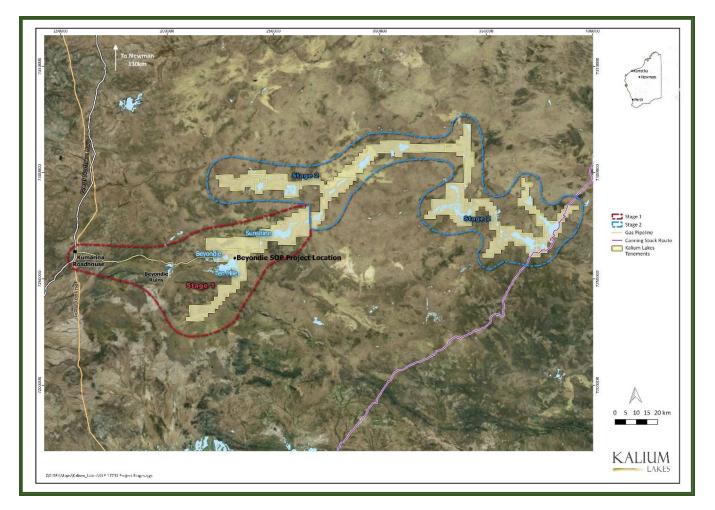
ASX Release

Tuesday 4 September 2018

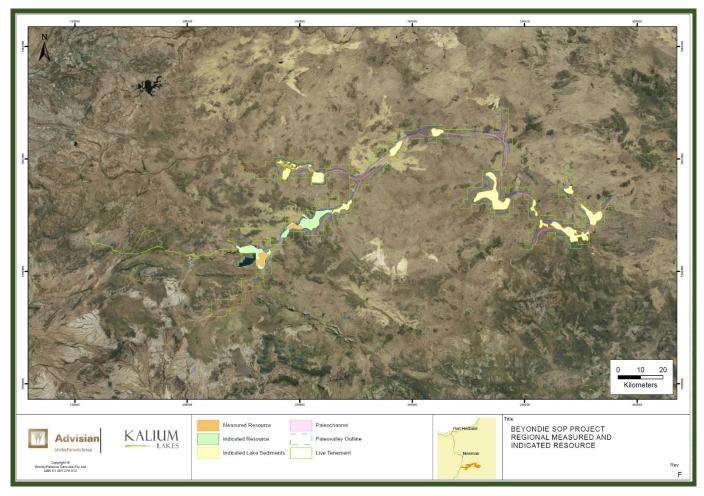
Significant Resource Upgrade - Beyondie SOP Project

Highlights

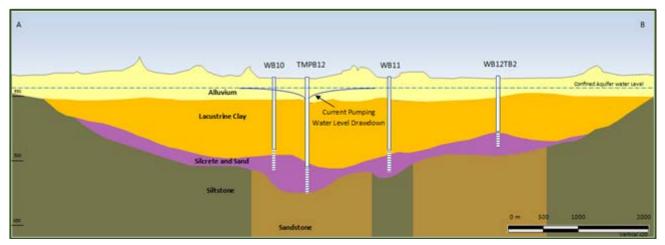
- A 150% Increase in Measured and Indicated Resources.
- Measured Resource of 1.72 Mt @ 11,488 mg/l SOP Indicated Resource of 9.17 Mt @ 12,459 mg/l SOP Inferred Resource of 7.79 Mt @ 12,663 mg/l SOP
- An extensive and industry leading, hydrogeological data collection program completed.
- Resource has been determined to be "thicker" than modelled in the Pre-Feasibility Study.
- More than 72 weeks of total test pumping completed.
- In excess of 260 million litres of brine pumped from the aquifers.
- Reserve update scheduled for September.


Kalium Lakes Limited (KLL) is pleased to advise that the analysis of additional data compiled from its ongoing, industry leading, hydrogeological data collection program has delivered a 150% increase in the Beyondie SOP Project's Measured and Indicated Resources.

The upgraded Resource Estimates are summarised in Table 1 below, including Drainable Brine and Total Brine SOP estimates.


JORC / CIM Resource	Drainable Brine Volume (M m ³)	K Grade (mg/L)	K (Mt)	SO4 (Mt)	Drainable Brine Volume SOP (Mt)	Total Brine Volume SOP (Mt)
Measured Resource	149	5,155	0.77	2.33	1.72	5.67
Indicated Resource	735	5,591	4.11	11.91	9.17	32.42
Inferred Resource	615	5,683	3.49	10.50	7.79	121.61
Total Mineral Resource	1,499	5,585	8.37	24.74	18.67	159.70
Exploration Target	919 - 2,831	1,803 - 3,328	1.65 - 9.42	5.01 - 25.91	1.91 - 10.36	44.10 - 244.86

Managing Director, Brett Hazelden, said: "The additional hydrogeological data, collected during this year for the BSOPP, has resulted in a considerable increase to Kalium Lakes' Measured and Indicated Resource classifications.


"This increase is anticipated to translate into a substantial increase in Ore Reserves, with an update scheduled during September. It is also likely that we will be able to increase the mine life which will, in turn, generate additional opportunities to increase our production rates."

Stage 1 and Stage 2 Approval Footprints - Beyondie Sulphate Of Potash Project

Stage 1 and Stage 2 Resources

Geological Cross Section at Ten Mile

Beyondie SOP Project – Resource Upgrade Report

1 Introduction

Kalium Lakes Ltd (KLL) is developing the BSOPP and is currently progressing a Bankable Feasibility Study (BFS) due to be completed in September 2018. The SOP Resources to support the BFS have been explored since 2015, this update takes into consideration all exploration to date. Mineralisation across the Project occurs within lake sediments, palaeovalley and bedrock aquifers throughout the tenement holding, that extend from Ten Mile Lake to approximately 220km to the east. This Resource upgrade presents an updated Resource estimate concentrating on the Stage 1 area of the BSOPP.

2 Geology

The Project area is located within the Collier, Salvation, Scorpion, and North-West Officer Basins. The Marymia Dome (aged >2660 Ma) is located on the northeast fringe of the Yilgarn Craton (south-east magin of the Basins) and comprises Archaean greenstone belts intruded by granites, and notably monzogranitic rocks, which outcrops to the south of the Project.

Monzogranites are characterised as potassium rich and composed mostly of quartz and potassium feldspar (alkali-feldspar); their proximity to the BSOPP area, along with other granitic inliers, makes them a suspected source of the potassium enrichment in the region's sub-surface brine deposits. Intra-cratonic basin sediments including the Scorpion, Collier, and Salvation Basins comprise the Bangemall Sub-group and Tooloo Group rocks (Figure 1). The youngest basement units within the BSOPP, are the units of the North-West Officer Basin, the Sunbeam Group (c. 1000 – 720 Ma).

Mafic intrusions, belonging to the Warakurna Large Igneous Province, c.1078 – 1070 Ma, (Wingate, et al. 2004), outcrop sporadically across the BSOPP area (Figure 1) and can be mapped with the publicly available regional aeromagnetic data sets. Identified as dolerites and amygdaloidal basalts, they are interpreted as being members of the Kulkatharra Dolerite suite in the western Salvation Basin area, while in the east, they are identified as the Prenti Dolerite. These intrusive rocks are also considered a source for the potassium enrichment.

One of the key events to impact upon the palaeo-landscape was the Late Carboniferous – Early Permian glaciation. The period stripped the ancient topography through glacial advance, depositing glacial sediments hundreds of kilometres north and west of the Project region. The residual "scoured" landscape following glacial retreat produced during those Palaeozoic times is considered to be the palaeo-drainage network. This network has been subject to sedimentation comprising palaeovalley fill of Cenozoic sediments which is a primary host for aquifers containing hypersaline brines. Three phases of Cenozoic sedimentation make up the palaeo-drainage sequence, known as the palaeovalley sediments, are recognised as:

- 1. Palaeochannel sand mid to upper Eocene aged
- 2. Lacustrine clay late Oligocene to mid Miocene aged
- 3. Mixed alluvial and colluvium Pliocene aged

Derived from palynological aged dating methods, the palaeovalley sedimentary sequence described above is remarkably uniform across the Australian continent (Magee 2009). The basal palaeochannel unit is dominated by high energy fluvial sands which is considered to have been formed in braided river depositional environment under wet climatic conditions, these facies are typically located in the deepest parts of the palaeovalley. Unconformably overlying the basal palaeochannel sand horizon, are the low energy lacustrine clay horizons interpreted as forming within valley lakes and wetlands. More discrete fluvial fine sand sequences are present within the lower clay deposits, associated with lower energy palaeostream and channel depositional environments during the drying climate. Finally, the upper alluvial and colluvial sequence is derived from tectonic adjustments and deflation. It is varied in nature, and texturally further modified by ferricrete and silcrete weathering and regolith processes.

All three sediment sequences have been intersected in drilling across the BSOPP, and as described by Magee (2009), occur with remarkable regularity. The extent of Cenozoic sediments within the project area is presented in Figure 2.

The contact between the Cenozoic sediments and the basement rocks is considered the palaeotopography. Deep weathering profiles on this topography have been observed from geophysics and drilling. The saprolitic profiles represent the long duration this surface has been exposed to weathering and erosional process which has formed significant unconsolidated and friable sediments on the margins of the palaeovalley where more weakly cemented sandstones are present.

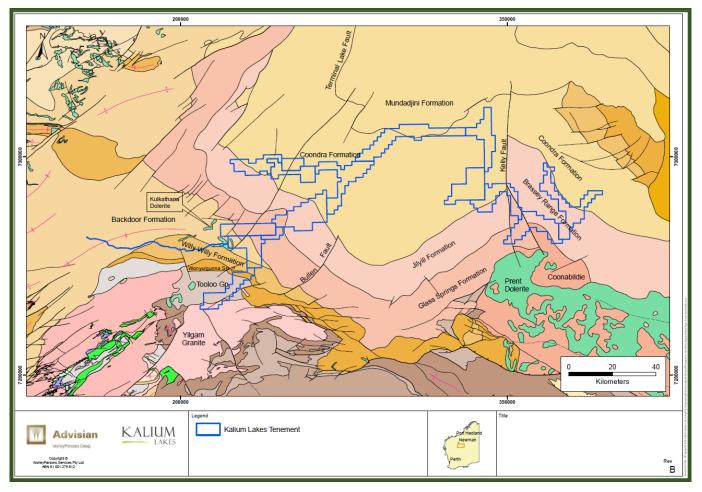


Figure 1: Interpreted Bedrock Geology

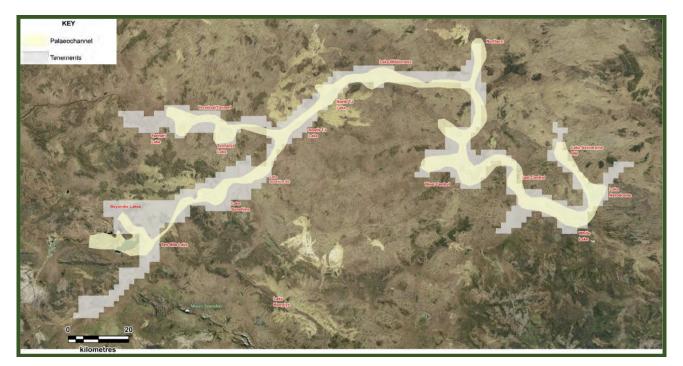


Figure 2: Extent of Cenozoic Geology

3 Hydrogeology

Two regional aquifer units have been identified within the Cenozoic sediments, the palaeochannel sand aquifer of Eocene age that is located at the base of the palaeo-drainage system, and the shallow surficial aquifer comprising Pliocene and Quaternary evaporites, calcrete and silt of the lake surface and alluvium. These aquifers are considered to be hydrogeologically separated from one another by a thick sequence of stiff lacustrine clays that form an aquitard.

The regional bedrock is considered to be on the whole of low aquifer potential; however deep weathering profiles in sandstones of the Jilyili Formation and vesicular basaltic sills in the vicinity of the palaeovalley have proven to be highly prospective aquifer targets from the 2018 drilling program. In addition, regional structural features described above and specifically the unconformity between the Willy Willy Formation and the Backdoor Formation enhance aquifer transmissivity as linear features.

Groundwater within the surficial aquifer is generally between 0.2m and 11m below ground level, with depth to the ground water table determined by location within the catchment and local topographic changes. Groundwater flow within the surficial aquifer is generally driven by rainfall and episodic creek flow recharge to the aquifer system. The groundwater flow direction generally follows the surface topography, with recharge and groundwater mounding dominant in the ephemeral creek systems and discharge via evaporation occurring in the playa lakes through evaporation.

Groundwater within the palaeochannel sand aquifer is confined in nature and has a piezometric head that is independent to groundwater flow at the groundwater table. Piezometric head is a pressure response of regional scale that has at a very low gradient (0.00008) from southwest to northeast across the Ten Mile and Sunshine Lake areas. The piezometric head is generally between 0.1m and 0.5m below the elevation of the water table near the centre of the palaeochannel. This head difference becomes up to 1 m lower at the margins of the palaeovalley. These differences indicate a degree of vertical downward drainage through the profile and potential mode of recharge from the surficial aquifer to the palaeochannel sand aquifer, this maybe directly through the clay zones or, more likely, at the margins of the palaeovalley through weathered and fractured bedrock. More regional, distal recharge occurs up-hydraulic gradient of the palaeo-drainage systems where the clays thin and meteoric water can enter the system, at the head-waters of the catchment.

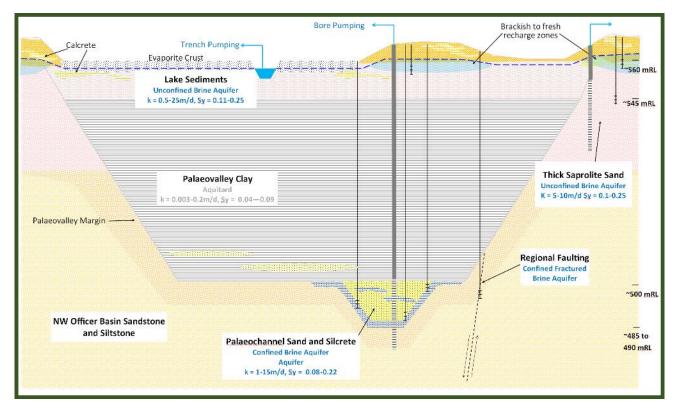
Where bedrock aquifers are encountered below lacustrine clays the groundwater system is confined in nature. However, where weathered bedrock is exposed outside of the palaeovalley groundwater is unconfined and moves according to local groundwater table flow patterns.

3.1 Aquifer Conditions

The surficial aquifer conditions have been demonstrated on lake by construction and test pumping of trenches dug in the surface of the playa lakes, and off lake via drilling and test pumping. The construction of the trenches on lake has indicated a highly layered sequence of silts and evaporites (gypsum) displaying high transmissivity associated with secondary porosity within evaporite zones and lower transmissivity in more silty porous flow dominated zones. Vertical hydraulic conductivity can be two orders of magnitude less than horizontal hydraulic conductivity.

When trenches were pumped, steady state flow conditions were achieved in monitoring pits located at varying distances away from the pumping trench after between 5 days and 20 days of pumping. A typical unconfined aquifer response with no boundary conditions was evident during test pumping of all trenches indicating a laterally extensive aquifer.

Off lake the surficial aquifer generally comprises of low transmissivity silt and soft clay unless calcrete is encountered. Calcrete is characterised by secondary porosity with very high transmissivity, but moderate to low storage.


The palaeochannel sand aquifer is a confined porous system, laterally bounded by the edges of the palaeovalley system and the poddy nature of the sand sequences. The aquifer can be characterised as behaving as a strip aquifer system where multiple reduced hydraulic conductivity boundaries are evident in pumping data. Leaky aquifer test pumping responses have been observed in test pumping at Lake Sunshine Palaeochannel sand aquifer bores. Drilling during the 2018 aircore program has confirmed thick weathered sequences of sandstones and basalt present on the margins of the palaeovalley which have been identified as production bore targets, but also provide leakage to the deeper palaeochannel sand, which is considered to be in hydraulic connection.

Across the project, silcrete is encountered within the sand sequences in the weathered bedrock and palaeochannel sand. Silcrete can have a secondary porosity which locally increases transmissivity and can enhance bore yields.

The confined nature of the deep aquifer means that pumped water abstracted during practical long-term aquifer testing will originate from confined storage, a pressure response to pumping. Specific yield will not be obtained from test pumping of confined aquifer bores, therefore estimates of specific yield have been determined from other methods, during the 2018 field program calibrated Borehole Magnetic Resonance (BMR) logs have been run to obtain in-situ measurements of specific yield.

Magee (2009) presents pumping records of the Roe Palaeochannel located near Kalgoorlie. These records indicate that longer term pumping yields are typically between 3 L/s and 11 L/s from the palaeochannel sand aquifer, but decrease as drawdown hits aquifer boundaries and unconfined conditions became prominent. The 10 years of pumping data presented in Magee (2009) has shown that pumping water levels can stabilise once the piezometric head has reached the base of the lacustrine clay and leakage becomes dominant in the aquifer system. The Roe Palaeochannel and other Goldfields palaeochannel systems are considered to be of a similar age and depositional environment as the Beyondie Palaeochannel. Medium term pumping rates during the depletion of confined storage stage of production will be calibrated to the test pumping data. However, longer term production rates require six to twelve months' worth of pumping data at rates to significantly stress the aquifer to determine the rate of leakage that influence longer term pumping rates, where leakage has not been measured in the field, this is only practical during borefield operations, where interference effects between a number of production bores can occur. Numerical modelling using sensitivity analysis has been utilised to determine the rate of leakage and longer term sustainable pumping rates of production bores based on known aquifer geometry and clay hydraulic properties.

The conceptual understanding of the system and the aquifers targeted for brine production is presented in Figure 3 below.

4 Exploration

Figure 3: Hydrogeological Conceptual Model of the BSOPP

The exploration phase of the project has involved a complex data collection programme, covering augering, geophysics, drilling, water and soil sampling, aquifer testing and laboratory test. Exploration to date has comprised of the following:

- 232 aircore, diamond and sonic drill holes to collect geological and brine samples;
- 400 auger holes across all the lakes up to depths of between 1.5 and 2m, to collect information on the lake surface geology and groundwater samples;
- 12 large 200 to 250mm diameter cased test bores;
- 1,130km of geophysical traverses between Ten Mile Lake and White Lake;
- Installation of 61 monitoring boreholes;
- Excavation of ten trial trenches for 1,640m of trench;
- Grain size analysis of 61 sand samples from 12 boreholes, 2 clay samples from 2 boreholes and 49 lake bed alluvium samples from 18 different lakes;
- 43 laboratory analyses of cores for porosity;
- 12 Borehole Magnetic Resonance (BMR) logs;
- 13 mini aquifer tests (1 hr pumping / 1 hr recovery);
- 12 constant rate / recovery aquifer pumping tests;
- Laboratory analysis of water samples collected from augering (427), drilling (589) and during the aquifer testing and bore development (161);
- 20 leach tests of the surface sediments;
- 16 weeks of bore test pumping;
- 11 weeks of trial trench test pumping;
- 45 weeks of trial pond pumping; and
- >260 million litres of brine pumped from aquifers.

4.1 Competent Person Site Visits

In August 2015, the Competent Persons of K-UTEC visited the Beyondie Lakes area. During this visit, K-UTEC staff could observe mud rotary drilling at bore WB 11_TB and could inspect the geophysical traversing being undertaken.

In June 2017, the Competent Persons of K-UTEC visited the Beyondie Lakes area again. During this visit K-UTEC staff could inspect the current drilling sites, trenches and production bores as well as the trial evaporation ponds near the camp site. Meetings with KLL's consultants Advisian and Western Geophysics were held to discuss the progress of the recent exploration and the interpretation of current data.

The Competent Persons of K-UTEC visited the Beyondie Lakes area In February 2018. During the site visit K-UTEC staff could inspect the drilling sites of the most current aircore and sonic drilling campaign. The new test ponds near the camp could be inspected as well as the operational production bores for these ponds. Meetings with KLL's consultants Advisian and Western Geophysics were held again to discuss the progress of the recent exploration and the interpretation of current data.

Advisian's Principal Hydrogeologist has visited site many times between February 2017 and August 2018 typically coinciding with key activities such as commencement of drilling and test pumping programs to ensure logging, data collection and sampling QA/QC procedures are being adequately followed.

4.2 Drilling

A summary of all drilling that has been undertaken at the project is presented below.

The 2015 drilling program comprised of a number of different methods including conventional air percussion (to install surface casing), mud rotary drilling (with tricone and/or blade bit), as well as blade/tricone bit drilling with brine as drilling fluid; all with 165 mm diameter bits. In September 2015, HQ diamond core drilling and a casing advancer for further exploration drilling and retrieval of core for laboratory testing was utilised. Where basal sands were encountered, the diamond holes were reamed out to 300mm and 200mm PVC casing and gravel pack was installed. This technique was employed on bores WB09, WB10, WB11, and WB12.

During the 2017 field program a further 22 aircore drill holes were completed at Ten Mile and 25 at Lake Sunshine to explore the palaeovalley aquifer targets from the extensive geophysical program to obtain lithological and brine samples and install monitoring bores. 28 monitoring bores were installed within exploration holes at Ten Mile lake and 22 monitoring bores were installed within exploration holes at Lake Sunshine. A number of the exploration holes had dual monitoring bores installed to monitor shallow and deep aquifer units.

The 2018 drilling field program involved installation of monitoring bores and a production bore using sonic drilling methods and an extensive aircore exploration program. This program focused on the Ten Mile and Lake Sunshine Stage 1 production areas. The program involved drilling of 142 aircore exploration holes on transects totalling 7,794m of drilling. This drilling has confirmed the geological extent of the target geology and brine mineralisation. A sonic drilling rig followed up the aircore drilling to twin ten key aircore holes, in order to obtain core for laboratory testing, and install monitoring bores for a total of 710m of drilling. An additional production bore (SSSN03PB) has been installed within the weathered sandstone aquifer at Lake Sunshine.

All geological samples collected during all forms of drilling have been qualitatively logged at 1 m intervals to gain an understanding of the variability in the aquifer materials hosting the brine. During conventional and aircore drilling samples were collected washed and stored in chip trays for future reference. A geological core description with detailed documentation (drilling log, soil profile) has been prepared for each borehole and is stored within the geological database. Sonic core trays have been logged and stored onsite.

There are no drilling, sampling or recovery factors noted to date that could materially impact the accuracy and reliability of the results. Drill data are included in Appendix 1. All drill hole locations are presented in Figure 4 and Figure 5.

4.3 Augering

An auger hole drilling program was completed in 2015 and a follow up program was completed in 2017. Auger hole depths in the 2015 program were approximately 1.5m depth on an approximate 1km sample grid on all lake surfaces. The 2017 program resampled approximately 10% of the 2015 sample locations to obtain brine samples and lithological samples for laboratory testing; this program was drilled to 2m depth. The auger holes were installed using a motorized, hand held auger. After the hole was allowed to fill with brine (generally within 5 minutes) samples were collected. When the sediment had settled in the bottle, a clean sample was decanted to a 500ml bottle, which was then kept cool until delivery to the laboratory for analysis.

The potassium concentrations for all auger-hole samples obtained to date are shown in Appendix 2, and the locations are presented in Figure 6 and Figure 7.

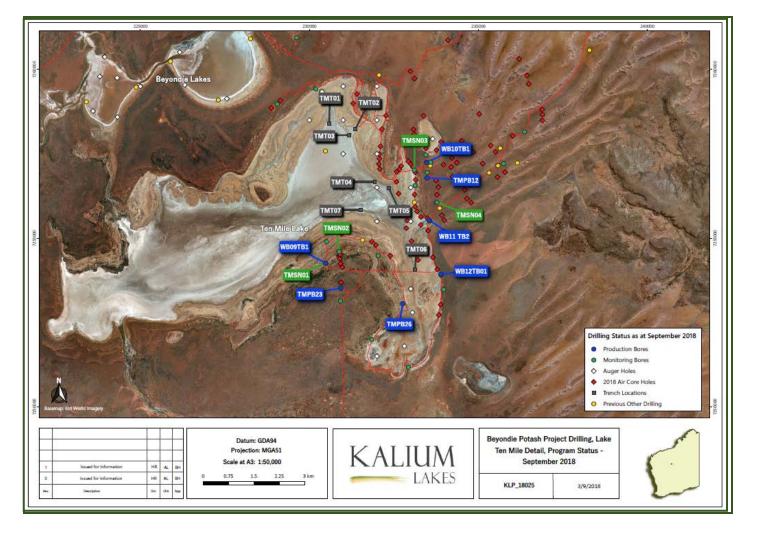
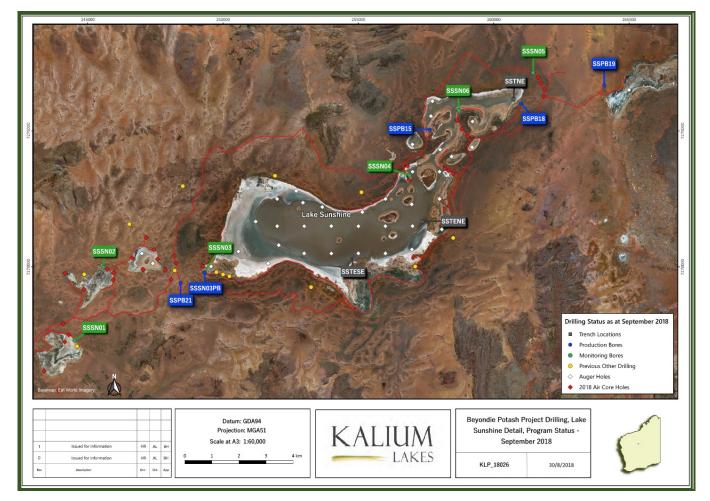



Figure 4: Drill hole Locations at Ten Mile and Beyondie

Figure 5: Drill hole Locations at Lake Sunshine

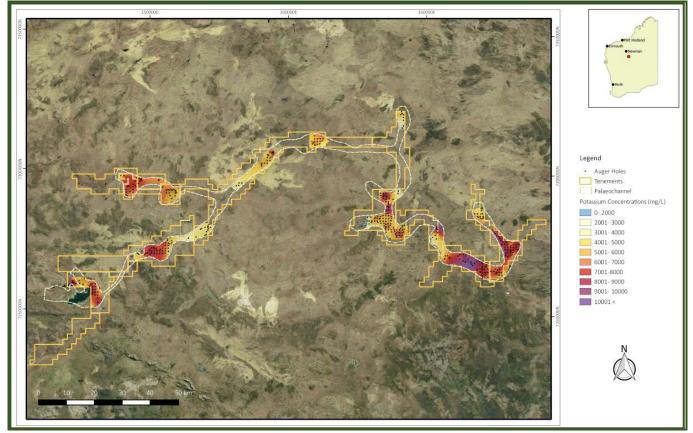


Figure 6: 2016 Auger Holes

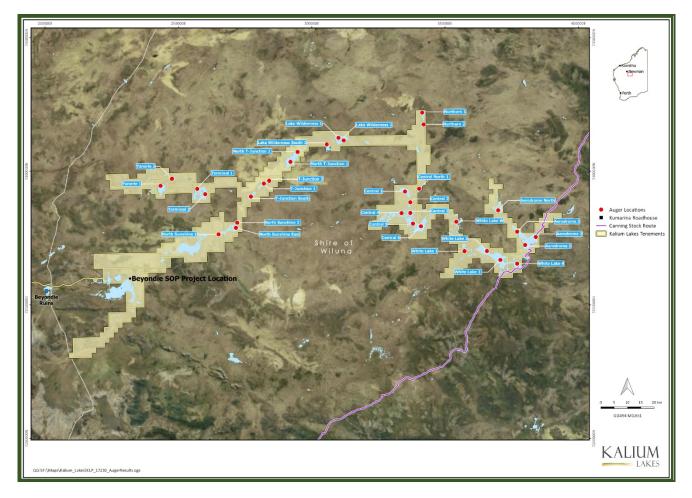


Figure 7: 2017 Auger Holes

4.4 Trenching

Trial trenches have been used to investigate the lithology of the top 5m of lake sediments and test the ability of these sediments to supply brine. Ten trial trenches were completed: Seven at Ten Mile Lake and three at Lake Sunshine. The details of these trenches are provided in Table 1. Figure 8 shows the trenches being excavated.

Trench ID	Easting	Northing	Width (m)	Depth (m)	Length (m)
TMT01	230586	7258398	1.5	2	500
TMT02	231362	7258232	1.5	2	300
TMT03	231182	7258059	3	5	500
TMT04	231937	7256672	3	5	50
TMT05	232351	7256493	3	5	90
TMT06	233130	7254077	1.5	2	80
TMT07	231521	7255833	1.5	2	20
SSTENE	257359	7271673	4	5	44
SSTESE	254765	7270417	4	5	42
SSTNE	260729	7276167	4	5	12

Table 1: Trench Details

Shallow 2m deep trenches were initially constructed at Ten Mile Lake using a small traditionally tracked excavator, later, 5m deep trenches were constructed at Lake Sunshine and Ten Mile Lake with the use of a 12 tonne amphibious excavator. The deeper trenches had slopes at approximate 1 in 2 angles to maintain wall stability. Water level monitoring pits were dug with the excavators at a number of locations between 5m and 50m from the trench to facilitate monitoring of the test pumping.

Figure 8: Trench SSENE in construction

Trenching provided an opportunity to log the bulk geology of the top 5m of the lake sediments in profile instead of relying on point samples from drill holes. The layered nature of the sediments was evident with lithological zone evident related to different flooding events and subsequent evaporite deposits. Notable brine inflows were evident in the trench walls where coarse gypsum crystals were present as shown in Figure 9.

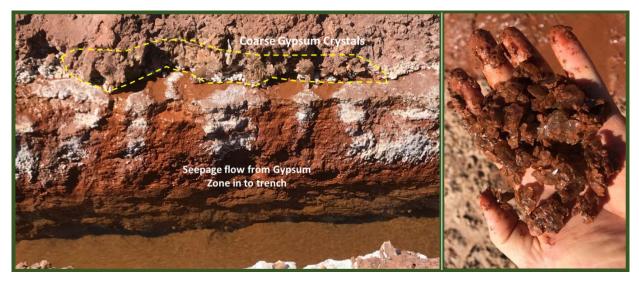


Figure 9: Gypsum crystals in a 2m long trench profile at SST01 (left) and 2 to 4 cm sized gypsum crystals (left)

4.5 Surface Geophysical Exploration

Geophysical gravity and passive H/V seismic surveys were undertaken between 2015 and 2017; 1,130 line km of traverse was completed from bedrock outcrop on one side of the palaeovalley to bedrock outcrop on the other side where possible. The location of the gravity and passive seismic traverses are presented in Figure 10 and Figure 11. These measurements provide information about the location and extension of the palaeovalley and the location of the deepest sections where the palaeochannel is expected to be located.

Gravity and passive H/V seismic methods give an indication to the palaeovalley geometry. The results were used to plan the exploration drill hole locations to encounter brine within the basal sands of the palaeochannel and deeply weathered zones of the bedrock.

Following drilling, the gravity and passive H/V seismic data has been integrated and calibrated to the drilling results which have been used to map the basement surface topography away from the main exploration areas and used to constrain the geological model in these locations.

Resistivity/conductivity surveys have also been completed using the NanoTEM system to resolve some ambiguity in the gravity data at a number of key locations. The calibrated integrated geophysical methods used have enabled a more robust geophysical model to be constructed which has used two independent methods to locate and map the palaeovalley sediments.

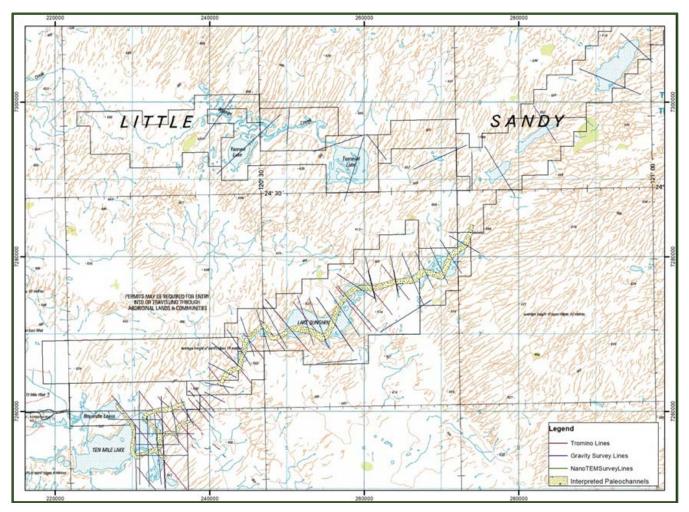


Figure 10: Gravity and Passive Seismic traverses, Western Area

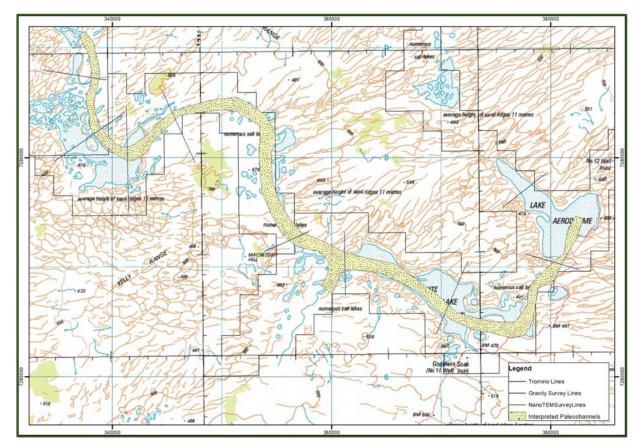


Figure 11: Gravity traverses, Eastern Area

4.6 Wireline Logging

Downhole geophysics (spectral gamma, conductivity and Borehole Magnetic Resonance (BMR)) has been completed on all monitoring bores completed in 2018 to measure lithological changes and in-situ aquifer properties. The BMR logging has been calibrated to laboratory testing of core plugs to assist with Resource estimation, a similar methodology to what is used in the Petroleum industry to assist with estimating oil field resources and reservoir modelling. BMR technology measures the behaviour of hydrogen nuclei when subjected to a magnetic field which can be related to the volume of water present as bound water (specific retention) and movable water (specific yield) quantities (Schlumberger 2007, NMRSA 2018).

The BMR logs were calibrated to laboratory controlled magnetic resonance analysis on 11 core plugs taken from the sonic cores to ensure the cut-off times for specific yield calculation were representative of the various lithologies. An average calibration was used to reduce the T2 cut-off from the traditional sandstone derived 33 mili-seconds to 12.6 mili-seconds, this reduced cut-off results in an increased specific yield portion of the total porosity. The change in cut-off is representative of the volume of iron present in the sequence, the greater the iron content the lower the cut-off time.

Notably, the BMR logs have been able to provide insight in to aquifer properties on a resolution across the palaeovalley sequence and bedrock lithologies not previously observed from test pumping, drilling or laboratory testing. The results indicate that in-situ specific yields of the basal sand and silcrete aquifer zones maybe between 10 and 30%, however these zones are significantly thicker than previously considered, the sandy lenses of the lower clay sequences have higher specific yields which were previously categorised as lacustrine clays, which is now incorporated into to the sand and silcrete aquifer resource. An example of a BMR log TMSN03 is provided in Figure 12, this drill hole is located on the lake edge at Ten Mile and shows the profile from the lake surface to the base of the palaeochannel with significant sand and Silcrete present in the bottom 30m of the drill hole. All calibrated wireline logs are provided in Appendix 3.

When processing the logs for lithological properties for Resource estimating noise peaks and cavities have been corrected. These features of the logs can be caused by washouts in the drill hole wall, highly unconsolidated beds or grout seals in the bore annulus. Where these peaks occur in the alluvium and lake sediments specific yield has been adjusted to 10% and where these occur in the sandy zones of the palaeochannel and weathered sandstone Sy has been adjusted to 30%, assuming that the washouts are likely to occur at the most permeable and high storage zones. Total porosity has been adjusted to 0.45% in these zones.

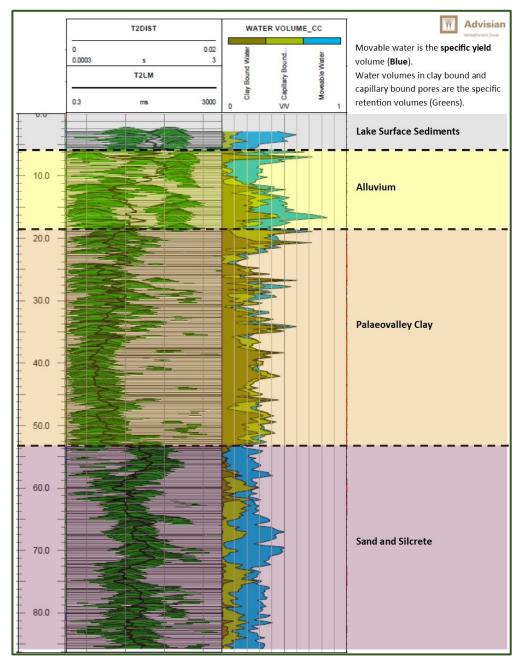


Figure 12 BMR Log from TMSN03

5 Aquifer Testing

In December 2015, several pumping tests were conducted in test production bores to obtain information on aquifer parameters such as permeability, specific yield and confined storage. In 2017 longer duration constant rate tests were carried out at seven test production bores and six trial trenches. During 2018 one further aquifer test was completed on a new production bore at Lake Sunshine installed within the weathered sandstone aquifer and one additional trial trench was pumped at Ten Mile Lake. The durations of these longer tests ranged from three to twenty-one days.

Other small-scale aquifer tests that have been undertaken include Mini constant rate tests (1 hr pumping / 1 hr recovery) and slug testing at a number of monitoring bore locations.

The palaeochannel test pumping results have concluded the basal sand is extensive and performs as a confined strip aquifer with leakage. Leakage was observed in bore SSPB19 as a flattening of the drawdown curve during late time drawdown data. Aquifer properties from the palaeochannel bores have been remarkably consistent, with permeability ranging from 2.1m/d to 3.4m/d and confined storage from 0.0002 to 0.0008. A leakage parameter of 0.1 was measured at SSPB19. These results are typical of regional palaeochannel aquifers.

Test pumping of the weathered sandstone at Lake Sunshine was completed in 2018 with a total of five weeks of pumping at bore SSSN03PB, the 40m deep bore sustained 17 L/s for the duration of the test. The test displayed a leaky aquifer response, which was supported by drawdown being measured in all shallow and deep monitoring bores on the western side of Lake Sunshine. Aquifer responses were observed in bedrock, palaeochannel and shallow lake aquifer bores indicating widespread connectivity. The test resulted in a permeability of between 2m/d and 5m/d and a leakage parameter of between 0.03 and 0.04.

Surficial aquifer trial trench pumping produced reasonably consistent results. The aquifer performed as unconfined and unbounded under the pumping durations completed, with steady state conditions achieved in monitoring pits surrounding the trenches. Aquifer properties were surprisingly high, with permeability ranging from 2.5 m/d to 24 m/d and specific yield ranging from 11 to 25%. These test results indicated the flow into the trenches is dominated by highly transmissive gypsum zones, but these zones are generally found throughout the lake sediments. The trenches have performed better than expected and will contribute a significant proportion of the extractable resources.

5.1 Trial Pond Pumping

The trial evaporation ponds have been in operation since September 2017 and have required regular filling to maintain water levels in the ponds. Brine has been pumped from WB10 and TMPB12 on the eastern side of Ten Mile Lake.

During the filling of the ponds flow rates ranged from 10 L/s to 20 L/s, associated with approximately 17m of aquifer drawdown in the deep confined aquifer between August and October 2017. Between October 2017 and April 2018 abstraction has continued intermittently in response to water levels in the ponds, pumping rates ranged from 6 to 12 L/s with deep confined aquifer drawdown steady at approximately 6m during March and April 2018 in relation to constant pumping at approximately 6.5 L/s. Since April 2018 the ponds have required less supply in response to lower evaporation rates and harvesting activities, water levels have slowly recovered, the average intermittent pumping rate has been approximately 5 L/s during this time. Higher rates of pumping have occurred in June and July to refill the ponds following harvesting of salts.

There is approximately 58m of available drawdown within the deep confined aquifer in the vicinity of WB10 and TMPB12 which can be utilised for additional production. The water table in the upper aquifer has been stable during the trial ponds pumping period. The pumping has been observed as centimetre scale drawdown in monitoring bores up to 2.3 km to the east at TMAC15, these responses will be used to further calibrate the numerical model for the Reserve estimate and re-estimate sustainable yields. The water level responses in monitoring bores adjacent to TMPB12 are presented in Figure 13 and the cone of drawdown is indicated on the cross section in Figure 14.

Potassium and sulphate concentrations have been measured during the trial pond pumping which showed that the concentration have generally been steady with fluctuations (up and down) observed of less than 5% when pumped from the confined aquifer.

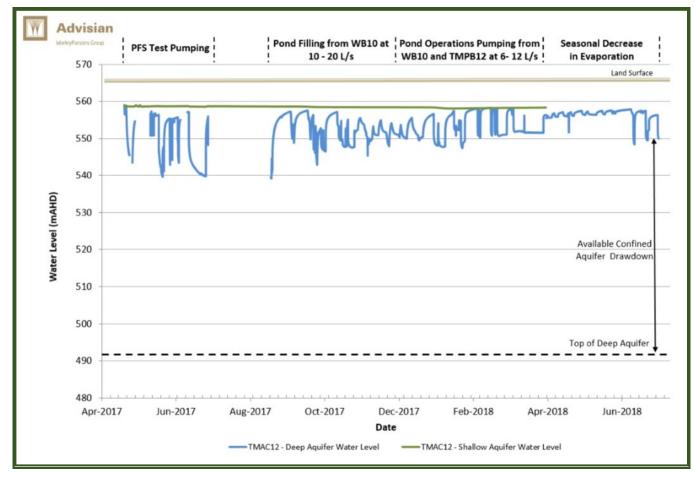
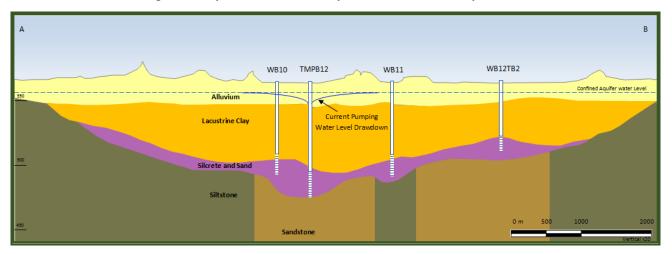



Figure 13: Aquifer Water Level Response from Trial Pond Operations

6 Porosity and Specific Yield (Drainable Porosity)

Total porosity is the volume of brine filled pores that is present in a unit volume of material. The specific yield (or drainable porosity) is the portion of the total porosity that is freely drainable under gravity. The remaining portion of the total porosity is called specific retention.

Brine resources are determined from the specific yield volume of the aquifer, whilst total porosity is reported for comparative purposes only. The economic extractable volume is determined by estimation of a Reserve which takes into account the Mining Factors of a brine including hydraulic conductivity, the dynamics of the aquifers targeted and brine grade changes.

Total porosity and specific yield have been derived from a number of sources, these include:

- Aquifer testing;
- Laboratory analysis of core and drill samples; and
- Borehole magnetic resonance (BMR) logging.

The specific yield for the lake sediments is reliant on the aquifer testing results of the trenches, these results are considered the most representative of aquifer. Core analysis has been used for calibration of the BMR logs which have been used as the primary source of specific yield for all other lithologies, this has provided a very high vertical resolution of specific yield in the lithological profile. The adopted specific yield and total porosity ranges are presented in Table 2 and Table 3.

Lithology	Tota	l Porosity	Specific Yield			
Lithology	Range	Weighted Mean	Range	Weighted Mean		
Lake Sediments	0.43 - 0.48	0.45	0.11 - 0.25	0.16		
Alluvium	0.32 - 0.42	0.39	0.7 - 0.18	0.13		
Palaeovalley Clay	0.32 - 0.42	0.36	0.04 - 0.09	0.06		
Sand and Silcrete	0.22 - 0.35	0.34	0.17 - 0.22	0.21		
Fractured / Weathered Sandstone	0.25	0.25	0.08	0.08		
Fractured / Weathered Siltstone	0.22	0.22	0.03	0.03		

Table 2: Ten Mile and Beyondie Porosity and Specific Yield Ranges

Table 3: Lake Sunshine Porosity and Specific Yield Ranges

Lithology	Tota	l Porosity	Specific Yield		
Lithology	Range	Weighted Mean	Range	Weighted Mean	
Lake Sediments	0.42 - 0.48	0.45	0.12 - 0.19	0.17	
Alluvium	0.29 - 0.38	0.33	0.07 - 0.16	0.14	
Palaeovalley Clay	0.30 - 0.37	0.33	0.07 - 0.08	0.08	
Sand and Silcrete	0.17 - 0.32	0.29	0.1 - 0.25	0.21	
Fractured / Weathered Sandstone	0.24	0.24	0.08	0.08	
Fractured / Weathered Siltstone	0.22	0.22	0.03	0.03	
Fractured / Weathered Basalt	0.24	0.24	0.16	0.16	

7 Sampling

All drill holes were sampled for lithology and where possible brine quality during drilling. Lithological samples of aquifer zones in the surficial aquifer (Lake Sediments and Alluvium) and palaeochannel sand aquifer (Sand and Silcrete) were obtained from drill samples and selected for laboratory testing. Brine samples were obtained during aircore drilling from the cyclone during extended airlift testing at varied intervals. These samples are interpreted to be indicative of the depth at which the airlift is taking place, though some contamination from the surficial aquifer cannot be ruled out. Samples obtained from test pumping are considered to be the most representative of the target aquifers, where the aquifer zone is cased and sealed with bentonite to prevent any inter-bore flow, these samples are considered to be composite samples for resource estimation. Samples obtained from trench pumping are considered representative of the excavation.

Auger samples are considered representative of the upper surficial aquifer at each of the lake surfaces, and all samples were taken up to a maximum depth of 1.5m for the 2015 holes and up to 2m depth in the 2017 sampling. Wherever possible, auger samples were typically taken at a 1km grid spacing.

Sonic core of 100mm diameter was obtained from ten locations across Ten Mile and Lake Sunshine. Core was extruded from the core barrel into clear plastic core bags. Core bags were sealed and placed into core trays, which were labelled at the drill site and stored on site. Following geophysical logging individual core trays were selected for laboratory testing and transported back to Perth. The core will be tested for permeability, total porosity, specific yield and laboratory based magnetic resonance.

Drill hole spacing in the various project areas is described below:

- Beyondie and Ten Mile Surficial Sediments is between 1600 and 150m (average is approximately 250m)
- Beyondie and Ten Mile Palaeochannel and Bedrock is between 1600 and 150m (average is approximately 270 m)

- Sunshine Surficial Sediments is between 3000 and 150m (average is approximately 250m)
- Sunshine Palaeochannel and Bedrock is between 3000 and 150m (average is approximately 450m)

7.1 Sample Preparation, Analyses and Security

Brine samples collected from drilling or from augering were hand delivered by KLL or Advisian personnel back to Perth, then handed over to Bureau-Veritas Minerals (BV) for analysis of various parameters. All brine samples collected were kept cool (<20 °C), until delivery to the laboratory in Perth.

Elemental analyses of brine samples have been performed by a reputable laboratory, BV in Canning Vale. The relationship between KLL and BV is strictly concerned with chemical analysis of samples and cost estimates for an on-site laboratory. Bureau-Veritas is certified to the Quality Management Systems standard ISO 9001. Additionally, it has internal standards and procedures for the regular calibration of equipment and quality control methods. The laboratory equipment is calibrated with standard solutions.

Duplicate samples (~10 %) were assayed at ALS' Laboratory in Malaga during the 2015 investigations. ALS are certified to ISO 17025, the standard for testing and calibration in laboratories. The relationship between KLL and ALS is strictly for the analysis of duplicate samples for the BSOPP. Following the 2015 laboratory analysis it was determined that BV provided the most conservative results and was used for the 2017 and 2018 laboratory testing.

Analyses of the brine samples were undertaken using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Ion Selective Electrode (ISE), and Inductive Coupled Plasma Mass Spectroscopy (ICP-MS). All samples were analysed for Ca, K, Mg, Na, SO4, and Cl. Selected samples were analysed for a suite of 62 elements: Au, Ag ,As ,Ba, Be, Bi, Br, Cd, Ce, Co, Cs, Cu, Dy, Er, Eu, Ga, Gd, Ge, Hf, Hg, Ho, In, La, Li, Lu, Mo, Nb, Ni, Pb, Pd, Pr, Pt, Rd, Re, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Tl, Tm, U, W, Y, Yb, Zn, Zr, Al, B, Ca, Cr, Fe, K, Mg, Mn, Na, P, S, Si, Ti, V.

The sample preparation and security (no mixed samples, origin of each sample is transparent) as well as analytical procedures are aligned with international standards to ensure reliable results.

Sonic core samples were sent to Corelabs Perth for analysis. Sub-samples of core were selected by the senior geologist covering the differing lithological types of the project. Individual core plugs were obtained by dry icing the sections of core prior to drilling of a core plug. A number of core plugs failed due to the unconsolidated nature of the sediments.

Lithological Samples were sent to Soil Water Group Laboratories for grain size analysis, porosity and drainable porosity laboratory testing.

7.2 Data Verification

As outlined above, duplicate samples (~10%) from the augering program were assayed at ALS' Laboratory in Malaga in order to verify the assay results performed by BV. ALS is certified to ISO 17025, the standard for testing and calibration in laboratories.

The results showed a good correlation amongst major ions (less than 10%) at both laboratories except for Sulphur (BV's values on average about 21 % lower). Upon review of this discrepancy, BV conducted an internal check and found no reason to suggest the Sulphur assay was incorrect. BV analysed Sulphur by ICP-OES, then converted to SO₄ by molecular weight calculation (this method assumes all S exists as SO₄, which may be incorrect). ALS used the method APHA 4500 to analyse the SO₄.

For resource assessment, the lower sulphate results were considered as the worst-case scenario. The data is judged to be adequate for all calculations made for resource estimates. For a Measured and Indicated Resources variabilities of less than 10% should be achieved, or a third independent laboratory should be consulted. BV has been used as the preferred laboratory for all further brine analysis following the check laboratory results.

Laboratory analytical quality was monitored through the use of randomly selected quality control repeat samples, in addition to laboratory standards. There were 64 repeat analyses of the 717 samples, representing approximately 1 in every 11 samples.

Verification of assay data included ion balances and comparison of laboratory repeats and duplicates. "The qualified person's opinion on the adequacy of the data for the purposes used in the technical report."

8 Geological Model Development

The geological model has been built within Leapfrog Geo v4.2 implicit modelling software from Aranz Geo Limited. The model used all available drilling data, surface mapping and geophysical data to model the geology across the Beyondie, Ten Mile Lake and Lake Sunshine areas. The topography of the model was derived from high precision ortho imagery of the main lake areas and bore sites. The ortho imagery has a horizontal accuracy of 0.2 m and vertical accuracy of 0.08 m, all bore collars were levelled to the topography in the model.

The geology has been constrained in areas of the model where drilling has left the aquifers open and the geophysics is less certain, by using polylines to reduce the modelling interpretation.

Sections from the geological model are presented in Appendix 4 and an example from Ten Mile is presented in Figure 14 above. All cross sections show potassium assays on drill holes within 400m of each section, composite samples are shown as extended colour block on drill holes.

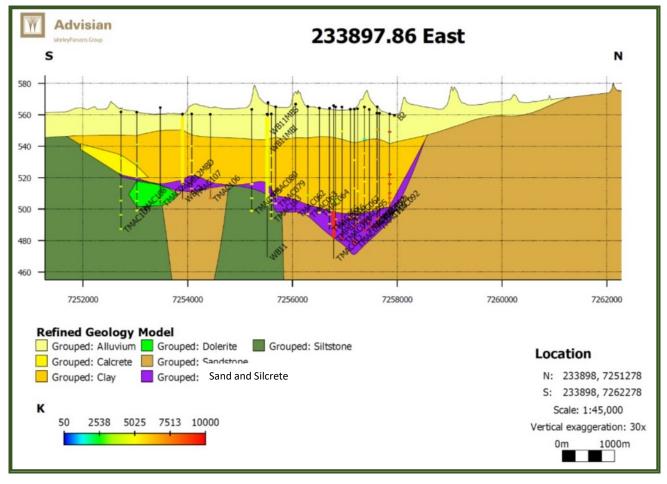


Figure 15: Geological Model Section at Ten Mile

9 Mineral Resource Estimates

The Resource estimate covers updated Indicated and Inferred Resources and new Measured Resources at Ten Mile Lake, Lake Sunshine and surrounding geology. Existing Indicated Resources, Inferred Resources and an Exploration Target for the Western and Eastern regional lakes are not affected by this Resource update. An assessment of the Ore Reserves will be completed as part of the BFS study which is in progress.

Resource categories are linked to the types of data obtained, drill hole density and confidence; these are listed below by category below.

Measured Resources have been calculated for areas where:

- Drilling and testing has confirmed local site geology and aquifer geometry to a high level of confidence;
- Aquifer hydraulic properties (hydraulic conductivity and specific yield) have been determined by multiple methods to a high level of confidence;
- Test pumping has measured groundwater flow interactions between the various geological units to confirm extractability; and
- Brine samples have been collected at regular intervals on a dense drill pattern with a high level of QA/QC to confirm brine concentrations.

•

Indicated Resources have been calculated for areas where:

- Drilling and testing has confirmed local site geology and aquifer geometry;
- Aquifer hydraulic properties (hydraulic conductivity and specific yield) have been determined by more limited sampling and testing than Measured Resources;
- Test pumping has been completed to demonstrate extractability; and
- A number of brine samples have been collected from a selection of locations to confirm brine concentrations.

•

Inferred Resources have been calculated, based on a lesser amount of data and confidence, where:

- Geological evidence exists to imply but not verify the existence of brine grade and aquifer geometry;
- Proven geophysical techniques have been used to infer palaeovalley aquifers away from the main drilling investigation areas;
- Surface sampling and testing has determined brine grade at shallow depths which has been inferred to reasonably persist to deeper aquifers as per the existing resource models; and
- Aquifer properties can be inferred from tests undertaken in other contiguous areas of the same palaeovalley system.
- •

Exploration Targets have been calculated where:

- No brine-chemistry data exists of any kind to confirm the brine quality, but some aquifer continuity with known brine resources may be expected based on geophysics (for example along the palaeochannel reaches between lakes);
- Shallow-augering has provided evidence of high potassium concentrations which may be expected to occur throughout the sequence (based on potassium distribution with depth observed elsewhere), but there is no drilling or geophysical data available to provide any geological context to the brine occurrence, or infer what the sequence at depth may be.

Due to the considerable distances involved between defined brine deposit zones at the BSOPP, Resources have been split into three separate areas: Ten Mile Lake and Beyondie; Lake Sunshine; and the Regional Lakes. The Resource update concentrates on upgrading the Resources in the Ten Mile Lake and Lake Sunshine areas of the Project. The aerial extents of these different Resource categories are presented in Figure 16 and Figure 17.

Resources have been determined for the five dominant lithological types within the project area:

- Lake surface sediments;
- Alluvial sediments;
- Palaeovalley clay;
- Palaeochannel sand and silcrete; and
- Weathered and fractured bedrock.

9.1 Resource Estimation Methodology

• A 3D geological model was constructed in Leapfrog Geo v4.2 implicit modelling software from Aranz Geo Limited. The model used all available drilling data, surface mapping and geophysical data to model the geology across the Beyondie, Ten Mile Lake and Lake Sunshine areas. The topography of the model was derived from high precision ortho imagery of the main lake areas and bore sites. The ortho imagery has a horizontal accuracy of 0.2 m and vertical accuracy of 0.08 m, all drill holes were levelled to the topography in the model.

- All drill hole assays for potassium, sulphate and magnesium were brought into the model as 1m intervals when taken from drilling or as composites where assays are representative of screened intervals from bores (ie test pumping and bore development). All database values used in the models are provided as histograms in Appendix 6.
- The Edge module in Leapfrog Geo v4.2 was used for block modelling and numerical estimation. Two block models were constructed, one for Beyondie and Ten Mile Lake, and one for Lake Sunshine. Beyondie and Ten Mile Lake utilised standard block sizes of 250m in the x and y direction and 5m in the z direction. Whilst Lake Sunshine used the same x and y block size but 2.5m blocks in the z direction. Sub blocking was used to refine the block model in areas where geological surfaces intersect blocks. Parent blocks were split by up to four blocks in the x and y direction and two blocks in the z direction. The block model grade distributions are presented in Appendix 7.
- Estimators were set up for potassium, sulphate and magnesium for the below water table domain. The domain was clipped to boundaries of the defined resource categories and tenements, as hard boundaries, as presented in Figure 16 and Figure 17. The base of the domain was defined as 460m AHD. Parameter concentrations were estimated across the cells using Ordinary Kriging, ellipsoid search parameters were assigned following review of the variography of each parameter. The search parameters for each block model are listed below:

Ten Mile Lake and Beyondie

- Ellipsoid Ranges Max. = 3000m, Int. = 1800m, Min. = 61m
- No. of Samples Max = 20, Min = 5.

Lake Sunshine

- o Ellipsoid Ranges Max. = 3000m, Int. = 2000m, Min. = 100m
- No. of Samples Max = 20, Min = 3.
- Variogram models for each parameter are presented in Appendix 8. Nearest neighbour (NN) and inverse distance squared (ID2) estimators were also run for potassium as check accuracy calculations. The average grade of each model swath (average cell value in one plane) and the plots of each model are presented in x, y and z directions for potassium in Appendix 9. These plots show that the model adopted (k:3x3x2) is appropriate when plotted against the ID2 and NN methods.
- Specific yield was calculated for the surficial lake sediments using the average of the trench testpumping analysis results. For all other lithologies the average values from calibrated BMR logging were used as presented in Section 6.
- SOP grade from potassium concentrations were calculated using a conversion of 2.228475, accounting for the atomic weight of sulphate (sulphur and oxygen) in the K₂SO₄ formula.
- Resource tonnages were calculated by multiplying the volume of the Resource Zone in each lithology by the specific yield and SOP grade to obtain the drainable SOP volume.

The brine volumes listed below cover each of the individual categories, so the total volume would be the summation of volumes calculated for each level of resource category listed below. The areas determined for resource assessment are presented in Figure 16 to Figure 21.

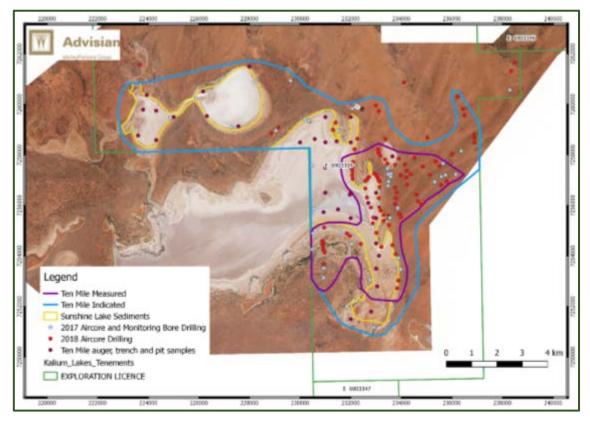


Figure 16: Location of Areas Delineated for Resource Assessment: Ten Mile

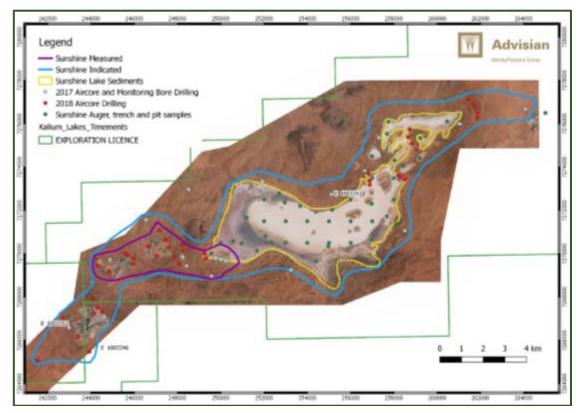


Figure 17: Location of Areas Delineated for Resource Assessment: Lake Sunshine

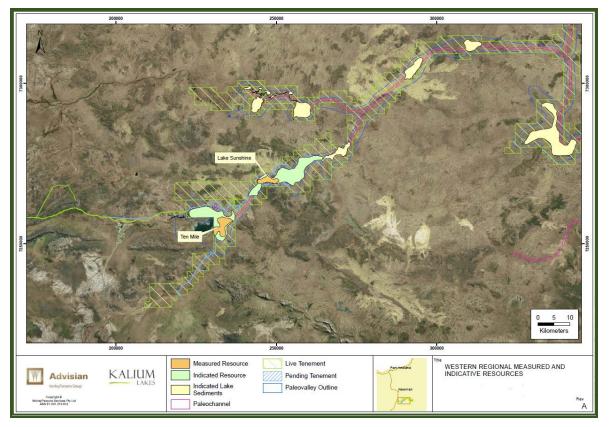


Figure 18: Location of Areas Delineated for Resource Assessment: Western Area Measured and Indicated Resources

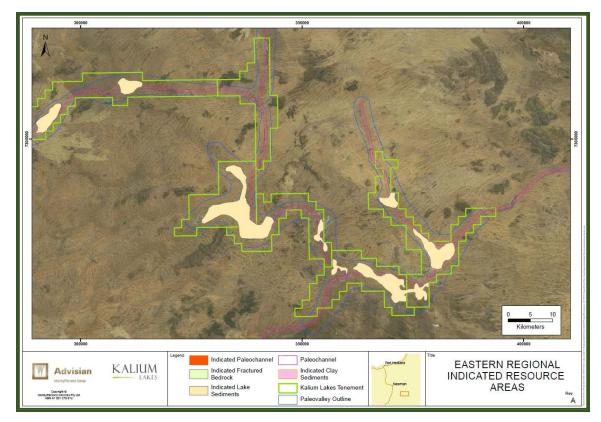


Figure 19: Location of Areas Delineated for Resource Assessment: Eastern Area Indicated Resources

Figure 20: Location of Areas Delineated for Resource Assessment: Western Area Inferred and Exploration Target

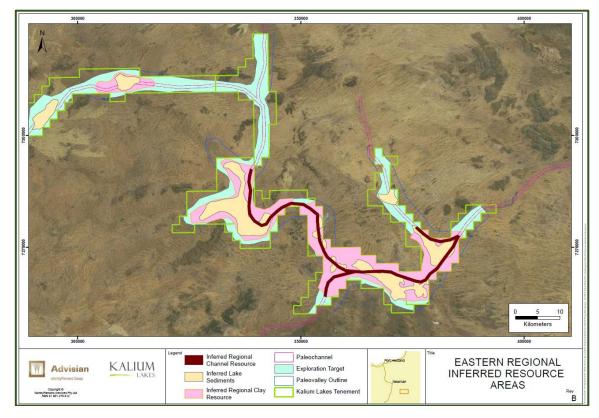


Figure 21: Location of Areas Delineated for Resource Assessment: Eastern Area Inferred and Exploration Target

9.2 Measured Mineral Resource

Based on the criteria listed above, the brine Measured Resource is provided in the following Table 4.

9.3 Indicated Mineral Resource

Based on the criteria listed above, the brine Indicated Resource is provided in the following Table 5.

9.4 Inferred Mineral Resource

Based on the criteria listed above, the brine Inferred Resource is provided in the following Table 6. No Indicated Resource is part of the Inferred Resource.

9.5 Exploration Target

Based on the criteria listed above the Exploration Target is provided as a range, below in Table 7.

The BSOPP Exploration Target is based on a number of assumptions and limitations and is conceptual in nature. It is not an indication of a Mineral Resource Estimate in accordance with the JORC Code (2012) and it is uncertain if future exploration will result in the determination of a Mineral Resource.

Table 4: Measured Mineral Resources

Aquifer Type	Volume (10 ⁶ m³)	Total Porosity (-)	Brine Volume (10 ⁶ m ³)	Specific Yield (-)	Drainable Brine Volume (10 ⁶ m ³)	K (mg/L)	K Mass (Mt)	SO₄ (mg/L)	SO₄ Mass (Mt)	Mg (mg/L)	Mg Mass (mg/L)	SOP Grade (kg/m ³)	K₂SO₄ Mass (Mt)
Lake Surface Sediments	118	0.47	56	0.17	20	7,116	0.14	19,292	0.38	6,488	0.13	15.87	0.31
Alluvium	96	0.33	32	0.12	11	2,940	0.03	7,959	0.09	3,195	0.04	6.56	0.07
Palaeovalley Clay	799	0.35	282	0.06	47	4,609	0.22	14,475	0.68	4,088	0.19	10.28	0.49
Sand and Silcrete	228	0.33	75	0.21	48	5,643	0.27	17,282	0.83	5,062	0.24	12.58	0.60
Fractured / Weathered Bedrock	304	0.24	72	0.08	23	4,648	0.11	14,995	0.34	4,668	0.11	10.37	0.24
Total Resources	1,546		516		149	5,155	0.77	15,606	2.33	4,742	0.71	11.50	1.72

Note: Errors are due to rounding.

Table 5: Indicated Mineral Resources

Aquifer Type	Volume (10 ⁶ m³)	Total Porosity (-)	Brine Volume (10 ⁶ m ³)	Specific Yield (-)	Drainable Brine Volume (10 ⁶ m ³)	K (mg/L)	K Mass (Mt)	SO₄ (mg/L)	SO₄ Mass (Mt)	Mg (mg/L)	Mg Mass (mg/L)	SOP Grade (kg/m³)	K ₂ SO ₄ Mass (Mt)
Lake Surface Sediments	477	0.45	215	0.11	53	5,993	0.32	18,526	0.99	6,705	0.36	13.36	0.71
Alluvium	1,380	0.36	494	0.13	186	5,090	0.95	14,151	2.63	4,197	0.78	11.35	2.11
Palaeovalley Clay	1,478	0.33	494	0.07	101	6,000	0.61	16,876	1.71	5,451	0.55	13.38	1.36
Sand and Silcrete	332	0.31	104	0.21	69	4,833	0.34	13,841	0.96	4,311	0.30	10.78	0.75
Fractured / Weathered Bedrock	5,505	0.23	1,243	0.06	325	5,846	1.90	17,277	5.61	5,318	1.73	13.04	4.24
Total Resources	9,173		2,550		735	5,591	4.11	16,197	11.91	5,058	3.72	12.47	9.17

Note: Errors are due to rounding.

Table 6: Inferred Mineral Resources

Aquifer Type	Volume (10 ⁶ m³)	Total Porosity (-)	Brine Volume (10 ⁶ m ³)	Specific Yield (-)	Drainable Brine Volume (10 ⁶ m³)	K (mg/L)	K Mass (Mt)	SO₄ (mg/L)	SO₄ Mass (Mt)	Mg (mg/L)	Mg Mass (mg/L)	SOP Grade (kg/m ³)	K₂SO₄ M (Mt)
Alluvium	2,064	0.45	929	0.11	98	6,239	0.61	18,663	1.82	6,872	0.67	13.91	1.36
Palaeovalley Clay	22,929	0.35	8,025	0.05	401	5,724	2.30	17,185	6.90	6,230	2.50	12.76	5.12
Sand and Silcrete	1,785	0.31	553	0.21	116	5,073	0.59	15,384	1.79	5,391	0.63	11.31	1.31
Total Resources	26,777		9,507		615	5,683	3.49	17,079	10.50	6,174	3.80	12.67	7.79

Note: Errors are due to rounding.

Table 7: Exploration Target

Geological Layer	Maximum Thickness (m)	Coverage (km²)	Sediment Volume (10 ⁶ m ³)	Total Porosity (-)	Total Stored Brine (10 ⁶ m ³)	Specific Yield (-)	Drainable Brine (10 ⁶ m ³)	K Grade (mg/L)	K Mass (Mt)	SO₄ Grade (mg/L)	SO₄ Mass (Mt)	Mg Grade (mg/L)	Mg Mass (Mt)	K₂SO₄ Mass (Mt)
Alluvium	6	157	942	0.4	377	0.10	94	2,000	0.19	6,080	0.57	2,320	0.22	0.42
Palaeovalley Clay	20	1,148	22,960	0.45	10,332	0.03	689	1,800	1.24	5,472	3.77	2,088	1.44	2.76
Basal Sands	7	108	756	0.35	265	0.18	136	1,620	0.22	4,925	0.67	1,879	0.26	0.49
Total					10,973		919	1,803	1.65		5.01		1.91	3.68
Alluvium	12	157	1,884	0.5	942	0.18	170	3,500	0.59	9,625	2	3,850	0.65	1.32
Palaeovalley Clay	50	1148	57,400	0.55	31,570	0.08	2,526	3,325	8.40	9,144	23.09	3,658	9.24	18.73
Basal Sands	10	108	1,080	0.45	486	0.28	136	3,159	0.43	8,687	1.18	3,475	0.47	0.96
Total					32,998		2,831	3,328	9.42		25.91		10.36	21.01

Mass t)
6
2
81
'9

9.6 Total Brine Volume

For comparative purposes, Table 8 has been provided to compare the above Resources and Exploration Target, which are based on drainable brine volumes, against other Australian Listed Companies' Mineral Resources which have quoted Resources based on total brine volume. As can be seen the total brine volume is significantly higher than reporting against the CIM Guidelines of drainable brine. For economic production, the drainable brine volume is the most important volume because only a small proportion of brine present of the total porosity can be abstracted.

Level	Total Brine Volume (10 ⁶ m3)	K* (10 ⁶ tonne)	SO4* (10 ⁶ tonne)	Mg* (10 ⁶ tonne)	SOP* (10 ⁶ tonne)
Total In-Situ volume associated with the Measured Mineral Resource	516	2.54	7.77	2.33	5.67
Total In-Situ volume associated with the Indicated Mineral Resource	2,550	14.54	42.23	13.27	32.42
Total In-Situ volume associated with the Inferred Mineral Resource	9,507	54.53	163.75	59.36	121.61
Total In-Situ Volume associated with the Exploration Target*	10,973 – 32,998	19.79 – 109.80	60.13 - 301.96	22.94 – 120.78	44.11 – 244.86

Table 8: Resources Summary

* Tonnage for K, SO₄, Mg and SOP was calculated from the average grades of K, SO₄ and SOP and the Total Brine Volume for each resource.

Note: Errors are due to rounding.

9.7 Conversion of Mineral Resources to Ore Reserves

The BSOPP has an existing Probable Reserve of 2.66 Mt SOP at a potassium grade of 6,373 mg/L. A Reserve update is currently being completed to take into account the additional Mineral Resources presented in this update. An increase in Ore Reserve is expected reflecting the increase in Measured and Indicated Resources. The Ore Reserve applies various modifying factors for abstraction and variations in brine grade to meet a mine plan that will form the basis of the BFS. The Ore Reserve is being modelled within hydrogeological numerical software to predict pumped volumes from each proposed pumping location over time. Aquifer interactions, transient brine grade, well efficiencies and recharge will all be addressed as part of the updated Ore Reserve.

References

- JORC, 2012: Australasian Code for Reporting of Mineral Resources and Ore Reserves The JORC Code 2012 Edition.- The Joint Ore Reserves Committee of the Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists and the Minerals Council of Australia. 20 December 2012.
- NMR Services Australia, 2018, Evaluating Brine Deposits Using Borehole Magnetic Resonance, AEGC 2018.
- Magee, J., 2009, Palaeovalley Groundwater Resources in Arid and Semi-Arid Australia: Geoscience Australia Record, 2009/03.

Schlumberger ,1997, How to Use Borehole Magnetic Resonance, Oilfield Review, Summer 1997

JORC CODE, 2012 EDITION - TABLE 1

Section 1 – Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Brine samples were obtained during drilling from prolonged airlift yields and collected at the cycle from the zone above the drilling depth, although the possibility of downhole flow outside of the deexcluded. These mixed samples were only used for estimation the inferred resource calculation. Brine samples during test production bore pumping were obtained from the end of the discharge groundwater pumped from the screened section of the production bore. Brine samples from trench pumping were obtained from the end of the discharge line and are an trench intercepts. The sampling program involved the collection of brine samples and samples of the aquifer material geological variation. Lithological samples at 1m intervals were obtained by a combination of methods including reverse. Brine was obtained during drilling from the cyclone of the drill rig during airlift yields. These samplabove the drilling depth, although the possibility of downhole flow outside of the drill rods from strench during of the sediments and calibrate the geophysical tools being used. Core was extruded plastic core bags and placed in metal core boxes for storage. All sonic holes were geophysical logged with the methods listed in the report.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Reverse circulation (140mm diameter), aircore (90mm and 85mm diameter) and sonic (150mm) monitoring bore holes drilled during this report. HQ diamond tails were used on a number of deep reverse circulation holes to penetrate bedrock All shallow lake surface sediment holes were drilled with auger techniques. All production bores were drilled using conventional mud rotary, casing advance or sonic technic All holes were drilled vertically.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Geological sample recovery was high, in all lithologies, except fractured bedrock which had lost of and only returned minor chip samples back to the surface. Brine recoveries were high for Reverse Circulation drilling in the productive aquifer zones (Surfic bedrock). The low transmissivity clay yielded very low volumes with more sporadic sampling result formation. Brine recoveries during aircore drilling were minimal due to the nature of the drilling technique. Airlifts were generally of prolonged duration to obtain representative samples, however water flow deeper airlift yields cannot be ruled out. Sonic core was recovered in variable lengths between 1.5 and 6m core runs depending on the g marked on each of the core boxes. Sonic core recovery was generally high with some expansion of the stiff lacustrine clays observe core.
Geologic Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 All drill holes were geologically logged by a qualified geologist. All geological samples collected during all forms of drilling are qualitatively logged at 1 m interval aquifer materials hosting the brine. Geological logging and other hydrogeological parameter data is recorded within a database and Solid samples are collected and washed and stored in chip trays for future reference. Core was logged and core plugs selected for laboratory testing by a senior geologist. Downhole geophysical methods (Resistivity, spectral gamma and BMR) were used to assist with Geological logging and other hydrogeological parameter data is recorded within a database.
Subsampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/ second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 During drilling all brine was sampled directly from the cyclone during prolonged airlift yields. This recovered from the inside return, i.e. from the bit face. Aircore drilling with low pressure air aims to collect a brine sample that is representative of the in However, this method does not exclude the potential for downhole mixing of brine. The fact that brine, while underlying permeable intervals did yield brine with ease provides confidence that reprobtained. Samples from the pumping tests were taken in intervals of between one per day or every two day. All samples collected are kept cool until delivery to the laboratory in Perth. Brine samples were collected in 500 ml bottles with little to no air. Field brine duplicates have been taken at approximately 1 in 11 intervals

at the cyclone. These samples are interpreted to come de of the drill rods from shallower zones cannot be alculation.

discharge line and represent an average composition of

and are an average representation of the aquifer zone the

uifer material during drilling to define the brine and

ding reverse circulation, aircore and auger. hese samples are interpreted to come from the zone ods from shallower zones cannot be excluded. nost brine to evaluate the porosity and hydraulic as extruded from the sonic core barrel and sealed within

c (150mm) drilling has been utilised for all exploration and

ate bedrock stratigraphy.

nic techniques.

h had lost circulation of drill cuttings in the fracture zone

nes (Surficial sediments, palaeochannel sand and mpling resulting, generally occurring near the base of the

er water flowing down from the surficial aquifer during

ng on the ground conditions. The length of the run was

ys observed during the drilling process resulting in excess

m intervals, to gain an understanding of the variability in

abase and summarised into stratigraphic intervals.

assist with lithological logging. abase.

yields. This provides the most representative sample

ve of the interval immediately above the bit face. e fact that the low transmissivity clays were slow to yield nce that representative samples with depth have been

ery two days

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Elemental analysis of brine samples are performed by Perth laboratory, the Bureau-Veril laboratories. BV is certified to the Quality Management Systems standard ISO 9001. Add for the regular calibration of equipment and quality control methods. Laboratory equipment are calibrated with standard solutions. Analysis methods for the brine samples used are inductively coupled plasma optical emi (ISE), Inductive coupled plasma mass spectroscopy (ICP-MS), volumetrically and colour The assay method and results are suitable for the calculation of a resource estimate. Repeat assays and reference standards have been undertaken and indicate an average BMR tool calibration was completed by Qtec the developers of the BMR tool utilised (BM signal to noise ratio at this depth of investigation was deemed acceptable. BMR T2 calibration and cut-offs have been discussed in the report.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Multiple samples have also been taken from nearby locations during sampling to verify a Assays have been completed on samples taken up two years apart indicating consistent Assays have been completed on samples obtained from pumping of the aquifer units on determine variability of grade during pumping. Field parameters of SG and total salinity have been taken. Data concerning sample location was obtained out in the field, data entry then performed verified by Advisian. Assay data remains unadjusted. Sonic cores are twin holes of exploration air core holes
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Hole location coordinates obtained by a qualified mines surveyor using a Trimble RTK G in Z. Regional auger holes have been surveyed using a hand held GPS. The grid system used was MGA94, Zone 51.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing is discussed in the report The drill holes are not on an exact grid due to the irregular spatial nature of the deep target
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Not applicable, considering the deposit type. All drill holes are vertical given the estimated flat lying structure of a salt lake
Sample security	The measures taken to ensure sample security.	Samples are labelled and transported by KLL personnel to Perth. They are then hand de
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Advisian has conducted a review of works undertaken previously by AQ2 and K-UTEC. Data review is summarised in the Mineralisation and Resource estimate. No audits were undertaken. Snowden peer review to confirm compliance with the JORC Code and ASIC Information

Section 2 – Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Beyondie Potash Project is 100% owned by Kalium Lakes Limited (KLL or Kalium La licences: E69/3306, E69/3309, E69/3339, E69/3340, E69/3341, E69/3342, E69/3343, E69/3349, E69/3351, E69/3352. KLL also has granted Mining Licences: M69/145 and M69/146. KLL also has granted Miscellaneous Licences: L52/162, L52/186; L52/187, L52/187, L52/L69/35, L69/36. KLL has a land access and mineral exploration agreement and a Mining Land Access Agr Aboriginal Corporation over tenures E69/3339, E69/3340, E69/3342, E69/3343, E69/3344. KLL has an exploration and prospecting deed of agreement, and a Mining Land Access Agr over tenures E69/3341, E69/3346, E69/3347 and E69/3352.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	There has been no previous exploration for SOP at the Beyondie Potash Project by third
Geology	Deposit type, geological setting and style of mineralisation.	The deposit is a brine containing potassium and sulphate ions that can form a potassium sediments below the lake surface and in sediments adjacent to the lake. The lakes sit with hundreds of kilometres, this system has been eroded into the North-West Officer Basin set.

eritas (BV) (formerly Amdel/Ultrace) mineral processing diditionally, they have internal standards and procedures
nission spectrometry (ICP OES), Ion Selective Electrode urimetrically.
ge error of less than 5%. MR-60). The diameter of investigations was 280mm, the
assay results and sampling methods.
nt grade. on a daily basis of up to 29 days at a single location to
ed back in the Perth office to an electronic database and
GPS with an accuracy of +/- 25mm in X,Y and +/- 50mm
argets and access issues when traversing the lakes.
delivered to BV laboratories by KLL personnel.
on Note 214

Lakes) with project tenure held under granted exploration E69/3344, E69/3345, E69/3346, E69/3347, E69/3348,

52/193, L69/28, L69/29, L69/30, L69/31, L69/32, L69/34,

Agreement with the Mungarlu Ngurrarankatja Rirraunkaja 344, E69/3345, E69/3348, E69/3349 and E69/3351. s Agreement with the Gingirana Native Title Claim Group

rd parties.

m sulphate salt. The brine is contained within saturated within a broader palaeovalley system that extends over sediments.

Criteria	JORC Code explanation	Commentary
Drillhole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes:	 Information has been included in drill collar tables and bore logs appended to this report o All holes are vertical.
	 easting and northing of the drillhole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole downhole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No grade cut-offs have been used Data aggregation comprised calculation of volume weighted average potassium, sulphate Total Porosity within a Resource area for a given geological unit (i.e. All palaeochannel sa summarised as a volume weighted average).
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'downhole length, true width not known'). 	Not applicable.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to figures/tables in this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All pertinent results have been reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Approximately 1,105 km of gravity and passive seismic geophysical surveys have been codeepest parts of the palaeochannel, with traverses undertaken across the channel, extended Additionally, NanoTEM geophysical surveys have been completed 2017 to distinguish bet support the passive seismic and gravity interpretations. XRF and XRD analysis of the lake sediments has provided a breakdown of the minerals a Metallurgical and mineral processing test work has included bench scale solar evaporation the test work have enabled preliminary process plant design for the Beyondie brine. Other companies have regionally performed exploration for similar brine deposits.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Completion of the Reserve and mine planning modelling Preparation of the NI43-101 and JORC compliant Reserve update Delivery of a BFS Report More extensive drilling may confirm the occurrence of basal sands and sandstones throug the Stage 1 area.

Section 3 Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Cross-check of laboratory assay reports and database; Review of sample histograms used in Resource models; QA/QC analysis and protocols as described in Section 0.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Multiple site visits have been undertaken throughout the field program that has field verified All other site visits are discussed in Section 4.1.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The resource is contained within Cenozoic Palaeovalley stratigraphy and the underlying fra The geological model for the indicated and measured resources is well constrained. Drill he the project, and the deposit is not structurally complex; it is alluvial fill in a palaeovalley dep basin. The geological model for the fractured bedrock is less certain, the continuity and structural but can be mapped in geophysical responses and is considered to be associated with the orientation.

t or previously reported.
te and magnesium concentration of all Specific Yield and sand and silcrete zones per area were aggregated and
completed. The tests were performed to define the
ending from 10 Mile Lake to TJunction Lake. Detween highly conductive and less conductive areas to
and their percent components of the lake sediments
ion tests, milling, floatation and conversion. The results of
ughout the whole palaeodrainage system to the East of

fied the data obtained.

fractured and weathered bedrock. I hole coverage is relatively consistent for the scale of depo-centre, within a shallow dipping large sedimentary

ral controls on rock fracturing are not well understood, ne unconformity between formations and structural

Criteria	JORC Code explanation	Commentary
		 The geological interpretation informs the volume of the resource. The nature of aquifer properties in different geologies does affect grade, where transmissi areas of the brine grade. In addition the bedrock appears to be elevated in potassium wh The paleo-topography is key to the determining the aquifers with the highest transmissivit surficial lakes where brine grade, specific yield and transmissivity are highest.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 The length of the mineral resource is defined by the company's tenement boundaries which lake/palaeodrainage system. Where the tenement boundary is wider than the palaeochan defined by geophysical surveys (gravity, passive seismic and TEM). The thickness of the hosting aquifer holding the brine mineral resources has been based below surface) and a sediment thickness above the impermeable bedrock. The mineral resource extends laterally outside of KLL tenement boundaries in some case The volume of brine that can be abstracted has been based on a combination of aquifer to techniques using Borehole Magnetic Resonance (BMR).
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and 	 Modelling procedures and parameters are discussed in Section 8. Additional details are p Potassium, sulphate and magnesium concentration point data were separated by project leapfrog modelling domain. Sand and Silcrete zones have been defined by the presence of either one of these facies bedrock origin or transported origins. Resource Zones were derived in GIS software using drill hole spacing and areas of meas
	 whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 testing. The block model cell sizes took into account the density of the sample spacing within the least one sample was attributed to each block in the x and y directions. The block spacing the brine within lithologies, an increase in grade with depth is observed in each lithology the selected to allow for pinching geology, so this trend in grade variability can be accurately in complex geological contacts are present or greater resolution of sampling was available. Volumetric weighted average of SOP grade per Resource Zone was calculated where mut sand zones have been merged into a Sand and Silcrete group by volumetric weighted average. Selective mining units have not been considered. There are no assumptions about correlation between variables. No cut-off grade has been used
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	Tonnages of potassium have been estimated on a dry, weight volume basis (%w/v). For e
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	No cut-off grade has been used in this Resource update so that a longer life of mine can
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 The mining method is likely to be recovery of brine from the underground salt lake by subsishallow trenches targeting the surficial aquifer. Though specific yield and total porosity provide a measure of the volume of brine present transmissivity controls are the main factor in defining Mining factors and will be discussed It is not possible to extract all the contained brine with these methods, due to the natural p The Reserve is required to quantify the economically extractable resources.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	 Chemical assays of brine waters suggest a similar chemical composition to other sulphate studies have demonstrated that SOP recovery is possible with conventional mineral proce Metallurgical test work on brine water has been carried out in both small scale lab benchto promising results to the efficacy of standard metallurgical recovery methods.
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 The project is expected to have a limited, localized environmental impact, with minor impact excavation, adjacent "fresher" aquifer systems, stock piling of salt by-products, stygofauna The project is located in a very remote area and does not expect to contain significant quate. Acid mine drainage is not expected to be an issue.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. 	 Tonnages of potassium have been estimated on a dry, weight volume basis(%w/v). For ex As the resource is a brine, bulk density is not applicable. The resource has been calculated off a Sy (drainable porosity) determined using a combin geophysical methods.

ssivity appears to be a minor diluting factor in the highest which likely to be a source of the resource. vity and predicting their extent within the vicinity of the

hich have been fit to the margins of the salt annel system, the palaeochannel boundaries have been

d on the groundwater elevation (measured as depth

ses, notable Ten Mile Lake. r test pumping and core calibrated geophysical

e presented below were relevant. ct area (Ten Mile and Sunshine) and imported into the

es in the lithological log, these maybe of weathered

asured drawdown from extended duration aquifer

ne Measured Resource zones so that on average of at sing of the z direction considered the vertical variability of y therefore high resolution z component (2.5 to 5m) was ly represented. Automatic sub-blocking was used where

nultiple zones are determined (i.e. upper sand and basal verage to determine SOP grade)

example, 10kg potassium per cubic metre of brine.

can be sustained during the in-progress Reserve update.

ubmersible bore pumps targeting the deeper aquifer and

nt in an aquifer system hydraulic conductivity and

ed in the Reserve.

I physical dynamics of abstraction from an aquifer.

ate of potash projects in Western Australia. Feasibility cessing techniques.

ntop trials and larger scale evaporation pilot ponds with

pacts on surface disturbance associated with ina and potentially groundwater dependent vegetation. juantities of waste tailings.

example, 10 kg potassium per cubic metre of brine.

bination of aquifer testing, laboratory calibrated

Criteria	JORC Code explanation	Commentary					
Classification	 Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). 	At this stage of the project an exploration target, inferred, indicated and measured resource Resource and Reserve Estimation for Lithium Brines and JORC code were used to determ					
Audits or reviews	 Whether the result appropriately reflects the Competent Person's view of the deposit. The results of any audits or reviews of Mineral Resource estimates. 	None					
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The mineral resource contains aqueous potassium, sulphate and other ions, existing as a code deals predominantly with solid minerals, and does not deal with liquid solutions as a resource considers the geological uncertainties of dealing with a brine. See also: CIM Best Estimation for Lithium Brines, Prepared by the Sub-Committee on Best Practice Guidelines Brines. Kalium Lakes is part of the Association of Mining and Exploration Companies (AMEC) Pota to define a brine Mineral Resource and Ore Reserve, in order to increase the certainty, cla Sy estimates to determine drainable brine volume in this Resource estimate have used indindustry best practice in the petroleum industry for estimating Reservoir volumes of all com considered to be "industry leading". Traditional core derived analysis is point based, whilst deriving average properties for individual lithologies. BMR technology has only recently been made financially economical in the brine resource noise ratios and appropriate depths of investigation. 					

rrce are defined. The CIM Best Practice Guidelines for rmine these confidence categories.

a brine in a sub-surface salt lake. The current JORC a resource. The relative accuracy of the stated est Practice Guidelines for Resource and Reserve nes for Resource and Reserve Estimation for Lithium

Potash Working Group which has developed guidelines clarity and transparency in reporting of these resources. industry first techniques. However, these techniques are omponents of a petroleum reservoir therefore are llst a continuous log provides a far better means to

ce industry by the use slim-line tools with low sign to

APPENDIX 1: DRILL HOLE ASSAYS AND DETAILS

											ssay	у			
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4	
											r	mg/L	•		
SDHTM08	10 Mile	230359	7259357	560	Drilling	48	-90	0	745	5585	53350	7850	89150	23397	
SDHTM08	10 Mile	228257	7260913	560	Drilling	0	-90	0	737	5450	51250	7780	88000	23367	
SDHTM08	10 Mile	230359	7259357	560	Drilling	27	-90	0	742	5430	54100	7640	88000	23068	
SDHTM08	10 Mile	230359	7259357	560	Drilling	30	-90	0	763	5600	54800	7900	88000	23936	
SDHTM08	10 Mile	230359	7259357	560	Drilling	33	-90	0	766	5590	53800	7860	88300	23397	
SDHTM08	10 Mile	230359	7259357	560	Drilling	36	-90	0	745	5585	51500	7670	88150	22993	
SDHTM08	10 Mile	230359	7259357	560	Drilling	39	-90	0	760	5550	53600	7780	88200	23457	
SDHTM08	10 Mile	230359	7259357	560	Drilling	42	-90	0	748	5570	53300	7820	87800	23217	
SDHTM08	10 Mile	230359	7259357	560	Drilling	45	-90	0	752	5640	54600	7940	89600	23457	
SDHTM08	10 Mile	230359	7259357	560	Drilling	3	-90	0	746	5540	51800	7800	88900	23068	
SDHTM08	10 Mile	230359	7259357	560	Drilling	6	-90	0	742	5510	52800	7780	90400	23098	
SDHTM08	10 Mile	230359	7259357	560	Drilling	9	-90	0	735	5480	52900	7760	89200	23128	
SDHTM08	10 Mile	230359	7259357	560	Drilling	12	-90	0	731	5370	51800	7630	88000	22858	
SDHTM08	10 Mile	230359	7259357	560	Drilling	15	-90	0	746	5380	50600	7550	87100	22798	
SDHTM08	10 Mile	230359	7259357	560	Drilling	18	-90	0	758	5430	51900	7670	86900	22858	
SDHTM08	10 Mile	230359	7259357	560	Drilling	21	-90	0	758	5480	52600	7700	86900	23367	
SDHTM08	10 Mile	230359	7259357	560	Drilling	24	-90	0	735	5340	53700	7540	86900	22948	
TMAC06	10 Mile	233139	7256566	560	Drilling	42	-90	0	737	6330	50100	6030	85900	21600	
TMAC06	10 Mile	233139	7256566	560	Drilling	75	-90	0	453	9370	78300	9990	136000	30300	
TMAC06	10 Mile	233139	7256566	560	Drilling	62	-90	0	762	6050	47900	6050	85100	21700	
TMAC11	10 Mile	230975	7253145	560	Drilling	77	-90	0	427	9050	80900	11200	140000	31800	

											ļ	lssay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
									mg/L					
TMAC11	10 Mile	230975	7253145	560	Drilling	79	-90	0	416	9060	81900	11300	139000	32400
TMAC11	10 Mile	233485	7256791	560	Drilling	72	-90	0	519	7130	66900	9070	120000	25400
TMAC12	10 Mile	233485	7256791	568	Drilling	84	-90	0	514	7630	70200	9290	121000	27300
TMAC13	10 Mile	233486	7256939	568	Drilling	78	-90	0	641	5560	47000	6200	82300	18800
TMAC13	10 Mile	233486	7256939	568	Drilling	78	-90	0	638	5560	47200	6200	82400	18700
TMAC13	10 Mile	233486	7256939	568	Drilling	16	-90	0	634	4640	40100	5120	68500	16300
TMAC13	10 Mile	233486	7256939	568	Drilling	16	-90	0	637	4600	40400	5130	68200	16200
TMAC13	10 Mile	233486	7256939	568	Drilling	72	-90	0	518	7270	68400	9220	121000	27000
TMAC13	10 Mile	233486	7256939	568	Drilling	84	-90	0	523	7820	70000	9260	123000	27800
TMAC13	10 Mile	233486	7256939	568	Drilling	84	-90	0	519	7780	69800	9200	123000	27600
TMAC14	10 Mile	233453	7257458	568	Drilling	72	-90	0	519	7180	68300	9200	118000	26300
TMAC14	10 Mile	233453	7257458	568	Drilling	75	-90	0	500	7590	68900	9200	121000	27300
TMAC21	10 Mile	233892	7253504	561	Drilling	59	-90	0	589	6930	56600	7300	99300	23500
TMAC21	10 Mile	233892	7253504	561	Drilling	61	-90	0	890	3430	30000	3840	52700	12800
TMAC21	10 Mile	233892	7253504	561	Drilling	61	-90	0	883	3420	29400	3810	52800	12600
TMAC15	10 Mile	235752	7257213	571	Drilling	17	-90	0	400	645	7500	1190	12950	2610
TMAC15	10 Mile	235752	7257213	571	Drilling	17	-90	0	410	640	7490	1190	12950	2640
TMAC15	10 Mile	235752	7257213	571	Drilling	71	-90	0	519	6430	57600	7730	103400	23200
TMAC15	10 Mile	235752	7257213	571	Drilling	78	-90	0	541	6600	61300	8340	108300	23900
TMAC16	10 Mile	232062	7254489	562	Drilling	71	-90	0	493	7880	66800	7880	117500	28800
TMAC22	10 Mile	230516	7254836	561	Drilling	65	-90	0	392	9160	81900	11300	144000	30300
TMAC22	10 Mile	230516	7254836	561	Drilling	65	-90	0	393	9210	81700	11300	144000	30300
TMAC22	10 Mile	230516	7254836	561	Drilling	77	-90	0	400	9050	82100	11400	144000	30300
TMAC22	10 Mile	230516	7254836	561	Drilling	79	-90	0	391	9050	82400	11500	146000	30000
TMAC23	10 Mile	230934	7253523	563	Drilling	29	-90	0	126	165	940	140	1500	630
TMAC23	10 Mile	230934	7253523	563	Drilling	82	-90	0	320	6180	55900	7550	96700	21700
TMAC24M1	10 Mile	231840	7251994	561	Re-development	58.7	-90	0	751	3180	25300	2940	40300	13100

											Å	Assay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
											l	mg/L		
TMAC24M2	10 Mile	231840	7251994	561	Re-development	58.7	-90	0	745	4480	33100	3960	55450	18000
TMAC26	10 Mile	232825	7253032	561	Drilling	64	-90	0	808	5070	39800	5390	72050	18300
TMAC26	10 Mile	232825	7253032	561	Drilling	64	-90	0	813	5020	39800	5370	71700	17900
TMAC27	10 Mile	229050	7258970	561	Drilling	69	-90	0	520	6360	61800	8810	104350	24900
TMAC28	10 Mile	231526	7258961	561	Drilling	74	-90	0	469	6450	60300	8310	103800	25200
TMAC28	10 Mile	231526	7258961	561	Drilling	74	-90	0	473	6430	60900	8380	104150	25100
TMAC30	10 Mile	236365	7258144	561	Drilling	24	-90	0	59	345	4450	770	7700	1020
TMAC09	10 Mile	232951	7251176	561	Drilling	39	-90	0	831	2490	19300	2400	32000	9780
WB09TB01	10 Mile	7254260	230482	560.886	Re-development	53	-90	0	668	3650	26600	3040	43800	13400
WB10	10 Mile	233468	7257249	568	Airlfit development	72	-90	0	700	4530	41900	5700	72000	13430
WB10	10 Mile	233468	7257249	568	Airlfit development	72	-90	0	557	7200	64600	8630	108000	25080
WB11MBI	10 Mile	233539	7255526	560	Re-development	91	-90	0	716	5900	43600	5100	72650	20200
WB11TB01	10 Mile	233559	7255517	560.144	Re-development	91	-90	0	877	4880	39000	4560	64600	16800
WB11	10 Mile	233540	7255533	560	Airlfit development	91	-90	0	803	4560	37000	4480	61200	11790
WB12	10 Mile	233894	7253901	560	Airlfit development	-	-90	0	989	4300	37000	4540	61500	11640
WB12	10 Mile	233894	7253901	560	Airlfit development	-	-90	0	668	6805	51700	6205	86500	16310
WB12	10 Mile	233894	7253901	560	Airlfit development	-	-90	0	940	4150	35700	4400	61000	11540
WB13	10 Mile	236154	7257232	560	Airlfit development	-	-90	0	686	7320	57100	7755	97800	17675
SDHB3	Beyondie	223400	7259044	559	Drilling	1.5	-90	0	530	6440	69400	11000	119000	24596
SDHB3	Beyondie	223400	7259044	559	Drilling	51	-90	0	545	6590	69200	10900	125000	25554
SDHB3	Beyondie	223400	7259044	559	Drilling	60	-90	0	565	6500	69800	11200	125000	25315
SDHB3	Beyondie	223400	7259044	559	Drilling	9	-90	0	520	6460	68000	10900	122000	24326
SDHB3	Beyondie	223400	7259044	559	Drilling	12	-90	0	525	6350	66800	10800	126000	24626
SDHB3	Beyondie	223400	7259044	559	Drilling	15	-90	0	525	6390	66200	10800	125000	24835
SDHB3	Beyondie	223400	7259044	559	Drilling	18	-90	0	525	6610	66500	10900	125000	25015
SDHB3	Beyondie	223400	7259044	559	Drilling	21	-90	0	525	6370	65700	10800	123000	24566
SDHB4	Beyondie	223400	7259044	559	Drilling	3	-90	0	860	4650	45200	6300	78200	18214

											ŀ	Assay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Са	Mg	Na	к	CI	SO4
												mg/L		
SDHB4	Beyondie	225891	7260242	560	Drilling	2	-90	0	870	4720	45800	6280	78700	18963
SDHB4	Beyondie	225891	7260242	560	Drilling	9	-90	0	845	4520	44400	6170	78700	17675
SDHB4	Beyondie	225891	7260242	560	Drilling	12	-90	0	858	4590	43400	6210	79050	18005
SDHB4	Beyondie	225891	7260242	560	Drilling	15	-90	0	835	4590	44800	6080	79400	17885
SDHB4	Beyondie	225891	7260242	560	Drilling	18	-90	0	840	4810	45900	6270	80400	18724
SDHB4	Beyondie	225891	7260242	560	Drilling	21	-90	0	820	4540	44600	6130	79800	18155
SDHB5	Beyondie	225891	7260242	560	Drilling	1	-90	0	565	7660	59100	9500	109000	28880
SDHB5	Beyondie	224874	7259474	559	Drilling	2	-90	0	580	7890	58800	9600	110000	29209
SDHB5	Beyondie	224874	7259474	559	Drilling	9	-90	0	560	7200	60100	9440	112000	26962
SDHB5	Beyondie	224874	7259474	559	Drilling	12	-90	0	560	7600	61800	9440	112000	29898
SDHB5	Beyondie	224874	7259474	559	Drilling	15	-90	0	565	7780	63000	9740	110000	30857
SDHB5	Beyondie	224874	7259474	559	Drilling	15	-90	0	575	7940	65600	10000	114000	30557
SDHB5	Beyondie	224874	7259474	559	Drilling	18	-90	0	535	7710	64100	9900	115000	29658
SDHB5	Beyondie	224874	7259474	559	Drilling	21	-90	0	545	8220	65200	10100	115000	31156
SDHB5	Beyondie	224874	7259474	559	Drilling	27	-90	0	545	7760	62400	9950	114000	29359
SDHB6	Beyondie	224874	7259474	559	Drilling	3	-90	0	880	4310	45700	6690	79100	17645
SDHB6	Beyondie	227305	7259097	560	Drilling	6	-90	0	870	4240	45200	6590	78500	17286
SDHB6	Beyondie	227305	7259097	560	Drilling	9	-90	0	870	4270	45350	6585	79400	17406
SDHB6	Beyondie	227305	7259097	560	Drilling	12	-90	0	855	4250	43400	6560	78000	17046
SDHB6	Beyondie	227305	7259097	560	Drilling	15	-90	0	860	4360	44600	6710	79900	17166
SDHB6	Beyondie	227305	7259097	560	Drilling	18	-90	0	850	4290	45800	6610	79500	17525
SDHB6	Beyondie	227305	7259097	560	Drilling	21	-90	0	860	4580	46600	7010	83000	17615
SDHB7	Beyondie	227305	7259097	560	Drilling	3	-90	0	905	3990	39400	5190	66200	15968
SDHB7	Beyondie	228257	7260913	560	Drilling	30	-90	0	915	4060	38100	5240	66200	16177
SDHB7	Beyondie	228257	7260913	560	Drilling	33	-90	0	910	4030	37900	5210	66200	15608
SDHB7	Beyondie	227305	7259097	560	Drilling	6	-90	0	915	4020	38900	5190	66800	15758
SDHB7	Beyondie	228257	7260913	560	Drilling	9	-90	0	905	4020	38900	5180	64600	15548

											ŀ	Assay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
												mg/L		
SDHB7	Beyondie	228257	7260913	560	Drilling	12	-90	0	915	4020	39000	5170	65900	15938
SDHB7	Beyondie	228257	7260913	560	Drilling	15	-90	0	930	3990	38100	5200	66900	16058
SDHB7	Beyondie	228257	7260913	560	Drilling	18	-90	0	940	4020	39200	5300	65700	15998
SDHB7	Beyondie	228257	7260913	560	Drilling	21	-90	0	940	4030	38600	5260	65800	16117
SDHB7	Beyondie	228257	7260913	560	Drilling	24	-90	0	940	4100	38700	5330	66400	16177
SDHB7	Beyondie	228257	7260913	560	Drilling	27	-90	0	950	4140	39300	5360	66200	16327
SSAC01	Sunshine	242989	7266582	543.466	Drilling	140	-90	0	635	5790	57400	6780	96600	20700
SSAC01	Sunshine	242989	7266582	543.466	Drilling	90	-90	0	244	1610	15300	1800	25550	5250
SSAC01	Sunshine	242989	7266582	543.466	Drilling	90	-90	0	243	1590	15300	1800	25400	5310
SSAC01	Sunshine	242989	7266582	543.466	Drilling	18	-90	0	86	405	4050	520	6950	1320
SSAC01	Sunshine	242989	7266582	543.466	Drilling	18	-90	0	88	410	4090	540	7000	1350
SSAC01	Sunshine	242989	7266582	543.466	Drilling	36	-90	0	55	200	2130	300	3450	660
SSAC06	Sunshine	249574	7268965	545.419	Drilling	53	-90	0	366	5030	48400	4780	83150	16900
SSAC13	Sunshine	258504	7271068	540.269	Drilling	41	-90	0	392	4390	43600	3580	74050	11500
SSAC13	Sunshine	258504	7271068	540.269	Drilling	59	-90	0	392	4320	42600	3530	73350	11500
SSAC14	Sunshine	257922	7274721	535.675	Drilling	47	-90	0	585	6480	73700	6990	123950	19200
SSAC15	Sunshine	257617	7275041	533.035	Drilling	24	-90	0	505	6050	69200	6290	114350	19400
SSAC15	Sunshine	257617	7275041	533.035	Drilling	24	-90	0	511	6130	68900	6300	114150	19500
SSAC15	Sunshine	257617	7275041	533.035	Drilling	59	-90	0	702	5610	65700	6030	107000	17100
SSAC18	Sunshine	261062	7276002	540.47	Drilling	101	-90	0	755	5640	67100	6520	112900	16500
SSAC18	Sunshine	261062	7276002	540.47	Drilling	54	-90	0	766	5580	66000	6530	111500	16200
SSAC18	Sunshine	261062	7276002	540.47	Drilling	54	-90	0	768	5550	66200	6530	111550	15900
SSAC18	Sunshine	261062	7276002	540.47	Drilling	77	-90	0	760	5590	66900	6550	113450	16300
SSAC19	Sunshine	264078	7276655	537.967	Drilling	47	-90	0	652	4360	50200	4280	82100	14000
SSAC21	Sunshine	248414	7269423	541.115	Drilling	53	-90	0	640	6000	51600	5240	88600	19300
SSAC22	Sunshine	248258	7269820	539.745	Drilling	24	-90	0	1100	2780	23800	3270	44500	9450
SSAC22	Sunshine	248258	7269820	539.745	Drilling	37	-90	0	1080	2800	24300	3300	43950	9360

											A	Assay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
											i	mg/L	•	
SSAC25	Sunshine	255111	7272747	539.628	Drilling	53	-90	0	547	7560	76300	7470	132200	21500
SSAC42	Sunshine	249756	7269754	533.866	Drilling	37	-90	0	448	3740	33700	3680	58100	11900
SSAC034	Sunshine	241523	7265061	558	Drilling	34	-90	0	83	400	3600	480	6050	1290
SSAC034	Sunshine	241523	7265061	558	Drilling	51	-90	0	89	470	4510	600	7600	1500
SSAC034	Sunshine	241523	7265061	558	Drilling	59	-90	0	87	555	5210	680	8800	1860
SSAC034	Sunshine	241523	7265061	558	Drilling	60	-90	0	88	610	5530	730	9450	2010
SSAC035	Sunshine	242796	7266865	544	Drilling	54	-90	0	408	2360	16600	1770	30350	7200
SSAC035	Sunshine	242796	7266865	544	Drilling	66	-90	0	264	1460	10700	1160	18500	4560
SSAC036	Sunshine	244151	7267248	547	Drilling	16	-90	0	1040	2790	32300	4460	55050	12200
SSAC036	Sunshine	244151	7267248	547	Drilling	31	-90	0	1040	3170	35500	5000	61550	12900
SSAC036	Sunshine	244151	7267248	547	Drilling	57	-90	0	1040	3320	35300	5050	62450	13100
SSAC036	Sunshine	244151	7267248	547	Drilling	69	-90	0	1020	3260	35800	5030	63500	13200
SSAC038	Sunshine	244516	7267313	543	Drilling	33	-90	0	998	3740	41000	5820	70700	16000
SSAC038	Sunshine	244516	7267313	543	Drilling	42	-90	0	998	3660	41200	5770	70350	15500
SSAC038	Sunshine	244516	7267313	543	Drilling	48	-90	0	998	3810	40600	5810	70900	15500
SSAC038	Sunshine	244516	7267313	543	Drilling	54	-90	0	969	4040	43000	6190	74800	16400
SSAC038	Sunshine	244516	7267313	543	Drilling	60	-90	0	960	4070	42500	6110	75150	16200
SSAC038	Sunshine	244516	7267313	543	Drilling	66	-90	0	928	4020	43000	6060	74050	16100
SSAC039	Sunshine	244090	7267920	544	Drilling	26	-90	0	567	1830	17500	2310	30700	7110
SSAC040	Sunshine	244854	7269177	538	Drilling	42	-90	0	415	2100	16000	1880	29450	6570
SSAC041	Sunshine	244170	7269767	540	Drilling	30	-90	0	65	245	1820	210	2950	780
SSAC042	Sunshine	244308	7269452	539	Drilling	42	-90	0	28	65	690	130	1100	270
SSAC042	Sunshine	244308	7269452	539	Drilling	48	-90	0	62	265	2280	290	3900	900
SSAC042	Sunshine	244308	7269452	539	Drilling	53	-90	0	382	2810	22600	2670	40050	9420
SSAC043	Sunshine	245717	7269914	539	Drilling	39	-90	0	414	1560	11300	1320	20200	5100
SSAC043	Sunshine	245717	7269914	539	Drilling	45	-90	0	497	1090	7940	940	13850	3870
SSAC043	Sunshine	245717	7269914	539	Drilling	53	-90	0	883	4630	38700	4910	67350	14500

											A	Assay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
											i	mg/L		
SSAC044	Sunshine	245953	7269783	538	Drilling	37	-90	0	1290	3080	24500	3320	45700	8940
SSAC044	Sunshine	245953	7269783	538	Drilling	48	-90	0	1240	3230	25300	3490	48150	9510
SSAC044	Sunshine	245953	7269783	538	Drilling	52	-90	0	1260	3250	25600	3530	46900	9660
SSAC044	Sunshine	245953	7269783	538	Drilling	57	-90	0	1240	3230	25300	3510	48500	9480
SSAC044	Sunshine	245953	7269783	538	Drilling	63	-90	0	1250	3310	26700	3580	49200	9810
SSAC044	Sunshine	245953	7269783	538	Drilling	72	-90	0	1200	3510	28300	3800	52200	10700
SSAC044	Sunshine	245953	7269783	538	Drilling	75	-90	0	1190	3560	29400	3820	52900	10900
SSAC045	Sunshine	245949	7269526	538	Drilling	37	-90	0	1240	3250	27700	3730	51150	10400
SSAC045	Sunshine	245949	7269526	538	Drilling	42	-90	0	1240	3260	27800	3750	50950	10700
SSAC045	Sunshine	245949	7269526	538	Drilling	45	-90	0	1240	3260	27700	3790	51150	10700
SSAC046	Sunshine	247863	7269882	541	Drilling	30	-90	0	1150	3050	24500	3340	45350	10100
SSAC046	Sunshine	247863	7269882	541	Drilling	45	-90	0	1150	2950	24400	3210	43750	9690
SSAC046	Sunshine	247863	7269882	541	Drilling	54	-90	0	1080	2850	23500	3130	43050	9510
SSAC047	Sunshine	247043	7269910	537	Drilling	27	-90	0	1060	2890	21400	2650	38450	9810
SSAC047	Sunshine	247043	7269910	537	Drilling	42	-90	0	1020	3100	22700	2820	41250	10200
SSAC047	Sunshine	247043	7269910	537	Drilling	48	-90	0	770	4850	38800	4660	70200	14800
SSAC048	Sunshine	247442	7270641	536	Drilling	24	-90	0	620	2420	18800	2250	33850	7410
SSAC048	Sunshine	247442	7270641	536	Drilling	36	-90	0	503	1930	15100	1770	27350	5880
SSAC048	Sunshine	247442	7270641	536	Drilling	48	-90	0	540	2100	16300	1960	29800	6540
SSAC048	Sunshine	247442	7270641	536	Drilling	54	-90	0	637	3310	27100	3200	49050	10400
SSAC049	Sunshine	247162	7271081	540	Drilling	27	-90	0	386	1640	12200	1220	21850	5130
SSAC049	Sunshine	247162	7271081	540	Drilling	45	-90	0	426	2050	15300	1620	28050	6540
SSAC049	Sunshine	247162	7271081	540	Drilling	57	-90	0	539	3020	23100	2340	40550	9720
SSAC049	Sunshine	247162	7271081	540	Drilling	69	-90	0	612	6130	48800	5390	88700	19100
SSAC050	Sunshine	247579	7270288	536	Drilling	30	-90	0	1070	4710	39900	5480	73700	13900
SSAC050	Sunshine	247579	7270288	536	Drilling	42	-90	0	1020	4800	41100	5540	76900	14100
SSAC050	Sunshine	247579	7270288	536	Drilling	49	-90	0	1030	4810	40300	5580	76550	14500

											A	Assay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
											i	mg/L		
SSAC051	Sunshine	261751	7276749	537	Drilling	21	-90	0	487	2830	27200	2880	49050	7470
SSAC051	Sunshine	261751	7276749	537	Drilling	33	-90	0	478	3010	31600	3180	54850	8190
SSAC051	Sunshine	261751	7276749	537	Drilling	45	-90	0	525	3350	32800	3450	60300	9090
SSAC051	Sunshine	261751	7276749	537	Drilling	57	-90	0	617	4530	47200	4860	85350	13300
SSAC051	Sunshine	261751	7276749	537	Drilling	66	-90	0	543	3660	37900	3860	69150	10700
SSAC052	Sunshine	261875	7276513	541	Drilling	27	-90	0	456	2820	26800	2700	49050	7560
SSAC052	Sunshine	261875	7276513	541	Drilling	39	-90	0	605	3790	38800	4140	71600	9870
SSAC053	Sunshine	261850	7276277	539	Drilling	23	-90	0	519	3200	30600	3060	55400	8790
SSAC054	Sunshine	261639	7276962	538	Drilling	21	-90	0	205	1270	14100	1420	24100	3750
SSAC054	Sunshine	261639	7276962	538	Drilling	30	-90	0	351	2300	22800	2110	37200	6810
SSAC054	Sunshine	261639	7276962	538	Drilling	42	-90	0	321	2090	20800	1960	36000	6180
SSAC054	Sunshine	261639	7276962	538	Drilling	48	-90	0	349	2300	21800	2100	37500	6810
SSAC054	Sunshine	261639	7276962	538	Drilling	54	-90	0	318	2080	21000	1970	35200	6330
SSAC054	Sunshine	261639	7276962	538	Drilling	60	-90	0	300	1970	19800	1860	33800	5880
SSAC054	Sunshine	261639	7276962	538	Drilling	63	-90	0	309	2040	20300	1940	34800	6180
SSAC055	Sunshine	258203	7273609	530	Drilling	20	-90	0	652	6790	71500	6510	127000	18300
SSAC055	Sunshine	258203	7273609	530	Drilling	25	-90	0	635	6920	71800	6600	128000	18600
SSAC055	Sunshine	258203	7273609	530	Drilling	42	-90	0	629	6940	74400	6690	129000	18500
SSAC055	Sunshine	258203	7273609	530	Drilling	43	-90	0	622	7130	76200	6750	133000	18800
SSAC056	Sunshine	258327	7273538	530	Drilling	30	-90	0	685	6580	62300	5640	111000	17700
SSAC056	Sunshine	258327	7273538	530	Drilling	41	-90	0	623	6110	62200	5400	104000	16900
SSAC057	Sunshine	258497	7273430	530	Drilling	21	-90	0	661	5520	53600	4620	92100	16100
SSAC057	Sunshine	258497	7273430	530	Drilling	30	-90	0	629	6450	59500	5160	103000	18300
SSAC057	Sunshine	258497	7273430	530	Drilling	42	-90	0	601	6040	56100	4950	98200	16700
SSAC057	Sunshine	258497	7273430	530	Drilling	48	-90	0	559	4700	45200	4420	77200	13800
SSAC057	Sunshine	258497	7273430	530	Drilling	58	-90	0	573	4510	42900	3850	75000	13100
SSAC057	Sunshine	258497	7273430	530	Drilling	66	-90	0	533	4780	46300	4100	79200	13400

											Å	Assay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
												mg/L		
SSAC057	Sunshine	258497	7273430	530	Drilling	69	-90	0	523	4560	42500	3930	76500	12700
SSAC058	Sunshine	261455	7277135	539	Drilling	30	-90	0	227	1360	12100	1100	20500	4080
SSAC058	Sunshine	261455	7277135	539	Drilling	42	-90	0	234	1410	12800	1150	21200	4170
SSAC058	Sunshine	261455	7277135	539	Drilling	48	-90	0	226	1320	11900	1090	20100	3870
SSAC058	Sunshine	261455	7277135	539	Drilling	57	-90	0	224	1330	11900	1090	20100	3900
SSAC058	Sunshine	261455	7277135	539	Drilling	63	-90	0	405	2550	25800	2570	44800	7620
SSAC058	Sunshine	261455	7277135	539	Drilling	72	-90	0	723	5190	59100	6210	101000	15300
SSAC059	Sunshine	248075	7269537	540	Drilling	30	-90	0	784	2510	19800	2300	34400	8490
SSAC059	Sunshine	248075	7269537	540	Drilling	45	-90	0	678	3090	24800	2720	43700	10100
SSAC059	Sunshine	248075	7269537	540	Drilling	51	-90	0	741	3720	30600	3290	52000	12400
SSAC059	Sunshine	248075	7269537	540	Drilling	63	-90	0	666	4730	40700	4280	70200	15300
SSAC059	Sunshine	248075	7269537	540	Drilling	68	-90	0	562	6860	60100	6160	104000	21500
SSAC060	Sunshine	246645	7270336	536	Drilling	30	-90	0	1060	3670	30300	3750	54100	11200
SSAC060	Sunshine	246645	7270336	536	Drilling	42	-90	0	830	4720	40000	4820	71600	14000
SSAC060	Sunshine	246645	7270336	536	Drilling	48	-90	0	796	5280	44600	5370	80800	15900
SSAC060	Sunshine	246645	7270336	536	Drilling	57	-90	0	835	3670	31700	3730	54500	11100
SSAC060	Sunshine	246645	7270336	536	Drilling	63	-90	0	838	3820	31400	3850	57300	11300
SSAC061	Sunshine	245574	7269996	539	Drilling	24	-90	0	355	420	3000	330	5050	1800
SSAC061	Sunshine	245574	7269996	539	Drilling	39	-90	0	218	545	4050	440	6650	1740
SSAC061	Sunshine	245574	7269996	539	Drilling	45	-90	0	603	3970	34400	3730	59800	13100
SSAC061	Sunshine	245574	7269996	539	Drilling	51	-90	0	649	4360	37500	4220	66100	14300
SSAC061	Sunshine	245574	7269996	539	Drilling	66	-90	0	698	4780	42000	4760	70500	16600
SSAC062	Sunshine	249314	7269793	530	Drilling	18	-90	0	985	3270	29200	3780	52700	10400
SSAC062	Sunshine	249314	7269793	530	Drilling	30	-90	0	473	6810	65700	7160	112000	23300
SSAC062	Sunshine	249314	7269793	530	Drilling	36	-90	0	436	7010	68200	7620	120000	23400
SSAC062	Sunshine	249314	7269793	530	Drilling	42	-90	0	417	7360	76100	8320	128000	24800
SSAC062	Sunshine	249314	7269793	530	Drilling	48	-90	0	403	7350	74500	8480	131000	24600

											Å	Assay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
												mg/L		
SSAC062	Sunshine	249314	7269793	530	Drilling	53	-90	0	412	7440	75300	8680	133000	24900
SSAC064	Sunshine	242691	7267055	552	Drilling	30	-90	0	77	310	2510	310	3750	900
SSAC064	Sunshine	242691	7267055	552	Drilling	42	-90	0	78	325	2660	330	4150	990
SSAC064	Sunshine	242691	7267055	552	Drilling	57	-90	0	359	3200	26700	3080	45700	10500
SSAC064	Sunshine	242691	7267055	552	Drilling	63	-90	0	373	3360	27900	3190	46400	11000
SSAC064	Sunshine	242691	7267055	552	Drilling	68	-90	0	358	3320	28700	3210	47300	11000
SSAC065	Sunshine	243925	7265471	547	Drilling	36	-90	0	137	740	6440	710	10800	2130
SSAC065	Sunshine	243925	7265471	547	Drilling	45	-90	0	166	970	8060	870	13800	2850
SSAC065	Sunshine	243925	7265471	547	Drilling	54	-90	0	324	2090	16800	1650	27700	6240
SSAC065	Sunshine	243925	7265471	547	Drilling	63	-90	0	434	2840	22200	2230	37600	8520
SSAC065	Sunshine	243925	7265471	547	Drilling	68	-90	0	548	3570	27200	2710	46900	10900
SSAC066	Sunshine	243390	7266181	545	Drilling	18	-90	0	113	365	3720	460	5900	1560
SSAC066	Sunshine	243390	7266181	545	Drilling	36	-90	0	87	300	2490	330	4050	900
SSAC066	Sunshine	243390	7266181	545	Drilling	60	-90	0	151	655	5530	640	9000	2100
SSAC066	Sunshine	243390	7266181	545	Drilling	65	-90	0	135	570	4710	550	7850	1830
SSAC067	Sunshine	248265	7270148	541	Drilling	27	-90	0	1010	3520	31700	3940	54700	10900
SSAC067	Sunshine	248265	7270148	541	Drilling	33	-90	0	938	3930	35200	4220	61400	12200
SSAC067	Sunshine	248265	7270148	541	Drilling	38	-90	0	928	4040	34800	4240	60000	12200
SSAC068	Sunshine	248198	7270409	542	Drilling	21	-90	0	714	2990	22900	2580	40400	8640
SSAC068	Sunshine	248198	7270409	542	Drilling	30	-90	0	864	3630	29000	3260	50800	10700
SSAC069	Sunshine	256883	7273184	534	Drilling	33	-90	0	675	5980	66700	6750	118000	18000
SSAC069	Sunshine	256883	7273184	534	Drilling	45	-90	0	663	6210	70000	7050	122000	18900
SSAC069	Sunshine	256883	7273184	534	Drilling	47	-90	0	635	6270	70500	7210	123000	19000
SSAC070	Sunshine	256880	7273373	534	Drilling	33	-90	0	576	6570	69500	6820	120000	20300
SSAC070	Sunshine	256880	7273373	534	Drilling	45	-90	0	620	6720	69900	6950	120000	19900
SSAC070	Sunshine	256880	7273373	534	Drilling	47	-90	0	582	6740	71000	6880	122000	20000
SSAC071	Sunshine	256823	7273708	529	Drilling	24	-90	0	558	6730	72900	7580	128000	18100

											ŀ	Assay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
												mg/L		
SSAC071	Sunshine	256823	7273708	529	Drilling	36	-90	0	562	6730	75100	7550	127000	18600
SSAC071	Sunshine	256823	7273708	529	Drilling	42	-90	0	553	6730	73900	7540	127000	18600
SSAC072	Sunshine	261460	7277140	540	Drilling	24	-90	0	242	1520	14000	1330	23900	4410
SSAC072	Sunshine	261460	7277140	540	Drilling	51	-90	0	469	3130	32200	2910	60700	9480
SSAC072	Sunshine	261460	7277140	540	Drilling	53	-90	0	487	3220	32200	3020	53800	9510
SSAC073	Sunshine	258726	7275741	531	Drilling	18	-90	0	890	5040	56200	6160	104000	13900
SSAC073	Sunshine	258726	7275741	531	Drilling	27	-90	0	842	5480	62800	6570	110000	15200
SSAC073	Sunshine	258726	7275741	531	Drilling	39	-90	0	744	5670	66400	6970	113000	16500
SSAC073	Sunshine	258726	7275741	531	Drilling	40	-90	0	760	5710	65100	6990	114000	16700
SSAC074	Sunshine	258655	7275386	532	Drilling	13	-90	0	938	4390	51800	5470	90300	14000
SSAC075	Sunshine	258818	7275076	533	Drilling	15	-90	0	948	4140	48700	4750	82400	14200
SSAC076	Sunshine	259041	7274804	535	Drilling	26	-90	0	835	4870	53600	5010	90100	16800
TMAC045	Ten Mile	230974	7254137	561	Drilling	30	-90	0	351	1360	5710	540	8600	6090
TMAC045	Ten Mile	230974	7254137	561	Drilling	46	-90	0	343	1870	11000	1110	17000	8070
TMAC045	Ten Mile	230974	7254137	561	Drilling	51	-90	0	337	2730	18300	1970	29850	10400
TMAC046	Ten Mile	230923	7254248	560	Drilling	21	-90	0	307	855	4070	420	6550	3330
TMAC046	Ten Mile	230923	7254248	560	Drilling	56	-90	0	482	7350	55300	6210	92150	28900
TMAC047	Ten Mile	230900	7254388	563	Drilling	54	-90	0	569	7350	55200	6100	91950	28600
TMAC047	Ten Mile	230900	7254388	563	Drilling	60	-90	0	499	7860	63400	7610	108100	30300
TMAC048	Ten Mile	230880	7254602	569	Drilling	54	-90	0	523	8050	62800	7510	107750	29600
TMAC048	Ten Mile	230880	7254602	569	Drilling	65	-90	0	492	8320	65400	8000	113750	29200
TMAC049	Ten Mile	230911	7254514	571	Drilling	54	-90	0	540	7390	56300	6180	94450	28900
TMAC050	Ten Mile	230941	7253691	565	Drilling	63	-90	0	707	4940	39100	4880	66700	17200
TMAC050	Ten Mile	230941	7253691	565	Drilling	68	-90	0	464	5680	46600	6030	79850	18700
TMAC052	Ten Mile	231968	7254794	564	Drilling	48	-90	0	694	2580	17100	1970	29000	10000
TMAC052	Ten Mile	231968	7254794	564	Drilling	57	-90	0	651	3440	26300	3020	44750	12600
TMAC053	Ten Mile	231849	7254896	566	Drilling	60	-90	0	631	4860	30900	3450	53000	16700

											ļ	Assay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
												mg/L		
TMAC053	Ten Mile	231849	7254896	566	Drilling	78	-90	0	599	5110	34000	3760	57750	18100
TMAC054	Ten Mile	230952	7255130	559	Drilling	66	-90	0	400	9420	80100	11100	143900	29600
TMAC055	Ten Mile	233131	7256954	563	Drilling	0.5	-90	0	487	8730	71500	9670	129000	27600
TMAC055	Ten Mile	233131	7256954	563	Drilling	23	-90	0	815	4850	45300	6230	77700	16400
TMAC055	Ten Mile	233131	7256954	563	Drilling	60	-90	0	523	7030	64300	8720	113750	24600
TMAC055	Ten Mile	233131	7256954	563	Drilling	75	-90	0	525	7460	67800	9280	119550	25000
TMAC055	Ten Mile	233131	7256954	563	Drilling	81	-90	0	474	8640	73200	9760	130050	28100
TMAC056	Ten Mile	233146	7256729	567	Drilling	59	-90	0	619	6820	62800	8380	108450	24300
TMAC057	Ten Mile	233114	7256293	569	Drilling	69	-90	0	535	8310	67400	8630	119350	26900
TMAC057	Ten Mile	233114	7256293	569	Drilling	78	-90	0	477	9170	72500	9240	127050	28600
TMAC058	Ten Mile	233130	7255931	570	Drilling	66	-90	0	538	8580	68600	8650	119350	28200
TMAC059	Ten Mile	233064	7257104	563	Drilling	72	-90	0	538	7500	70200	9100	120400	27200
TMAC059	Ten Mile	233064	7257104	563	Drilling	78	-90	0	482	8280	74000	9470	127600	28500
TMAC059	Ten Mile	233064	7257104	563	Drilling	85	-90	0	464	8440	74000	9740	130600	29000
TMAC060	Ten Mile	233001	7257196	562	Drilling	57	-90	0	784	4740	48400	7070	82500	18200
TMAC060	Ten Mile	233001	7257196	562	Drilling	67	-90	0	510	6880	63000	8010	106350	25300
TMAC061	Ten Mile	232927	7257276	561	Drilling	57	-90	0	790	4960	47100	6500	79500	19300
TMAC061	Ten Mile	232927	7257276	561	Drilling	66	-90	0	764	4990	47600	6440	81100	19600
TMAC062	Ten Mile	233773	7256060	573	Drilling	70	-90	0	477	6720	54800	6440	93750	26100
TMAC063	Ten Mile	233775	7256290	571	Drilling	57	-90	0	468	3870	29300	3500	50000	13800
TMAC063	Ten Mile	233775	7256290	571	Drilling	69	-90	0	460	6010	48900	5870	83000	22100
TMAC064	Ten Mile	233815	7256514	576	Drilling	67	-90	0	428	4200	33700	3970	54950	15700
TMAC065	Ten Mile	233753	7256708	570	Drilling	68	-90	0	496	6550	56300	7040	96700	23600
TMAC065	Ten Mile	233753	7256708	570	Drilling	74	-90	0	492	6240	53000	6540	91250	22200
TMAC066	Ten Mile	234232	7256823	565	Drilling	60	-90	0	423	3090	25000	3050	42100	11600
TMAC066	Ten Mile	234232	7256823	565	Drilling	72	-90	0	468	6560	57200	7130	97050	24100
TMAC066	Ten Mile	234232	7256823	565	Drilling	77	-90	0	481	7420	63700	8040	109150	26700

											Å	Assay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
												mg/L	•	
TMAC067	Ten Mile	234196	7257105	564	Drilling	69	-90	0	535	4790	45900	6040	77600	17800
TMAC067	Ten Mile	234196	7257105	564	Drilling	70	-90	0	494	7110	64500	8530	111100	25800
TMAC068	Ten Mile	234663	7256174	571	Drilling	65	-90	0	284	2220	16900	1980	27300	8220
TMAC068	Ten Mile	234663	7256174	571	Drilling	73	-90	0	456	6710	55100	6280	91450	25500
TMAC069	Ten Mile	234599	7256435	570	Drilling	60	-90	0	315	2160	17300	2080	27850	7950
TMAC069	Ten Mile	234599	7256435	570	Drilling	69	-90	0	464	6870	58500	6860	96900	26300
TMAC069	Ten Mile	234599	7256435	570	Drilling	72	-90	0	464	6930	58400	6920	97750	26100
TMAC070	Ten Mile	233349	7257823	559	Drilling	60	-90	0	759	5600	52700	7080	90400	20200
TMAC070	Ten Mile	233349	7257823	559	Drilling	64	-90	0	735	5520	51500	6980	89150	20200
TMAC071	Ten Mile	233449	7257660	567	Drilling	57	-90	0	817	5010	49000	6750	83700	17700
TMAC071	Ten Mile	233449	7257660	567	Drilling	67	-90	0	716	5720	55200	7580	95300	20600
TMAC072	Ten Mile	232580	7256969	558	Drilling	51	-90	0	680	5930	56000	8130	98300	21200
TMAC072	Ten Mile	232580	7256969	558	Drilling	69	-90	0	482	8570	73600	9540	127600	28900
TMAC073	Ten Mile	232664	7257044	571	Drilling	51	-90	0	711	5710	54000	8150	96900	20600
TMAC073	Ten Mile	232664	7257044	571	Drilling	63	-90	0	701	5910	56800	8130	97950	21400
TMAC074	Ten Mile	232719	7257140	562	Drilling	56	-90	0	747	5450	51100	7330	88300	19800
TMAC074	Ten Mile	232719	7257140	562	Drilling	63	-90	0	724	5460	51200	7380	89500	19800
TMAC074	Ten Mile	232719	7257140	562	Drilling	69	-90	0	646	5980	56500	7550	98650	22400
TMAC075	Ten Mile	232082	7257053	568	Drilling	54	-90	0	626	6730	56800	7200	95300	24000
TMAC075	Ten Mile	232082	7257053	568	Drilling	66	-90	0	557	6860	57700	7340	101250	24400
TMAC076	Ten Mile	232057	7257198	562	Drilling	55	-90	0	472	8840	77600	10000	136000	29600
TMAC076	Ten Mile	232057	7257198	562	Drilling	60	-90	0	436	8790	78200	9900	135800	28800
TMAC077	Ten Mile	233298	7255394	563	Drilling	56	-90	0	715	5240	39200	4960	70700	17600
TMAC077	Ten Mile	233298	7255394	563	Drilling	61	-90	0	712	5430	41000	5140	74050	18400
TMAC078a	Ten Mile	232870	7255294	558	Drilling	12	-90	0	795	5770	50000	6740	90300	19100
TMAC078a	Ten Mile	232870	7255294	558	Drilling	36	-90	0	826	5460	46800	6350	85550	18400
TMAC078a	Ten Mile	232870	7255294	558	Drilling	54	-90	0	829	5610	49100	6550	87500	19200

											ļ	Assay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
												mg/L		
TMAC078b	Ten Mile	232870	7255294	558	Drilling	6	-90	0	742	6710	64200	8730	109500	20200
TMAC078b	Ten Mile	232870	7255294	558	Drilling	12	-90	0	551	8200	79200	10900	137200	23200
TMAC078b	Ten Mile	232870	7255294	558	Drilling	16	-90	0	538	8410	80000	11000	140200	23000
TMAC079	Ten Mile	233918	7255679	569	Drilling	58	-90	0	887	4040	29400	3430	51500	14900
TMAC079	Ten Mile	233918	7255679	569	Drilling	62	-90	0	713	4250	30700	3590	54650	15000
TMAC080	Ten Mile	233992	7255533	569	Drilling	53	-90	0	693	4080	29200	3360	51650	14700
TMAC080	Ten Mile	233992	7255533	569	Drilling	59	-90	0	659	5500	40600	4310	71250	21100
TMAC081	Ten Mile	235130	7257211	565	Drilling	59	-90	0	204	1070	10300	1540	18750	3390
TMAC081	Ten Mile	235130	7257211	565	Drilling	74	-90	0	394	4970	43700	5820	76350	17200
TMAC082	Ten Mile	235509	7257560	574	Drilling	59	-90	0	166	920	9210	1440	16500	2910
TMAC082	Ten Mile	235509	7257560	574	Drilling	71	-90	0	174	930	9230	1440	16100	2940
TMAC083	Ten Mile	236016	7258036	579	Drilling	37	-90	0	111	960	8510	1170	15150	3390
TMAC083	Ten Mile	236016	7258036	579	Drilling	81	-90	0	116	1060	10300	1510	17750	3570
TMAC083	Ten Mile	236016	7258036	579	Drilling	82	-90	0	102	875	8490	1280	14750	2880
TMAC084	Ten Mile	236895	7258664	574	Drilling	39	-90	0	66	315	2940	330	4600	1440
TMAC085	Ten Mile	236897	7258489	576	Drilling	31	-90	0	38	130	1570	290	2700	480
TMAC086	Ten Mile	236887	7258814	581	Drilling	27	-90	0	8	30	790	120	1100	300
TMAC086	Ten Mile	236887	7258814	581	Drilling	30	-90	0	21	55	560	110	850	240
TMAC087	Ten Mile	236440	7259824	571	Drilling	27	-90	0	34	40	320	50	550	120
TMAC087	Ten Mile	236440	7259824	571	Drilling	57	-90	0	108	455	4180	520	7150	1740
TMAC087	Ten Mile	236440	7259824	571	Drilling	66	-90	0	91	340	2850	340	4850	1140
TMAC087	Ten Mile	236440	7259824	571	Drilling	69	-90	0	122	480	3580	410	6300	1500
TMAC088	Ten Mile	235789	7256956	571	Drilling	36	-90	0	142	820	9010	1220	14300	3060
TMAC088	Ten Mile	235789	7256956	571	Drilling	66	-90	0	400	5200	46600	5540	77100	19100
TMAC088	Ten Mile	235789	7256956	571	Drilling	70	-90	0	450	6110	54600	6490	89200	21900
TMAC089	Ten Mile	233177	7257963	560	Drilling	33	-90	0	733	5510	50600	6830	87100	20100
TMAC089	Ten Mile	233177	7257963	560	Drilling	51	-90	0	754	5420	50400	6620	85400	20100

											ļ	Assay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
												mg/L		
TMAC089	Ten Mile	233177	7257963	560	Drilling	59	-90	0	761	5190	48800	6230	80200	19600
TMAC090	Ten Mile	233099	7258086	561	Drilling	33	-90	0	716	5360	49700	6580	84100	20000
TMAC090	Ten Mile	233099	7258086	561	Drilling	51	-90	0	733	5390	49200	6580	84500	20200
TMAC090	Ten Mile	233099	7258086	561	Drilling	59	-90	0	721	5120	44900	6130	78700	18800
TMAC091	Ten Mile	233079	7258222	563	Drilling	36	-90	0	713	5400	49500	6560	84300	20300
TMAC091	Ten Mile	233079	7258222	563	Drilling	48	-90	0	697	5460	49900	6640	84100	20300
TMAC091	Ten Mile	233079	7258222	563	Drilling	61	-90	0	698	5510	50600	6600	83800	20000
TMAC091	Ten Mile	233079	7258222	563	Drilling	65	-90	0	688	5340	49500	6590	83800	19700
TMAC092	Ten Mile	233896	7257855	557	Drilling	12	-90	0	703	5630	58300	9180	106000	19000
TMAC092	Ten Mile	233896	7257855	557	Drilling	39	-90	0	724	5500	59200	9110	105000	18700
TMAC092	Ten Mile	233896	7257855	557	Drilling	42	-90	0	790	4770	49200	7020	85400	15600
TMAC092	Ten Mile	233896	7257855	557	Drilling	45	-90	0	714	5570	61300	9180	105000	18700
TMAC092	Ten Mile	233896	7257855	557	Drilling	51	-90	0	732	5330	56600	8810	101000	18200
TMAC092	Ten Mile	233896	7257855	557	Drilling	54	-90	0	683	5150	55000	8280	95200	17600
TMAC092	Ten Mile	233896	7257855	557	Drilling	57	-90	0	707	5070	55000	8280	95800	17500
TMAC092	Ten Mile	233896	7257855	557	Drilling	64	-90	0	702	5060	53200	8150	93100	17000
TMAC093	Ten Mile	233759	7257611	556	Drilling	18	-90	0	809	5050	51000	7500	90700	16800
TMAC093	Ten Mile	233759	7257611	556	Drilling	30	-90	0	785	4750	47700	7020	85400	16200
TMAC093	Ten Mile	233759	7257611	556	Drilling	60	-90	0	781	4730	48600	7060	83800	16100
TMAC093	Ten Mile	233759	7257611	556	Drilling	68	-90	0	621	5940	56800	8150	101000	20800
TMAC094	Ten Mile	233967	7257182	558	Drilling	33	-90	0	642	4660	43000	5480	71400	16400
TMAC094	Ten Mile	233967	7257182	558	Drilling	51	-90	0	653	4820	44600	5730	76400	17700
TMAC094	Ten Mile	233967	7257182	558	Drilling	63	-90	0	641	4530	42000	5420	71100	16500
TMAC094	Ten Mile	233967	7257182	558	Drilling	69	-90	0	549	5990	55000	7330	95100	21100
TMAC094	Ten Mile	233967	7257182	558	Drilling	75	-90	0	478	7480	68500	8830	117000	25900
TMAC094	Ten Mile	233967	7257182	558	Drilling	84	-90	0	477	7540	67500	8870	117000	26000
TMAC094	Ten Mile	233967	7257182	558	Drilling	86	-90	0	473	7660	68200	9010	118000	26800

											A	lssay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Са	Mg	Na	к	CI	SO4
												mg/L		
TMAC095	Ten Mile	234364	7257242	565	Drilling	53	-90	0	564	3300	32300	4820	56550	12100
TMAC095	Ten Mile	234364	7257242	565	Drilling	69	-90	0	553	3960	38800	5580	66850	14500
TMAC095	Ten Mile	234364	7257242	565	Drilling	72	-90	0	552	5010	47400	6710	81350	18100
TMAC095	Ten Mile	234364	7257242	565	Drilling	73	-90	0	536	5170	48800	6950	84800	18800
TMAC096	Ten Mile	232893	7255522	560	Drilling	36	-90	0	851	5150	41500	5320	72600	18100
TMAC096	Ten Mile	232893	7255522	560	Drilling	43	-90	0	723	6510	54000	7360	97200	20400
TMAC096	Ten Mile	232893	7255522	560	Drilling	54	-90	0	850	5040	40000	5290	71900	17400
TMAC096	Ten Mile	232893	7255522	560	Drilling	58	-90	0	822	5290	43200	5830	77650	17900
TMAC097	Ten Mile	234219	7257373	561	Drilling	21	-90	0	378	995	10000	1540	17800	3660
TMAC097	Ten Mile	234219	7257373	561	Drilling	30	-90	0	694	3790	38800	5870	66500	13500
TMAC097	Ten Mile	234219	7257373	561	Drilling	39	-90	0	671	3690	37200	5660	65650	13200
TMAC097	Ten Mile	234219	7257373	561	Drilling	48	-90	0	625	3480	36200	5420	61800	12200
TMAC097	Ten Mile	234219	7257373	561	Drilling	57	-90	0	633	3520	36200	5500	63000	12500
TMAC097	Ten Mile	234219	7257373	561	Drilling	66	-90	0	635	3520	36400	5490	62850	12500
TMAC097	Ten Mile	234219	7257373	561	Drilling	72	-90	0	536	6990	65000	9190	111200	25500
TMAC097	Ten Mile	234219	7257373	561	Drilling	79	-90	0	518	7300	66300	9400	115350	26000
TMAC098	Ten Mile	234512	7257886	563	Drilling	34	-90	0	559	3470	37200	5620	66150	13100
TMAC099	Ten Mile	234853	7257549	561	Drilling	18	-90	0	178	815	8310	1130	13450	3030
TMAC099	Ten Mile	234853	7257549	561	Drilling	30	-90	0	313	2500	21700	2800	36300	9330
TMAC099	Ten Mile	234853	7257549	561	Drilling	42	-90	0	350	2960	25200	3140	41900	11200
TMAC099	Ten Mile	234853	7257549	561	Drilling	54	-90	0	317	2670	23300	2950	38200	9930
TMAC099	Ten Mile	234853	7257549	561	Drilling	63	-90	0	238	1860	17700	2370	29850	7320
TMAC099	Ten Mile	234853	7257549	561	Drilling	72	-90	0	313	3340	30500	4340	52900	11700
TMAC099	Ten Mile	234853	7257549	561	Drilling	78	-90	0	423	5640	51200	7210	89200	19600
TMAC099	Ten Mile	234853	7257549	561	Drilling	81	-90	0	475	7730	64900	9380	117800	26400
TMAC100	Ten Mile	235369	7257744	565	Drilling	21	-90	0	135	790	8510	1350	15550	2520
TMAC100	Ten Mile	235369	7257744	565	Drilling	30	-90	0	168	980	10500	1560	16750	3330

											A	Assay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
											i	mg/L		
TMAC101	Ten Mile	233185	7255793	561	Drilling	24	-90	0	758	6050	49000	6430	84300	20300
TMAC101	Ten Mile	233185	7255793	561	Drilling	36	-90	0	760	5700	47200	6170	81000	19400
TMAC101	Ten Mile	233185	7255793	561	Drilling	45	-90	0	771	5840	48100	6260	81000	20000
TMAC101	Ten Mile	233185	7255793	561	Drilling	54	-90	0	891	4900	41300	5440	68750	17400
TMAC101	Ten Mile	233185	7255793	561	Drilling	60	-90	0	348	6240	49100	6210	84150	20800
TMAC101	Ten Mile	233185	7255793	561	Drilling	63	-90	0	436	9460	73700	9700	128300	30300
TMAC102	Ten Mile	233303	7255628	558	Drilling	53	-90	0	475	8890	69400	8970	120800	28900
TMAC102	Ten Mile	233303	7255628	558	Drilling	57	-90	0	442	7660	60000	7700	105750	25200
TMAC102	Ten Mile	233303	7255628	558	Drilling	69	-90	0	478	8770	70500	8840	121500	29200
TMAC103	Ten Mile	233489	7255597	558	Drilling	27	-90	0	762	4320	34000	4440	59000	15300
TMAC103	Ten Mile	233489	7255597	558	Drilling	36	-90	0	736	4230	33300	4260	57050	15300
TMAC103	Ten Mile	233489	7255597	558	Drilling	45	-90	0	736	3990	31600	4130	54100	14500
TMAC103	Ten Mile	233489	7255597	558	Drilling	54	-90	0	711	3990	31900	4110	55350	14400
TMAC103	Ten Mile	233489	7255597	558	Drilling	57	-90	0	725	4030	32100	4180	54300	15200
TMAC103	Ten Mile	233489	7255597	558	Drilling	63	-90	0	660	5260	41500	5350	72250	18600
TMAC103	Ten Mile	233489	7255597	558	Drilling	67	-90	0	641	5720	45000	5820	78200	19600
TMAC104	Ten Mile	233215	7254356	569	Drilling	27	-90	0	608	7430	70000	9290	118700	23400
TMAC104	Ten Mile	233215	7254356	569	Drilling	36	-90	0	644	7010	66000	8780	112600	22400
TMAC104	Ten Mile	233215	7254356	569	Drilling	45	-90	0	632	7260	68500	9020	113800	23300
TMAC104	Ten Mile	233215	7254356	569	Drilling	54	-90	0	604	7180	65300	9040	114850	22700
TMAC104	Ten Mile	233215	7254356	569	Drilling	60	-90	0	539	8070	70200	9430	121300	25400
TMAC105	Ten Mile	233514	7255223	570	Drilling	48	-90	0	924	3900	33000	4460	58450	14300
TMAC105	Ten Mile	233514	7255223	570	Drilling	57	-90	0	990	3790	34000	4300	57050	13900
TMAC105	Ten Mile	233514	7255223	570	Drilling	65	-90	0	978	3900	35200	4440	59500	14300
TMAC106	Ten Mile	233651	7254433	567	Drilling	39	-90	0	682	4300	36700	4710	63350	14800
TMAC106	Ten Mile	233651	7254433	567	Drilling	48	-90	0	683	6980	57100	7510	97050	22400
TMAC106	Ten Mile	233651	7254433	567	Drilling	54	-90	0	617	7430	60200	8190	106100	24400

											Å	Assay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
												mg/L	•	
TMAC107	Ten Mile	233785	7254077	567	Drilling	21	-90	0	932	4530	39600	5010	67200	16200
TMAC107	Ten Mile	233785	7254077	567	Drilling	30	-90	0	931	4460	39400	4970	67900	16100
TMAC107	Ten Mile	233785	7254077	567	Drilling	39	-90	0	930	4560	39500	5100	68250	16400
TMAC107	Ten Mile	233785	7254077	567	Drilling	48	-90	0	698	6500	52200	6770	90250	21900
TMAC107	Ten Mile	233785	7254077	567	Drilling	51	-90	0	688	6720	52500	6980	93050	23200
TMAC108	Ten Mile	233885	7253028	567	Drilling	21	-90	0	946	3600	29100	3580	48350	13500
TMAC108	Ten Mile	233885	7253028	567	Drilling	33	-90	0	1000	3270	26600	3340	45550	12500
TMAC108	Ten Mile	233885	7253028	567	Drilling	42	-90	0	898	4030	31000	3960	53950	15200
TMAC108	Ten Mile	233885	7253028	567	Drilling	51	-90	0	907	3830	28900	3820	52350	14300
TMAC108	Ten Mile	233885	7253028	567	Drilling	57	-90	0	884	4230	31600	4180	59700	15500
TMAC108	Ten Mile	233885	7253028	567	Drilling	63	-90	0	897	4220	32400	4260	57050	15500
TMAC109	Ten Mile	233831	7252726	567	Drilling	30	-90	0	959	3390	26500	3420	47450	12800
TMAC109	Ten Mile	233831	7252726	567	Drilling	39	-90	0	958	3320	26400	3370	45900	12500
TMAC109	Ten Mile	233831	7252726	567	Drilling	48	-90	0	950	3300	25700	3360	46450	12500
TMAC109	Ten Mile	233831	7252726	567	Drilling	57	-90	0	946	3300	25700	3340	46450	12400
TMAC109	Ten Mile	233831	7252726	567	Drilling	66	-90	0	956	3250	25900	3280	45200	12200
TMAC109	Ten Mile	233831	7252726	567	Drilling	75	-90	0	934	3230	25900	3310	45750	12300
TMAC110	Ten Mile	234789	7256052	584	Drilling	30	-90	0	325	2730	17600	2070	29850	10600
TMAC110	Ten Mile	234789	7256052	584	Drilling	39	-90	0	280	2200	15500	1850	25150	8490
TMAC110	Ten Mile	234789	7256052	584	Drilling	48	-90	0	268	2120	15000	1810	24800	8040
TMAC110	Ten Mile	234789	7256052	584	Drilling	57	-90	0	280	2320	16000	1890	26200	8880
TMAC110	Ten Mile	234789	7256052	584	Drilling	66	-90	0	298	2450	16300	1970	27600	9420
TMAC110	Ten Mile	234789	7256052	584	Drilling	75	-90	0	439	6390	48900	6020	86200	25100
TMAC110	Ten Mile	234789	7256052	584	Drilling	79	-90	0	432	6300	50100	5940	86550	24900
TMAC111	Ten Mile	235568	7256813	575	Drilling	30	-90	0	127	600	6950	980	11350	2250
TMAC111	Ten Mile	235568	7256813	575	Drilling	39	-90	0	131	790	8530	1150	13600	3060
TMAC111	Ten Mile	235568	7256813	575	Drilling	48	-90	0	120	665	7240	1040	10800	2550

											A	Assay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
											i	mg/L	•	
TMAC111	Ten Mile	235568	7256813	575	Drilling	57	-90	0	112	620	7060	990	11000	2460
TMAC111	Ten Mile	235568	7256813	575	Drilling	66	-90	0	231	2510	22100	2830	37000	9360
TMAC112	Ten Mile	236494	7259574	572	Drilling	18	-90	0	32	45	440	140	800	210
TMAC112	Ten Mile	236494	7259574	572	Drilling	27	-90	0	96	210	1030	130	1950	360
TMAC112	Ten Mile	236494	7259574	572	Drilling	36	-90	0	106	295	2270	280	3900	750
TMAC112	Ten Mile	236494	7259574	572	Drilling	48	-90	0	140	610	4660	510	7850	1890
TMAC112	Ten Mile	236494	7259574	572	Drilling	57	-90	0	173	985	7450	760	12350	3180
TMAC112	Ten Mile	236494	7259574	572	Drilling	62	-90	0	186	1150	8760	900	14750	3690
TMAC113	Ten Mile	236211	7260316	567	Drilling	24	-90	0	37	40	320	50	500	90
TMAC113	Ten Mile	236211	7260316	567	Drilling	33	-90	0	84	180	1510	200	2500	450
TMAC113	Ten Mile	236211	7260316	567	Drilling	42	-90	0	56	115	880	110	1400	300
TMAC113	Ten Mile	236211	7260316	567	Drilling	51	-90	0	57	110	810	100	1350	270
TMAC113	Ten Mile	236211	7260316	567	Drilling	58	-90	0	61	120	870	100	1450	360
TMAC115	Ten Mile	234139	7257618	560	Drilling	15	-90	0	736	4060	42900	6740	77150	14500
TMAC115	Ten Mile	234139	7257618	560	Drilling	48	-90	0	669	3710	39200	6180	68250	13200
TMAC115	Ten Mile	234139	7257618	560	Drilling	57	-90	0	580	3210	33100	5350	59350	10900
TMAC115	Ten Mile	234139	7257618	560	Drilling	63	-90	0	583	3260	34000	5460	59850	11300
TMAC115	Ten Mile	234139	7257618	560	Drilling	66	-90	0	676	4670	46400	7250	83250	16400
TMAC115	Ten Mile	234139	7257618	560	Drilling	72	-90	0	571	6460	60200	8860	106100	22900
TMAC115	Ten Mile	234139	7257618	560	Drilling	76	-90	0	553	6300	58700	8910	106100	22700
TMAC116	Ten Mile	233377	7258633	563	Drilling	15	-90	0	597	3930	38700	5240	63600	14800
TMAC116	Ten Mile	233377	7258633	563	Drilling	27	-90	0	715	4900	47600	6510	79600	18500
TMAC116	Ten Mile	233377	7258633	563	Drilling	36	-90	0	717	5040	49300	6780	81900	19200
TMAC116	Ten Mile	233377	7258633	563	Drilling	48	-90	0	707	5060	49100	6860	82950	18900
TMAC116	Ten Mile	233377	7258633	563	Drilling	57	-90	0	645	5620	54500	7540	91050	20300
TMAC116	Ten Mile	233377	7258633	563	Drilling	63	-90	0	636	5770	56400	7690	94750	21100
TMAC117	Ten Mile	232270	7258638	561	Drilling	21	-90	0	836	4200	44600	6560	73650	16600

											ŀ	lssay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
												mg/L		
TMAC117	Ten Mile	232270	7258638	561	Drilling	39	-90	0	864	3860	41200	6090	68200	15600
TMAC117	Ten Mile	232270	7258638	561	Drilling	48	-90	0	847	3900	42000	6210	69400	15900
TMAC117	Ten Mile	232270	7258638	561	Drilling	57	-90	0	880	3830	41100	6070	66950	15800
TMAC118	Ten Mile	232151	7258230	560	Drilling	30	-90	0	889	4060	43800	6540	71900	16200
TMAC118	Ten Mile	232151	7258230	560	Drilling	39	-90	0	940	3710	38800	5940	65200	14800
TMAC118	Ten Mile	232151	7258230	560	Drilling	48	-90	0	922	3940	42400	6300	69600	16000
TMAC118	Ten Mile	232151	7258230	560	Drilling	54	-90	0	930	3840	41500	6180	68700	15700
TMAC118	Ten Mile	232151	7258230	560	Drilling	70	-90	0	601	7050	68100	9250	111400	25100
TMAC119	Ten Mile	232106	7257727	560	Drilling	9	-90	0	849	4230	40300	5560	67150	17000
TMAC119	Ten Mile	232106	7257727	560	Drilling	18	-90	0	780	5100	47100	6660	78900	19800
TMAC119	Ten Mile	232106	7257727	560	Drilling	27	-90	0	927	3640	35400	5150	59400	14700
TMAC119	Ten Mile	232106	7257727	560	Drilling	36	-90	0	933	3540	34200	5020	58350	14500
TMAC119	Ten Mile	232106	7257727	560	Drilling	45	-90	0	926	3600	34100	5030	57450	14400
TMAC119	Ten Mile	232106	7257727	560	Drilling	54	-90	0	841	4060	38100	5550	64850	16200
TMAC119	Ten Mile	232106	7257727	560	Drilling	65	-90	0	797	4470	42500	6010	71550	17400
TMAC120	Ten Mile	232072	7257356	560	Drilling	12	-90	0	579	6750	58200	7830	100200	25300
TMAC120	Ten Mile	232072	7257356	560	Drilling	45	-90	0	634	6460	56700	7730	95600	24200
TMAC120	Ten Mile	232072	7257356	560	Drilling	54	-90	0	507	7180	64100	8550	106350	26600
TMAC120	Ten Mile	232072	7257356	560	Drilling	67	-90	0	463	8040	72100	9610	122150	28300
TMAC121	Ten Mile	232070	7257494	560	Drilling	15	-90	0	598	6460	57700	7800	96300	24500
TMAC121	Ten Mile	232070	7257494	560	Drilling	24	-90	0	643	5660	50700	6930	85750	22100
TMAC121	Ten Mile	232070	7257494	560	Drilling	33	-90	0	509	6570	58300	8060	100200	24800
TMAC121	Ten Mile	232070	7257494	560	Drilling	42	-90	0	550	6390	57400	7810	97900	24200
TMAC121	Ten Mile	232070	7257494	560	Drilling	51	-90	0	553	6450	58000	7850	97000	23900
TMAC121	Ten Mile	232070	7257494	560	Drilling	60	-90	0	491	7450	66600	9020	114250	27200
TMAC121	Ten Mile	232070	7257494	560	Drilling	66	-90	0	508	7150	64000	8730	110700	25800
TMAC122	Ten Mile	231295	7258994	560	Drilling	18	-90	0	670	5840	56900	8400	95950	24200

							_				ļ	Assay		
Point Reference	Location	Easting	Northing	RL (m)	Description	Depth	Dip	Azimuth	Ca	Mg	Na	к	CI	SO4
												mg/L		
TMAC122	Ten Mile	231295	7258994	560	Drilling	27	-90	0	781	4840	49200	7100	79450	20300
TMAC122	Ten Mile	231295	7258994	560	Drilling	36	-90	0	713	5480	53300	7830	90000	22600
TMAC122	Ten Mile	231295	7258994	560	Drilling	45	-90	0	690	5260	53600	7640	85950	22100
TMAC122	Ten Mile	231295	7258994	560	Drilling	57	-90	0	652	5570	53900	7910	91050	22200
TMAC122	Ten Mile	231295	7258994	560	Drilling	66	-90	0	671	5470	53400	7810	89300	22100
TMAC122	Ten Mile	231295	7258994	560	Drilling	81	-90	0	660	5510	54800	8000	91400	22800
TMAC122	Ten Mile	231295	7258994	560	Drilling	93	-90	0	716	5450	53500	7800	89650	22100
TMAC123	Ten Mile	231403	7259277	560	Drilling	30	-90	0	760	5190	49200	6770	80150	21700
TMAC123	Ten Mile	231403	7259277	560	Drilling	51	-90	0	611	5410	51300	7090	84000	21500
TMAC124	Ten Mile	229145	7259074	560	Drilling	18	-90	0	626	5300	52000	7560	88050	21400
TMAC124	Ten Mile	229145	7259074	560	Drilling	30	-90	0	598	5470	53800	7670	88600	22000
TMAC124	Ten Mile	229145	7259074	560	Drilling	43	-90	0	589	5440	53600	7690	90850	22400
TMAC124	Ten Mile	229145	7259074	560	Drilling	51	-90	0	594	5460	53300	7680	89800	22600
TMAC124	Ten Mile	229145	7259074	560	Drilling	60	-90	0	569	5600	54700	7840	91400	22600
TMAC125	Ten Mile	228869	7258856	560	Drilling	9	-90	0	567	5520	52100	7040	88050	19900
TMAC125	Ten Mile	228869	7258856	560	Drilling	18	-90	0	498	5960	56600	7960	94050	24500
TMAC125	Ten Mile	228869	7258856	560	Drilling	30	-90	0	525	6010	56600	7850	94550	23600
TMAC125	Ten Mile	228869	7258856	560	Drilling	39	-90	0	554	5670	53100	7300	90500	21100
TMAC125	Ten Mile	228869	7258856	560	Drilling	60	-90	0	550	5880	54000	7550	92250	22300
TMAC126	Ten Mile	232991	7259949	564	Drilling	18	-90	0	431	3340	30000	3700	49200	12800
TMAC126	Ten Mile	232991	7259949	564	Drilling	39	-90	0	337	2790	25600	3200	42000	10500
TMAC126	Ten Mile	232991	7259949	564	Drilling	57	-90	0	336	2730	25000	3120	41300	10300
TMAC126	Ten Mile	232991	7259949	564	Drilling	70	-90	0	419	3860	34800	4460	60650	14000
TMAC127	Ten Mile	258721	7275738	564	Drilling	24	-90	0	420	3470	28900	3180	46800	13900
TMAC127	Ten Mile	258721	7275738	564	Drilling	48	-90	0	407	3490	28700	3310	47800	13900
TMAC127	Ten Mile	258721	7275738	564	Drilling	63	-90	0	460	4510	40500	4810	66150	17100

APPENDIX 2: AUGER HOLE ASSAYS AND DETAILS

									Down					Assay		
	Point Reference	Easting	Northing	RL (m)	Data Source	SampleDate	Dip	Azimuth	Down Hole	Depth (m)	Ca	Mg	Na	К	Cl	SO4
									Width (m)	(11)				mg/L		
10 Mile	B1	230925	7255738	563	2015_Auger	2015	-90	0	0.25	<1.5m	699	7180	57800	7660	120000	21504
10 Mile	B2	233648	7257946	563	2015_Auger	2015	-90	0	0.25	<1.5m	1080	2470	32100	5380	56100	11441
10 Mile	32	230000	7258500	563	2015_Auger	2015	-90	0	0.25	<1.5m	785	4390	46700	7470	79500	19677
10 Mile	33	231000	7259500	565	2015_Auger	2015	-90	0	0.25	<1.5m	816	4010	36700	5310	63300	18509
10 Mile	34	231000	7258500	561	2015_Auger	2015	-90	0	0.25	<1.5m	776	4490	48400	8450	84400	19827
10 Mile	35	231000	7257500	562	2015_Auger	2015	-90	0	0.25	<1.5m	463	6730	73000	11000	133000	26745
10 Mile	36	231000	7256500	562	2015_Auger	2015	-90	0	0.25	<1.5m	513	6750	70800	10650	127000	26431
10 Mile	43	232000	7259500	564	2015_Auger	2015	-90	0	0.25	<1.5m	936	4100	45100	7400	84000	15904
10 Mile	44	232000	7258500	563	2015_Auger	2015	-90	0	0.25	<1.5m	839	3880	40000	6240	68500	17072
10 Mile	45	232000	7257500	563	2015_Auger	2015	-90	0	0.25	<1.5m	1000	2820	31300	4920	53400	12579
10 Mile	46	232000	7256500	561	2015_Auger	2015	-90	0	0.25	<1.5m	537	7650	67200	10000	125000	24889
10 Mile	47	232000	7255500	564	2015_Auger	2015	-90	0	0.25	<1.5m	832	5180	39100	5200	68400	18958
10 Mile	51	232000	7251500	564	2015_Auger	2015	-90	0	0.25	<1.5m	932	3070	25200	3520	43300	14077
10 Mile	60	233000	7256500	563	2015_Auger	2015	-90	0	0.25	<1.5m	860	4390	37700	4900	63500	16742
10 Mile	61	233000	7255500	563	2015_Auger	2015	-90	0	0.25	<1.5m	853	5090	44200	5880	78800	17161
10 Mile	62	233000	7254500	563	2015_Auger	2015	-90	0	0.25	<1.5m	877	4870	46300	6560	82300	16413
10 Mile	TML1	223799	7259792	561	2015_Auger	2015	-90	0	0.25	<1.5m	457	7967	73701	11392	132800	32850
10 Mile	TMBH 1	226025	7255591	560	2015_Auger	2015	-90	0	0.25	<1.5m	600	2660	21600	2910	35600	11084
10 Mile	TMBH 2	228521	7257319	561	2015_Auger	2015	-90	0	0.25	<1.5m	635	2660	21700	2930	34800	11714
10 Mile	TME	233050	7252797	565	2015_Auger	2015	-90	0	0.25	<1.5m	480	9300	75400	10400	147000	24026
10 Mile	TMW	222778	7253100	565	2015_Auger	2015	-90	0	0.25	<1.5m	415	8760	79500	12800	144000	36848
10 Mile	H7	230375	7259340	564	2015_Auger	2015	-90	0	0.25	<1.5m	903	2790	29400	4530	49300	13777
Aerodrome 1 Auger	Aerodrome 1	380000	7272500		2017_Auger	2017	-90	0	0.25	2	544	6950	75300	8320	133500	22600
Aerodrome 2 Auger	Aerodrome 2	384000	7275500		2017_Auger	2017	-90	0	0.25	2	654	7000	71600	7710	131950	17700
Aerodrome 3 Auger	Aerodrome 3	377000	7277500		2017_Auger	2017	-90	0	0.25	2	652	7000	71400	7690	132450	17400
Aerodrome North 4 Auger	Aerodrome North 4	370000	7285500		2017_Auger	2017	-90	0	0.25	2	1150	7760	47800	6000	96550	12600
Aerodrome	A1	378955	7276704	473	2015_Auger	2015	-90	0	0.25	<1.5m	439	8610	82300	7960	138000	26326
Aerodrome	A2	377806	7275416	474	2015_Auger	2015	-90	0	0.25	<1.5m	480	8590	88200	8420	148000	23511
Aerodrome	506	375378	7279311	473	2015_Auger	2015	-90	0	0.25	<1.5m	398	8270	76200	9075	136000	21923
Aerodrome	508	376000	7278500	473	2015_Auger	2015	-90	0	0.25	<1.5m	453	8500	85300	9220	153000	23271
Aerodrome	508 (1)	376000	7278500	473	2015_Auger	2015	-90	0	0.25	<1.5m	459	8620	84300	9280	151000	22762
Aerodrome	513	376842	7278311	473	2015_Auger	2015	-90	0	0.25	<1.5m	498	7710	82500	7580	143000	21594
Aerodrome	514	377000	7277500	476	2015_Auger	2015	-90	0	0.25	<1.5m	461	8610	86100	9130	154000	22043
Aerodrome	519	377284	7276752	479	2015_Auger	2015	-90	0	0.25	<1.5m	553	6515	78300	8795	135000	20156
Aerodrome	520	378000	7277500	473	2015_Auger	2015	-90	0	0.25	<1.5m	458	7590	83900	7640	149000	22522
Aerodrome	527	379000	7275500	478	2015_Auger	2015	-90	0	0.25	<1.5m	720	6000	63500	6740	113000	17431
Aerodrome	528	379000	7274500	475	2015_Auger	2015	-90	0	0.25	<1.5m	431	7870	81600	8510	149000	23301
Aerodrome	529	379000	7273500	481	2015_Auger	2015	-90	0	0.25	<1.5m	401	8720	83500	9060	157000	23601

									During					Assay		
	Point Reference	Easting	Northing	RL (m)	Data Source	SampleDate	Dip	Azimuth	Down Hole	Depth	Ca	Mg	Na	К	Cl	SO4
									Width (m)	(m)				mg/L		
Aerodrome	530	379158	7272500	479	2015_Auger	2015	-90	0	0.25	<1.5m	370	8190	88200	10300	161000	25757
Aerodrome	531	379189	7271563	481	2015_Auger	2015	-90	0	0.25	<1.5m	561	7000	71800	7820	128000	20875
Aerodrome	532	379653	7276248	477	2015_Auger	2015	-90	0	0.25	<1.5m	390	9580	84100	8260	150000	27494
Aerodrome	533	380000	7275500	474	2015_Auger	2015	-90	0	0.25	<1.5m	415	9730	82500	7660	147000	26236
Aerodrome	534	380000	7274500	475	2015_Auger	2015	-90	0	0.25	<1.5m	916	5390	47600	4370	81500	15544
Aerodrome	535	380000	7273500	475	2015_Auger	2015	-90	0	0.25	<1.5m	535	7050	78000	7910	135000	20935
Aerodrome	536	380000	7272500	475	2015_Auger	2015	-90	0	0.25	<1.5m	578	6410	73600	7620	126000	21444
Aerodrome	538	380000	7271099	473	2015_Auger	2015	-90	0	0.25	<1.5m	456	8515	83150	8000	147000	24290
Aerodrome	540	381095	7274996	478	2015_Auger	2015	-90	0	0.25	<1.5m	1050	4070	40100	3740	68400	12369
Aerodrome	541	381000	7274500	478	2015_Auger	2015	-90	0	0.25	<1.5m	667	5880	70000	7460	116000	20097
Aerodrome	542 (1)	381000	7273500	477	2015_Auger	2015	-90	0	0.25	<1.5m	567	5220	75100	7670	125000	22313
Aerodrome	542	381000	7273500	477	2015_Auger	2015	-90	0	0.25	<1.5m	554	5100	75900	7740	125000	22223
Aerodrome	543	381000	7272500	477	2015_Auger	2015	-90	0	0.25	<1.5m	588	6760	79500	8200	132000	21564
Aerodrome	544	381000	7271500	474	2015_Auger	2015	-90	0	0.25	<1.5m	676	7020	68200	6920	117000	19228
Aerodrome	546	382000	7275500	477	2015_Auger	2015	-90	0	0.25	<1.5m	717	6840	68300	6680	117000	19408
Aerodrome	546 (1)	382000	7275500	477	2015_Auger	2015	-90	0	0.25	<1.5m	695	6880	69300	6750	118000	19003
Aerodrome	547	382000	7274500	477	2015_Auger	2015	-90	0	0.25	<1.5m	663	6230	69900	7830	117000	20546
Aerodrome	548	382000	7273500	477	2015_Auger	2015	-90	0	0.25	<1.5m	631	5720	73200	7370	123000	19737
Aerodrome	549	381874	7272595	477	2015_Auger	2015	-90	0	0.25	<1.5m	778	7230	64400	5820	112000	17251
Aerodrome	550	381527	7271878	478	2015_Auger	2015	-90	0	0.25	<1.5m	794	5580	48900	4230	81700	17311
Aerodrome	552	383000	7275500	476	2015_Auger	2015	-90	0	0.25	<1.5m	631	6520	73700	7760	125000	20815
Aerodrome	553	383000	7274500	476	2015_Auger	2015	-90	0	0.25	<1.5m	651	6220	72700	7850	126000	18869
Aerodrome	557	384000	7275500	474	2015_Auger	2015	-90	0	0.25	<1.5m	529	9320	83400	7840	144000	22103
Aerodrome	559	383685	7273658	475	2015_Auger	2015	-90	0	0.25	<1.5m	410	9640	78600	8890	137000	21923
Aerodrome	А	381187	7273011	476	2015_Auger	2015	-90	0	0.25	<1.5m	564	6690	71600	7880	133000	21660
Aerodrome (NW)	A3	370281	7286454	483	2015_Auger	2015	-90	0	0.25	<1.5m	1290	5480	33200	3880	64800	10243
Aerodrome (NW)	A4	370831	7286573	485	2015_Auger	2015	-90	0	0.25	<1.5m	1070	5800	37500	4530	72600	11531
Aerodrome (NW)	461	368000	7286500	485	2015_Auger	2015	-90	0	0.25	<1.5m	1100	6470	39100	4420	80800	11890
Aerodrome (NW)	467	369000	7285500	483	2015_Auger	2015	-90	0	0.25	<1.5m	1160	6570	42900	5210	87800	11381
Aerodrome (NW)	467 (1)	369000	7285500	483	2015_Auger	2015	-90	0	0.25	<1.5m	1170	6640	43800	5320	89000	11531
Aerodrome (NW)	468	369347	7285288	483	2015_Auger	2015	-90	0	0.25	<1.5m	1360	5500	37300	4330	74500	10093
Aerodrome (NW)	469	369000	7286500	485	2015_Auger	2015	-90	0	0.25	<1.5m	1200	5710	38000	4610	74000	11052
Aerodrome (NW)	471	370701	7284847	484	2015_Auger	2015	-90	0	0.25	<1.5m	1230	5890	40200	4650	78200	10752
Aerodrome (NW)	479	370000	7285500	483	2015_Auger	2015	-90	0	0.25	<1.5m	1240	6050	37700	4640	74800	10692
Aerodrome (NW)	480	370063	7284847	484	2015_Auger	2015	-90	0	0.25	<1.5m	1220	5900	40300	4860	77600	11231
Aerodrome (NW)	488	370496	7287689	484	2015_Auger	2015	-90	0	0.25	<1.5m	1360	4750	28300	3340	57100	9105
Aerodrome (NW)	490	371000	7285500	483	2015_Auger	2015	-90	0	0.25	<1.5m	1270	5640	37500	4490	71700	10572
Aerodrome (NW)	491	371284	7285067	484	2015_Auger	2015	-90	0	0.25	<1.5m	1160	5430	36800	4060	68900	11800
Beyondie	B3	226163	7260513	563	2015_Auger	2015	-90	0	0.25	<1.5m	604	2070	20700	3140	33500	10662
Beyondie	B4	223939	7260371	563	2015_Auger	2015	-90	0	0.25	<1.5m	1020	2950	26200	3530	47400	11351
Beyondie	В5	226314	7259540	563	2015_Auger	2015	-90	0	0.25	<1.5m	959	2920	30400	4620	52300	13088
Beyondie	B6	227558	7259135	562	2015_Auger	2015	-90	0	0.25	<1.5m	969	713	7590	1180	12500	4762

														Assay		
	Point Reference	Easting	Northing	RL (m)	Data Source	SampleDate	Dip	Azimuth	Down Hole	Depth	Ca	Mg	Na	K	СІ	SO4
									Width (m)	(m)		U U		mg/L		
Beyondie	11	225000	7259500	563	2015_Auger	2015	-90	0	0.25	<1.5m	790	2510	25400	3700	32700	12010
Beyondie	11 (1)	225000	7259500	563	2015_Auger	2015	-90	0	0.25	<1.5m	747	2220	23100	3360	38800	10812
Beyondie	23	228000	7261500	566	2015_Auger	2015	-90	0	0.25	<1.5m	862	3940	40100	6020	73600	16862
Beyondie	BL2	223597	7258770	561	2015_Auger	2015	-90	0	0.25	<1.5m	510	6740	69800	10100	123000	23966
Beyondie	BL1	224311	7259754	561	2015_Auger	2015	-90	0	0.25	<1.5m	567	7741	66291	8882	108300	29189
Beyondie Stream	BS1	217112	7257953	565	2015_Auger	2015	-90	0	0.25	<1.5m	880	2225	21950	3130	40050	7310
Beyondie/10 Mile	N2	232811	7251800	563	2015_Auger	2015	-90	0	0.25	<1.5m	959	2830	28200	4100	46600	12789
Beyondie/10 Mile	N4	224317	7258591	563	2015_Auger	2015	-90	0	0.25	<1.5m	906	3800	35700	4980	59800	15993
Beyondie/10 Mile	N6	228003	7261488	565	2015_Auger	2015	-90	0	0.25	<1.5m	870	4000	43500	6240	73500	17012
Beyondie/10 Mile	N7	233000	7253500	562	2015_Auger	2015	-90	0	0.25	<1.5m	861	4560	41500	5570	71900	16712
Central (E)	EC1	357345	7270169	480	2015_Auger	2015	-90	0	0.25	<1.5m	807	7070	39500	5400	73000	20785
Central (E)	425	354473	7281618	478	2015_Auger	2015	-90	0	0.25	<1.5m	322	10500	79800	10900	141000	39534
Central (E)	426	354284	7281217	477	2015_Auger	2015	-90	0	0.25	<1.5m	337	8520	78200	11300	131000	44326
Central (E)	427	354630	7280847	477	2015_Auger	2015	-90	0	0.25	<1.5m	472	9940	66200	8350	120000	29052
Central (E)	429	353937	7278666	478	2015_Auger	2015	-90	0	0.25	<1.5m	803	3920	22400	2630	40200	12729
Central (E)	430	354315	7277351	479	2015_Auger	2015	-90	0	0.25	<1.5m	791	6220	37800	4500	68400	18449
Central (E)	430 (1)	354315	7277351	479	2015_Auger	2015	-90	0	0.25	<1.5m	800	6290	37600	4500	67900	19018
Central (E)	431	354630	7279690	480	2015_Auger	2015	-90	0	0.25	<1.5m	696	6040	51400	8300	93900	21894
Central (E)	434	357575	7271067	481	2015_Auger	2015	-90	0	0.25	<1.5m	851	5780	33300	4700	63300	16622
Central (E)	436	352913	7277918	480	2015_Auger	2015	-90	0	0.25	<1.5m	800	4880	29500	2980	52000	17311
Central (E)	442	358284	7271193	482	2015_Auger	2015	-90	0	0.25	<1.5m	789	6230	37500	5200	67900	19498
Central (E)	443	359000	7270500	481	2015_Auger	2015	-90	0	0.25	<1.5m	629	7365	46600	7620	86900	25592
Central (E)	443 (1)	359000	7270500	481	2015_Auger	2015	-90	0	0.25	<1.5m	627	7350	47200	7630	87900	25038
Central (N)	PC6	335180	7292778	475	2015_Auger	2015	-90	0	0.25	<1.5m	463	12000	74400	10100	155000	25554
Central (S)	PC8	336052	7281468	476	2015_Auger	2015	-90	0	0.25	<1.5m	621	9710	82400	5400	163000	15518
Central (W)	WC1	335403	7281884	476	2015_Auger	2015	-90	0	0.25	<1.5m	1220	4750	31700	2570	59100	10902
Central (W)	WC2	336869	7282657	476	2015_Auger	2015	-90	0	0.25	<1.5m	387	12000	93700	6360	173000	20965
Central (W)	WC3	334065	7292685	477	2015_Auger	2015	-90	0	0.25	<1.5m	1030	3840	25000	3770	44700	12429
Central (W)	WC4	335913	7293437	478	2015_Auger	2015	-90	0	0.25	<1.5m	640	7380	49300	6260	93700	16892
Central (W)	WC5	337097	7291603	478	2015_Auger	2015	-90	0	0.25	<1.5m	1880	5780	32900	4310	70400	6679
Central (W)	WC6	336861	7290535	476	2015_Auger	2015	-90	0	0.25	<1.5m	1310	2880	17400	2240	34600	6020
Central (W)	WC7	339841	7280505	477	2015_Auger	2015	-90	0	0.25	<1.5m	386	14800	83500	6820	166000	23870
Central (W)	319	329000	7282500	477	2015_Auger	2015	-90	0	0.25	<1.5m	1010	1440	8590	1330	16200	5541
Central (W)	320 (1)	328811	7281847	476	2015_Auger	2015	-90	0	0.25	<1.5m	1040	1560	10700	1300	20000	5900
Central (W)	320	328811	7281847	476	2015_Auger	2015	-90	0	0.25	<1.5m	1030	1570	10800	1290	20000	6080
Central (W)	321	329401	7284807	475	2015_Auger	2015	-90	0	0.25	<1.5m	980	1500	10300	1420	18000	6319
Central (W)	323	330000	7283500	475	2015_Auger	2015	-90	0	0.25	<1.5m	1085	3400	20650	3175	42300	9419
Central (W)	324	330000	7282500	476	2015_Auger	2015	-90	0	0.25	<1.5m	1100	3300	21300	2910	40800	9404
Central (W)	325	330622	7284902	477	2015_Auger	2015	-90	0	0.25	<1.5m	966	4950	29100	3780	56500	13178
Central (W)	325 (1)	330622	7284902	477	2015_Auger	2015	-90	0	0.25	<1.5m	961	5110	29000	3820	56700	13418
Central (W)	327	331000	7283500	475	2015_Auger	2015	-90	0	0.25	<1.5m	898	6150	40500	5760	80700	14705
Central (W)	328	330779	7283067	475	2015_Auger	2015	-90	0	0.25	<1.5m	999	5510	34700	4850	68500	13148

														Assay		
	Point Reference	Easting	Northing	RL (m)	Data Source	SampleDate	Dip	Azimuth	Down Hole	Depth	Ca	Mg	Na	К	Cl	SO4
									Width (m)	(m)				mg/L		
Central (W)	329	332347	7284839	475	2015_Auger	2015	-90	0	0.25	<1.5m	812	6940	41700	5420	82600	16682
Central (W)	330	332000	7284500	474	2015_Auger	2015	-90	0	0.25	<1.5m	665	7500	49900	7070	98600	20486
Central (W)	331	332000	7283500	475	2015_Auger	2015	-90	0	0.25	<1.5m	966	5050	32200	4470	66400	12819
Central (W)	332	340412	7294346	479	2015_Auger	2015	-90	0	0.25	<1.5m	1580	2180	11700	1610	26600	4253
Central (W)	332 (1)	340412	7294346	479	2015_Auger	2015	-90	0	0.25	<1.5m	1550	2150	11600	1580	26600	4103
Central (W)	333	333063	7285217	475	2015_Auger	2015	-90	0	0.25	<1.5m	773	5550	37200	4800	74600	16802
Central (W)	334	333000	7284500	475	2015_Auger	2015	-90	0	0.25	<1.5m	890	5090	31900	4730	65100	13987
Central (W)	335	333000	7283500	475	2015_Auger	2015	-90	0	0.25	<1.5m	1010	5270	34900	4720	69100	12669
Central (W)	338	333158	7283036	474	2015_Auger	2015	-90	0	0.25	<1.5m	917	4640	29200	3560	57300	13328
Central (W)	339	334126	7285185	474	2015_Auger	2015	-90	0	0.25	<1.5m	722	5830	42500	5780	85400	17730
Central (W)	340	334000	7284500	476	2015_Auger	2015	-90	0	0.25	<1.5m	930	4650	36800	5810	73400	12968
Central (W)	341	334000	7283500	476	2015_Auger	2015	-90	0	0.25	<1.5m	1110	4490	32500	3990	67800	10992
Central (W)	342 (1)	334000	7293500	479	2015_Auger	2015	-90	0	0.25	<1.5m	1070	4180	28300	3830	56100	11591
Central (W)	342	334000	7293500	479	2015_Auger	2015	-90	0	0.25	<1.5m	1080	4210	28800	3840	56200	11740
Central (W)	344	340333	7293548	477	2015_Auger	2015	-90	0	0.25	<1.5m	1570	2480	11700	1400	26800	4582
Central (W)	345	334252	7282784	475	2015_Auger	2015	-90	0	0.25	<1.5m	908	6150	40100	4600	78300	16023
Central (W)	346	335000	7285500	477	2015_Auger	2015	-90	0	0.25	<1.5m	1100	4230	32400	4730	61200	12160
Central (W)	347	335000	7284500	476	2015_Auger	2015	-90	0	0.25	<1.5m	1240	3580	25100	2770	48600	9584
Central (W)	347 (1)	335000	7284500	476	2015_Auger	2015	-90	0	0.25	<1.5m	1230	3540	25300	2750	48300	9524
Central (W)	348	335000	7283500	475	2015_Auger	2015	-90	0	0.25	<1.5m	550	9610	76500	6640	146000	19378
Central (W)	349	335315	7282689	475	2015_Auger	2015	-90	0	0.25	<1.5m	1080	7740	48000	4280	95700	13238
Central (W)	351	335819	7281036	475	2015_Auger	2015	-90	0	0.25	<1.5m	690	8990	80900	5090	153000	15185
Central (W)	352	335000	7293500	477	2015_Auger	2015	-90	0	0.25	<1.5m	636	11200	62700	7790	125000	22822
Central (W)	353	335000	7292500	475	2015_Auger	2015	-90	0	0.25	<1.5m	416	12600	80200	11200	155000	27075
Central (W)	354	335032	7291752	474	2015_Auger	2015	-90	0	0.25	<1.5m	468	10200	74200	10100	137000	29830
Central (W)	356	336000	7292500	474	2015_Auger	2015	-90	0	0.25	<1.5m	545	13100	81800	12600	163000	19378
Central (W)	357	336000	7291500	474	2015_Auger	2015	-90	0	0.25	<1.5m	1600	6710	44600	5870	89000	8596
Central (W)	358	336000	7290500	476	2015_Auger	2015	-90	0	0.25	<1.5m	660	2230	15100	2030	28100	5361
Central (W)	359	336819	7290004	475	2015_Auger	2015	-90	0	0.25	<1.5m	1320	6740	38500	4780	75600	11141
Central (W)	360	336630	7288847	475	2015_Auger	2015	-90	0	0.25	<1.5m	636	12200	76600	10000	153000	17341
Central (W)	361	336158	7287343	476	2015_Auger	2015	-90	0	0.25	<1.5m	873	8250	58600	7040	115000	15754
Central (W)	362	336189	7286185	474	2015_Auger	2015	-90	0	0.25	<1.5m	1070	5195	40000	5215	73400	14286
Central (W)	363	336000	7285500	475	2015_Auger	2015	-90	0	0.25	<1.5m	1210	3930	33700	4100	58000	12369
Central (W)	364	336000	7284500	475	2015_Auger	2015	-90	0	0.25	<1.5m	1250	5720	40400	3410	73500	12354
Central (W)	365	336000	7283500	475	2015_Auger	2015	-90	0	0.25	<1.5m	731	13100	64600	5790	128000	19917
Central (W)	366	336000	7282500	473	2015_Auger	2015	-90	0	0.25	<1.5m	452	13400	98900	7240	178000	21894
Central (W)	367	336000	7281500	475	2015_Auger	2015	-90	0	0.25	<1.5m	714	9220	84600	5440	152000	16293
Central (W)	368	336000	7280500	474	2015_Auger	2015	-90	0	0.25	<1.5m	330	17100	90900	7690	181000	24799
Central (W)	370	337000	7289500	476	2015_Auger	2015	-90	0	0.25	<1.5m	622	10600	74100	9020	146000	17102
Central (W)	371	337000	7288500	474	2015_Auger	2015	-90	0	0.25	<1.5m	554	13750	80850	9835	170000	15559
Central (W)	372	337000	7287500	477	2015_Auger	2015	-90	0	0.25	<1.5m	700	13100	71700	10200	153000	13987
Central (W)	373	336779	7286343	475	2015_Auger	2015	-90	0	0.25	<1.5m	1030	7950	42800	4410	86500	13807

									David					Assay		
	Point Reference	Easting	Northing	RL (m)	Data Source	SampleDate	Dip	Azimuth	Down Hole	Depth	Ca	Mg	Na	К	CI	SO4
									Width (m)	(m)				mg/L		
Central (W)	374	337000	7285500	475	2015_Auger	2015	-90	0	0.25	<1.5m	723	8580	59200	6390	115000	17850
Central (W)	374(1)	337000	7285500	475	2015_Auger	2015	-90	0	0.25	<1.5m	732	8790	60300	6500	115000	18210
Central (W)	375	337000	7284500	475	2015_Auger	2015	-90	0	0.25	<1.5m	490	11500	78200	6350	145000	23691
Central (W)	378	337000	7281500	474	2015_Auger	2015	-90	0	0.25	<1.5m	588	9950	83000	5440	154000	16682
Central (W)	378 (1)	337000	7281500	474	2015_Auger	2015	-90	0	0.25	<1.5m	585	9720	82400	5360	155000	16592
Central (W)	380	338544	7291363	476	2015_Auger	2015	-90	0	0.25	<1.5m	1880	6950	37300	4800	83100	6619
Central (W)	381	336370	7292311	474	2015_Auger	2015	-90	0	0.25	<1.5m	673	11900	72000	9500	149000	15245
Central (W)	383	337905	7285248	475	2015_Auger	2015	-90	0	0.25	<1.5m	915	7580	49000	4700	97200	14406
Central (W)	384	338000	7284500	475	2015_Auger	2015	-90	0	0.25	<1.5m	1220	6000	35000	3080	67900	11171
Central (W)	385	337811	7283784	475	2015_Auger	2015	-90	0	0.25	<1.5m	538	12100	73200	6090	145000	20097
Central (W)	386	337811	7282658	474	2015_Auger	2015	-90	0	0.25	<1.5m	1020	5870	30900	2300	61900	13208
Central (W)	387	337622	7282036	474	2015_Auger	2015	-90	0	0.25	<1.5m	593	13400	71100	5710	146000	17910
Central (W)	388	338000	7280500	475	2015_Auger	2015	-90	0	0.25	<1.5m	565	10900	89400	5320	167000	15484
Central (W)	389	338095	7279784	473	2015_Auger	2015	-90	0	0.25	<1.5m	582	12100	75500	5950	154000	16443
Central (W)	390	336141	7279666	474	2015_Auger	2015	-90	0	0.25	<1.5m	1260	6180	35700	2610	73900	9674
Central (W)	391	339544	7278949	473	2015_Auger	2015	-90	0	0.25	<1.5m	384	14800	88300	5920	174000	20576
Central (W)	392	338811	7281343	476	2015_Auger	2015	-90	0	0.25	<1.5m	590	8110	77300	5020	143000	16982
Central (W)	393	339000	7280500	473	2015_Auger	2015	-90	0	0.25	<1.5m	553	9990	83300	5470	158000	16383
Central (W)	394	339284	7280036	473	2015_Auger	2015	-90	0	0.25	<1.5m	418	12100	90200	6090	174000	19228
Central (W)	398	340000	7279500	474	2015_Auger	2015	-90	0	0.25	<1.5m	728	8800	71200	4560	133000	15634
Central (W)	398 (1)	340000	7279500	474	2015_Auger	2015	-90	0	0.25	<1.5m	703	8930	70300	4640	135000	15634
Central (W)	399	340000	7278500	473	2015_Auger	2015	-90	0	0.25	<1.5m	440	12100	94800	5810	177000	17910
Central (W)	400	339937	7277973	473	2015_Auger	2015	-90	0	0.25	<1.5m	407	13700	94200	5620	180000	18869
Central (W)	401	341378	7281059	475	2015_Auger	2015	-90	0	0.25	<1.5m	681	9160	68900	4650	129000	17551
Central (W)	402	341000	7280500	474	2015_Auger	2015	-90	0	0.25	<1.5m	696	8810	76700	4950	137000	16053
Central (W)	403	341000	7279500	474	2015_Auger	2015	-90	0	0.25	<1.5m	237	20600	90900	9850	191000	31448
Central (W)	404	341000	7278500	476	2015_Auger	2015	-90	0	0.25	<1.5m	622	10000	84600	5250	154000	15963
Central (W)	408	342189	7282059	474	2015_Auger	2015	-90	0	0.25	<1.5m	649	9900	74700	4880	138000	17641
Central (W)	409	342000	7281500	476	2015_Auger	2015	-90	0	0.25	<1.5m	714	9650	69600	4590	133000	16263
Central (W)	410	342000	7280500	475	2015_Auger	2015	-90	0	0.25	<1.5m	491	13000	79900	5500	155000	20636
Central (W)	411	342000	7279500	476	2015_Auger	2015	-90	0	0.25	<1.5m	612	9720	80800	4810	149000	16503
Central (W)	412	342000	7278500	473	2015_Auger	2015	-90	0	0.25	<1.5m	363	14400	94400	5980	181000	21265
Central (W)	420	341622	7278036	473	2015_Auger	2015	-90	0	0.25	<1.5m	380	15650	92850	5860	181000	21115
Central (W)	422	342811	7282217	476	2015_Auger	2015	-90	0	0.25	<1.5m	1001	5995	38200	3095	72100	13612
Central (W)	422 (1)	342811	7282217	476	2015_Auger	2015	-90	0	0.25	<1.5m	1020	6000	39100	3100	69300	13627
Central (W)	423	342685	7280689	475	2015_Auger	2015	-90	0	0.25	<1.5m	601	10200	78900	4960	146000	17341
Central (W)	424	342559	7279752	473	2015_Auger	2015	-90	0	0.25	<1.5m	431	13400	80800	5560	157000	21654
Central (W)	379	337000	7280500	473	2015_Auger	2015	-90	0	0.25	<1.5m	973	8130	52800	3595	96300	14032
Central (W)	PC7	333703	7284444	473	2015_Auger	2015	-90	0	0.25	<1.5m	550	11000	65300	9900	139000	22229
Central 1 Auger	Central 1	335000	7292500	474	2017_Auger	2017	-90	0	0.25	2	418	12700	82100	11600	161750	22900
Central 2 Auger	Central 2	337000	7288500	474	2017_Auger	2017	-90	0	0.25	2	676	13500	77900	10200	161200	13600
Central 3 Auger	Central 3	337000	7284500	474	2017_Auger	2017	-90	0	0.25	2	551	10800	76600	6530	150350	18300

									_					Assay		
	Point Reference	Easting	Northing	RL (m)	Data Source	SampleDate	Dip	Azimuth	Down Hole	Depth	Ca	Mg	Na	K	CI	SO4
		, , , , , , , , , , , , , , , , , , ,					· ·		Width (m)	(m)				mg/L		
Central 3 Auger Rpt	Central 3	337000	7284500	474	2017_Auger	2017	-90	0	0.25	2	555	11000	75400	6500	149800	18700
Central 3 Dup Auger	Central 3	337000	7284500	474	2017_Auger	2017	-90	0	0.25	2	576	11000	78300	6750	149300	18900
Central 4 Auger	Central 4	333703	7284444	474	2017_Auger	2017	-90	0	0.25	2	485	11500	71900	11400	141950	25300
Central 4 Dup Auger	Central 4	333703	7284444	474	2017_Auger	2017	-90	0	0.25	2	481	11500	71000	11500	141750	25600
Central 5 Auger	Central 5	338000	7280500	474	2017_Auger	2017	-90	0	0.25	2	664	8850	78300	5140	146300	15400
Central 6 Auger	Central 6	341000	7279500	474	2017_Auger	2017	-90	0	0.25	2	633	9670	79500	5200	150700	16200
Central North 1 Auger	Central North 1	340333	7293548	475	2017_Auger	2017	-90	0	0.25	2	412	12600	80900	11500	161050	22900
Lake Wilderness 1 Auger	Lake Wilderness 1	310000	7312500	538	2017_Auger	2017	-90	0	0.25	2	746	9030	58400	7330	111250	18800
Lake Wilderness 1 Auger Rpt	Lake Wilderness 1	310000	7312500	538	2017_Auger	2017	-90	0	0.25	2	737	8950	58000	7260	111250	18900
Lake Wilderness 2 Auger	Lake Wilderness 2	312000	7311500	538	2017_Auger	2017	-90	0	0.25	2	776	8300	57000	7770	110200	16400
Lake Wilderness South 2 Auger	Lake Wilderness South 2	305633	7310032	538	2017_Auger	2017	-90	0	0.25	2	1170	3660	28700	3740	53600	10200
North Sunshine Auger	North Sunshine	265000	7276500		2017_Auger	2017	-90	0	0.25	2	1130	4960	35400	3600	66250	11400
North Sunshine 3 Auger	North Sunshine 3	272010	7280857		2017_Auger	2017	-90	0	0.25	2	1160	4890	36300	3510	64300	12400
North Sunshine East Auger	North Sunshine East	271524	7278932		2017_Auger	2017	-90	0	0.25	2	1160	4930	36500	3610	66050	12200
North T-Junction 1 Auger	North T-Junction 1	292000	7303500		2017_Auger	2017	-90	0	0.25	2	958	7860	55900	5880	108650	13000
North T-Junction 2 Auger	North T-Junction 2	294658	7307222		2017_Auger	2017	-90	0	0.25	2	927	7850	50900	6930	99350	14900
Northern	406	341252	7322626	501	2015_Auger	2015	-90	0	0.25	<1.5m	1150	2220	13400	1530	24900	6739
Northern	407	341000	7321500	501	2015_Auger	2015	-90	0	0.25	<1.5m	1140	7460	42700	5120	84600	12280
Northern	413	341433	7321933	500	2015_Auger	2015	-90	0	0.25	<1.5m	1010	6430	41700	5550	80600	13867
Northern	414	342000	7321500	500	2015_Auger	2015	-90	0	0.25	<1.5m	1310	4060	26600	3870	52400	8775
Northern	415	342000	7320500	502	2015_Auger	2015	-90	0	0.25	<1.5m	1430	4970	31800	4100	62500	9374
Northern	416	342000	7319500	501	2015_Auger	2015	-90	0	0.25	<1.5m	1560	4120	21600	2720	45700	7008
Northern	416 (1)	342000	7319500	501	2015_Auger	2015	-90	0	0.25	<1.5m	1560	4080	21500	2680	45900	6918
Northern	418	342000	7317500	500	2015 Auger	2015	-90	0	0.25	<1.5m	1470	2670	13200	1790	27400	5481
Northern	419	341590	7316689	501	0 2015_Auger	2015	-90	0	0.25	<1.5m	1130	1630	7770	1090	16000	4433
Northern 1 Auger	Northern 1	341433	7321933	501	0 2017_Auger	2017	-90	0	0.25	2	894	8740	57000	8320	109700	15200
Northern 1 Auger Rpt	Northern 1	341433	7321933	501	0 2017_Auger	2017	-90	0	0.25	2	893	8740	56900	8320	110400	15200
Northern 2 Auger	Northern 2	342000	7317500	501	2017_Auger	2017	-90	0	0.25	2	432	12700	81700	11600	160700	23000
Sunshine	LS1	250567	7270569	538.15	2015_Auger	2017	-90	0	0.25	<1.5m	452	8099	74071	7938	127700	19117
	SL5		7270569	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	425	8920	79600	13000	140000	37448
Sunshine Sunshine	S1	250567 251204	7270509	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	515	8510	82300	8350	144000	21474
Sunshine	S2	252058	7270801	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	620	6620	72000	8070	127000	19767
Sunshine	S2(1)	252058	7270801	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	621	6830	73700	8200	129000	20246
Sunshine	\$3	252953	7272362	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	547	7540	80000	8250	140000	20366
Sunshine	\$3 \$4	256979	7272502	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	557	7750	79000	7210	141000	19767
Sunshine	\$5	256972	7272301	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	838	5360	54700	5690	100000	15454
Sunshine	S6	258021	7274313	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	841	4640	53900	5570	91800	16503
Sunshine	\$7 \$7	258021	7271383	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1070	3710	36450	3265	62600	11890
Sunshine	58	259202	7274397	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1120	3670	42400	4520	72300	11651
Sunshine	\$9 \$9	259202	7275346	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	978	3840	47800	4320	72300	13897
Sunshine	\$10	257681	7275541	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1070	4450	53100	5380	89800	12998
			7275541						0.25	<1.5m	1070	4450	53100	5380	91200	12998
Sunshine	S10(1)	257681	/2/5541	538.15	2015_Auger	2015	-90	0	0.25	<1.5M	1045	4255	51400	5325	91200	12324

									_					Assay		
	Point Reference	Easting	Northing	RL (m)	Data Source	SampleDate	Dip	Azimuth	Down Hole	Depth	Ca	Mg	Na	K	CI	SO4
									Width (m)	(m)			1	mg/L		
Sunshine	124	249558	7270017	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	786	5290	45500	5270	81900	13987
Sunshine	126	250000	7270500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	512	8350	83100	8410	145000	21354
Sunshine	134	252000	7272500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	760	7110	65800	6630	130000	15814
Sunshine	135	252000	7271500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	473	6910	78300	8510	137000	23062
Sunshine	137	251666	7270132	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	515	8190	76600	7840	137000	20785
Sunshine	138	252703	7272794	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	379	11000	84200	8200	151000	26326
Sunshine	140	253000	7271500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	593	6350	71400	7650	126000	20246
Sunshine	141	253000	7270500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	580	7330	77600	8210	136000	19677
Sunshine	143	253666	7272203	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	769	5820	60600	6440	106000	16622
Sunshine	144	254000	7271500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	604	6160	72000	7720	125000	18659
Sunshine	145	254000	7270500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	571	6450	73100	7990	128000	21624
Sunshine	150	255149	7272017	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	721	4400	56400	5890	96200	17850
Sunshine	151	255000	7271500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	661	6020	69600	7570	119000	19168
Sunshine	152	255000	7270500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	634	7550	69700	6460	124000	19408
Sunshine	156	256000	7272500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	832	5010	51400	5220	85200	16862
Sunshine	157	256000	7271500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	556	5460	75800	8250	123000	22103
Sunshine	158	256000	7270500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	685	6540	69600	6710	119000	17521
Sunshine	158 (1)	256000	7270500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	671	6530	69200	6660	124000	17341
Sunshine	167	257000	7273500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	666	5450	71800	7690	124000	18988
Sunshine	169	257000	7271500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	612	5840	71600	7800	124000	20396
Sunshine	177	257000	7274500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	691	6320	69600	7200	126000	17940
Sunshine	179	257740	7276091	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	814	5700	58600	5560	104000	16952
Sunshine	182	258000	7273500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	489	8230	78500	7380	141000	23271
Sunshine	183	258000	7272500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1020	3980	38300	3530	68400	13358
Sunshine	195	258443	7274058	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1190	3080	39000	4040	67700	10932
Sunshine (N)	PC1	272010	7280857	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1130	5980	42500	4300	87400	11863
Sunshine (NE)	TJ1	269298	7279748	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	978	5650	44500	3610	79200	15005
Sunshine (NE)	TJ2	271524	7278932	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1050	5040	38900	3900	70900	13418
Sunshine (NE)	218	265000	7276500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1100	3100	22800	2340	40500	10273
Sunshine (NE)	224	267777	7276946	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1060	4310	33500	3610	60000	13298
Sunshine (NE)	224 (1)	267777	7276946	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1060	4320	34300	3610	60500	13388
Sunshine (NE)	229	269703	7280017	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1610	5350	35900	2620	71800	8146
Sunshine (NE)	233	271000	7280500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1220	5500	40700	3680	77200	11591
Sunshine (NE)	236	271000	7277500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1055	4815	39100	3930	69900	14121
Sunshine (NE)	237	272000	7280500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1260	4280	34400	3280	63100	10453
Sunshine (NE)	240	271443	7277909	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1180	4960	38700	3780	69400	12429
Sunshine (NE)	241	272284	7281437	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1440	4640	33500	2780	62300	9464
Sunshine (NE)	243	273000	7280500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1140	4280	36900	3360	64000	12309
Sunshine (NE)	243 (1)	273000	7280500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1160	4340	36700	3420	64500	12429
Sunshine (NE)	244	272182	7280058	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1060	5750	44700	4370	80700	14077
Sunshine (NE)	238	272000	7279500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1090	5040	40200	3870	68700	12938
Sunshine (SW)	120	247000	7270500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1050	4770	37500	4140	66500	15095

														Assay		
	Point Reference	Easting	Northing	RL (m)	Data Source	SampleDate	Dip	Azimuth	Down Hole	Depth	Ca	Mg	Na	K	Cl	SO4
									Width (m)	(m)		<u> </u>		mg/L		
Sunshine (SW)	123	247405	7270132	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1100	3570	32300	4140	54600	11651
Terminal	T1	258296	7291599	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	841	4810	40600	5350	73000	16952
Terminal	171	257000	7293500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	859	5350	44600	5890	82300	17221
Terminal	186	258000	7293500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	686	6800	49400	6010	92000	22672
Terminal	187	258000	7292500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1020	3230	27900	3580	47100	12579
Terminal	191	257546	7293754	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	716	6070	44700	5090	77400	21175
Terminal	196	259000	7293500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	752	6470	52900	7090	94500	21414
Terminal	196 (1)	259000	7293500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	728	6290	51200	6920	92700	21115
Terminal	199	259000	7290500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	928	4150	34800	4570	62800	15305
Terminal	201	258562	7293835	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	773	6290	47800	5440	85100	20815
Terminal	204	260000	7293500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	822	6020	44300	5840	81400	20007
Terminal	205	260000	7292500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	969	5020	42400	5760	77400	15095
Terminal	206	260000	7291500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1100	3730	30300	3900	55800	11890
Terminal	209	259481	7293819	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	960	4930	38900	4640	67500	15724
Terminal	211	260189	7293170	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	979	4390	36100	4800	62500	15095
Terminal	215	260465	7292673	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1095	3905	33100	4385	59000	13103
Terminal	172	257000	7292500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	973	6740	50500	6660	90400	14825
Terminal	IL2	255695	7294630	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	315	14100	80700	16400	153000	51228
Terminal 1 Auger	Terminal 1	257000	7293500	538.15	2017_Auger	2017	-90	0	0.25	2	939	5730	44900	5670	85000	14500
Terminal 2 Auger	Terminal 2	260000	7291500	538.15	2017_Auger	2017	-90	0	0.25	2	939	5810	47200	5860	86550	14800
TJ	PC3	293407	7306315	538.15	2015_Auger	2017	-90	0	0.25	<1.5m	822	7270	48400	6490	99200	14679
τJ	ТЈ	295133	7307154	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1050	5070	41100	5650	76800	12849
TJ (N)	267	293133	7303500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1070	6440	46200	5350	85800	14346
TJ (N)	268	291000	7302500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1330	6020	42500	4470	80500	11082
TJ (N)	272	292000	7303500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1000	6380	45500	5650	85600	14316
(N) LT	274	293000	7306500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1220	3300	24000	3030	44000	8895
TJ (N)	275	293000	7305500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	884	4640	30800	4080	57800	9584
TJ (N)	276	293000	7304500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1140	6190	40100	5140	76700	13178
TJ (N)	277	293000	7303500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1350	4750	31300	3280	57100	10123
TJ (N)	279	294000	7307500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1040	5890	43800	5815	81550	13957
TJ (N)	281	294000	7305500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	979	7330	51100	6110	96200	15185
TJ (N)	281 (1)	294000	7305500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	979	7350	50500	6090	96200	14975
TJ (N)	282	294000	7304500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1150	5880	40600	4640	75700	12729
TJ (N)	283	295000	7307500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1000	5250	44800	7120	84900	14316
TJ (N)	284	295000	7306500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	931	5720	41400	5090	75500	16293
TJ (N)	285	294703	7305723	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1090	5560	37200	4310	67500	13478
TJ (N)	PC4	294658	7307222	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	984	6500	48600	6580	96700	13960
TJ (S)	258	294658	7295500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1590	4220	32000	3440	59700	8296
TJ (S)	259	283000	7296500	538.15	2015_Auger	2015			0.25	<1.5m	1525	4480	32100	3250	59200	9255
TJ (S)	260	282907	7295593	538.15	2015_Auger	2015	-90 -90	0	0.25	<1.5m	1490	2890	21400	2400	41100	7278
TJ (S)	261	284000	7296500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1450	4410	32900	3470	62300	9195
TJ (S)						2015	-90	0		<1.5m	1055	7635	51350	5600	108000	12448
(2) (1	PC2	290985	7302991	538.15	2015_Auger	2015	-90	U	0.25	×1.5m	1022	/035	91320	0000	108000	12448

									_					Assay		
	Point Reference	Easting	Northing	RL (m)	Data Source	SampleDate	Dip	Azimuth	Down Hole	Depth	Ca	Mg	Na	К	CI	SO4
									Width (m)	(m)				mg/L		
T-Junction 1 Auger	T-Junction 1	282000	7295500	538.15	2017_Auger	2017	-90	0	0.25	2	1430	4200	30700	3310	60300	8400
T-Junction 2 Auger	T-Junction 2	284000	7296500	538.15	2017_Auger	2017	-90	0	0.25	2	1430	4190	31100	3230	58850	8430
T-Junction South Auger	T-Junction South	277152	7290635	538.15	2017_Auger	2017	-90	0	0.25	2	1510	4250	31000	3300	109150	8400
White Lake	WL1	362764	7271645	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	602	4840	46200	5690	73500	20486
White Lake	WL2	362828	7270349	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	380	9750	75800	9760	137000	34143
White Lake	WL3	364119	7271740	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	402	7540	73900	9000	125000	29082
White Lake	WL4	364959	7271231	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	384	8370	79600	9280	137000	30849
White Lake	WL5	364755	7269083	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	303	10600	84000	9950	147000	38037
White Lake	WL6	368055	7268763	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	388	7940	80700	9550	141000	31448
White Lake	WL6(1)	368055	7268763	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	393	8070	80900	9530	143000	32047
White Lake	WL7	370287	7265617	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	811	3920	38800	4130	64500	18240
White Lake	WL8	369960	7269333	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	464	6985	73600	8420	129000	26745
White Lake	WL9	371107	7268655	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	478	8190	76300	7800	142000	27464
White Lake	WL10	376247	7266387	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	841	4060	41100	3730	68400	16982
White Lake	WL10(1)	376247	7266387	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	842	4030	40400	3730	68000	17281
White Lake	446	362110	7271020	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	508	7830	58200	7640	106000	25278
White Lake	449	364000	7269500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	397	12600	69400	8470	128000	35341
White Lake	453	365779	7270248	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	324	8980	83000	9140	150000	32945
White Lake	456	366842	7269154	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	277	10700	83900	9690	151000	38336
White Lake	457	367000	7268500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	263	11800	86600	11300	163000	38336
White Lake	458	367347	7267910	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	319	8550	81900	10100	149000	33844
White Lake	463	369000	7269500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	437	6800	64000	8010	114000	26176
White Lake	466	369000	7266500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	458	6940	67000	8300	122000	27374
White Lake	481	370748	7269059	538.15	2015 Auger	2015	-90	0	0.25	<1.5m	392	8460	77000	8790	135000	29052
White Lake	481 (1)	370748	7269059	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	391	8375	76050	8600	134000	28527
White Lake	483	371000	7267500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	479	5050	71100	8090	114000	31448
White Lake	484	371000	7266500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	493	5590	65900	8500	107000	28662
White Lake	485	371000	7265500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	420	5900	81800	9320	125000	33544
White Lake	486	371000	7264500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	474	5890	73300	8990	121000	29052
White Lake	487	371000	7263500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	725	5860	58100	6380	102000	19348
White Lake	493	372000	7267500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	535	6280	67500	7950	117000	24230
White Lake	494	371716	7266626	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	645	5120	56100	6640	91900	23391
White Lake	495	372000	7265500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	479	6195	74800	8925	122000	30220
White Lake	496	372000	7264500	538.15	2015_Auger	2015		-	0.25	<1.5m	878	5670	52700	5840	92300	16652
White Lake	496 (1)	372000	7264500	538.15	2015_Auger	2015	-90 -90	0	0.25	<1.5m	868	5600	53600	5730	92800	16772
White Lake	498	372496	7268248	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	482	8400	75100	8090	131000	27434
White Lake	499	372401	7267500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	964	3730	36500	3760	62800	14226
White Lake	500	372905	7266847	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	802	4220	50100	6160	82900	18958
White Lake	500	372903	7265500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	478	5700	75300	8700	121000	29621
White Lake	501	373095	7263744	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	914	4850	44000	4840	75700	15574
White Lake	502	373905	7265847	538.15	2015_Auger	2015			0.25	<1.5m	631	6470	66000	7000	114000	21205
White Lake		375567	7266721	538.15			-90 -90	0	0.25		831		49100	4630		
white Lake	504	3/556/	/206/21	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	831	5080	49100	4030	81100	18000

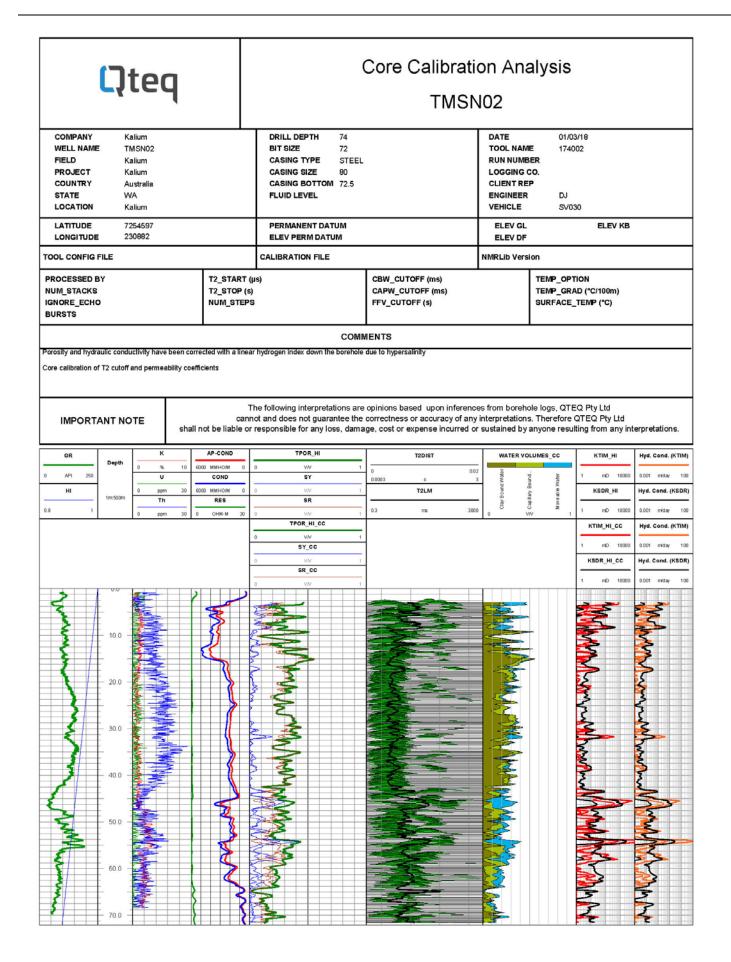
														Assay		
	Point Reference	Easting	Northing	RL (m)	Data Source	SampleDate	Dip	Azimuth	Down Hole	Depth	Ca	Mg	Na	K	CI	SO4
									Width (m)	(m)				mg/L	1	
White Lake	505	374969	7265878	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	452	8790	77300	7000	130000	27704
White Lake	510	376000	7265500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	504	7400	75300	8210	127000	25547
White Lake	515	377000	7266500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	372	10200	84500	9890	155000	27135
White Lake	515 (1)	377000	7266500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	364	10100	84400	9800	156000	27255
White Lake	516	377000	7265500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	413	7660	78800	8490	135000	29621
White Lake	517	377000	7264500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	777	5480	52500	5210	90400	17940
White Lake	518	375834	7264981	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	507	7470	70400	7350	119000	25727
White Lake	523	377779	7265406	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	927	4190	35700	3620	61100	14466
White Lake	524	378000	7264500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	788	5250	42400	4380	72100	19078
White Lake	WL	370802	7266910	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	511	6600	75200	9130	126000	30258
White Lake 1 Auger	White Lake 1	357345	7270169	538.15	2017_Auger	2017	-90	0	0.25	2	821	6640	34900	4700	66250	19400
White Lake 2 Auger	White Lake 2	365779	7270248	538.15	2017_Auger	2017	-90	0	0.25	2	486	7100	73000	8980	124050	30000
White Lake 3 Auger	White Lake 3	370802	7266910	538.15	2017_Auger	2017	-90	0	0.25	2	458	6810	72800	8840	124250	29500
White Lake 4 Auger	White Lake 4	377000	7265500	538.15	2017_Auger	2017	-90	0	0.25	2	408	7820	80800	9070	142450	29800
White Lake W Auger	White Lake W	354284	7281217	538.15	2017_Auger	2017	-90	0	0.25	2	327	12900	84200	10800	158200	33900
White Lake W Dup Auger	White Lake W	354284	7281217	538.15	2017_Auger	2017	-90	0	0.25	2	324	12800	85200	10800	157850	33600
Wilderness	PC5	309577	7311102	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	765	8340	56600	7390	121000	17885
Wilderness	U1	320586	7310804	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	2570	2560	11200	1400	26200	3115
Wilderness	289	309000	7311500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1030	4160	30800	3920	57600	11471
Wilderness	290	309158	7310689	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	745	4490	33800	4480	62600	10572
Wilderness	291	310000	7313500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	615	7190	45100	5590	88000	15814
Wilderness	292	310000	7312500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1300	3820	22500	3400	44300	9075
Wilderness	293	310000	7311500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	908	6900	46000	6220	85400	17850
Wilderness	294	310000	7310500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	969	6370	47500	5940	88500	15305
Wilderness	295	310158	7310193	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	404	5420	34500	4490	68000	11411
Wilderness	296	311000	7312500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1230	4380	30100	4170	57900	10932
Wilderness	297	311000	7311500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	960	6810	45900	6520	86600	15724
Wilderness	298	311000	7310500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	861	6740	52400	6950	99000	16413
Wilderness	298 (1)	311000	7310500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	858	6710	51800	6930	96200	16323
Wilderness	299	312000	7312500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1125	6030	43200	5915	84250	13343
Wilderness	300	312000	7311500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	870	8920	58500	6790	117000	14196
Wilderness	301	311842	7310721	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	763	2980	20000	2260	38600	7008
Wilderness	302	313000	7312500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	723	6715	47050	6560	96000	9225
Wilderness	303	312685	7311815	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	1240	5540	34300	3540	67400	10273
Yanerie 1 2 Auger	Yanerie 1	243334	7294635	538.15	2017_Auger	2017	-90	0	0.25	2	429	11600	62700	10800	112650	40200
Yanerie 2 Auger	Yanerie 2	247630	7297225	538.15	2017_Auger	2017	-90	0	0.25	2	527	8160	55900	9160	96000	33300
Yanneri	IL1	243334	7294635	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	425	9420	57100	10600	101000	38945
Yanneri	IL3	241573	7298445	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	693	7200	52550	6535	97250	22963
Yanneri	Y1	242442	7297381	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	613	10900	52700	9220	98500	37737
Yanneri	Y2	245664	7295084	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	865	5030	39200	6880	70100	17970
Yanneri	Y3	244852	7295411	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	744	6340	38500	6420	71500	22552
Yanneri	¥4	242844	7294628	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	686	7400	39500	6830	68500	27524

							_		Down					Assay		
	Point Reference	Easting	Northing	RL (m)	Data Source	SampleDate	Dip	Azimuth	Hole	Depth (m)	Ca	Mg	Na	К	Cl	SO4
									Width (m)	(,				mg/L		
Yanneri	Y5	242453	7293438	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	665	7470	38500	5870	67800	28273
Yanneri	Y6	242549	7292557	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	827	6380	38900	6640	71800	1985
Yanneri	Y7	243821	7292698	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	767	7280	40200	6040	73600	2093
Yanneri	Y8	242840	7291276	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	827	6090	35300	5120	64000	1955
Yanneri	Y8(1)	242840	7291276	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	835	6110	35200	5090	63100	1964
Yanneri	Y9	242397	7291525	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	723	6895	43500	7345	78000	2440
Yanneri	86	240441	7298445	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	861	3320	16100	2710	29200	1198
Yanneri	104	245000	7294500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	794	6640	39900	6870	76400	1988
Yanneri	104 (1)	245000	7294500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	798	6530	39900	6810	75550	1987
Yanneri	105	245000	7293500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	819	5640	37700	6750	68500	1913
Yanneri	106	245000	7292500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	824	6820	41900	5620	77800	1973
Yanneri	110	246158	7297658	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	676	6380	35900	4880	61600	2500
Yanneri	111	246000	7296500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	530	7810	46600	8470	86100	2635
Yanneri	113	246000	7294500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	900	4940	39500	6990	73800	1560
Yanneri	117	247000	7297500	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	598	7550	47000	6620	79900	3054
Yanneri	118	247347	7296563	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	643	6840	49200	7360	81100	2590
Yanneri	119	246811	7295721	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	766	5970	44600	6990	75250	2126
Yanneri	119 (1)	246811	7295721	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	755	5885	43100	6830	75100	2087
Yanneri	121	247842	7297374	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	642	7180	45400	6140	74400	279:
Yanneri	122	248032	7296815	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	714	6150	42300	6210	71800	2282
Yanneri Feed	YLF1	235010	7295291	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	935	3860	17391	2768	30100	124
Yanneri/Terminal	YT1	254096	7296955	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	811	4910	37700	5440	67000	1982
Yanneri/Terminal	YT1	247630	7297225	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	615	7600	47600	7180	90900	283
Yanneri/Terminal	YT2	254232	7297072	538.15	2015_Auger	2015	-90	0	0.25	<1.5m	794	5390	41600	5730	74700	194

APPENDIX 3: BMR LOGS

ل¢teq		(Core Calibration SSSN		alysis				
COMPANY Kalium WELL NAME SSSN01 FIELD Kalium PROJECT Kalium COUNTRY Australia STATE WA LOCATION Kalium		DRILL DEPTH 72m BIT SIZE 80mm CASING TYPE PVC CASING SIZE 80mm CASING BOTTOM 68m FLUID LEVEL		DATE TOOL NAME RUN NUMB LOGGING C CLIENT REF ENGINEER VEHICLE	ER :0.				
LATITUDE 7267315 LONGITUDE 245514		PERMANENT DATUM ELEV PERM DATUM		ELEV GL		ELEV KB			
TOOL CONFIG FILE		CALIBRATION FILE		NMRLib Versi	on				
PROCESSED BY NUM_STACKS IGNORE_ECHO BURSTS	T2_START (µ T2_STOP (s) NUM_STEPS	P (s) CAPW_CUTOFF (ms) TEMP_GRAD (°C/100m)							
		COMM	ENTS						
Some noise and poor borehole conditions in upper A linear Hydrogen Index was used to correct porosi Core calibration of T2 cutoff and permeability coeffic	y and hydraulic o								
	cann ot be liable or	he following interpretations are ot and does not guarantee the responsible for any loss, damag	correctness or accuracy of any	interpretations	. Therefore (QTEQ Pty Ltd	erpretations.		
GR Depth K 0 % 10 60	AP-COND	0 VV 1	0 0.02	WATER VOL	LUMES_CC	KSDR_HI_CC	Hyd. Cond. (KSDR)		
0 API 250 U HI 0 ppm 30 0	RES OHM-M 30	SY 0 V/V 1	0.0003 s 3 T2LM	Bound Wate Lav Bound	e Water	1 mD 10000	0.001 m/day 100 Hyd. Cond. (KTIM)		
1m:500m Th	COND	SR 0 V/V 1	0.3 ms 3000	2 and		1 mD 10000	0.001 m/day 100		
0 ppm 30 60		TPOR_HI_CC 0 V/V 1 SY_CC 0 V/V 1 SR_CC 0 V/V 1		0 0	* .	KSDR_HI 1 mD 10000 KTIM_HI_CC 1 mD 10000	Hyd. Cond. (KSDR) 0.001 m/day 100 Hyd. Cond. (KTIM) 0.001 m/day 100		
							P W W W WANT WANT WANT WANT WANT WANT		

C	teq		(Core Calibratio SSSN		alysis					
WELL NAME S FIELD K PROJECT K COUNTRY A STATE W	alium SSN02 alium alium ustralia VA alium		DRILL DEPTH 74 DATE 02/03/18 BIT SIZE 80 TOOL NAME 174002 CASING TYPE STEEL RUN NUMBER LOGGING CO. CASING BOTTOM 64 CLIENT REP FLUID LEVEL FLUID LEVEL ENGINEER DJ VEHICLE PERMANENT DATUM ELEV GL ELEV KB								
	269997 45579		PERMANENT DATUM ELEV PERM DATUM		ELEV GL ELEV DF		ELEV KB				
TOOL CONFIG FILE			CALIBRATION FILE		NMRLib Versi	ion					
PROCESSED BY NUM_STACKS IGNORE_ECHO BURSTS		T2_START (J T2_STOP (s) NUM_STEPS		10N AD (°C/100m) TEMP (°C)							
			COMM	ENTS							
Some noise and poor boreh Core calibration of T2 cutoff	ole conditions in upper and permeability coeffi	part of the boreho cients Ti cann	conductivity due to hypersalinity. ole affect the readings The following interpretations are not and does not guarantee the of responsible for any loss, damag	correctness or accuracy of any	interpretations	. Therefore	QTEQ Pty Ltd	erpretations.			
GR Depth	к	COND	TPOR_HI	T2DIST	WATER VO	LUMES_CC	KSDR_HI	Hyd. Cond. (KSDR)			
0 API 250	0 % 10 60	AP-COND	0 VN 1 SY	0 0.04 0.0003 s 3	Bound Water	Water	1 mD 10000	0.001 m/day 100			
HI 1m:500m	0 ppm 30 60	RES 0	0 VW 1 SR	T2LM	Clay Bound	preside 1	KSDR_HI_CC	Hyd. Cond. (KTIM)			
0.8 1	0 ppm 30 0	OHM-M 30	0 VW 1 TPOR_HI_CC	0.3 ms 3000	Clay	80 W N 1	1 mD 10000	0.001 m/day 100			
			b V/V 1 SY_CC 0 V/V 1 SR_CC 0 V/V 1				KTIM_HI 1 mD 10000 KTIM_HI_CC 1 mD 10000	Hyd. Cond. (KSDR) 0.001 m/day 100 Hyd. Cond. (KTIM) 0.001 m/day 100			
							Minda Warman and a contraction of the second	Martin Manusan manager			

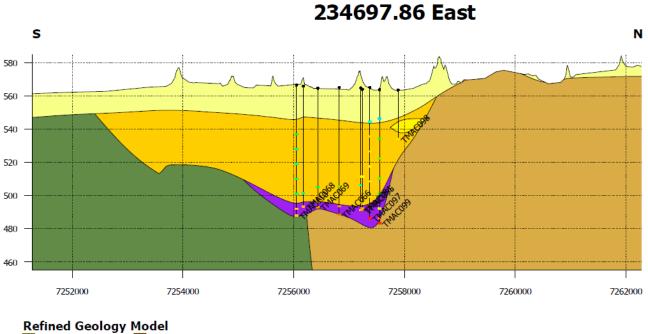

(נ קו	tec	1			Core Calibrati SSSN		alysis		
COMPANY WELL NAME FIELD PROJECT COUNTRY STATE LOCATION	S: Ka Si Al	lium SSN03 Ilium Inshine Lak JSTRALIA A	e		DRILL DEPTH 50m BIT SIZE 80mm CASING TYPE PVC CASING SIZE 80mm CASING BOTTOM 50m FLUID LEVEL		DATE TOOL NAM RUN NUMB LOGGING C CLIENT RE ENGINEER VEHICLE	ER 20.	02	
LATITUDE LONGITUDE		69797 9318			PERMANENT DATUM ELEV PERM DATUM		ELEV GL ELEV DF		ELEV KB	
TOOL CONFIG FI	ILE N	/IR-174002	_230mn	mDOI_27Feb2	018 CALIBRATION FILE NMR-1	4002_230mmDOI_27Feb2018	NMRLib Versi	on 1.3.	3	
PROCESSED BY NUM_STACKS IGNORE_ECHO BURSTS	f B.Bir 3 FALS TRU	E		T2_STAR T2_STOP NUM_ST	r (s) 10	CBW_CUTOFF (ms) 3 CAPW_CUTOFF (ms) 33 FFV_CUTOFF (s) 5		TEMP_OP1 TEMP_GR/ SURFACE	AD (°C/100m) 2	Gradient 2.2 21
					COM	MENTS				
Core calibration of T		TE		ca I not be liable	The following interpretations are annot and does not guarantee the or responsible for any loss, dama	correctness or accuracy of any	interpretations	. Therefore	QTEQ Pty Ltd	terpretations.
GR	Depth	к 0 %	10	AP-COND 6000 MMHO/M	0 0 V/V 1	T2DIST	WATER VO	LUMES_CC	ктім_ні	Hyd. Cond. (KTIM)
0 API 250 HI 0.8 1	1m:500m	0 ppm Th 0 ppm	30	RES	0 0 V/V 1 SR 20 0 V/V 1	0 0003 00003 6 3 T2LM 0.3 ms 3000	lay Bound Wat	Moreabl	1 mD 10000 KSDR_HI 1 mD 10000	0.001 m/day 100 Hyd. Cond. (KSDR) 0.001 m/day 100
	20.0 -				TPOR_HI_CC 0 V/V 1 SY_CC 0 V/V 1 SR_CC 0 V/V 1 O V/V 1 1 O V/V 1		and the second		KSDR_HI_CC 1 m0 10000 KTIM_HI_CC 1 m0 10000 0 0 0 0 0 0 0 0 0 0 0 0	Hyd. Cond. (KSDR) 0.001 m/dsy 100 Hyd. Cond. (KTIM) 0.001 m/dsy 100 0.001 m/dsy 1000 0.001 m/dsy 100 0

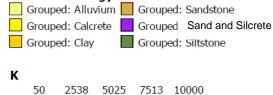
٦teq		(Core Calibratio SSSN		alysis		
COMPANY Kalium WELL NAME SSSN04 FIELD Kalium PROJECT Sunshine Lake COUNTRY Australia STATE WA LOCATION Kalium		DRILL DEPTH 53m BIT SIZE 80mm CASING TYPE PVC CASING SIZE 80mm CASING BOTTOM 53m FLUID LEVEL		DATE TOOL NAMI RUN NUMB LOGGING C CLIENT REI ENGINEER VEHICLE	ER 20.	30	
LATITUDE 7273375 LONGITUDE 256879		PERMANENT DATUM ELEV PERM DATUM		ELEV GL ELEV DF		ELEV KB	
	<u> </u>	CALIBRATION FILE NMR-174		NMRLIb Versi			
PROCESSED BY B.Birt NUM_STACKS 128 IGNORE_ECHO FALSE BURSTS TRUE	T2_START (µs) T2_STOP (s) NUM_STEPS	s) 300 10 128	CBW_CUTOFF (ms) 3 CAPW_CUTOFF (ms) 33 FFV_CUTOFF (s) 5		TEMP_OPT TEMP_GRA SURFACE_	D (°C/100m) 2.	
		СОММ	ENTS				
Water volumes have been corrected for hypersalinit Noise spikes evident in upper sections (7m.18-20m Core calibration of T2 cutoff and permeability coeffic IMPORTANT NOTE shall n) cients The cannot	e following interpretations are o t and does not guarantee the o esponsible for any loss, damag	correctness or accuracy of any	interpretations	. Therefore	QTEQ Pty Ltd	erpretations.
GR Depth	AP-COND	TPOR_HI	T2DIST	WATER VO	LUMES_CC	KTIM_HI	Hyd. Cond. (KTIM)
0 % 10 60	COND 0	V/V 1 SY	0 0.04 0.0003 \$ 3	Ind Water	Water	1 mD 10000	0.001 m/day 100
HI 0 ppm 30 60	RES	V/V 1 SR	T2LM	Clay Bound Wi		KSDR_HI	Hyd. Cond. (KSDR)
0.8 1 0 ppm 30 0	ОНМ-М 30 0	V/V 1 TPOR_HI_CC	0.3 ms 3000	0 0		1 mD 10000	0.001 m/day 100
	0	VW 1 5Y_CC				KSDR_HI_CC	Hyd. Cond. (KSDR)
	0	V/V 1 SR_CC				KTIM_HI_CC	Hyd. Cond. (KTIM)
						A MARY AN AN ANA AN ANT AND	AMA AND AND AND AND AND AND AND AND AND AN

لېteq	C	Core Calirbatio SSSN		alysis							
COMPANY Kalium WELL NAME SSSN05 FIELD Kalium PROJECT Sunshine Lake COUNTRY Australia STATE WA LOCATION Kalium	DRILL DEPTH 81m DATE 23/03/18 BIT SIZE 80mm TOOL NAME 174002 CASING TYPE PVC RUN NUMBER CASING SIZE 80m LOGGING CO. CASING BOTTOM 81m CLIENT REP FLUID LEVEL ENGINEER BS VEHICLE SV030										
LATITUDE 7275738 LONGITUDE 258721	PERMANENT DATUM ELEV PERM DATUM		ELEV GL ELEV DF		ELEV KB						
PROCESSED BY B.Birt T2_START	ESSED BY B.Birt T2_START (µs) 300 CBW_CUTOFF (ms) 3 TEMP_OPTION Gradient STACKS 3 T2_STOP (s) 10 CAPW_CUTOFF (ms) 33 TEMP_GRAD (*C/100m) 2.2										
IGNORE_ECHO FALSE NUM_STE BURSTS TRUE	PS 128	FFV_CUTOFF (s) 5		SURFACE_	TEMP (°C) 21	l					
	СОММ	ENTS									
	The following interpretations are o innot and does not guarantee the c or responsible for any loss, damag	orrectness or accuracy of any	interpretations	. Therefore (QTEQ Pty Ltd	erpretations.					
GR Depth K AP-COND	TPOR_HI	T2DIST	WATER VO	LUMES_CC	KSDR_HI	Hyd. Cond. (KTIM)					
0 API 250 0 % 10 6000 MMHOM 0		0 0.04	nd Water	Water	1 mD 10000	0.001 m/day 100					
HI 1m:500m Th RES	· · · · · · · · · · · · · · · · · · ·	T2LM	Bou		КТІМ_НІ	Hyd. Cond. (KSDR)					
0.8 1 0 ppm 30 0 0HM-M 30	•	0.3 ms 3000	o Clay		1 mD 10000	0.001 m/day 100					
	0 V/V 1 SY_CC 0 V/V 1 SR_CC 0 V/V 1		1		KSDR_HI_CC 1 mD 10000 KTIM_HI_CC 1 10000 1 mD 10000	Hyd. Cond. (KSDR) 0.001 m/day 100 Hyd. Cond. (KTIM) 0.001 m/day 100					
					MUNICAL CARACTER AND	Martin Martin Martin Shares					

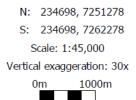
٦teq		(Core Calibrati SSSN		alysis		
COMPANY Kalium WELL NAME SSSN06 FIELD Kalium PROJECT Sunshine Lake COUNTRY Australia STATE WA LOCATION Kalium		DRILL DEPTH 43m BIT SIZE 80mm CASING TYPE PVC CASING SIZE 80mm CASING BOTTOM 35.3m FLUID LEVEL		DATE TOOL NAM RUN NUME LOGGING (CLIENT RE ENGINEER VEHICLE	ER CO. P	102	
LATITUDE 7275738 LONGITUDE 258721		PERMANENT DATUM ELEV PERM DATUM		ELEV GL ELEV DF		ELEV KB	
TOOL CONFIG FILE		CALIBRATION FILE		NMRLib Vers	ion		
PROCESSED BY NUM_STACKS IGNORE_ECHO BURSTS	T2_START () T2_STOP (s) NUM_STEPS)	CBW_CUTOFF (ms) CAPW_CUTOFF (ms) FFV_CUTOFF (s)		TEMP_OP1 TEMP_GR/ SURFACE_	AD (°C/100m)	
		COMM	IENTS				
Significant noise in BMR signal 11.1 m to surface. Core calibration of T2 cutoff and permeability coef	T canr	The following interpretations are not and does not guarantee the responsible for any loss, damag	correctness or accuracy of any	interpretations	s. Therefore	QTEQ Pty Ltd	erpretations.
GR K	AP-COND	TPOR_HI	T2DIST	WATER VO	LUMES_CC	ктім_ні	Hyd. Cond. (KTIM)
0 API 250	000 MMHOM 0 COND 000 MMHOM 0 RES OHM-M 30	0 V/V 1 SY 1 0 V/V 3 0 V/V 3 0 V/V 1 TFOR HI_CC	0 0003 6 33 T2LM 0.3 ms 3000	Clay Bound Wat	 Capitally equilibrium Moreable Water 	1 mD 10000 KSDR_HI 1 mD 10000 KSDR_HI_CC	0.001 m/day 100 Hyd. Cond. (KSDR) 0.001 m/day 100 Hyd. Cond. (KSDR)
		0 VV 1 SY_CC 0 VV 1 SR_CC 0 VV 1 0 VV 1				KBDR_H_CC	Hyd. Cond. (KSDK) 0.001 miday 100 Hyd. Cond. (KTIM) 0.001 miday 100 0.001 miday 1000 miday 1000 miday 10

ل¢teq		Core Calibration Analysis TMSN01						
COMPANY Kalium WELL NAME TMSN01 FIELD Kalium PROJECT Kalium COUNTRY Australia STATE WA LOCATION Kalium		DRILL DEPTH 92 BIT SIZE 80 CASING TYPE STEEL CASING SIZE 80 CASING BOTTOM 85 FLUID LEVEL	DATE 01/03/18 TOOL NAME 174002 RUN NUMBER LOGGING CO. CLIENT REP DJ ENGINEER DJ VEHICLE SV030					
LATITUDE 7254259 LONGITUDE 230487		PERMANENT DATUM ELEV GL ELEV KB ELEV PERM DATUM ELEV DF						
TOOL CONFIG FILE		CALIBRATION FILE NMRLib Version						
PROCESSED BY NUM_STACKS IGNORE_ECHO BURSTS	T2_START () T2_STOP (s) NUM_STEPS	CAPW_CUTOFF (ms) TEMP			TEMP_GRA	VP_OPTION VP_GRAD (°C/100m) RFACE_TEMP (°C)		
		COMM	IENTS					
Could be metal in hole past 80 m as tool tripped of A linear Hydrogen Index was used to correct poro Core calibration of T2 cutoff and permeability coel IMPORTANT NOTE	sity and hydraulic officients T Cann cann	conductivity due to hypersalinity he following interpretations are ot and does not guarantee the responsible for any loss, dama	correctness or accuracy of any	interpretations	. Therefore	QTEQ Pty Ltd	erpretations.	
GR Depth K	AP-COND	TPOR_HI	T2DIST	WATER VO	LUMES_CC	КТІМ_НІ	Hyd. Cond. (KTIM)	
0 % 10 0 API 250 U	6000 MMH0/M 0 COND	0 V/V 1 SY	0 0.02 0.0003 s 3	and Water	ater	1 mD 10000	0.001 m/day 100	
HI 0 ppm 30	6000 MMHO/M 0 RES	0 V/V 1 SR	T2LM	Clay Bound Water	Moveable Wate	KSDR_HI	Hyd. Cond. (KSDR)	
0.0	0 OHM-M 30	0 V/V 1 TPOR HI CC	0.3 ms 3000		60 W 1	1 mD 10000	0.001 m/day 100	
		0 V/V 1 SY_CC 0 V/V 1 SR_CC 0 V/V 1 0 V/V 1					100 miday 100 Hyd. Cond. (KSDR) 100 miday 100	

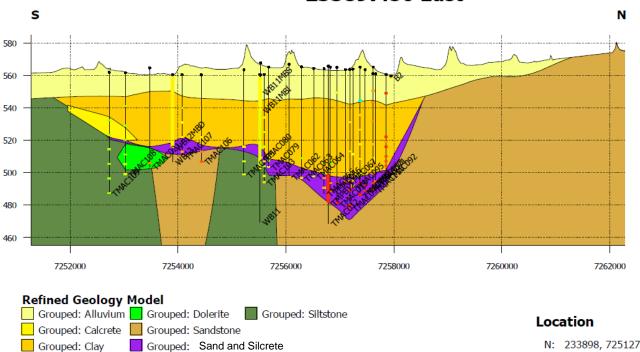


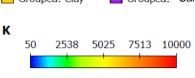

٦teq		Core Calibration Analysis TMSN03						
COMPANY Kalium WELL NAME TMSN03 FIELD Kalium PROJECT Kalium COUNTRY STATE WA LOCATION Kalium		DRILL DEPTH 89 BIT SIZE 80 CASING TYPE STEEL CASING SIZE 80 CASING BOTTOM 86 FLUID LEVEL		DATE TOOL NAMI RUN NUMB LOGGING C CLIENT REI ENGINEER VEHICLE	ER 20. P			
LATITUDE 233105 LONGITUDE 7257019		PERMANENT DATUM ELEV PERM DATUM		ELEV GL ELEV KB ELEV DF				
TOOL CONFIG FILE		CALIBRATION FILE		NMRLib Version				
PROCESSED BY NUM_STACKS IGNORE_ECHO BURSTS	T2_START T2_STOP (s NUM_STEP	5)	CBW_CUTOFF (ms) CAPW_CUTOFF (ms) FFV_CUTOFF (s)	TEMP_OPTION TEMP_GRAD (°C/100m) SURFACE_TEMP (°C)				
		COMM	IENTS					
Some noise and potential borehole damage towa A linear Hydrogen Index correction was made to Core calibration of T2 cutoff and permeability coe IMPORTANT NOTE	porosity and hydra fficients - can	aulic conducivity due to hypersalinity The following interpretations are not and does not guarantee the	correctness or accuracy of any	interpretations				
GR Depth K	AP-COND	TPOR_HI	T2DIST	WATER VO	DLUME_CC KTIM_HI Hyd. Cond. (KTIM)			
0 API 250 U	6000 MMH0/M 0	0 VN 1 SY	0 0.02 0.0003 s 3	and Water Bound	1 mD 10000 0.001 mHday 100			
HI 0 ppm 30	6000 MMH0/M 0 RES	0 VN 1	T2LM	Clay Bound Wate	Model Model <th< th=""></th<>			
0.8 1 0 ppm 30	0 OHM-M 30	0 VN 1 TPOR HI CC	0.3 ms 3000		N 1 1 1000 0001 11049 100			
		0 VW 1 SY_CC 0 VW 1 SR_CC			KTIM_HI_CC Hyd. Cond. (KTIM) 1 mD 10000 0.001 mday 100 KSDR_HI_CC Hyd. Cond. (KSDR) Hyd. Cond. (KSDR) 1000 0.001 mday 100			
				Mark and Mark and				

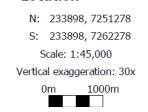
Ū,	teq		Core Calibration Analysis TMSN04						
WELL NAME TH FIELD KA PROJECT KA COUNTRY AA STATE W	alium MSN04 alium alium ustralia /A alium		DRILL DEPTH 72 BIT SIZE 80 CASING TYPE PVC CASING SIZE 80 CASING BOTTOM 67.5 FLUID LEVEL		DATE TOOL NAM RUN NUMB LOGGING C CLIENT RE ENGINEER VEHICLE	ER 20.	02		
	256057 33775		PERMANENT DATUM ELEV PERM DATUM		ELEV GL ELEV KB ELEV DF				
TOOL CONFIG FILE			CALIBRATION FILE		NMRLib Versi	on			
PROCESSED BY NUM_STACKS IGNORE_ECHO BURSTS	NUM_STACKS T2_STOP (s) IGNORE_ECHO NUM_STEPS			s) CAPW_CUTOFF (ms)			TEMP_OPTION TEMP_GRAD (°C/100m) SURFACE_TEMP (°C)		
			COMM	ENTS					
A linear hydrogen index com	Predicted washouts towards the upper part of the hole. A linear hydrogen index correction was made for the porosities and hydraulic conductivities Core calibration of T2 cutoff and permeability coefficients								
IMPORTANT NO	DTE shall n	cann	he following interpretations are ot and does not guarantee the or responsible for any loss, damag	correctness or accuracy of any	interpretations	. Therefore	QTEQ Pty Ltd	erpretations.	
GR Depth	к	AP-COND	TPOR_HI	T2DIST	WATER VO	LUMES_CC	KTIM_HI	Hyd. Cond. (KTIM)	
0 API 250	0 % 10 600	COND	0 V/V 1 5Y	0 0.02 0.0003 \$ 3	nd Water	Water	1 mD 10000	0.001 m/day 100	
HI 1m:500m	0 ppm 30 600 Th	RES	0 V/V 1 SR	T2LM	Clay Bound Wate	a (1)	KSDR_HI	Hyd. Cond. (KSDR)	
0.8 1	0 ppm 30 0	OHM-M 30	0 VN 1 TPOR_HI_CC	0.3 ms 3000		5 ≱ ∾ 1	1 mD 10000	0.001 m/day 100	
		-	0 V/V 1 SY_CC 0 V/V 1 SR_CC				KTIM_HI_CC 1 mD 10000 KSDR_HI_CC	Hyd. Cond. (KTIM) 0.001 nvday 100 Hyd. Cond. (KSDR)	
10.0		25					1 0000 0n 1	0.001 midlay 100	
								- Manual and	

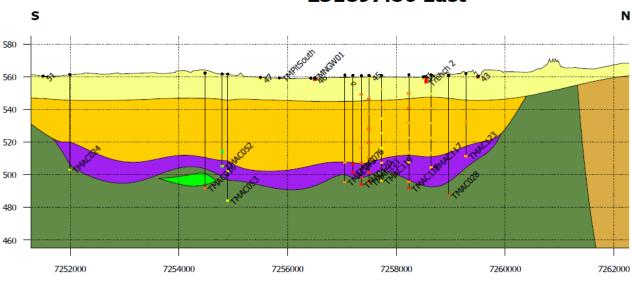

APPENDIX 4: GEOLOGICAL SECTIONS

Ten Mile

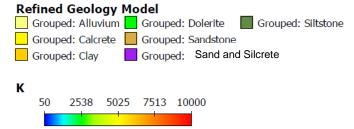


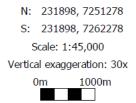


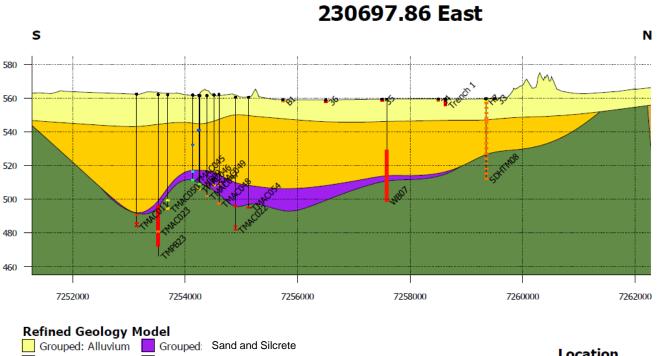

Location



233897.86 East







231897.86 East

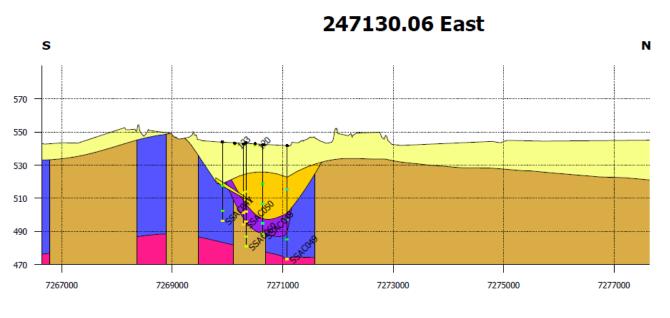
Location

Κ

Grouped: Clay

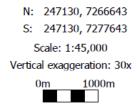
Grouped: Sandstone

50 2538 5025 7513 10000


Grouped: Siltstone

Location

N: 230698, 7251278 S: 230698, 7262278 Scale: 1:45,000 Vertical exaggeration: 30x 0m 1000m


Lake Sunshine

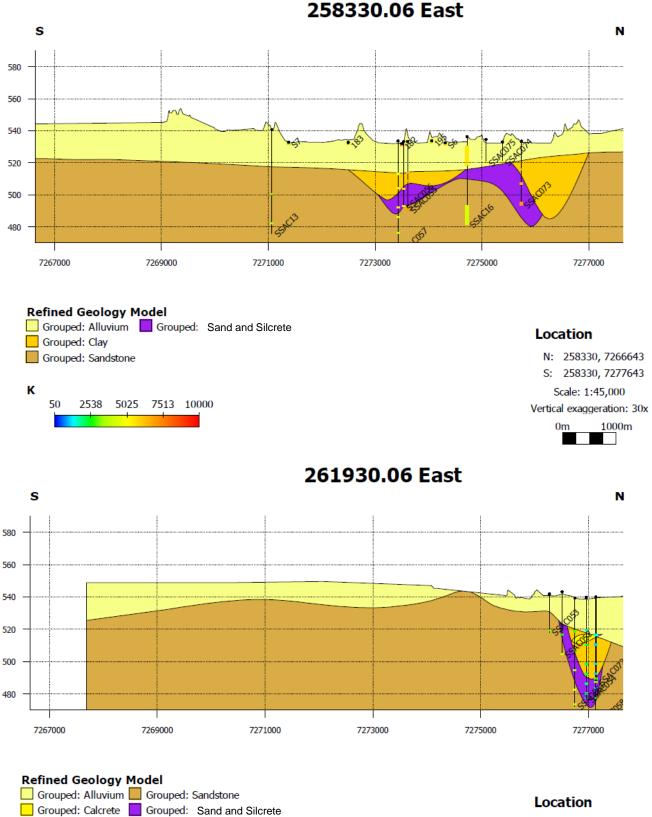
Refined Geology Model

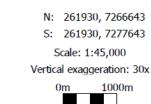
Location



248330.06 East S N

Refined Geology Model


к



Location

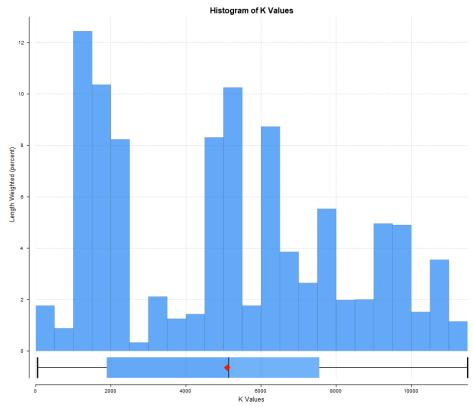
N: 248330, 7266643 S: 248330, 7277643 Scale: 1:45,000 Vertical exaggeration: 30x 0m 1000m

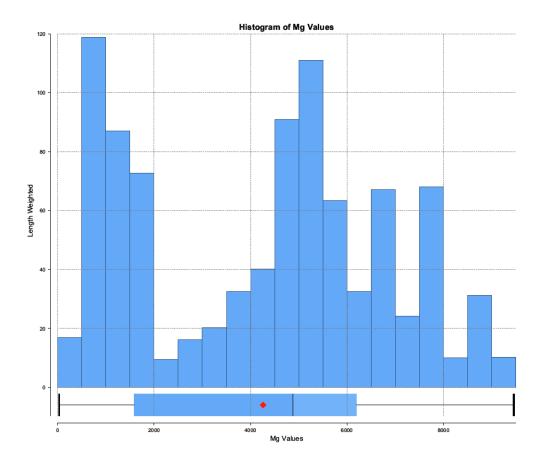
www.kaliumlakes.com.au

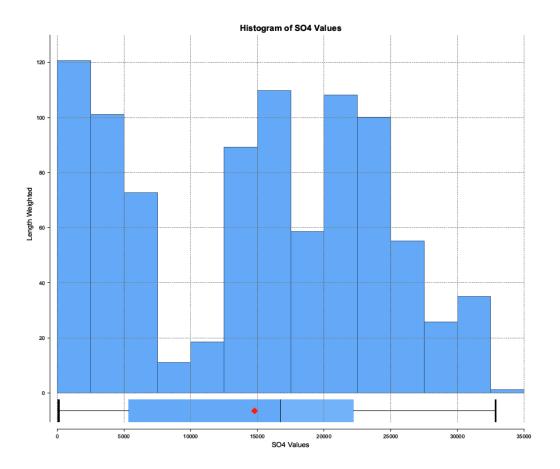
Grouped: Clay

2538

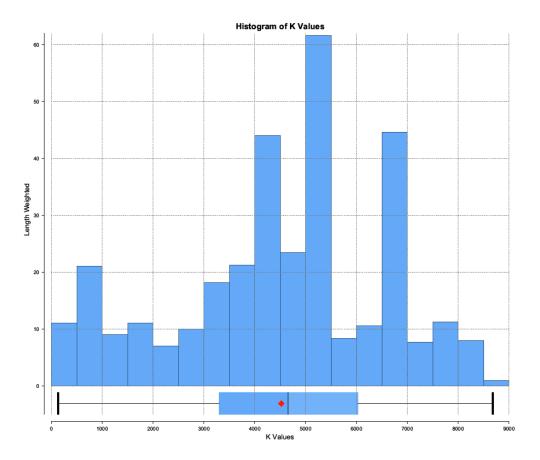
50

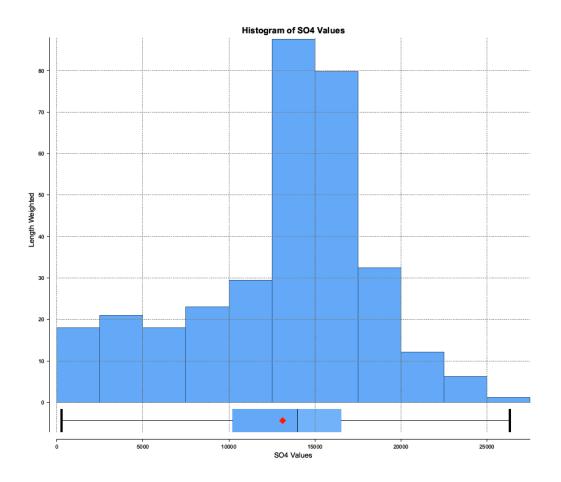

5025 7513 10000

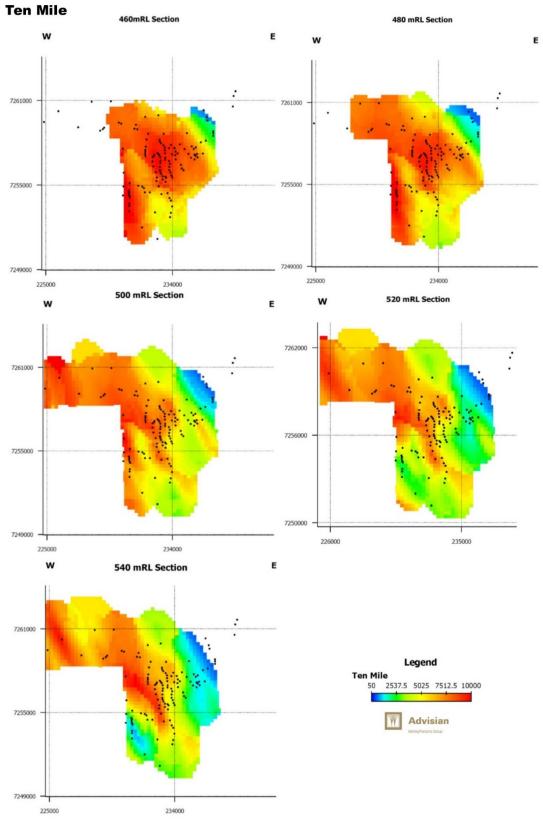

Κ

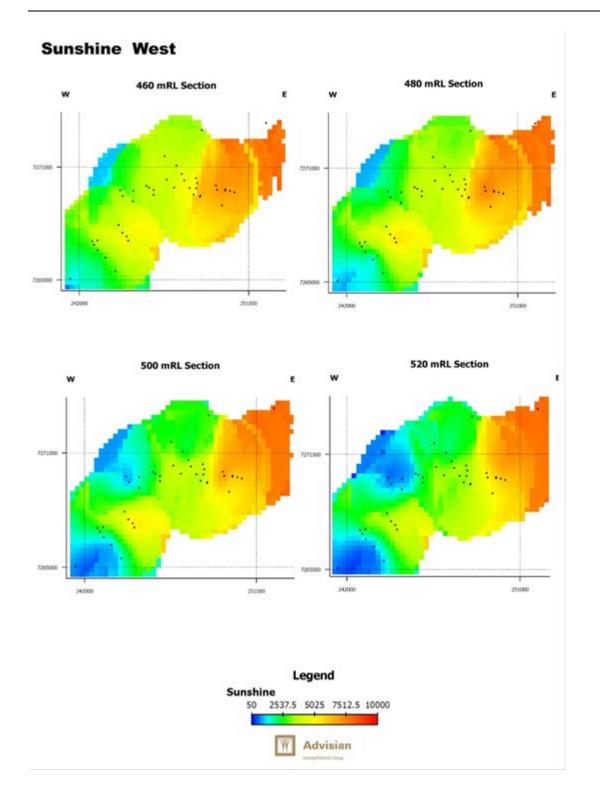

APPENDIX 5: NOT USED

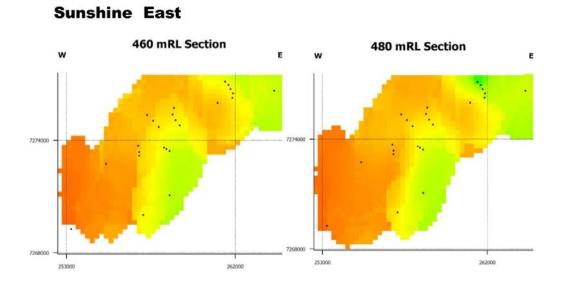
APPENDIX 6: RESOURCE HISTOGRAMS

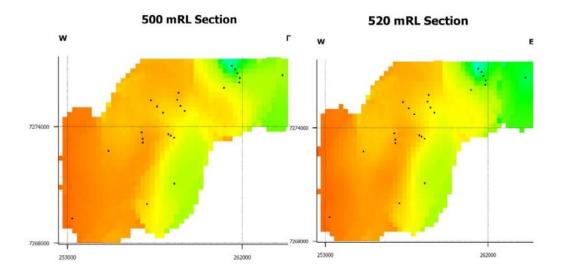

Ten Mile



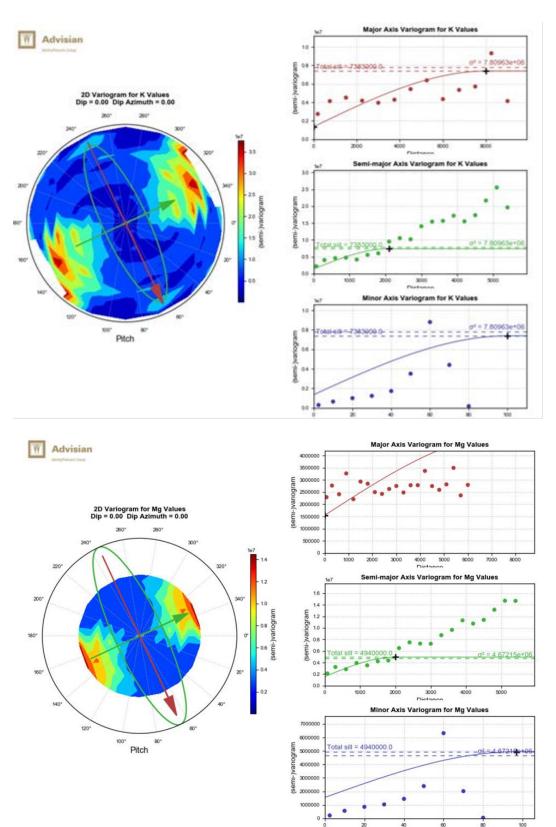

Lake Sunshine

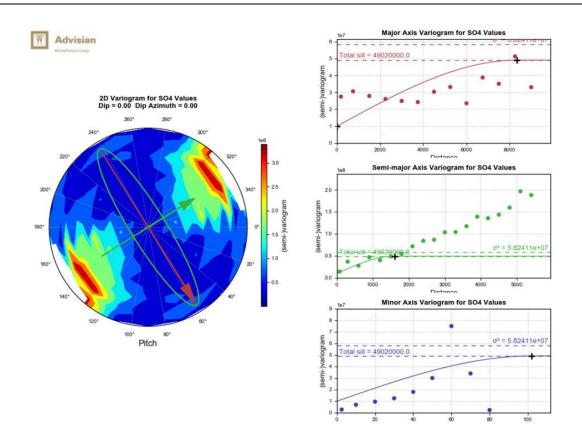


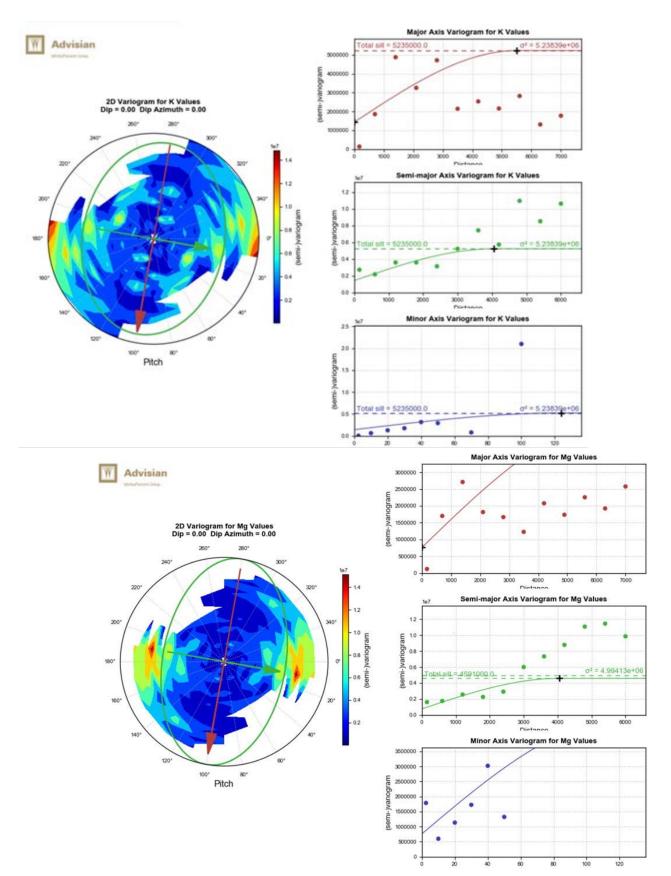




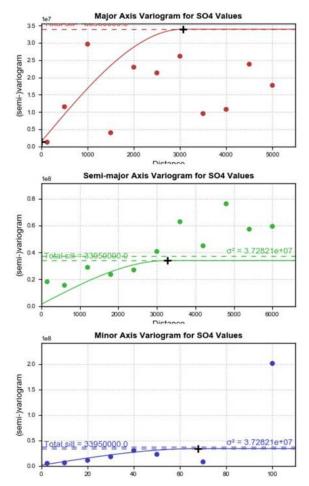
APPENDIX 7: BLOCK MODEL SECTIONS

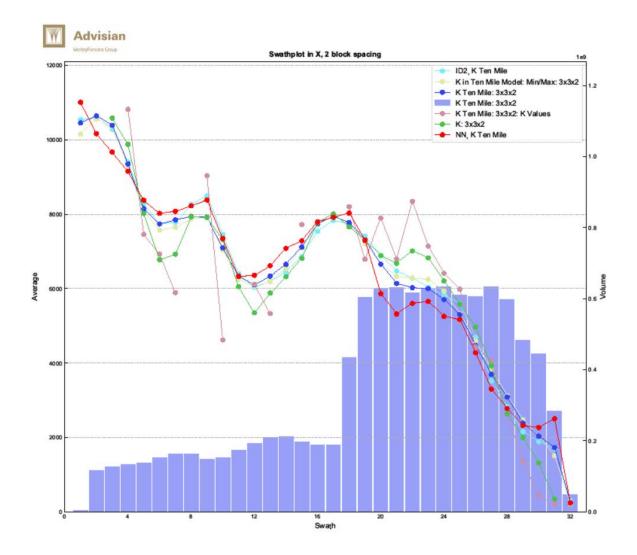


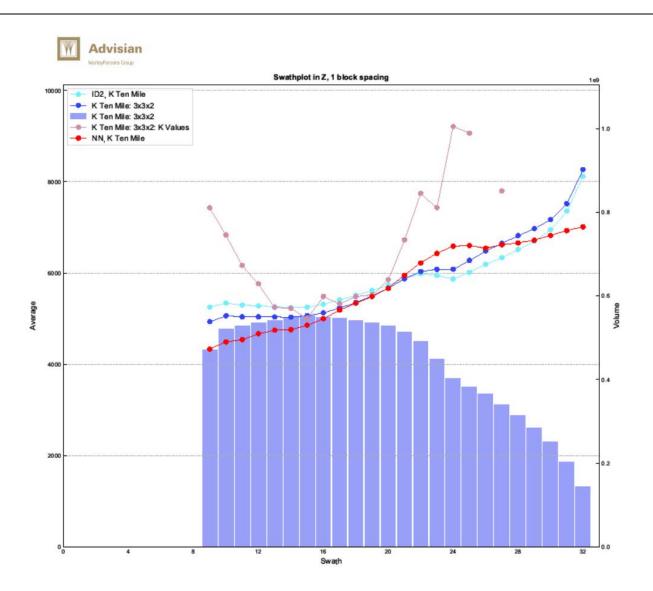


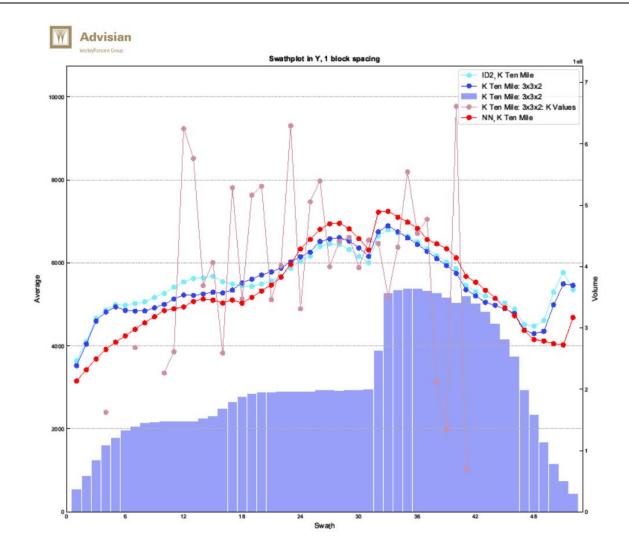

APPENDIX 8: VARIOGRAMS

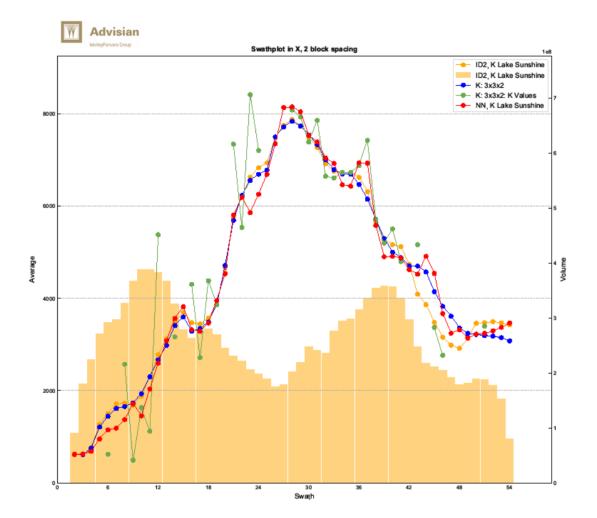
TEN MILE

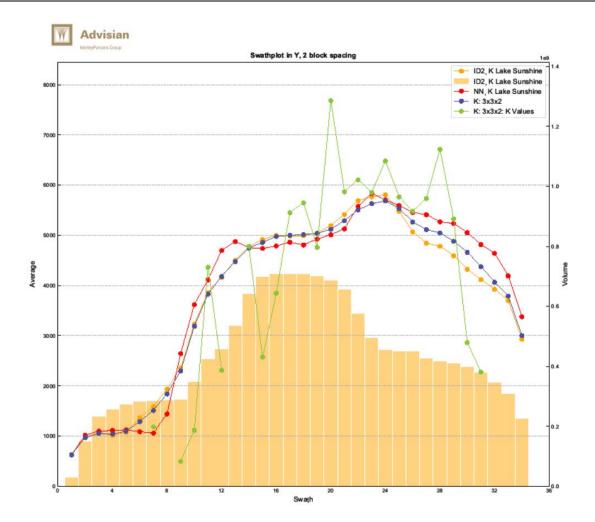


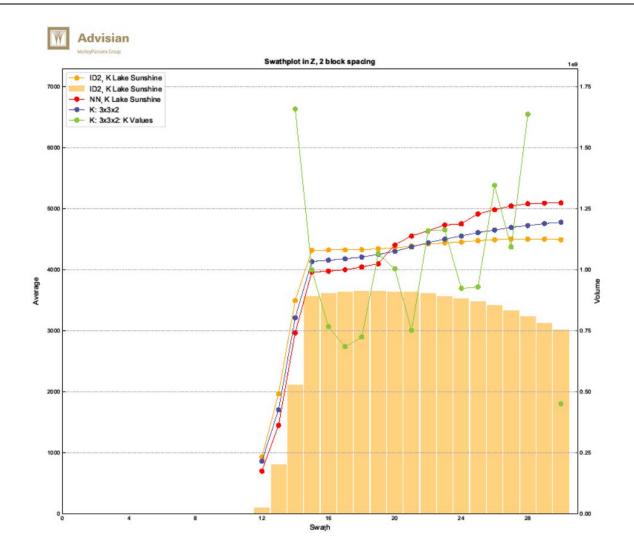

Lake Sunshine








APPENDIX 9: RESOURCE SWATH PLOTS



Tenement Interests

Below is a schedule of tenement interests by project as at 30 June 2018.

Beyondie Sulphate Of Potash Project

Tenement	Name	Holder	State	Status	Grant Date	Interest
Exploration Li	cences					•
E69/3306	Yanneri-Terminal	KLP	WA	Granted	17-3-2015	100%
E69/3309	Beyondie - 10-Mile	KLP	WA	Granted	17-4-2015	100%
E69/3339	West Central	KLP	WA	Granted	22-6-2015	100%
E69/3340	White	KLP	WA	Granted	22-6-2015	100%
E69/3341	West Yanneri	KLP	WA	Granted	11-8-2015	100%
E69/3342	Aerodrome	KLP	WA	Granted	22-6-2015	100%
E69/3343	T Junction	KLP	WA	Granted	22-5-2015	100%
E69/3344	Northern	KLP	WA	Granted	22-5-2015	100%
E69/3345	Wilderness	KLP	WA	Granted	22-5-2015	100%
E69/3346	NE Beyondie	KLP	WA	Granted	11-8-2015	100%
E69/3347	South 10 Mile	KLP	WA	Granted	11-8-2015	100%
E69/3348	North Yanneri-Terminal	KLP	WA	Granted	11-8-2015	100%
E69/3349	East Central	KLP	WA	Granted	22-6-2015	100%
E69/3351	Sunshine	KLP	WA	Granted	31-8-2015	100%
E69/3352	Beyondie Infrastructure	KLP	WA	Granted	31-8-2015	100%
Miscellaneous	Licences					
L52/162	Access Road	KLP	WA	Granted	30-3-2016	100%
L52/186	G N Hwy Access Road	KLP	WA	Granted	30-5-2018	100%
L52/187	Comms Tower 2	KLP	WA	Granted	30-5-2018	100%
L52/190	Kumarina FW 1	KLP	WA	Withdrawn		
L52/193	Kumarina FW 2	KLP	WA	Granted	13-8-2018	100%
L69/28	Access Road Diversion	KLP	WA	Granted	7-8-2018	100%
L69/29	Access Road Village	KLP	WA	Granted	7-8-2018	100%
L69/30	Comms Tower 1	KLP	WA	Granted	30-5-2018	100%
L69/31	Sunshine Access Road	KLP	WA	Granted	7-8-2018	100%
L69/32	10MS FW A	KLP	WA	Granted	14-8-2018	100%
L69/34	10MS FW B	KLP	WA	Granted	14-8-2018	100%
L69/35	10MS FW C	KLP	WA	Application	-	100%
L69/36	10MS FW D	KLP	WA	Application	-	100%
Mining Leases	5					-
M69/145	10 Mile	KLP	WA	Granted	6-6-2018	100%
M69/146	Sunshine	KLP	WA	Granted	6-6-2018	100%

Note: Kalium Lakes Potash Pty Ltd (KLP) is a wholly owned subsidiary of Kalium Lakes Limited (KLL)

Compliance Statement

The information in this document that relates to Exploration Targets, Exploration Results, Mineral Resources, Ore Reserves and Production Targets have been extracted from the report(s) listed below.

- 3 October 2017: Pre-Feasibility Study with Maiden Ore Reserve Confirms Low Cost, Long Life and High Margin Beyondie SOP Project. (Including the attachment, JORC (2012) and NI 43-101 Technical Report, compiled by German Potash Experts and Competent Persons, K-UTEC AG Salt Technologies (K-UTEC)).
- 3 May 2018: BFS Exploration Drill Program Complete.
 - 27 July 2018: Scoping Study Completed with Maiden Resource and Exploration Target for the Carnegie Potash Project

The report(s) are available to be viewed on the website at: www.kaliumlakes.com.au

Kalium Lakes confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of estimates of Mineral Resources, Ore Reserve Estimates, Exploration Targets or Production Targets, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Competent Persons Statement

The information in this ASX announcement and the accompanying Report that relates to Exploration Targets, Exploration Results, Mineral Resources and Mineral Reserves is based on information compiled by Thomas Schicht, a Competent Person who is a Member of a 'Recognised Professional Organisation' (RPO), the European Federation of Geologists, and a registered "European Geologist" (Registration Number 1077) and Anke Penndorf, a Competent Person who is a Member of a RPO, the European Federation of Geologists, and a registered "European Geologists, and a registered "European Geologists" (Registration Number 1152).

Thomas Schicht and Anke Penndorf are full-term employees of K-UTEC AG Salt Technologies (K-UTEC).

K-UTEC, Thomas Schicht and Anke Penndorf are not associates or affiliates of Kalium Lakes or any of its affiliates. K-UTEC will receive a fee for the preparation of the Report in accordance with normal professional consulting practices. This fee is not contingent on the conclusions of the Report and K-UTEC, Thomas Schicht and Anke Penndorf will receive no other benefit for the preparation of the Report. Thomas Schicht and Anke Penndorf do not have any pecuniary or other interests that could reasonably be regarded as capable of affecting their ability to provide an unbiased opinion in relation to the Beyondie Potash Project.

K-UTEC does not have, at the date of the Report, and has not had within the previous years, any shareholding in or other relationship with Kalium Lakes or the Beyondie Potash Project and consequently considers itself to be independent of Kalium Lakes.

Thomas Schicht and Anke Penndorf have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Thomas Schicht and Anke Penndorf consent to the inclusion in the Report of the matters based on their information in the form and context in which it appears.

Cautionary Statement Regarding Forward-Looking Information

Statements regarding plans with respect to the Company's mineral properties may contain forward looking statements. Statements in relation to future matters can only be made where the Company has a reasonable basis for making those statements. This announcement has been prepared in compliance with the current JORC Code 2012 Edition and the current ASX Listing Rules. The Company believes it has a reasonable basis for making the forward-looking statements on 3 October 2017, including any production targets, based on the information contained in the announcement and in particular the JORC 2012 and NI 43-101 Technical Report.

All statements, trend analysis and other information contained in this document relative to markets for Kalium Lakes, trends in resources, recoveries, production and anticipated expense levels, as well as other statements about anticipated future events or results constitute forward-looking statements. Forward-looking statements are often, but not always, identified by the use of words such as "seek", "anticipate", "believe", "plan", "estimate", "expect" and "intend" and statements that an event or result "may", "will", "should", "could" or "might" occur or be achieved and other similar expressions. Forward-looking statements are subject to business and economic risks and uncertainties and other factors that could cause actual results of operations to differ materially from those contained in the forward-looking statements. Forward-looking statements are based on estimates and opinions of management at the date the statements are made. Kalium Lakes does not undertake any obligation to update forward-looking statements even if circumstances or management's estimates or opinions should change. Investors should not place undue reliance on forward-looking statements.

*** ENDS ***

Corporate Profile

Kalium Lakes Limited is an exploration and development company, focused on developing the **Beyondie Sulphate Of Potash Project** in Western Australia with the aim of producing Sulphate of Potash (SOP) for the domestic and international markets. The Beyondie SOP Project comprises 15 granted exploration licences and a miscellaneous licence covering an area of approximately 2,400 square kilometres. This subsurface brine deposit will supply an evaporation and processing operation located 160 kilometres south east of Newman.

The results of the Pre-Feasibility Study (PFS), announced on 3 October 2017, confirmed that the Project, is technically and financially robust. The key outcomes of the PFS are:

- Indicated Resource of 4.37 Mt @ 14,000 mg/l SOP at a cut-off grade of 3,500mg/l K and an Inferred Resource of 13.74 Mt @ 12,788 mg/l SOP at a cut-off grade of 3,500mg/l K.
- Maiden Probable Reserve of 2.66 Mt @ 14,210 mg/l SOP at a cut-off grade of 3,500mg/l K based solely within the Stage 1 Approval Footprint, which represents ~21% of total lake surface area within the tenement package.
- Development base case of 150 ktpa SOP, with the option to incrementally phase the project, through a ramp up from 75 ktpa to 150 ktpa SOP, to minimise operational and financial risks.
- Development base case pre-tax NPV10 of A\$388M, IRR of 28.7%, average EBITDA of A\$83 Mpa, EBITDA margin of 62%, a payback
 period of 3.7 years and Life of Mine (LOM) free cash flows of more than +A\$1B, based on an initial 21 year LOM and a USA\$500/t
 SOP sales price @ A\$A/A\$US exchange rate of 0.75.
- Estimated LOM Operating Cash Cost of A\$244-253/t SOP FOB Geraldton or Fremantle Port. This places the BSOPP in the lowest
 quartile cost of global SOP production.
- Pre-production Capital Cost of A\$220 million including a 78 kilometre gas pipeline for the base case or A\$124 million for the phased ramp-up scenario.
- Potential additional revenue associated with recovery of magnesium by-products which have not been included in the current financial outcomes.

The Carnegie Joint Venture (CJV) is focussed on the exploration and development of the **Carnegie Potash Project** (CPP) in Western Australia, which is located approximately 220 kilometres east-north-east of Wiluna. The CJV comprises one granted exploration licences (E38/2995) and five (5) exploration licence applications (E38/2973, E38/2982, E38/3297, E38/5296 and E38/3295) covering a total area of approximately 3,081 square kilometres.

The Scoping Study, Maiden Resource and Exploration Target confirmed that the CPP has potential to be a technically and economically viable project, with an Inferred Resource of 0.88 Mt SOP @ 3,466 mg/l K (equivalent to 7,724 mg/l SOP) based only on the top 1.7 metres of the 27,874 hectare surficial aquifer on granted tenement E38/2995 plus an Exploration Target for material below the top 1.7 metres.

The CJV is a Joint Venture between Kalium Lakes (KLL, 70% Interest) and BCI Minerals (BCI, 30% interest). Under the terms of the agreement BCI can earn up to a 50% interest in the CJV by predominantly sole-funding exploration and development expenditure across several stages.

KLL is the manager of the CJV and will leverage its existing Intellectual Property to fast track work. The JV Companies have endorsed proceeding to a staged Pre-Feasibility Study, with an initial focus on securing tenure and access to all required tenements.

Kalium Lakes Limited

ABN: 98 613 656 643 ASX: KLL Ordinary Shares on Issue: 169,793,465

Non-Executive Chairman

Non-Executive Director

Managing Director

Executive Director

Board of Directors: Mal Randall Brett Hazelden

Brett Hazelden Rudolph van Niekerk Brendan O'Hara

Contact Details: Kalium Lakes Limited Unit 1, 152 Balcatta Road BALCATTA WA 6021

PO Box 610 BALCATTA WA 6914

Tel: +61 (0)8 9240 3200 Email: info@kaliumlakes.com.au Web: www.kaliumlakes.com.au Chief Financial Officer and Joint Company Secretary:

Christopher Achurch

Gareth Widger

Joint Company Secretary:

Share Registry: Computershare Investor Services Pty Ltd Level 11, 172 St Georges Terrace Perth, WA 6000 Tel: (within Australia): 1300 850 505 Tel: (outside Australia): +61 3 9415 4000