located within 50 metres of the contact of the Wimberu Granite with the Argylla Formation. A zone of quartz carbonate breccia hosts copper-bearing chalcocite-malachite mineralisation at surface. Surface sampling has been conducted with assays pending.

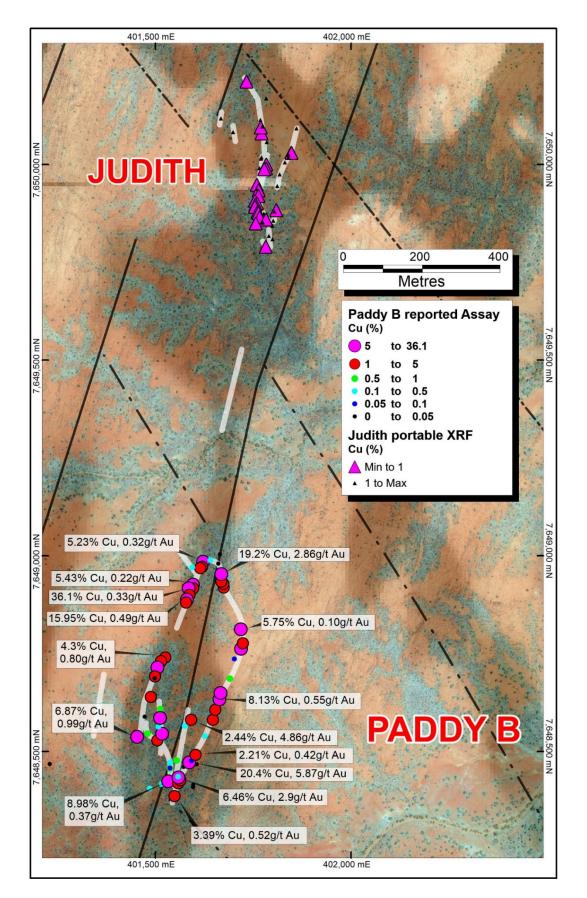
#### **SPIROS**

Spiros is located to the north of the Trackside prospect and mineralisation of up to 2 metres in width has been tracked for a distance of over 300 metres. It should be noted that much is this area is under cover and the zone could be wider than indicated.

| Demagnetised Zones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SUSAN -      | ARGYLLA<br>FORMATIC                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PADDY B      |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JUDITH       | A start and a start and a start and a start and a start |
| WIMBERU GRANIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E            | 4 Km                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | TINI                                                                                                            |
| and the second s |              | 1 per st                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COPPER RIDGE |                                                                                                                 |


Oblique aerial photo showing the relative location of Judith, Paddy B and Susan looking south

#### **OTHER DEMAGNETISED TARGETS**


The relationship between mineralisation and demagnetised zones at fault intersections has not been previously recognised. A review of the magnetic response in the region indicated that there are at least 20 other demagnetised structures which require investigation. These zones will be progressively examined in coming weeks. A new EPM application covering approximately 70km<sup>2</sup> has been submitted by Hammer to secure other similar structural positions in the area.

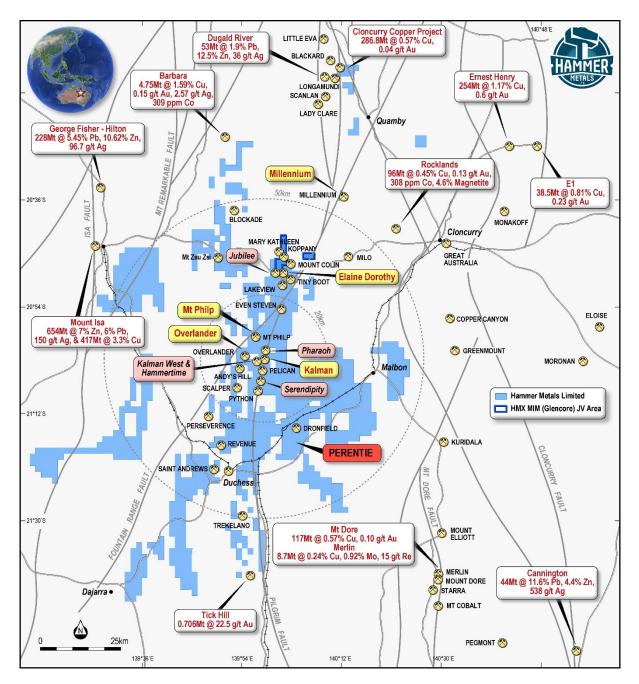
#### **FUTURE WORK**

Hammer will refine and prioritise drill targets and complete heritage clearances with the aim to commence drilling late this quarter. Ongoing target reviews will be conducted in parallel with the drilling.



Location of Spiros, Judith, Paddy B and Susan in addition to other demagnetized structural targets




Detailed figure showing sample locations on satellite imagery. Darker shades represent demagnetized zones. Portable XRF analysis are shown for the Judith Prospect with assays expected within 7 days.

| Prospect                                  | Sample       | E_GDA (1) | N_GDA (1) | RL (2) | Au (g/t) | Ag (g/t) | Cu (%) |
|-------------------------------------------|--------------|-----------|-----------|--------|----------|----------|--------|
|                                           | ZL043        | 403370    | 7651444   | 334    | 6.77     | 3.4      | 11.85  |
|                                           | ZL044        | 403370    | 7651444   | 334    | 1.74     | 17.8     | 7.09   |
|                                           | ZL045        | 403370    | 7651444   | 334    | 1.17     | 16.3     | 20.20  |
|                                           | ZL046        | 403369    | 7651467   | 331    | 0.37     | 21.7     | 14.05  |
|                                           | ZL047        | 403369    | 7651478   | 332    | 0.02     | 0.3      | 0.31   |
|                                           | ZL048        | 403378    | 7651485   | 331    | < 0.01   | <0.2     | 1.33   |
|                                           | ZL049        | 403376    | 7651487   | 332    | 0.01     | 0.7      | 0.77   |
|                                           | ZL050        | 403371    | 7651487   | 335    | 0.84     | 0.8      | 0.20   |
|                                           | ZL051        | 403371    | 7651487   | 335    | 0.09     | 0.6      | 0.32   |
|                                           | ZL052        | 403376    | 7651501   | 334    | 0.05     | 0.8      | 1.67   |
| Spiros                                    | ZL053        | 403373    | 7651512   | 333    | < 0.01   | <0.2     | 0.01   |
|                                           | ZL054        | 403373    | 7651512   | 333    | < 0.01   | <0.2     | 0.03   |
|                                           | ZL055        | 403373    | 7651512   | 333    | < 0.01   | <0.2     | 0.03   |
|                                           | ZL056        | 403374    | 7651514   | 333    | < 0.01   | <0.2     | 0.07   |
|                                           | ZL057        | 403376    | 7651512   | 334    | 0.38     | 0.6      | 2.07   |
|                                           | ZL058        | 403385    | 7651515   | 333    | < 0.01   | <0.2     | 0.01   |
|                                           | ZL059        | 403301    | 7650896   | 333    | < 0.01   | <0.2     | 0.01   |
|                                           | ZL060        | 403557    | 7650643   | 336    | < 0.01   | <0.2     | 0.03   |
|                                           | ZL061        | 403557    | 7650643   | 336    | < 0.01   | <0.2     | 0.02   |
|                                           | ZL062        | 403557    | 7650643   | 336    | < 0.01   | <0.2     | 0.01   |
|                                           | ZL063        | 403557    | 7650643   | 336    | < 0.01   | <0.2     | 0.02   |
| Regional                                  | ZL064        | 401054    | 7652277   | 330    | < 0.01   | <0.2     | 0.03   |
| Regional                                  | ZL065        | 401049    | 7652234   | 330    | < 0.01   | <0.2     | 0.55   |
|                                           | ZL066        | 403373    | 7651536   | 325    | 2.61     | 1.2      | 1.09   |
|                                           | ZL067        | 403372    | 7651570   | 323    | < 0.01   | <0.2     | 0.02   |
| Coiroc                                    | ZL068        | 403364    | 7651642   | 328    | 0.02     | 1.0      | 1.09   |
| Spiros                                    | ZL069        | 403365    | 7651646   | 329    | < 0.01   | <0.2     | 0.08   |
|                                           | ZL070        | 403346    | 7651692   | 329    | <0.01    | <0.2     | 0.03   |
|                                           | ZL071        | 403345    | 7651692   | 331    | <0.01    | <0.2     | 0.15   |
| lote                                      |              |           |           |        |          |          |        |
| (1) - Locations relative to GDA94 Zone 54 |              |           |           |        |          |          |        |
| 2) - RL Assig                             | ned from GPS |           |           |        |          |          |        |

## Table 1 – Rock chips results Spiros and Regional

## Table 2 – Paddy B Rock Chips Results

| ospect  | Sample         | E_GDA (1)        | N_GDA (1)          | RL (2)     | Au (g/t)             | Ag (g/t)     | Cu (%)              |
|---------|----------------|------------------|--------------------|------------|----------------------|--------------|---------------------|
| ospeci  | ZL072          | 401231           | 7648467            | 349        | <0.01                | 0.2          | 0.00                |
|         | ZL072          | 401349           | 7648562            | 349        | <0.01                | <0.2         | 0.00                |
|         | ZL074          | 401597           | 7648408            | 348        | <0.01                | <0.2         | 0.01                |
|         | ZL075          | 401598           | 7648415            | 347        | <0.01                | <0.2         | 0.00                |
|         | ZL076          | 401517           | 7648417            | 340        | <0.01                | <0.2         | 0.11                |
|         | ZL077          | 401549           | 7648388            | 341        | 0.52                 | <0.2         | 3.39                |
|         | ZL078          | 401536           | 7648419            | 341        | 0.68                 | <0.2         | 0.85                |
|         | ZL079          | 401533           | 7648426            | 341        | 0.37                 | 2.7          | 8.98                |
|         | ZL080<br>ZL081 | 401558<br>401563 | 7648421<br>7648428 | 342<br>341 | 0.36<br>0.17         | <0.2<br>0.2  | 1.62                |
|         | ZL081<br>ZL082 | 401505           | 7648436            | 341        | 2.90                 | <0.2         | 6.46                |
|         | ZL083          | 401559           | 7648436            | 342        | 0.01                 | <0.2         | 0.20                |
|         | ZL084          | 401573           | 7648460            | 342        | <0.01                | <0.2         | 0.04                |
|         | ZL085          | 401586           | 7648474            | 343        | 5.87                 | 0.9          | 20.40               |
|         | ZL086          | 401606           | 7648467            | 344        | <0.01                | 0.6          | 0.00                |
|         | ZL087          | 401593           | 7648476            | 344        | 0.62                 | 0.2          | 0.05                |
|         | ZL088          | 401602           | 7648494            | 345        | 0.42                 | <0.2         | 2.21                |
|         | ZL089          | 401627           | 7648539            | 346        | 0.07                 | <0.2         | 0.25                |
|         | ZL090          | 401647           | 7648583            | 344        | 0.10                 | <0.2         | 2.75                |
|         | ZL091          | 401653           | 7648609            | 344        | 0.20                 | 1.3          | 4.06                |
|         | ZL092<br>ZL093 | 401663<br>401666 | 7648635<br>7648651 | 345<br>344 | 0.55                 | <0.2<br><0.2 | 8.13<br>7.79        |
|         | ZL093<br>ZL094 | 401666           | 7648651            | 344        | <0.01                | <0.2         | 0.69                |
|         | ZL094<br>ZL095 | 401091           | 7648080            | 352        | <0.01                | <0.2         | 0.03                |
|         | ZL095          | 401718           | 7648764            | 353        | 0.18                 | 0.2          | 5.15                |
|         | ZL097          | 401723           | 7648778            | 352        | 0.05                 | <0.2         | 2.13                |
|         | ZL098          | 401718           | 7648814            | 351        | 0.10                 | 1.7          | 5.75                |
|         | ZL099          | 401486           | 7648405            | 341        | 0.01                 | <0.2         | 0.44                |
|         | ZL100          | 401538           | 7648457            | 342        | 0.03                 | <0.2         | 0.98                |
|         | ZL101          | 401538           | 7648457            | 342        | <0.01                | <0.2         | 0.05                |
|         | ZL102          | 401539           | 7648472            | 344        | 0.02                 | <0.2         | 0.36                |
|         | ZL103          | 401555           | 7648477            | 343        | <0.01                | <0.2         | 0.68                |
|         | ZL104          | 401575           | 7648565            | 345        | 0.54                 | <0.2         | 0.12                |
|         | ZL105<br>ZL106 | 401591<br>401666 | 7648583<br>7649003 | 344<br>343 | <b>4.86</b><br><0.01 | 2.1<br><0.2  | <b>2.44</b><br>0.01 |
| Paddy B | ZL100<br>ZL107 | 401600           | 7648993            | 343        | <0.01                | <0.2         | 0.01                |
|         | ZL107          | 401622           | 7648987            | 345        | 0.32                 | 0.2          | 5.23                |
|         | ZL109          | 401619           | 7648974            | 347        | <0.01                | <0.2         | 1.33                |
|         | ZL110          | 401615           | 7648971            | 346        | 0.18                 | <0.2         | 1.46                |
|         | ZL111          | 401595           | 7648928            | 348        | 0.22                 | <0.2         | 5.43                |
|         | ZL112          | 401595           | 7648928            | 348        | 0.10                 | <0.2         | 5.39                |
|         | ZL113          | 401596           | 7648919            | 346        | <0.01                | <0.2         | 3.34                |
|         | ZL114          | 401585           | 7648919            | 348        | 0.33                 | <0.2         | 36.10               |
|         | ZL115          | 401587           | 7648902            | 345        | < 0.01               | <0.2         | 1.49                |
|         | ZL116<br>ZL117 | 401580<br>401578 | 7648890<br>7648882 | 349<br>349 | <b>0.49</b><br><0.01 | <0.2<br>0.6  | 15.95<br>4.28       |
|         | ZL117<br>ZL118 | 401578           | 7648742            | 349        | <.0.01               | <0.2         | 4.20                |
|         | ZL119          | 401514           | 7648733            | 348        | 0.03                 | <0.2         | 2.13                |
|         | ZL120          | 401505           | 7648717            | 347        | 0.03                 | 0.2          | 5.39                |
|         | ZL121          | 401499           | 7648694            | 347        | 0.19                 | <0.2         | 2.11                |
|         | ZL122          | 401499           | 7648686            | 348        | 0.01                 | <0.2         | 0.04                |
|         | ZL123          | 401488           | 7648641            | 349        | 0.01                 | <0.2         | 2.56                |
|         | ZL124          | 401514           | 7648609            | 347        | 0.02                 | <0.2         | 0.51                |
|         | ZL125          | 401674           | 7648921            | 344        | < 0.01               | <0.2         | 0.04                |
|         | ZL126          | 401674           | 7648921            | 344        | 0.01                 | <0.2         | 2.53                |
|         | ZL127<br>ZL128 | 401673<br>401668 | 7648930<br>7648936 | 347<br>347 | 0.02                 | <0.2<br><0.2 | 3.13<br>1.18        |
|         | ZL128<br>ZL129 | 401668           | 7648955            | 347        | 0.03                 | <0.2         | 2.86                |
|         | ZL120          | 401668           | 7648955            | 347        | 1.04                 | 23.6         | 19.20               |
|         | ZL131          | 401662           | 7648979            | 349        | 0.01                 | <0.2         | 0.02                |
|         | ZL132          | 401641           | 7648989            | 347        | 0.01                 | <0.2         | 0.42                |
|         | ZL133          | 401595           | 7648970            | 347        | 0.04                 | <0.2         | 0.24                |
|         | ZL134          | 401510           | 7648530            | 345        | 0.03                 | <0.2         | 0.73                |
|         | ZL135          | 401505           | 7648530            | 343        | 0.14                 | <0.2         | 1.26                |
|         | ZL136          | 401517           | 7648547            | 344        | 0.13                 | <0.2         | 6.84                |
|         | ZL137          | 401508           | 7648563            | 345        | 0.49                 | <0.2         | 0.33                |
|         | ZL138<br>ZL139 | 401512<br>401473 | 7648587            | 345<br>345 | 0.02<br><0.01        | <0.2<br><0.2 | 6.23<br>0.05        |
|         | ZL139<br>ZL140 | 401473           | 7648588<br>7648546 | 345        | <0.01<br><b>0.13</b> | <0.2         | 0.05                |
|         | ZL140<br>ZL141 | 401453           | 7648539            | 343        | 0.99                 | 0.6          | 6.87                |
|         |                |                  |                    |            |                      |              |                     |
| te      |                | • •              |                    |            |                      |              |                     |



Mt Isa Project showing the location of Perentie

For further information contact: Alex Hewlett | Executive Director & CEO

Russell Davis | Executive Chairman

T: +61 8 6369 1195 info@hammermetals.com.au www.hammermetals.com.au

#### **Competent Person's Statement:**

#### **Exploration Results**

The information in this report as it relates to exploration results and geology was compiled by Mr. Mark Whittle, who is a Member of the AusIMM and a consultant to the Company. Mr. Whittle who is a shareholder and option-holder, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Whittle consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

# JORC Code, 2012 Edition

# Table 1 report - Exploration Update

- This table is to accompany an ASX release updating the market with results as they are reported from the exploration activities conducted by Hammer Metals Limited over a range of work areas.
- This release reports results of reconnaissance sampling conducted in the Dronfield region and specifically reports sampling conducted over three targets, Judith, Paddy B and Susan.

### Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections in this information release.)

| Criteria               | a JORC Code explanation Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and</li> </ul>                                                                                                                 | <ul> <li>Reconnaissance rock chip sampling is reported in this release. The nature of sampling is termed grab sampling. Samples are collected across the strike of the zone of mineralisation, but sampling is not via the continuous chip method.</li> <li>This style of sampling enables general standard and match sectors to be</li> </ul> |  |  |
|                        | <ul> <li>the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> </ul>                                                                                                                                                                                                                                                                                                                                                         | grade and metal content to be<br>established however it is not as<br>representative as continuous chip<br>sampling, costean sampling or drilling<br>to establish grade across a structure.                                                                                                                                                     |  |  |
|                        | <ul> <li>In cases where 'industry standard'<br/>work has been done this would be<br/>relatively simple (eg 'reverse<br/>circulation drilling was used to obtain 1<br/>m samples from which 3 kg was<br/>pulverised to produce a 30 g charge for<br/>fire assay'). In other cases, more<br/>explanation may be required, such as<br/>where there is coarse gold that has<br/>inherent sampling problems. Unusual<br/>commodities or mineralisation types<br/>(eg submarine nodules) may warrant<br/>disclosure of detailed information.</li> </ul> | <ul> <li>Portable XRF analyses are shown for<br/>the Judith prospect with lab assays<br/>expected within 7 days. The grade<br/>splits have been simplified to reflect<br/>the inherent uncertainty in this analysis<br/>method.</li> </ul>                                                                                                     |  |  |
| Drilling<br>techniques | • Drill type (eg core, reverse circulation,<br>open-hole hammer, rotary air blast,<br>auger, Bangka, sonic, etc) and details<br>(eg core diameter, triple or standard<br>tube, depth of diamond tails, face-<br>sampling bit or other type, whether<br>core is oriented and if so, by what<br>method, etc).                                                                                                                                                                                                                                       | <ul> <li>Not Applicable, no drilling being reported.</li> </ul>                                                                                                                                                                                                                                                                                |  |  |

| Criteria                                                       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                              |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill<br>sample<br>recovery                                    | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                      | <ul> <li>Not Applicable, no drilling being reported.</li> </ul>                                                                                                                                                                         |
| Logging                                                        | <ul> <li>Whether core and chip samples have<br/>been geologically and geotechnically<br/>logged to a level of detail to support<br/>appropriate Mineral Resource<br/>estimation, mining studies and<br/>metallurgical studies.</li> <li>Whether logging is qualitative or<br/>quantitative in nature. Core (or<br/>costean, channel, etc) photography.</li> <li>The total length and percentage of the<br/>relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                            | <ul> <li>Not Applicable, no drilling being reported.</li> </ul>                                                                                                                                                                         |
| Sub-<br>sampling<br>techniques<br>and<br>sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>Rock chip sample weight was between 3 and 5kg per site.</li> <li>No standard samples were submitted with the rock chip samples.</li> </ul>                                                                                     |
| Quality of<br>assay data<br>and<br>laboratory<br>tests         | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision</li> </ul>                                                                                                   | <ul> <li>Samples were analysed by ALS for a range of elements by ICP (OES) after an aqua regia digest. Gold was analysed via flame AAS.</li> <li>The analytical method is appropriate for reconnaissance rock chip sampling.</li> </ul> |

| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | have been established.                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                             |
| Verification<br>of<br>sampling<br>and<br>assaying                   | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                    | <ul> <li>All assays have been verified by alternate company personnel.</li> <li>Assay files were received electronically from the laboratory.</li> </ul>                                                                                                                                                                                                                                    |
| Location of<br>data points                                          | <ul> <li>Accuracy and quality of surveys used<br/>to locate drill holes (collar and down-<br/>hole surveys), trenches, mine<br/>workings and other locations used in<br/>Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic<br/>control.</li> </ul>                                                                         | <ul> <li>Datum used is UTM GDA 94 Zone 54.</li> <li>Rock Chip sample locations are captured via GPS.</li> <li>RL information will merged at a later date utilising the most accurately available elevation data.</li> </ul>                                                                                                                                                                 |
| Data<br>spacing<br>and<br>distribution                              | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                 | <ul> <li>Sample spacing is around 50-100 metres along strike. The sample spacing and sampling methodology is not sufficient to establish grade continuity.</li> <li>The sampling was conducted to define the structure location and relative metal tenor of key elements such as gold, copper, cobalt and silver.</li> <li>No compositing has been applied to the assay results.</li> </ul> |
| Orientation<br>of data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | <ul> <li>Sampling was conducted at right<br/>angles to the strike of the host<br/>structure.</li> </ul>                                                                                                                                                                                                                                                                                     |
| Sample<br>security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Pre-numbered bags were used, and<br/>samples were transported to ALS<br/>laboratory in Mt Isa by company<br/>personnel.</li> </ul>                                                                                                                                                                                                                                                 |
| Audits or<br>reviews                                                | The results of any audits or reviews of<br>sampling techniques and data.                                                                                                                                                                                                                                                                                                                           | <ul> <li>The dataset associated with this sampling has been subject to data import validation.</li> <li>All assay data has been reviewed by two company personnel.</li> </ul>                                                                                                                                                                                                               |

# Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                             |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul>                                                                                                                                                                                                                                                                                                  | <ul> <li>Perentie is located on EPM18084,<br/>held by Mt Dockerell Mining Pty Ltd<br/>(80%) and Kabiri Resources Pty Ltd<br/>(20%).</li> </ul>                                         |
| Exploration<br>done by other<br>parties          | <ul> <li>Acknowledgment and appraisal of<br/>exploration by other parties.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>The Perentie area has not been<br/>appraised by other parties.</li> </ul>                                                                                                     |
| Geology                                          | • Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • Perentie is a shear zone hosted<br>quartz-carbonate vein breccia with<br>unusual amounts of hematite and<br>lesser magnetite.                                                        |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • The host rock is granite, granodiorite<br>and microgranite of the Williams-<br>aged Wimberu Granite. Proximal to<br>the shear, the intrusive rocks are<br>strongly red rock altered. |
| Drill hole<br>Information                        | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | <ul> <li>Not Applicable, no drilling being reported.</li> </ul>                                                                                                                        |
| Data<br>aggregation<br>methods                   | <ul> <li>In reporting Exploration Results,<br/>weighting averaging techniques,<br/>maximum and/or minimum grade<br/>truncations (eg cutting of high<br/>grades) and cut-off grades are<br/>usually Material and should be<br/>stated.</li> <li>Where aggregate intercepts<br/>incorporate short lengths of high</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Not Applicable, no drilling being reported.</li> <li>.</li> </ul>                                                                                                             |

| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 | <ul> <li>grade results and longer lengths of<br/>low grade results, the procedure used<br/>for such aggregation should be stated<br/>and some typical examples of such<br/>aggregations should be shown in<br/>detail.</li> <li>The assumptions used for any<br/>reporting of metal equivalent values<br/>should be clearly stated.</li> </ul>                                                                                                    |                                                                                                                                                                                                                                                                            |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                                 | <ul> <li>Surface grab sampling cannot be utilised to determine the geometry of any possible mineralisation at depth.</li> <li>The sampling methodology can only be used to determine a range of possible grades and is commonly used at a reconnaissance stage.</li> </ul> |
| Diagrams                                                                        | <ul> <li>Appropriate maps and sections (with<br/>scales) and tabulations of intercepts<br/>should be included for any significant<br/>discovery being reported These<br/>should include, but not be limited to a<br/>plan view of drill hole collar locations<br/>and appropriate sectional views.</li> </ul>                                                                                                                                     | See attached figures                                                                                                                                                                                                                                                       |
| Balanced<br>reporting                                                           | <ul> <li>Where comprehensive reporting of all<br/>Exploration Results is not<br/>practicable, representative reporting<br/>of both low and high grades and/or<br/>widths should be practiced to avoid<br/>misleading reporting of Exploration<br/>Results.</li> </ul>                                                                                                                                                                             | <ul> <li>All sampling conducted by Hammer<br/>Metals Limited is depicted on the<br/>attached figures and tables.</li> </ul>                                                                                                                                                |
| Other<br>substantive<br>exploration<br>data                                     | <ul> <li>Other exploration data, if meaningful<br/>and material, should be reported<br/>including (but not limited to):<br/>geological observations; geophysical<br/>survey results; geochemical survey<br/>results; bulk samples – size and<br/>method of treatment; metallurgical<br/>test results; bulk density,<br/>groundwater, geotechnical and rock<br/>characteristics; potential deleterious<br/>or contaminating substances.</li> </ul> | Refer to the release.                                                                                                                                                                                                                                                      |
| Further work                                                                    | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                                               | <ul> <li>Further rock chips sampling has been<br/>undertaken at Perentie 2. Results of<br/>this sampling are pending.</li> <li>Detailed mapping, ground magnetics<br/>is planned for Perentie prior to drill<br/>testing.</li> </ul>                                       |