

3rd SEPTEMBER 2018

# SEKO DELIVERS EXCEPTIONAL HIGH-GRADE GOLD AND NEW ZONE 400m NORTH OF SK2

### **SUMMARY**

- ► Exceptional high-grade gold from diamond (metallurgical) drill (DD) hole at Seko Anomaly SK2, results include:
  - 7m at 16.24g/t gold from 0m; including
    - 2m at 46.75g/t gold from 4m and
  - ▶ 40m at 10.66g/t gold from 25m; including
    - 10m at 23.82g/t gold from 25m and
    - 9m at 11.51g/t gold from 43m
- ► AC drilling 400m to the north of SK2, identifies a new mineralised zone with results including:
  - ► 11m at 1.79g/t gold from 31m with the hole ending in mineralisation; including
    - 2m at 5.01g/t gold from 40m
- ▶ Other significant SK2 results from shallow aircore holes include:
  - ▶ 23m at 1.32g/t gold from 25m with the hole ending in mineralisation
  - ▶ 8m at 9.80g/t gold from 0m; including
    - 3m at 13.07g/t gold from 3m
- ▶ Drilling to recommence after the wet season with planning underway and programs to be finalised upon receipt of all pending assays.

**Oklo Resources Limited** ("Oklo" or "the Company"; ASX:OKU) is pleased to announce the following update on Seko's Phase 2 drill program at within the Dandoko Project (Figure 1a and 1b).

Oklo's Dandoko, Moussala, Kouroufing and Kandiole Projects are located in Western Mali, 30km to the east of B2Gold's 5.15Moz Fekola mine and 50km to the south-southeast of Randgold's 12.5Moz Loulo mine.

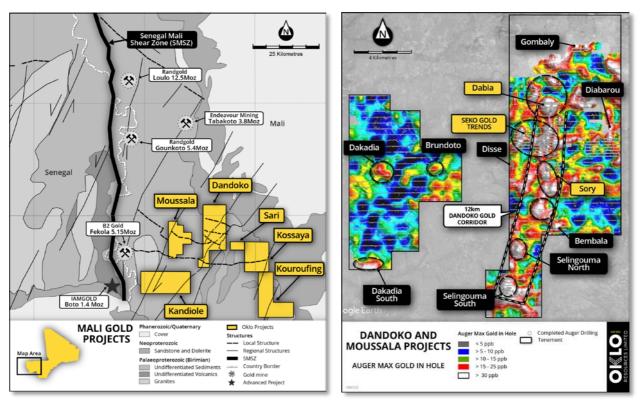



Figure 1: a) Location of Oklo's Dandoko, Moussala, Kouroufing and Kandiole gold projects in west Mali b) Location of Seko trends within 12 km long Dandoko gold corridor

#### **PHASE 2 DRILL PROGRAM**

The Company's Phase 2 drill program was completed with the onset of the wet season in mid-July with a total of 169 AC holes (for 15,484m), 49 RC holes (for 9,075m) and 31 DD holes (for 7,147m<sup>1</sup>) at Dandoko and 690 holes (for 10,210m) of auger drilling at Kouroufing totalling 41,915m.

This announcement comprises results from 2 DD and 23 AC holes. Results from a further 149 AC, 4 RC and 690 auger holes are pending.

#### **SEKO ANOMALY 2**

#### **METALLURICAL DRILLING**

The metallurgical program is intended to be suitable to be incorporated in any future scoping studies undertaken at Seko by the Company. As part of the metallurgical test work program announced to the ASX on the 6th August 2018 the Company has completed one DD hole at SK2 to obtain a representative sample within the oxide zone and commenced re-sampling of previously drilled diamond holes within the primary zone (un-oxidised).

One PQ DD hole (DDSK18-035) was drilled on cross section 1396360mN at the northern end of the historic artisanal workings which were intersected while drilling. The DD hole intersected numerous high-grade intervals with maximum grades of up to 79.70g/t gold (Figure 2).



<sup>&</sup>lt;sup>1</sup> Inclusive RC pre-collars

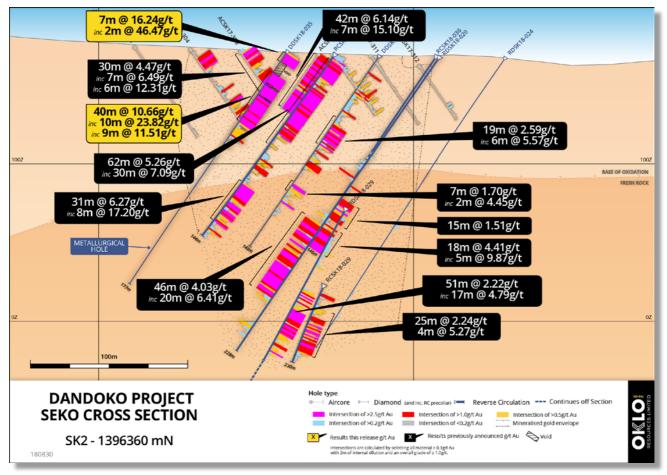



Figure 2: SK2 DD Metallurgical Hole - cross section 1396360mN

Table 1: Metallurgical DD (DDSK18-035) assay results ≥0.10g/t Au

| HOLE ID    | FROM (m) | TO (m) | GOLD g/t |
|------------|----------|--------|----------|
| DDSK18-035 | 0        | 1      | 0.82     |
| DDSK18-035 | 1        | 2      | 3.31     |
| DDSK18-035 | 2        | 3      | 4.70     |
| DDSK18-035 | 3        | 4      | 6.02     |
| DDSK18-035 | 4        | 5      | 79.70    |
| DDSK18-035 | 5        | 6      | 13.80    |
| DDSK18-035 | 6        | 7      | 5.33     |
| DDSK18-035 | 7        | 25     | Void     |
| DDSK18-035 | 25       | 26     | 20.60    |
| DDSK18-035 | 26       | 27     | 48.30    |
| DDSK18-035 | 27       | 28     | 53.10    |
| DDSK18-035 | 28       | 29     | 13.30    |
| DDSK18-035 | 29       | 30     | 40.80    |
| DDSK18-035 | 30       | 31     | 8.07     |
| DDSK18-035 | 31       | 32     | 5.52     |
| DDSK18-035 |          |        | Void     |
| DDSK18-035 | 33       | 34     | 7.73     |
| DDSK18-035 | 34       | 35     | 40.80    |
| DDSK18-035 | 35       | 36     | 1.92     |
| DDSK18-035 | 36       | 37     | 3.14     |
| DDSK18-035 | 37       | 38     | 3.17     |
| DDSK18-035 | 38       | 39     | 8.78     |
| DDSK18-035 | 39       | 40     | 30.00    |
| DDSK18-035 | 40       | 41     | 3.72     |

| HOLE ID    | FROM (m) | TO (m) | GOLD g/t |
|------------|----------|--------|----------|
| DDSK18-035 | 41       | 42     | 13.00    |
| DDSK18-035 | 42       | 43     | 4.87     |
| DDSK18-035 | 43       | 44     | 23.80    |
| DDSK18-035 | 44       | 45     | 1.03     |
| DDSK18-035 | 45       | 46     | 13.70    |
| DDSK18-035 | 46       | 47     | 6.45     |
| DDSK18-035 | 47       | 48     | 5.75     |
| DDSK18-035 | 48       | 49     | 29.80    |
| DDSK18-035 | 49       | 50     | 1.77     |
| DDSK18-035 | 50       | 51     | 7.57     |
| DDSK18-035 | 51       | 52     | 13.70    |
| DDSK18-035 | 52       | 53     | 5.17     |
| DDSK18-035 | 53       | 54     | 3.72     |
| DDSK18-035 | 54       | 55     | 0.84     |
| DDSK18-035 | 57       | 58     | 0.75     |
| DDSK18-035 | 58       | 59     | 0.82     |
| DDSK18-035 | 59       | 60     | 0.54     |
| DDSK18-035 | 60       | 61     | 0.65     |
| DDSK18-035 | 61       | 62     | 0.82     |
| DDSK18-035 | 62       | 63     | 0.65     |
| DDSK18-035 | 63       | 64     | 1.24     |
| DDSK18-035 | 64       | 65     | 0.45     |
| DDSK18-035 | 70       | 71     | 0.55     |



### 3rd SEPTEMBER 2018

### **ASX ANNOUNCEMENT**

#### SK2 AC DRILLING

Six shallow AC holes (ACSK 018-457-462) were drilled to further test the oxide zone at SK2. Further positive results were returned including 23m at 1.32g/t gold from 25m with the hole ending in mineralisation, 8m at 9.8g/t gold from 0m and 18m at 1.43 g/t gold from 15m. One DD (RDSK18-038) was drilled testing for mineralised extensions to the north west and returned anomalous gold zones.

#### **SK2 NORTH AC DRILLING**

Fourteen shallow AC holes (ACSK18-443-456) on four drill traverses were completed 600m to the north of the SK2 zone. The holes tested around and below small artisanal workings. Significant gold mineralisation was returned including 11m at 1.79g/t gold from 31m with the hole ending in mineralisation, 9m at 1.21g/t gold from 5m and 2m at 3.48g/t gold from 6m.

The initial results from the new mineralised zone are highly encouraging and will be further tested at depth and along strike southwards towards SK2. Cross section 1396830mN is shown in Figure 5.

At SK 1, three AC holes (ACSK18-437-439) were drilled at SK1 no significant assays were returned.

The significant drill hole intersections are summarised in Table 2 with a detailed summary of assay results ≥0.1g/t gold presented in Table 1 and 4. All drill hole locations are summarised in Table 3 and are graphically represented in Figures 1-5.

### **DRILLING RESULTS PENDING**

The Phase 2 drilling program is now complete with assay results still pending from:

- ▶ 4 RC holes testing the Sory prospect 1.5km south of Seko
- ▶ 149 reconnaissance AC holes testing Dabia and Sory
- ▶ 690 shallow auger holes testing the Kouroufing Project located 20km southeast of Dandoko.

- ENDS -

### For further information, please contact:

Simon Taylor

Managing Director

T: +61 2 8319 9233

E: staylor@okloresources.com



Table 2: Significant DD intersections

| AREA    | HOLE ID     | FROM<br>(m) | TO<br>(m) | WIDTH<br>(m) | GOLD<br>g/t |  |  |
|---------|-------------|-------------|-----------|--------------|-------------|--|--|
| Diamond |             |             |           |              |             |  |  |
|         | DDSK18-035  | 0           | 7         | 7            | 16.24       |  |  |
|         | includes    | 4           | 6         | 2            | 46.75       |  |  |
|         | includes    | 4           | 5         | 1            | 79.70       |  |  |
| SK2     |             | 7           | 25        | VO           | id          |  |  |
| SINZ    |             | 25          | 65        | 40           | 10.66       |  |  |
|         | includes    | 25          | 35        | 10           | 23.82       |  |  |
|         | includes    | 43          | 52        | 9            | 11.51       |  |  |
|         |             |             |           |              |             |  |  |
|         |             | Air Co      | re        |              |             |  |  |
|         | ACSK18-458* | 27          | 30        | 3            | 1.79*       |  |  |
|         | ACSK18-459  | 6           | 7         | 1            | 1.20        |  |  |
|         |             | 19          | 20        | 1            | 1.59        |  |  |
| SK2     |             | 24          | 25        | 1            | 1.32        |  |  |
| SINZ    | ACSK18-460* | 25          | 48        | 23           | 1.32*       |  |  |
|         | ACSK18-461  | 0           | 8         | 8            | 9.80        |  |  |
|         |             | 27          | 28        | 1            | 2.32        |  |  |
|         | ACSK18-462  | 15          | 33        | 18           | 1.43        |  |  |
|         | ACSK18-444* | 31          | 42        | 11           | 1.79*       |  |  |
|         | includes    | 39          | 41        | 2            | 5.01        |  |  |
| SK2     | ACSK18-445  | 5           | 14        | 9            | 1.21        |  |  |
| NTH     | ACSK18-448  | 6           | 8         | 2            | 3.48        |  |  |
|         |             | 40          | 46        | 6            | 1.50        |  |  |
|         | ACSK18-450  | 39          | 40        | 1            | 1.79        |  |  |

<sup>\*</sup> denotes hole ended in mineralisation. Intervals are reported using a threshold where the interval has a 0.5g/t Au average or greater over the sample interval and selects all material greater than 0.10g/t Au allowing for up to 2 samples of included dilution every 10m.



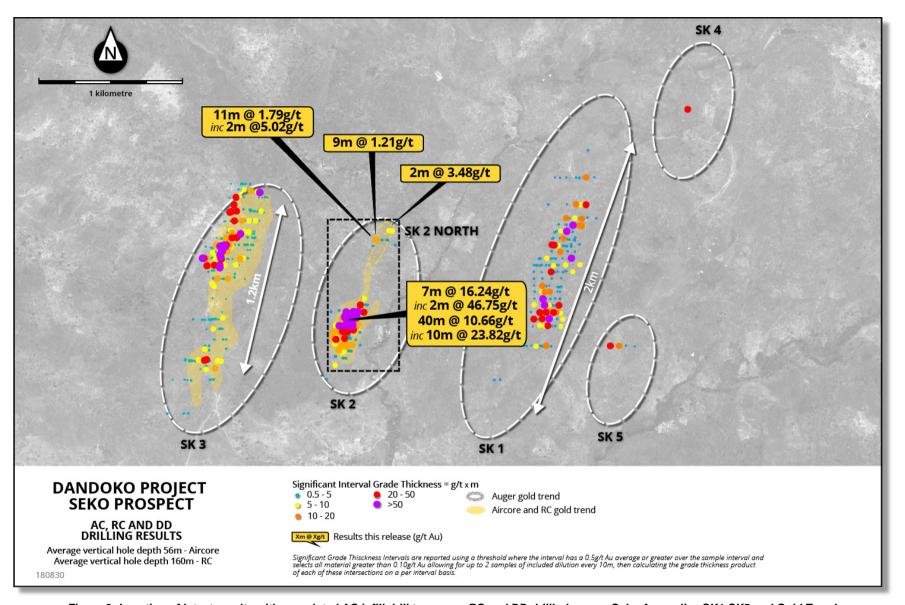



Figure 3: Location of latest results with completed AC infill drill traverses, RC and DD drillholes over Seko Anomalies SK1-SK5 and Gold Trends



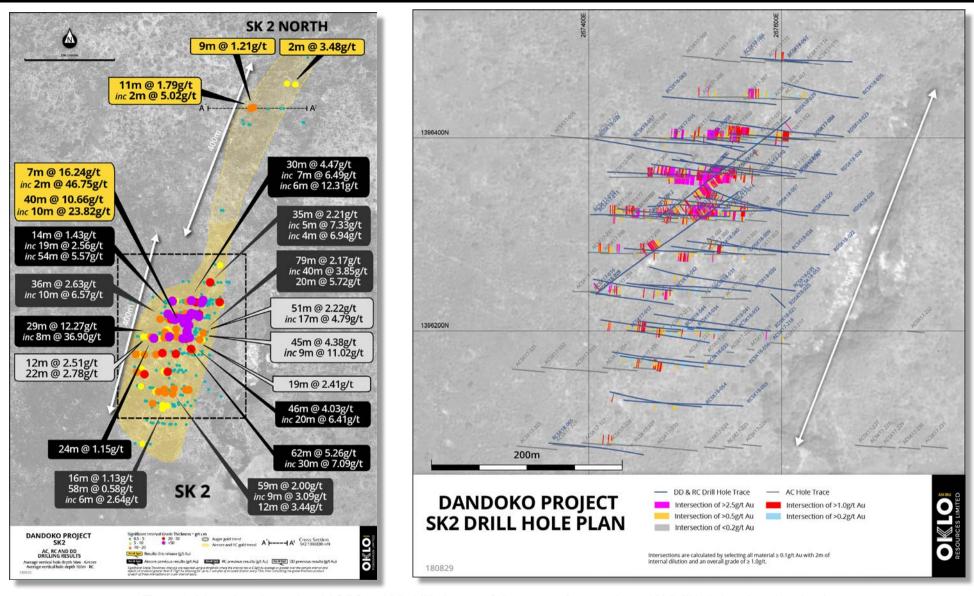



Figure 4:a) Location of completed AC,RC and DD drillholes over SK2 as grams/metres plot and b) Drill hole location plan showing completed AC, RC and DD drillholes over SK2



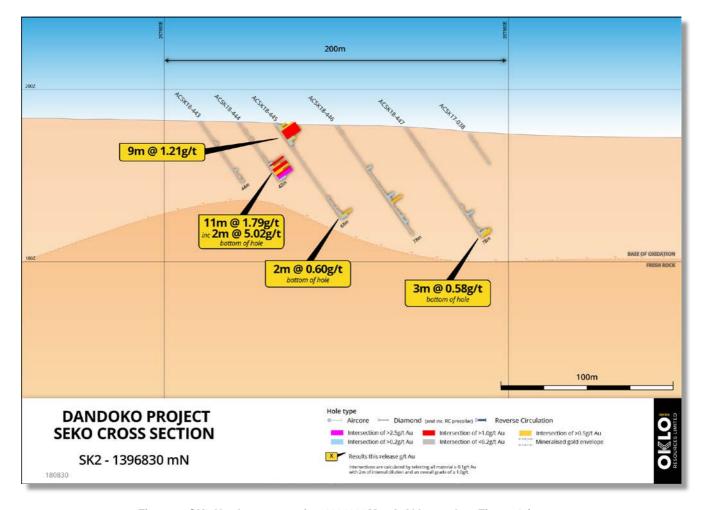



Figure 5: SK2 North cross section 1396830Mn- A-A' located on Figure 4a)



#### ABOUT OKLO RESOURCES

Oklo Resources is an ASX listed exploration company with gold, uranium and phosphate projects located in Mali, Africa.

The Company's focus is its large landholding of eight gold projects covering over 1,500km² in some of Mali's most prospective gold belts. The Company has a corporate office located in Sydney, Australia and an expert technical team based in Bamako, Mali, led by Dr Madani Diallo who has previously been involved in discoveries totalling in excess of 30Moz gold.

In late 2016, Oklo initiated a reconnaissance auger geochemistry program over the Dandoko and Moussala Projects to explore for new targets concealed under the extensive tracts of lateritic cover. The program delivered early success with the delineation of the **12km long Dandoko gold corridor**, including the Seko and more recent Sory and Dabia discoveries.




Figure 6: Location of Oklo Projects in West and South Mali

### Competent Person's Declaration

The information in this announcement that relates to Exploration Results is based on information compiled by geologists employed by Africa Mining (a wholly owned subsidiary of Oklo Resources) and reviewed by Mr Simon Taylor, who is a member of the Australian Institute of Geoscientists. Mr Taylor is the Managing Director of Oklo Resources Limited. Mr Taylor is considered to have sufficient experience deemed relevant to the style of mineralisation and type of deposit under consideration, and to the activity that he is undertaking to qualify as a Competent person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the 2012 JORC Code). Mr Taylor consents to the inclusion in this report of the matters based on this information in the form and context in which it appears. This announcement contains information extracted from previous ASX market announcements reported in accordance with the JORC Code (2012) and available for viewing at www.okloresources.com. Oklo Resources confirms that in respect of these announcements dated 21 December 2016, 30 January 2017, 21 February 2017, 3 March 2017, 7 March 2017, 15 March 2017, 30 March 2017, 6 April 2017, 26 April 2017, 29 May 2017, 21 June 2017, 12 July 2017, 25 July 2017, 14 August 2017, 16 August 2017, 4 September 2017, 28 November 2017, 5 December 2017, 20 December 2017, 5 February 2018, 22 February 2018, 8 March 2018, 28 March 2018, 3 May 2018, 16 May 2018, 22 May 2018 and 2 July 2018, it is not aware of any new information or data that materially affects the information included in any original ASX market announcement.



Table 3: DD and AC drill hole locations

| HOLE ID    | EAST    | NORTH   | RL        | LENGTH      | AZI. | INC. | AREA      |
|------------|---------|---------|-----------|-------------|------|------|-----------|
|            | Diamond |         |           |             |      |      |           |
| RDSK18-038 | 267407  | 1396398 | 175       | 180.4       | 90   | -55  | SEKO2     |
| DDSK18-035 | 267519  | 1396360 | 167       | 177.8       | 270  | -55  | SEKO2     |
|            |         |         | Reverse C | Circulation |      |      |           |
| RCSK18-070 | 267680  | 1396442 | 163       | 150         | 270  | -55  | SEKO2     |
|            |         |         | Airc      | core        |      |      |           |
| ACSK18-437 | 266761  | 1397162 | 203       | 120         | 90   | -55  | SEKO1     |
| ACSK18-438 | 266839  | 1397162 | 202       | 105         | 90   | -55  | SEKO1     |
| ACSK18-439 | 266880  | 1397162 | 201       | 87          | 90   | -55  | SEKO1     |
| ACSK18-443 | 267623  | 1396830 | 178       | 44          | 90   | -55  | SEKO2 Nth |
| ACSK18-444 | 267645  | 1396829 | 178       | 42          | 90   | -55  | SEKO2 Nth |
| ACSK18-445 | 267667  | 1396830 | 177       | 68          | 90   | -55  | SEKO2 Nth |
| ACSK18-446 | 267702  | 1396830 | 176       | 78          | 90   | -55  | SEKO2 Nth |
| ACSK18-447 | 267742  | 1396831 | 175       | 78          | 90   | -55  | SEKO2 Nth |
| ACSK18-448 | 267740  | 1396883 | 175       | 48          | 90   | -55  | SEKO2 Nth |
| ACSK18-449 | 267669  | 1396881 | 178       | 36          | 90   | -55  | SEKO2 Nth |
| ACSK18-450 | 267768  | 1396943 | 175       | 48          | 90   | -55  | SEKO2 Nth |
| ACSK18-451 | 267843  | 1396937 | 173       | 54          | 90   | -55  | SEKO2 Nth |
| ACSK18-452 | 267739  | 1396999 | 176       | 42          | 90   | -55  | SEKO2 Nth |
| ACSK18-453 | 267762  | 1397002 | 175       | 56          | 90   | -55  | SEKO2 Nth |
| ACSK18-454 | 267791  | 1397001 | 174       | 55          | 90   | -55  | SEKO2 Nth |
| ACSK18-455 | 267820  | 1397001 | 173       | 68          | 90   | -55  | SEKO2 Nth |
| ACSK18-456 | 267852  | 1397000 | 173       | 38          | 90   | -55  | SEKO2 Nth |
| ACSK18-457 | 267600  | 1396443 | 167       | 50          | 90   | -55  | SEKO2     |
| ACSK18-458 | 267443  | 1396319 | 168       | 30          | 270  | -55  | SEKO2     |
| ACSK18-459 | 267478  | 1396320 | 167       | 42          | 90   | -55  | SEKO2     |
| ACSK18-460 | 267580  | 1396399 | 166       | 48          | 90   | -55  | SEKO2     |
| ACSK18-461 | 267531  | 1396401 | 168       | 60          | 90   | -55  | SEKO2     |
| ACSK18-462 | 267512  | 1396281 | 165       | 42          | 270  | -55  | SEKO2     |



Table 4: All RC and AC assay results ≥0.10g/t Au

| HOLE ID    | FROM     | ТО       | GRADE        |
|------------|----------|----------|--------------|
| RCSK18-070 | 108      | 109      | 0.14         |
| RCSK18-070 | 109      | 110      | 0.14         |
| RCSK18-070 | 111      | 112      | 0.11         |
| RCSK18-070 | 112      | 113      | 0.13         |
| RCSK18-070 | 119      | 120      | 0.20         |
| ACSK18-438 | 31       | 32       | 0.23         |
| ACSK18-438 | 32       | 33       | 0.29         |
| ACSK18-438 | 33       | 34       | 0.13         |
| ACSK18-438 |          |          | 0.30         |
| ACSK18-438 | 35       | 36       |              |
| ACSK18-438 | 36<br>40 | 37<br>41 | 0.15<br>0.13 |
|            |          |          |              |
| ACSK18-438 | 42       | 43       | 0.14         |
| ACSK18-438 | 53       | 54       | 0.12         |
| ACSK18-438 | 54       | 55       | 0.10         |
| ACSK18-438 | 55       | 56       | 0.23         |
| ACSK18-438 | 57       | 58       | 0.28         |
| ACSK18-438 | 58       | 59       | 0.24         |
| ACSK18-438 | 59       | 60       | 0.19         |
| ACSK18-438 | 60       | 61       | 0.18         |
| ACSK18-438 | 62       | 63       | 0.13         |
| ACSK18-438 | 102      | 103      | 0.33         |
| ACSK18-439 | 5        | 6        | 0.13         |
| ACSK18-439 | 9        | 10       | 0.12         |
| ACSK18-439 | 11       | 12       | 0.17         |
| ACSK18-439 | 12       | 13       | 0.10         |
| ACSK18-439 | 58       | 59       | 0.34         |
| ACSK18-439 | 59       | 60       | 0.12         |
| ACSK18-439 | 60       | 61       | 0.20         |
| ACSK18-439 | 61       | 62       | 0.23         |
| ACSK18-439 | 62       | 63       | 0.36         |
| ACSK18-439 | 63       | 64       | 0.29         |
| ACSK18-439 | 64       | 65       | 0.25         |
| ACSK18-439 | 65       | 66       | 0.26         |
| ACSK18-439 | 66       | 67       | 0.16         |
| ACSK18-439 | 67       | 68       | 0.16         |
| ACSK18-439 | 68       | 69       | 0.16         |
| ACSK18-439 | 69       | 70       | 0.14         |
| ACSK18-439 | 70       | 71       | 0.16         |
| ACSK18-439 | 71       | 72       | 0.12         |
| ACSK18-439 | 72       | 73       | 0.31         |
| ACSK18-439 | 73       | 74       | 0.23         |
| ACSK18-439 | 74       | 75       | 0.16         |
| ACSK18-439 | 81       | 82       | 0.27         |
| ACSK18-439 | 84       | 85       | 0.27         |
| ACSK18-439 | 85       | 86       | 0.34         |
| ACSK18-439 | 86       | 87       | 0.25         |
| ACSK18-443 | 15       | 16       | 0.10         |
| ACSK18-443 | 16       | 17       | 0.14         |

| <b>HOLE ID</b> | FROM | ТО | GRADE |
|----------------|------|----|-------|
| ACSK18-443     | 35   | 36 | 0.20  |
| ACSK18-443     | 39   | 40 | 0.13  |
| ACSK18-443     | 42   | 43 | 0.14  |
| ACSK18-444     | 12   | 13 | 0.13  |
| ACSK18-444     | 30   | 31 | 0.26  |
| ACSK18-444     | 31   | 32 | 1.53  |
| ACSK18-444     | 32   | 33 | 0.20  |
| ACSK18-444     | 33   | 34 | 0.62  |
| ACSK18-444     | 34   | 35 | 2.28  |
| ACSK18-444     | 35   | 36 | 1.27  |
| ACSK18-444     | 36   | 37 | 0.97  |
| ACSK18-444     | 37   | 38 | 0.55  |
| ACSK18-444     | 38   | 39 | 1.74  |
| ACSK18-444     | 39   | 40 | 2.60  |
| ACSK18-444     | 40   | 41 | 7.42  |
| ACSK18-444     | 41   | 42 | 0.46  |
| ACSK18-445     | 0    | 1  | 0.14  |
| ACSK18-445     | 2    | 3  | 0.20  |
| ACSK18-445     | 3    | 4  | 0.55  |
| ACSK18-445     | 4    | 5  | 0.23  |
| ACSK18-445     | 5    | 6  | 0.89  |
| ACSK18-445     | 6    | 7  | 1.51  |
| ACSK18-445     | 7    | 8  | 1.86  |
| ACSK18-445     | 8    | 9  | 1.48  |
| ACSK18-445     | 9    | 10 | 1.07  |
| ACSK18-445     | 10   | 11 | 1.66  |
| ACSK18-445     | 11   | 12 | 1.44  |
| ACSK18-445     | 12   | 13 | 0.48  |
| ACSK18-445     | 13   | 14 | 0.54  |
| ACSK18-445     | 14   | 15 | 0.21  |
| ACSK18-445     | 15   | 16 | 0.20  |
| ACSK18-445     | 53   | 54 | 0.16  |
| ACSK18-445     | 56   | 57 | 0.10  |
| ACSK18-445     | 60   | 61 | 0.15  |
| ACSK18-445     | 62   | 63 | 0.12  |
| ACSK18-445     | 63   | 64 | 0.14  |
| ACSK18-445     | 64   | 65 | 0.17  |
| ACSK18-445     | 65   | 66 | 0.18  |
| ACSK18-445     | 66   | 67 | 0.78  |
| ACSK18-445     | 67   | 68 | 0.42  |
| ACSK18-446     | 31   | 32 | 0.33  |
| ACSK18-446     | 41   | 42 | 0.10  |
| ACSK18-446     | 49   | 50 | 0.10  |
| ACSK18-446     | 50   | 51 | 0.11  |
| ACSK18-446     | 51   | 52 | 0.49  |
| ACSK18-446     | 52   | 53 | 0.16  |
| ACSK18-446     | 53   | 54 | 0.18  |
| ACSK18-446     | 54   | 55 | 0.12  |
|                |      |    |       |

| HOLE ID    | FROM | ТО | GRADE |
|------------|------|----|-------|
| ACSK18-446 | 55   | 56 | 0.79  |
| ACSK18-446 | 56   | 57 | 0.14  |
| ACSK18-446 | 59   | 60 | 0.10  |
| ACSK18-446 | 61   | 62 | 0.10  |
| ACSK18-446 | 62   | 63 | 0.13  |
| ACSK18-446 | 63   | 64 | 0.10  |
| ACSK18-446 | 64   | 65 | 0.11  |
| ACSK18-446 | 65   | 66 | 0.22  |
| ACSK18-446 | 66   | 67 | 0.11  |
| ACSK18-446 | 68   | 69 | 0.14  |
| ACSK18-446 | 69   | 70 | 0.23  |
| ACSK18-447 | 56   | 57 | 0.14  |
| ACSK18-447 | 61   | 62 | 0.11  |
| ACSK18-447 | 62   | 63 | 0.46  |
| ACSK18-447 | 65   | 66 | 0.12  |
| ACSK18-447 | 72   | 73 | 0.10  |
| ACSK18-447 | 73   | 74 | 0.18  |
| ACSK18-447 | 75   | 76 | 0.47  |
| ACSK18-447 | 76   | 77 | 0.67  |
| ACSK18-447 | 77   | 78 | 0.60  |
| ACSK18-448 | 6    | 7  | 4.84  |
| ACSK18-448 | 7    | 8  | 2.11  |
| ACSK18-448 | 8    | 9  | 0.25  |
| ACSK18-448 | 9    | 10 | 0.28  |
| ACSK18-448 | 10   | 11 | 0.28  |
| ACSK18-448 | 11   | 12 | 0.19  |
| ACSK18-448 | 12   | 13 | 0.15  |
| ACSK18-448 | 13   | 14 | 0.39  |
| ACSK18-448 | 14   | 15 | 0.31  |
| ACSK18-448 | 15   | 16 | 0.29  |
| ACSK18-448 | 16   | 17 | 0.24  |
| ACSK18-448 | 18   | 19 | 0.14  |
| ACSK18-448 | 19   | 20 | 0.21  |
| ACSK18-448 | 23   | 24 | 0.10  |
| ACSK18-448 | 24   | 25 | 0.10  |
| ACSK18-448 | 26   | 27 | 0.92  |
| ACSK18-448 | 28   | 29 | 0.11  |
| ACSK18-448 | 31   | 32 | 0.26  |
| ACSK18-448 | 33   | 34 | 0.12  |
| ACSK18-448 | 35   | 36 | 0.13  |
| ACSK18-448 | 36   | 37 | 0.10  |
| ACSK18-448 | 40   | 41 | 1.75  |
| ACSK18-448 | 41   | 42 | 1.26  |
| ACSK18-448 | 42   | 43 | 1.69  |
| ACSK18-448 | 43   | 44 | 1.30  |
| ACSK18-448 | 44   | 45 | 0.86  |
| ACSK18-448 | 45   | 46 | 0.25  |
| ACSK18-448 | 46   | 47 | 0.20  |
| ACSK18-448 | 47   | 48 | 0.94  |
| ACSK18-450 | 38   | 39 | 0.33  |
| 1          | 1    |    |       |

| HOLE ID                  | FROM     | ТО | GRADE |
|--------------------------|----------|----|-------|
| ACSK18-450               |          |    |       |
|                          | 39<br>40 | 40 | 1.79  |
| ACSK18-450<br>ACSK18-450 |          | 41 | 0.15  |
|                          | 41       | 42 | 0.25  |
| ACSK18-450               | 42       | 43 | 0.24  |
| ACSK18-450               | 43       | 44 | 0.22  |
| ACSK18-450               | 44       | 45 | 0.11  |
| ACSK18-450               | 45       | 46 | 0.13  |
| ACSK18-450               | 46       | 47 | 0.19  |
| ACSK18-450               | 47       | 48 | 0.22  |
| ACSK18-452               | 11       | 12 | 0.39  |
| ACSK18-452               | 14       | 15 | 0.21  |
| ACSK18-452               | 15       | 16 | 0.28  |
| ACSK18-452               | 16       | 17 | 0.14  |
| ACSK18-452               | 17       | 18 | 0.12  |
| ACSK18-452               | 25       | 26 | 0.14  |
| ACSK18-452               | 31       | 32 | 0.13  |
| ACSK18-453               | 41       | 42 | 0.11  |
| ACSK18-455               | 20       | 21 | 0.12  |
| ACSK18-455               | 21       | 22 | 0.13  |
| ACSK18-455               | 25       | 26 | 0.15  |
| ACSK18-455               | 26       | 27 | 0.18  |
| ACSK18-455               | 28       | 29 | 0.14  |
| ACSK18-456               | 9        | 10 | 0.41  |
| ACSK18-456               | 10       | 11 | 0.14  |
| ACSK18-457               | 6        | 7  | 0.11  |
| ACSK18-457               | 7        | 8  | 0.18  |
| ACSK18-457               | 8        | 9  | 0.17  |
| ACSK18-457               | 9        | 10 | 0.28  |
| ACSK18-457               | 10       | 11 | 0.20  |
| ACSK18-457               | 13       | 14 | 0.73  |
| ACSK18-457               | 14       | 15 | 0.19  |
| ACSK18-457               | 15       | 16 | 0.10  |
| ACSK18-457               | 16       | 17 | 0.14  |
| ACSK18-457               | 18       | 19 | 0.28  |
| ACSK18-457               | 19       | 20 | 0.46  |
| ACSK18-457               | 20       | 21 | 0.37  |
| ACSK18-457               | 21       | 22 | 0.30  |
| ACSK18-457               | 22       | 23 | 0.40  |
| ACSK18-457               | 23       | 24 | 0.62  |
| ACSK18-457               | 24       | 25 | 0.46  |
| ACSK18-457               | 25       | 26 | 0.36  |
| ACSK18-457               | 26       | 27 | 0.14  |
| ACSK18-457               | 27       | 28 | 0.29  |
| ACSK18-457               | 29       | 30 | 0.20  |
| ACSK18-457               | 30       | 31 | 0.24  |
| ACSK18-457               | 31       | 32 | 0.23  |
| ACSK18-457               | 32       | 33 | 0.24  |
| ACSK18-457               | 33       | 34 | 0.15  |
| ACSK18-457               | 39       | 40 | 0.51  |
| ACSK18-457               | 40       | 41 | 0.97  |
| 1.001110 401             |          | 71 | 0.01  |

| HOLE ID    | FROM | ТО | GRADE |
|------------|------|----|-------|
| ACSK18-457 | 41   | 42 | 0.51  |
| ACSK18-457 | 49   | 50 | 0.11  |
| ACSK18-458 | 0    | 1  | 0.18  |
| ACSK18-458 | 1    | 2  | 0.31  |
| ACSK18-458 | 2    | 3  | 0.24  |
| ACSK18-458 | 3    | 4  | 0.25  |
| ACSK18-458 | 7    | 8  | 0.25  |
| ACSK18-458 | 8    | 9  | 0.30  |
| ACSK18-458 | 9    | 10 | 0.28  |
| ACSK18-458 | 10   | 11 | 0.46  |
| ACSK18-458 | 11   | 12 | 0.17  |
| ACSK18-458 | 12   | 13 | 0.31  |
| ACSK18-458 | 13   | 14 | 0.83  |
| ACSK18-458 | 14   | 15 | 0.56  |
| ACSK18-458 | 15   | 16 | 0.36  |
| ACSK18-458 | 16   | 17 | 0.10  |
| ACSK18-458 | 26   | 27 | 0.13  |
| ACSK18-458 | 27   | 28 | 1.13  |
| ACSK18-458 | 28   | 29 | 0.98  |
| ACSK18-458 | 29   | 30 | 3.27  |
| ACSK18-459 | 0    | 1  |       |
| ACSK18-459 | 1    | 2  | 0.40  |
| ACSK18-459 | 3    | 4  | 0.24  |
| ACSK18-459 | 4    | 5  | 0.26  |
| ACSK18-459 | 5    | 6  |       |
|            |      |    | 0.27  |
| ACSK18-459 | 6    | 7  | 1.20  |
| ACSK18-459 | 7    | 9  | 0.42  |
| ACSK18-459 | 8    |    | 0.16  |
| ACSK18-459 | 13   | 14 | 0.95  |
| ACSK18-459 | 19   | 20 | 1.59  |
| ACSK18-459 | 21   | 22 | 0.39  |
| ACSK18-459 | 22   | 23 | 0.13  |
| ACSK18-459 | 23   | 24 | 0.12  |
| ACSK18-459 | 24   | 25 | 1.32  |
| ACSK18-459 | 25   | 26 | 0.72  |
| ACSK18-459 | 26   | 27 | 0.17  |
| ACSK18-459 | 27   | 28 | 0.46  |
| ACSK18-459 | 28   | 29 | 0.17  |
| ACSK18-459 | 29   | 30 | 0.21  |
| ACSK18-459 | 33   | 34 | 0.16  |
| ACSK18-459 | 35   | 36 | 0.33  |
| ACSK18-459 | 36   | 37 | 0.13  |
| ACSK18-459 | 37   | 38 | 0.15  |
| ACSK18-459 | 38   | 39 | 0.98  |
| ACSK18-459 | 39   | 40 | 0.20  |
| ACSK18-459 | 40   | 41 | 0.72  |
| ACSK18-459 | 41   | 42 | 0.52  |
| ACSK18-460 | 8    | 9  | 0.10  |
| ACSK18-460 | 11   | 12 | 0.14  |
| ACSK18-460 | 12   | 13 | 0.26  |

| HOLE ID    | FROM | ТО | GRADE |
|------------|------|----|-------|
| ACSK18-460 | 13   | 14 | 0.37  |
| ACSK18-460 | 14   | 15 | 0.35  |
| ACSK18-460 | 15   | 16 |       |
|            |      |    | 0.36  |
| ACSK18-460 | 16   | 17 | 0.36  |
| ACSK18-460 | 17   | 18 | 0.22  |
| ACSK18-460 | 18   | 19 | 0.35  |
| ACSK18-460 | 19   | 20 | 0.46  |
| ACSK18-460 | 20   | 21 | 0.24  |
| ACSK18-460 | 21   | 22 | 0.11  |
| ACSK18-460 | 22   | 23 | 0.19  |
| ACSK18-460 | 23   | 24 | 0.34  |
| ACSK18-460 | 24   | 25 | 0.27  |
| ACSK18-460 | 25   | 26 | 0.89  |
| ACSK18-460 | 26   | 27 | 1.64  |
| ACSK18-460 | 27   | 28 | 0.91  |
| ACSK18-460 | 28   | 29 | 0.90  |
| ACSK18-460 | 29   | 30 | 0.67  |
| ACSK18-460 | 30   | 31 | 0.68  |
| ACSK18-460 | 31   | 32 | 0.83  |
| ACSK18-460 | 32   | 33 | 0.65  |
| ACSK18-460 | 33   | 34 | 0.35  |
| ACSK18-460 | 34   | 35 | 0.48  |
| ACSK18-460 | 35   | 36 | 0.50  |
| ACSK18-460 | 36   | 37 | 0.91  |
| ACSK18-460 | 37   | 38 | 0.46  |
| ACSK18-460 | 38   | 39 | 1.44  |
| ACSK18-460 | 39   | 40 | 1.62  |
| ACSK18-460 | 40   | 41 | 1.81  |
| ACSK18-460 | 41   | 42 | 1.07  |
| ACSK18-460 | 42   | 43 | 1.92  |
| ACSK18-460 | 43   | 44 | 1.95  |
| ACSK18-460 | 44   | 45 | 1.51  |
| ACSK18-460 | 45   | 46 | 1.30  |
| ACSK18-460 | 46   | 47 | 2.16  |
| ACSK18-460 | 47   | 48 | 1.37  |
| ACSK18-461 | 0    | 1  | 1.49  |
| ACSK18-461 | 1    | 2  | 0.72  |
| ACSK18-461 | 2    | 3  | 4.13  |
| ACSK18-461 | 3    | 4  | 14.10 |
| ACSK18-461 | 4    | 5  | 14.70 |
| ACSK18-461 | 5    | 6  | 35.00 |
| ACSK18-461 | 6    | 7  | 4.42  |
| ACSK18-461 | 7    | 8  | 3.86  |
| ACSK18-461 | _    |    |       |
|            | 8    | 9  | 0.22  |
| ACSK18-461 | 9    | 10 | 0.67  |
| ACSK18-461 | 12   | 13 | 0.25  |
| ACSK18-461 | 22   | 23 | 0.19  |
| ACSK18-461 | 23   | 24 | 0.66  |
| ACSK18-461 | 24   | 25 | 0.16  |
| ACSK18-461 | 25   | 26 | 0.28  |

### 3<sup>rd</sup> SEPTEMBER 2018

# **ASX ANNOUNCEMENT**

| HOLE ID    | FROM | ТО | GRADE |
|------------|------|----|-------|
| ACSK18-461 | 26   | 27 | 0.91  |
| ACSK18-461 | 27   | 28 | 2.32  |
| ACSK18-461 | 28   | 29 | 0.67  |
| ACSK18-461 | 29   | 30 | 0.47  |
| ACSK18-461 | 30   | 31 | 0.46  |
| ACSK18-461 | 39   | 40 | 0.15  |
| ACSK18-461 | 44   | 45 | 0.15  |
| ACSK18-461 | 52   | 53 | 0.11  |
| ACSK18-462 | 4    | 5  | 0.13  |
| ACSK18-462 | 5    | 6  | 0.15  |
| ACSK18-462 | 6    | 7  | 0.12  |
| ACSK18-462 | 7    | 8  | 0.18  |
| ACSK18-462 | 8    | 9  | 0.24  |
| ACSK18-462 | 9    | 10 | 0.30  |
| ACSK18-462 | 10   | 11 | 0.26  |
| ACSK18-462 | 11   | 12 | 0.50  |
| ACSK18-462 | 12   | 13 | 0.58  |
| ACSK18-462 | 13   | 14 | 0.40  |
| ACSK18-462 | 14   | 15 | 0.26  |
| ACSK18-462 | 15   | 16 | 1.81  |
| ACSK18-462 | 16   | 17 | 4.26  |
| ACSK18-462 | 17   | 18 | 0.40  |

| HOLE ID    | FROM | TO | GRADE |
|------------|------|----|-------|
| ACSK18-462 | 18   | 19 | 0.41  |
| ACSK18-462 | 19   | 20 | 1.48  |
| ACSK18-462 | 20   | 21 | 0.29  |
| ACSK18-462 | 21   | 22 | 1.73  |
| ACSK18-462 | 22   | 23 | 1.00  |
| ACSK18-462 | 23   | 24 | 1.19  |
| ACSK18-462 | 24   | 25 | 0.46  |
| ACSK18-462 | 25   | 26 | 0.55  |
| ACSK18-462 | 26   | 27 | 0.51  |
| ACSK18-462 | 27   | 28 | 3.68  |
| ACSK18-462 | 28   | 29 | 1.80  |
| ACSK18-462 | 29   | 30 | 1.35  |
| ACSK18-462 | 30   | 31 | 0.60  |
| ACSK18-462 | 31   | 32 | 0.89  |
| ACSK18-462 | 32   | 33 | 3.32  |
| ACSK18-462 | 33   | 34 | 0.49  |
| ACSK18-462 | 34   | 35 | 0.28  |
| ACSK18-462 | 35   | 36 | 0.71  |
| ACSK18-462 | 36   | 37 | 0.26  |
| ACSK18-462 | 37   | 38 | 0.59  |
| ACSK18-462 | 38   | 39 | 0.20  |
| ACSK18-462 | 39   | 40 | 0.15  |
| ACSK18-462 | 40   | 41 | 0.13  |

### Notes:

- All results of ≥ 0.10ppm are shown within the table. Intervals missing are below this threshold.
- Significant Intervals are reported using a threshold where the interval has a 0.5g/t Au average or greater over the sample interval and selects all material greater than 0.10g/t Au allowing for up to 2 samples of included dilution every 10m.



# JORC CODE, 2012 EDITION – TABLE 1 Section 1 Sampling Techniques and Data

| CRITERIA                                                                 | JORC CODE EXPLANATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COMMENTARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques                                                   | <ul> <li>Nature and quality of sampling, measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul>              | required.  RC Samples were collected in situ at the drill site and are split collecting 2 to 3 kg per sample. Certified reference material and sample duplicates were inserted at regular intervals.  DD samples are cut to half core on 1m intervals.  All samples were submitted to internationally                                                                                                                                                                                                       |
| Drilling<br>techniques                                                   | ▶ Drill type (eg core, reverse circulation, open <hole<br>hammer, rotary air blast, auger, Bangka, sonic, etc<br/>and details (eg core diameter, triple or standard<br/>tube, depth of diamond tails, face<sampling bit="" or<br="">other type, whether core is oriented and if so, by<br/>what method, etc).</sampling></hole<br>                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Drill sample recovery                                                    | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                     | undertaken at the drill rig for each sample metre or run collected.  Collected samples were weighed to ensure consistency of sample size and monitor sample recoveries                                                                                                                                                                                                                                                                                                                                      |
| Logging                                                                  | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>All drill samples were geologically logged by Oklo Resources subsidiary Africa Mining geologists.</li> <li>Geological logging used a standardised logging system recording mineral and rock types and their abundance, as well as alteration, silicification and level of weathering.</li> <li>A small representative sample was retained in a plastic chip tray for future reference and logging checks.</li> <li>A minimum of ¼ DD core is preserved for future logging and reference</li> </ul> |
| Sub <sampling<br>techniques<br/>and sample<br/>preparation</sampling<br> | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non<core, and="" dry.<="" etc="" li="" or="" riffled,="" rotary="" sampled="" sampled,="" split,="" tube="" wet="" whether=""> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second<half li="" sampling.<=""> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </half></li></core,></li></ul> | <ul> <li>assay (50g charge) with an AAS Finish.</li> <li>Sample pulps were returned from the laboratory under secure "chain of custody" procedure by Africa Mining staff and are being stored in a secure location for possible future analysis.</li> <li>Sample sizes and laboratory preparation techniques</li> </ul>                                                                                                                                                                                     |



| CRITERIA                                                            | JORC CODE EXPLANATION                                                                                                                                                                                                                                                                                                                                                                                                       | COMMENTARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of<br>assay data<br>and<br>laboratory<br>tests              | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld</li> </ul>                                                                                                                                                                                                | <ul> <li>Analysis for gold is undertaken at SGS and Bureau Veritas Bamako by 50g Fire Assay with an AAS finish to a lower detection limit of 0.01ppm Au.</li> <li>Fire assay is considered a "total" assay technique.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     | <ul> <li>XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul> | <ul> <li>No field non assay analysis instruments were used in the analyses reported.</li> <li>A review of certified reference material and sample blanks inserted by the Company indicated no significant analytical bias or preparation errors in the reported analyses.</li> <li>Results of analyses for field sample duplicates are consistent with the style of mineralisation evaluated and considered to be representative of the geological zones which were sampled.</li> <li>Internal laboratory QAQC checks are reported by the laboratory and a review of the QAQC reports suggests the laboratory is performing within acceptable limits.</li> <li>Samples returning &gt; 1ppm were selected for reanalysis using a 24hr cyanide bottle roll leach on a 500g sample.</li> </ul> |
| Verification of sampling and assaying                               | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                             | <ul> <li>All drill hole data is paper logged at the drill site and then digitally entered by Company geologists at the site office.</li> <li>All digital data is verified and validated by the Company's database consultant in Paris before loading into the drill hole database.</li> <li>No twinning of holes was undertaken in this program which is early stage exploration in nature.</li> <li>Reported drill results were compiled by the company's geologists, verified by the Company's database administrator and exploration manager.</li> <li>No adjustments to assay data were made.</li> </ul>                                                                                                                                                                                |
| Location of data points                                             | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and down</li> <li>hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                              | <ul> <li>Drill hole collars were positioned using non-differential GPS (.</li> <li>Accuracy of the GPS &lt; +/&lt; 3m and is considered appropriate for this level of early exploration.</li> <li>Locations are subsequentlycollected with DGPS.</li> <li>The grid system is UTM Zone 29N</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Data spacing<br>and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                                          | <ul> <li>AC,RC and DD drilling is now being undertaken on a ~40x80m spacing wit infill being undertaken in areas of identified higher grade zones.</li> <li>Drilling reported in this program is of an early exploration nature has not been used to estimate any mineral resources or reserves. Work is ongoing to enable sufficient distribution of drilling.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Orientation of<br>data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul>                          | Exploration is at an early stage and, as such, knowledge on exact location of mineralisation and its relation to lithological and structural boundaries is not accurately known. However, the current hole orientation is considered appropriate for the program to reasonably assess the prospectivity of known structures interpreted from other data sources.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sample<br>security                                                  | ► The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>RC and DD samples were taken to the SGS laboratory in Bamako under secure "chain of custody" procedure by Africa Mining staff.</li> <li>Sample pulps were returned from the laboratory under secure "chain of custody" procedure by Africa Mining staff and have been stored in a secure location.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



| CRITERIA          | JORC CODE EXPLANATION                                                    | COMMENTARY                                                                                                                      |
|-------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Audits or reviews | The results of any audits or reviews of sampling<br>techniques and data. | There have been no external audit or review of the<br>Company's sampling techniques or data at this<br>early exploration stage. |

### **Section 2 Reporting of Exploration Results**

| CRITERIA                                         | JORC CODE EXPLANATION                                                                                                                                                                                                                                                                                                                                                                                                                              | CRITERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul> | <ul> <li>The results reported in this report are all contained within the Dandoko Exploration Permit, Gombaly Exploration Permit which are held 100% by Africa Mining SARL, a wholly owned subsidiary of Oklo Resources Limited.</li> <li>The Dandoko project consists of:</li> <li>The Dandoko permit (100km2) which was renewed on the 10/8/17, for a period of 3 years and renewable twice, each for a period of 2 years and:</li> <li>The Gombaly permit (34km2) which was granted on the 10/8/17, for a period of 3 years and</li> </ul> |
| Exploration done by other parties                | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>renewable twice, each for a period of 2 years</li> <li>The area that is presently covered by the Dandoko permit was explored intermittently by Compass Gold Corporation between 2010 and 2013.</li> <li>Exploration consisted of aeromagnetic surveys,</li> </ul>                                                                                                                                                                                                                                                                    |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gridding, soil sampling and minor reconnaissance (RC) drilling.  The area that is presently covered by the Mousalla permit was explored intermittently by Compass Gold Corporation between 2010 and 2013.                                                                                                                                                                                                                                                                                                                                     |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Exploration consisted of aeromagnetic surveys, gridding, soil sampling.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ashanti Mali undertook reconnaissance soil sampling surveys over part of the license area.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Geology                                          | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                      | The deposit style targeted for exploration is<br>orogenic lode gold.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | This style of mineralisation can occur as veins or<br>disseminations in altered (often silicified) host rock<br>or as pervasive alteration over a broad zone.                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Deposit are often found in close proximity to linear<br/>geological structures (faults &amp; shears) often<br/>associated with deep<seated li="" structures.<=""> </seated></li></ul>                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lateritic weathering is common within the project area. The depth to fresh rock is variable and may extend up to 50-70m below surface and in this drill program weathering of >80m was encountered                                                                                                                                                                                                                                                                                                                                            |
| Drill hole<br>Information                        | A summary of all information material to the<br>understanding of the exploration results including a<br>tabulation of the following information for all Material<br>drill holes:                                                                                                                                                                                                                                                                   | Results for all holes with 1m sample a gold in hole<br>result greater than 0.1ppm are tabulated within the<br>listed announcements during the quarter and<br>further summarised into significant intervals as                                                                                                                                                                                                                                                                                                                                 |
|                                                  | o easting and northing of the drill hole collar                                                                                                                                                                                                                                                                                                                                                                                                    | described below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  | <ul> <li>elevation or RL (Reduced Level – elevation above<br/>sea level in metres) of the drill hole collar</li> </ul>                                                                                                                                                                                                                                                                                                                             | Locations are tabulated within the report and are<br>how on plans and sections within the main body of<br>this announcement.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                  | o dip and azimuth of the hole                                                                                                                                                                                                                                                                                                                                                                                                                      | ▶ Dip of lithologies and/or mineralisation are not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                  | o down hole length and interception depth                                                                                                                                                                                                                                                                                                                                                                                                          | currently known. Drilling was oriented based on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                  | o hole length.                                                                                                                                                                                                                                                                                                                                                                                                                                     | dips of lithologies observed ~5km to the north of the prospect and may not reflect the actual dip.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                  | If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.                                                                                                                                                                                                    | the prospect and may not reflect the actual dip.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



explain why this is the case.

| CRITERIA                                                                        | JORC CODE EXPLANATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRITERIA                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data<br>aggregation<br>methods                                                  | ► In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut <off and="" are="" be="" grades="" material="" should="" stated.<="" th="" usually=""><th>Intervals are reported using a threshold where the interval has a 1.00 g/t Au average or greater over the sample interval and selects all material greater than 0.10 g/t Au allowing for up to 2 samples of included dilution every 10m.</th></off> | Intervals are reported using a threshold where the interval has a 1.00 g/t Au average or greater over the sample interval and selects all material greater than 0.10 g/t Au allowing for up to 2 samples of included dilution every 10m.                                                                                                                                                        |
|                                                                                 | <ul> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                | <ul> <li>No grade top cut off has been applied to full results presented in Significant Intersection Table.</li> <li>No metal equivalent reporting is used or applied</li> </ul>                                                                                                                                                                                                                |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                                                                              | <ul> <li>The results reported in this announcement are considered to be of an early stage in the exploration of the project.</li> <li>Mineralisation geometry is not accurately known as the exact orientation and extent of known mineralised structures are not yet determined.</li> <li>Mineralisation results are reported as "downhole" widths as true widths are not yet known</li> </ul> |
| Diagrams                                                                        | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.                                                                                                                                                                                                                              | Drill hole location plans are provided earlier releases                                                                                                                                                                                                                                                                                                                                         |
| Balanced reporting                                                              | ➤ Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.                                                                                                                                                                                                                                                                    | <ul> <li>Drill hole locations are provided in earlier reports.</li> <li>All assays received of &gt;=0.1ppm have been reported.</li> <li>No high cuts to reported data have been made.</li> </ul>                                                                                                                                                                                                |
| Other<br>substantive<br>exploration<br>data                                     | ▶ Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.                                                                                                        | No other exploration data that is considered meaningful and material has been omitted from this report                                                                                                                                                                                                                                                                                          |
| Further work                                                                    | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large<scale drilling).<="" li="" step<out=""> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </scale></li></ul>                                                                                                      | <ul> <li>AC and RC drilling following up these results has commenced.</li> <li>Further aircore RC and diamond drilling is planned to follow up the results reported in this announcement.</li> </ul>                                                                                                                                                                                            |

