CASTILLO COPPER LIMITED

ASX Release

10 September 2018

CASTILLO COPPER LIMITED ACN 137 606 476

Level 26 140 St Georges Terrace Perth WA, 6000 Australia

Tel: +61 8 6558 0886 Fax: +61 8 6316 3337

Contact:

Alan Armstrong Executive Director

E-mail: info@castillocopper.com

For the latest news:

www.castillocopper.com

Directors / Officers: Peter Meagher Alan Armstrong Peter Smith

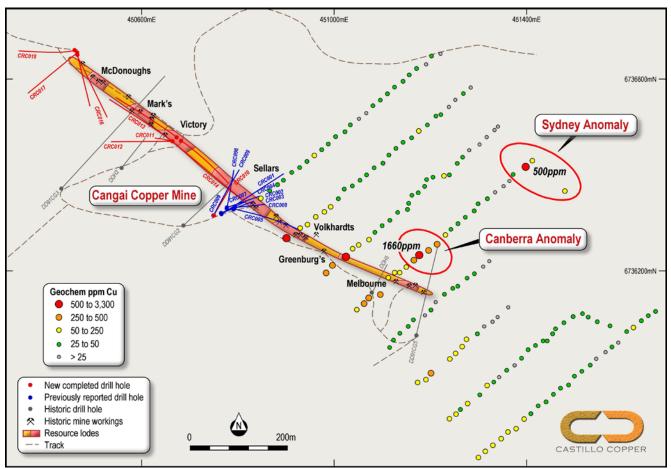
Issued Capital: 580.1 million shares 84.5 million options

> ASX Symbol: CCZ

Assays infer mineralisation extension from Cangai's line of lode

- Excellent assay results for soil and rock-chip samples taken towards the line of lode's eastern end infer a potential highgrade north-east trending mineralised extension:
 - Two anomalies, Canberra and Sydney, had excellent soil readings of 1,660ppm Cu and 500ppm Cu respectively¹
 - Moreover, rock-chip samples delivered calibre results with up to 23.9% Cu & 55.5g/t Ag recorded¹
- Encouraging discovery as it supports the geology team's belief the mineralised footprint at Cangai can be scaled
- Follow up infill soil sampling program set to start shortly, with the target area broadened further to the north
- Since mining operations ceased a century ago, limited exploration has taken place which underscores the potential upside across the Cangai Copper tenure
- Multiple DHEM surveys and ongoing drilling will continue, with the geology team confident of identifying further mineralisation (heavy rain caused delays last week)
- Meanwhile, the Board is progressing with its strategic objective of monetising legacy stockpiles, after metallurgical test-work confirmed Cu concentrate recoveries >80% and grade up to 22% Cu²
 - The Board now intends to request official guidance from the regulator on the pathway to remove the historic stockpiles for processing by third parties

Castillo Copper's Chairman Peter Meagher commented: "After the recent impressive assay results, which confirmed an eleven-metre massive sulphide intersection grading close to 6% copper, the positive news flow continues. Clearly, the Board's core objective is to expand the known mineralised footprint and rock-chips grading up to 23.9% Cu & 55.5g/t Ag certainly verify there is a potential north-east extension to the line of lode. While significant incremental work needs to be undertaken, the Board's strategic objective remains re-opening Cangai Copper Mine."


Castillo Copper Limited's ("CCZ" or **"the Company")** Board is delighted to outline the geology team's findings from the soil and rock-chip sampling undertaken to the east of the line of lode at Cangai.

NORTH-EAST MINERALISED EXTENSION

An eastern front

Significant soil and rock-chip sampling work by the geology team has uncovered a potential high-grade extension to known mineralisation at the eastern end of the line of lode. The team discovered two anomalies, named Canberra and Sydney, which had assay results from surface soil sampling at 1,660ppm Cu and 500ppm Cu respectively (Figure 1 and Appendix A). Of these, the reading from the Canberra anomaly is a significant potential indicator of sub-surface mineralisation and will be prioritised for the next broader infill sampling program.

Incrementally, while mapping historic workings – including shafts, adits and trenches across the eastern portion of Cangai – several rock-chip samples were collected from mine tailings that were mineralised or gossanous. These were assayed and returned excellent readings up to 23.9% Cu and 55.5g/t Ag, which provides further supporting evidence there is a potential extension to the known mineralised footprint (Appendix A).

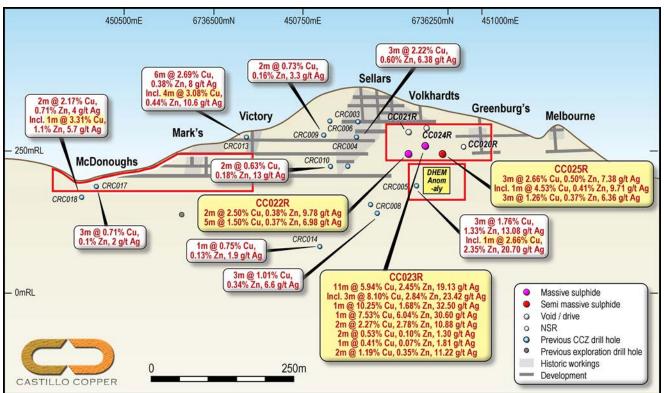


FIGURE 1: SYDNEY & CANBERRA ANOMALIES AT CANGAI EAST

Source: CCZ geology team and refer to Appendix A for full details

Exploration upside across Cangai Copper tenure

Following the discovery of high-grade massive sulphides in drill-hole CC0023R – which returned assay results of 11m @ 5.94% Cu, 2.45% Zn and 19.13 g/t Au³ – the Board's focus has switched towards expanding the known orebodies. Utilising DHEM surveys will aid optimising the remainder of the current drilling campaign, which should potentially deliver extensions to known orebodies. For context, Figure 2 bundles all significant intersections recorded so far from the two drilling campaigns undertaken.

Source: CCZ geology team

Broadening the soil sampling program may potentially unearth new areas extending from the line of lode that that warrant closer scrutiny. An interesting fact is that since mining operations ceased early last century there has been negligible exploration activity, which clearly underscores the upside potential across the Cangai Copper tenure.

PHOTO GALLERY – CANGAI EAST FIELD REPORT

Several members of the geology team visited the Cangai east area, including Volkhardts, in late April 2018 and discovered historic workings that are not fully documented. The terrain is quite steep and canopy think, which prevented using a drone to find workings.

The team made several observations, including:

- There appears to have been more activity on the eastern end of the Cangai line of lode than western end;
- > There potentially is not one simple lode, more likely two and possibly cross cutting; and
- > Fresh observations contrast significantly with what has been previously reported.

PHOTO 1 & 2: GREEN DOUBLE & MELBOURNE ADITS IN CANGAI EAST

451090mE, 6736200mN MGA Zone 56 Source: CCZ geology team

451150mE, 6736170mN MGA Zone 56 Source: CCZ geology team

PHOTO 3 & 4: SHEAR ZONE AND GOSSAN SAMPLE

451150mE, 6736170mN MGA Zone 56 Source: CCZ geology team

451150mE, 6736170mN MGA Zone 56 Source: CCZ geology team

PHOTO 5 & 6: TOP AND GROUND VIEW - SHEAR ZONE AND GOSSAN SAMPLE

450900mE, 6736270mN MGA Zone 56 Source: CCZ geology team

450900mE, 6736270mN MGA Zone 56 Source: CCZ geology team

Next steps

Recommence DHEM surveys and drilling program (including diamond drill rig which is being deployed to site soon), deliver metallurgical samples to end-user and update on Broken Hill project.

UPDATE ON LEGACY STOCKPILES

The Board is progressing with its strategic objective of monetising legacy stockpiles, after metallurgical test-work confirmed Cu concentrate recoveries >80% and grade up to 22% Cu².

The Board now intends to request official guidance from the regulator on the pathway to remove the historic stockpiles for processing by third parties.

For and on behalf of Castillo Copper

Alan Armstrong Executive Director

References

- 1) Australian Laboratory Services Pty. Ltd. (ALS)
- 2) CCZ ASX Release 2 August 2018
- 3) CCZ ASX Release 3 September 2018

COMPETENT PERSON STATEMENT

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Peter Smith, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy. Peter Smith is employed by Castillo Copper Pty Ltd. Peter Smith has sufficient experience that is relevant to

the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Peter Smith consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

ABOUT CASTILLO COPPER

Castillo Copper Limited (ASX: CCZ) is an ASX-listed base metal explorer that's flagship project is the historic Cangai Copper Mine near Grafton in northeast NSW. The project comprises a volcanogenic massive sulphide ore deposit, with one of Australia's highest grade JORC compliant Inferred Resources for copper: 3.2Mt @ 3.35% (6 September 2017). In terms of contained metal, the Inferred Resource is 107,600t Cu, 11,900t Zn, 2.1Moz Ag and 82,900 Moz Au. A notable positive is the presence of supergene ore with up to 35% copper and 10% zinc which is ideal feedstock for direct shipping ore. Incrementally, the project holds five historic stock piles of high-grade ore located near Cangai Copper Mine.

In brief, CCZ's Australian assets are 100% owned and comprise four tenure groups detailed briefly as follows:

- NSW assets: Consists of two projects: 1) Jackaderry, which includes Cangai Copper Mine, is in an area highly prospective for copper-cobalt-zinc and made up of three tenements; and, 2) Broken Hill which consists of two contiguous tenements prospective for cobalt-zinc that are located within a 20km radius of Broken Hill and just north of Cobalt Blue's ground (ASX: COB).
- Queensland assets: Comprises two projects: 1) Mt Oxide made up of four prospects (three are contiguous) in the Mt Isa region, northwest Queensland, and are well known for copper-cobalt systems; and, 2) Marlborough which includes three prospects located north-west of Gladstone (adjacent to Queensland Nickel mining leases) in an area with proven high-grade cobalt-nickel systems.

Finally, CCZ' holds six exploration concessions in Chile.

APPENDIX A: DETAILED ASSAY RESULTS

TABLE A1: ASSAY RESULTS - SOIL SAMPLES FOR CANGAI EAST

The assay results provided below have been sorted based on Cu ppm

-					-	
NorthMGA56	EastMGA56	Altitude	Cu (ppm)	Zn (ppm)	Ag (ppm)	Comments
6736270	450901	335	3290	504	0.32	Volkhardts
6736230	451022	293	3210	224	4.68	Greenbergs
6736234	451176	349	1660	182	0.23	Canberra Anomaly
6736418	451397	469	504	137	0.09	Sydney Anomaly
6736244	451195	363	462	112	0.21	Canberra Anomaly
6736153	451095	274	415	126	0.06	Greenbergs
6736224	451166	339	374	105	0.09	Canberra Anomaly
6735989	451200	199	340	128	0.09	
6736213	450997	275	319	220	0.24	
6736145	451071	250	315	209	0.04	
6736133	451061	246	300	191	0.08	
6736257	451212	375	288	117	0.08	Canberra Anomaly
6736198	450983	269	287	325	0.09	
6736210	451149	327	209	145	0.05	
6736121	451048	246	164	112	0.06	
6735976	451190	203	164	139	0.08	
6736020	451240	217	119.5	108	0.06	
6736198	451135	314	118	85	0.04	
6736248	451039	303	112	81	0.21	
6736291	450930	346	112	73	0.05	
6736233	451015	284	106.5	91	0.17	
6735970	451173	203	96.2	82	0.1	
6736352	450847	382	92.1	56	0.04	
6736044	451265	240	84.1	89	0.08	
6736030	451252	230	83.1	88	0.06	
6735839	451329	213	80.8	82	0.07	
6736430	451411	468	75.3	54	0.11	
6736297	450943	351	71.9	40	0.07	
6736197	451125	308	70.5	56	0.05	
6735826	451313	214	64.6	62	0.06	
6735893	451395	215	63.4	75	0.08	
6735904	451254	177	60.9	111	0.07	
6736059	451275	251	57.2	67	0.07	
6736187	451112	292	56.7	50	0.04	
6736255	451050	310	55.9	73	0.11	
6736268	451072	324	55.5	65	0.1	
6735963	451317	190	55.3	87	0.05	
6736399	451228	438	54.7	72	0.03	
6736276	451230	391	54.6	57	0.04	
6736367	451479	416	53.9	50	0.06	
6735814	451299	216	53.7	41	0.03	
6736314	450960	355	53.4	38	0.05	
6735926	451277	182	53.1	96	0.07	
6736441	450957	429	53	44	0.03	

TABLE A1: ASSAY RESULTS - SOIL SAMPLES FOR CANGAI EAST (CONTINUED)

NorthMGA56	EastMGA56	Altitude	Cu (ppm)	Zn (ppm)	Ag (ppm)	Comments
6736323	450979	360	53	45	0.05	
6736334	450993	373	52.3	70	0.08	
6735874	451377	214	52.2	81	0.1	
6736084	451620	233	51.7	88	0.07	
6735894	451240	173	51.2	106	0.1	
6735866	451362	213	50.2	69	0.07	
6736492	451175	492	50.1	65	0.1	
6735853	451346	213	50.1	51	0.07	
6736389	450895	400	49.3	39	0.02	
6736281	451085	333	49.1	50	0.08	
6736351	451009	378	49.1	44	0.12	
6735904	451408	212	49.1	57	0.04	
6736164	451245	308	48.8	54	0.03	
6736479	451002	452	48.1	42	0.03	
6736377	451037	400	48	45	0.06	
6736168	451255	319	47.9	63	0.04	
6735913	451262	179	47.6	94	0.08	
6736400	451240	452	47.3	50	0.04	
6736401	451067	417	46	42	0.05	
6736370	451022	394	44	55	0.08	
6736402	451372	467	43.6	51	0.06	
6736395	451205	430	43.3	49	0.06	
6736305	451115	351	43.1	62	0.09	
6736287	451243	396	43.1	54	0.05	
6736425	451256	469	43	52	0.04	
6736295	451099	346	42.5	56	0.09	
6736452	450974	437	42.5	38	0.03	
6736041	451114	203	42.5	43	0.04	
6736107	451496	198	42.3	105	0.06	
6736070	451297	257	42.1	72	0.08	
6736056	451442	184	42.1	81	0.06	
6736436	451267	481	42	61	0.03	
6736328	451153	377	41.9	48	0.07	
6736524	451211	516	41.8	63	0.13	
6736005	451531	232	41.7	66	0.03	
6736441	451113	446	41.6	40	0.06	
6736300	451257	406	41.6	56	0.09	
6735970	451332	194	41.3	72	0.04	
6736072	451137	228	40.8	41	0.04	
6736569	451110	521	40.7	45	0.04	
6736056	451435	228	40.7	66	0.05	
6736340	451155	387	40.1	46	0.05	
6736390	451192	427	40	71	0.03	
6736405	450912	408	39.3	36	0.04	

TABLE A1: ASSAY RESULTS - SOIL SAMPLES FOR CANGAI EAST (CONTINUED)

NorthMGA56	EastMGA56	Altitude	Cu (ppm)	Zn (ppm)	Ag (ppm)	Comments
6736113	451516	207	39	96	0.05	
6736621	451172	531	38.9	31	0.03	
6736389	451054	413	38.4	38	0.05	
6736455	451127	458	37.9	42	0.04	
6736019	451388	230	37.9	51	0.05	
6736380	450882	394	37.6	36	0.03	
6736377	451188	415	37.5	55	0.04	
6736425	451101	436	37.4	39	0.04	
6736095	451547	208	37.3	90	0.06	
6736093	451476	190	37.2	75	0.05	
6736595	451143	528	36.9	36	0.05	
6736358	451162	398	36.8	42	0.05	
6736098	451639	242	36.8	81	0.07	
6736108	451652	247	36.6	75	0.06	
6736363	451176	403	36.5	43	0.05	
6736047	451418	227	36.4	63	0.04	
6736465	450988	446	36.2	30	0.04	
6736105	451528	206	36	88	0.07	
6736415	451084	428	35.9	49	0.06	
6736312	451272	419	35.9	41	0.05	
6736608	451155	529	35.7	40	0.05	
6736582	451126	524	35.6	48	0.04	
6736647	451201	530	35.6	37	0.06	
6735958	451469	211	35.6	73	0.1	
6735981	451499	219	35.4	64	0.08	
6736186	451276	333	35.2	45	0.03	
6736151	451229	289	35.1	45	0.03	
6735920	451423	212	35	54	0.06	
6736525	451221	523	34.9	51	0.09	
6736490	451023	459	34.4	37	0.04	
6736085	451155	234	34.4	40	0.04	
6736086	451573	219	34.4	74	0.06	
6735963	451486	216	34.2	53	0.07	
6735943	451302	186	34.1	95	0.07	
6736196	451291	345	33.3	38	0.02	
6736071	451454	184	33.1	75	0.04	
6736477	451160	483	32.4	40	0.03	
6736367	450866	386	32.3	38	0.03	
6736555	451096	512	32.2	41	0.03	
6736415	450928	415	32.1	39	0.05	
6736468	451142	471	32.1	46	0.03	
6736350	451318	446	31.9	44	0.04	
6735929	451439	212	31.9	73	0.1	
6736504	451034	470	31.8	28	0.06	

TABLE A1: ASSAY RESULTS - SOIL SAMPLES FOR CANGAI EAST (CONTINUED)

NorthMGA56	EastMGA56	Altitude	Cu (ppm)	Zn (ppm)	Ag (ppm)	Comments
6736099	451164	248	31.8	37	0.03	
6736427	450943	421	31.7	40	0.04	
6736340	451299	437	31.7	43	0.04	
6735992	451514	228	31.6	68	0.07	
6735945	451455	208	31.5	70	0.06	
6736118	451667	258	31.3	67	0.06	
6736057	451124	220	31.2	34	0.04	
6736504	451194	504	31.1	34	0.05	
6736080	451461	184	30.9	65	0.03	
6736569	451268	551	29.8	31	0.03	
6736075	451607	225	29.7	69	0.05	
6735994	451359	210	29.5	57	0.05	
6736038	451403	230	28.5	42	0.03	
6736545	451080	501	28.4	31	0.04	
6736120	451200	271	28	42	0.03	
6736322	451132	368	27.6	37	0.04	
6736326	451290	427	26.8	35	0.03	
6736043	451577	236	25.7	55	0.03	
6736558	451250	548	24.7	41	0.03	
6736453	451279	493	24.3	36	0.03	
6736654	451220	536	24.3	30	0.04	
6736137	451209	278	23.8	43	0.04	
6736210	451308	352	23.7	48	0.05	
6736495	451331	510	23	28	0.02	
6736583	451284	553	22.7	40	0.03	
6736223	451320	359	22.5	29	0.04	
6736006	451374	217	22.3	35	0.04	
6735981	451341	205	22.1	60	0.07	
6736096	451328	270	21.6	46	0.02	
6736106	451338	274	21.2	29 50	0.04	
6736543 6736479	451237	538 507	20.5 20.2	50 27	0.02 0.03	
6736519	451315 451050	483	20.2 19.7	35	0.05	
6736086	451310	263	19.7	31	0.03	
6736033	451562	205	19.0	35	0.04	
6736465	451300	503	18.8	30	0.02	
6736632	451190	533	18.5	28	0.05	
6736378	451350	459	18.2	36	0.04	
6736502	451340	509	10.2	27	0.03	
6736053	451590	230	17	36	0.03	
6736126	451360	285	16.7	26	0.02	
6736389	451363	462	16.6	32	0.03	
6736365	451333	454	16	33	0.02	
6736529	451066	492	15.6	36	0.03	
6736019	451544	237	15.1	31	0.04	
6736109	451188	260	14.1	32	0.02	

TABLE A2: ASSAY RESULTS - ROCK-CHIPS FOR CANGAI EAST

Site ID	Easting	Northing	Sample ID	Comments	Ag g/t	Co	Cu	Zn
Cangai East								
Stockpile - Main	451023	6736185	1012532	Handpicked rock specimen	3.1	75	10400	2250
Stockpile X	450940	6736215	1012533	Handpicked rock specimen	3.8	10	5720	440
Stockpile MX1	451163	6736167	1012536	Handpicked rock specimen	59	146	79600	1820
Stockpile MX2	451162	6736162	1012537	Handpicked rock specimen	23.5	177	31300	430
Double-drive shaft stockpile	451183	6736158	1012538	Handpicked rock specimen	55.5	183	239000	2900
Bottom of Stockpile X	450944	6736202	1012539	Handpicked rock specimen	10.9	18	26400	4740

Note: Bulk samples taken between 21-23 April 2018

Source: ALS

APPENDIX B:

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30-g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Castillo Copper completed soil sampling and rock chip sampling. The samples were collected and sent for analysis at ALS using procedure ME-MS61-C which uses a 4 acid digest. Soil sampling was done on dry samples taken 10-20cm below surface, where it was clear soil was insitu not transported. Samples were then sieved with the fines being collected as the soil sample. All co-ordinates are from a Garmin GPSMAP 64 which utilises GPS and GLONASS antenna. Table A1: Soil Samples for Cangai East, and Table A2 : Rock Chips for Cangai East (ALS, Method ME-MS61-C)

Table A1: So	il Samples for	Cangai I	East			
	EastMGA56	Altitude	Cu (ppm)	Zn (ppm)	Ag (ppm)	Comments
	450901	335	3290	504	0.32	Volkhardts
	451022	293	3210	224	4.68	Greenbergs
6736234	451176	349	1660	182	0.23	Canberra Anomaly
	451397	469	504	137	0.09	, Sydney Anomaly
6736244	451195	363	462	112	0.21	Canberra Anomaly
6736153	451095	274	415	126	0.06	Greenbergs
6736224	451166	339	374	105	0.09	Canberra Anomaly
6735989	451200	199	340	128	0.09	
6736213	450997	275	319	220	0.24	
6736145	451071	250	315	209	0.04	
6736133	451061	246	300	191	0.08	
6736257	451212	375	288	117	0.08	Canberra Anomaly
6736198	450983	269	287	325	0.09	
6736210	451149	327	209	145	0.05	
6736121	451048	246	164	112	0.06	
6735976	451190	203	164	139	0.08	
6736020	451240	217	119.5	108	0.06	
6736198	451135	314	118	85	0.04	
6736248	451039	303	112	81	0.21	
6736291	450930	346	112	73	0.05	
6736233	451015	284	106.5	91	0.17	
6735970	451173	203	96.2	82	0.1	
6736352	450847	382	92.1	56	0.04	
6736044	451265	240	84.1	89	0.08	
6736030	451252	230	83.1	88	0.06	
6735839	451329	213	80.8	82	0.07	
6736430	451411	468	75.3	54	0.11	
6736297	450943	351	71.9	40	0.07	
6736197	451125	308	70.5	56	0.05	
6735826	451313	214	64.6	62	0.06	
	451395	215	63.4	75	0.08	
	451254	177	60.9	111	0.07	
	451275	251	57.2	67	0.07	
	451112	292	56.7	50	0.04	
	451050	310	55.9	73	0.11	
	451072	324	55.5	65	0.1	
	451317	190	55.3	87	0.05	
	451228	438	54.7	72	0.03	
	451230	391	54.6	57	0.04	
	451479	416	53.9	50	0.06	
	451299	216	53.7	41	0.03	
	450960	355	53.4	38	0.05	
	451277	182	53.1	96	0.07	
6736441	450957	429	53	44	0.03	

NorthMGA	56 EastMGA56	Altitude	Cu (ppm)	Zn (ppm)	Ag (ppm)	Comments
6736323	450979	360	53	45	0.05	
6736334	450993	373	52.3	70	0.08	
6735874	451377	214	52.2	81	0.1	
6736084	451620	233	51.7	88	0.07	
6735894	451240	173	51.2	106	0.07	
6735866	451362	213	50.2	69	0.07	
6736492	451175	492	50.1	65	0.1	
6735853	451346	213	50.1	51	0.07	
6736389	450895	400	49.3	39	0.02	
6736281	451085	333	49.1	50	0.08	
6736351	451009	378	49.1	44	0.12	
6735904	451408	212	49.1	57	0.04	
6736164	451245	308	48.8	54	0.03	
6736479	451002	452	48.1	42	0.03	
6736377	451037	400	48	45	0.06	
6736168	451255	319	47.9	63	0.04	
6735913	451262	179	47.6	94	0.08	
6736400	451240	452	47.3	50	0.04	
6736401	451067	417	46	42	0.05	
6736370	451022	394	44	55	0.08	
6736402	451372	467	43.6	51	0.06	
6736395	451205	430	43.3	49	0.06	
6736305	451115	351	43.1	62	0.09	
6736287	451243	396	43.1	54	0.05	
6736425	451256	469	43	52	0.04	
6736295	451099	346	42.5	56	0.09	
6736452	450974	437	42.5	38	0.03	
6736041	451114	203	42.5	43	0.04	
6736107	451496	198	42.3	105	0.06	
6736070	451297	257	42.1	72	0.08	
6736056	451442	184	42.1	81	0.06	
6736436	451267	481	42	61	0.03	
6736328	451153	377	41.9	48	0.07	
6736524	451211	516	41.8	63	0.13	
6736005	451531	232	41.7	66	0.03	
6736441	451113	446	41.6	40	0.06	
6736300	451257	406	41.6	56	0.09	
6735970	451332	194	41.3	72	0.04	
6736072	451137	228	40.8	41	0.04	
6736569	451110	521	40.7	45	0.04	
6736056	451435	228	40.7	66	0.05	
6736340	451155	387	40.1	46	0.05	
6736390	451192	427	40	71	0.03	
6736405	450912	408	39.3	36	0.04	

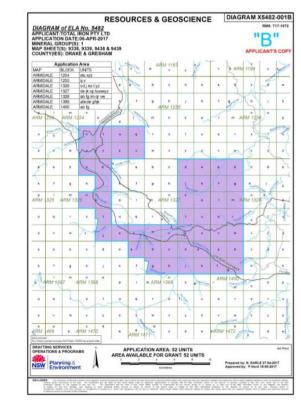
NorthMG	56 EastMGA56	Altitude	Cu (ppm)	Zn (ppm)	Ag (ppm)	Comments
6736113	451516	207	39	96	0.05	
6736621	451172	531	38.9	31	0.03	
6736389	451054	413	38.4	38	0.05	
6736455	451127	458	37.9	42	0.04	
6736019	451388	230	37.9	51	0.05	
6736380	450882	394	37.6	36	0.03	
6736377	451188	415	37.5	55	0.04	
6736425	451100	436	37.5	39	0.04	
6736095	451547	208	37.3	90	0.06	
6736093	451476	190	37.2	75	0.05	
6736595	451143	528	36.9	36	0.05	
6736358	451162	398	36.8	42	0.05	
6736098	451639	242	36.8	81	0.05	
6736108	451652	242	36.6	75	0.06	
6736363	451176	403	36.5	43	0.05	
6736047	451418	403 227	36.4	43 63	0.03	
6736465	450988	446	36.2	30	0.04	
6736465	451528	446 206	36.2	30 88	0.04	
6736415	451084	428	36 35.9	88 49	0.07	
6736312	451272	428	35.9	49 41	0.05	
6736608	451272	419 529	35.9	41 40	0.05	
6736582	451155 451126	529 524	35.7	40 48	0.05	
					0.04	
6736647	451201	530	35.6	37 72	0.06	
6735958	451469	211	35.6	73		
6735981	451499	219	35.4	64	0.08	
6736186	451276	333	35.2	45	0.03	
6736151	451229	289	35.1	45	0.03	
6735920	451423	212	35	54	0.06	
6736525	451221	523	34.9	51	0.09	
6736490	451023	459	34.4	37	0.04	
6736085	451155	234	34.4	40	0.04	
6736086	451573	219	34.4	74	0.06	
6735963	451486	216	34.2	53	0.07	
6735943	451302	186	34.1	95	0.07	
6736196	451291	345	33.3	38	0.02	
6736071	451454	184	33.1	75	0.04	
6736477	451160	483	32.4	40	0.03	
6736367	450866	386	32.3	38	0.03	
6736555	451096	512	32.2	41	0.03	
6736415	450928	415	32.1	39	0.05	
6736468	451142	471	32.1	46	0.03	
6736350	451318	446	31.9	44	0.04	
6735929	451439	212	31.9	73	0.1	
6736504	451034	470	31.8	28	0.06	

NorthMG/	456 EastMGA56	Altitude	Cu (ppm)	Zn (ppm)	Ag (ppm)	Comments
6736099	451164	248	31.8	37	Ав (рріп) 0.03	connento
6736427	450943	421	31.7	40	0.04	
6736340	451299	437	31.7	43	0.04	
6735992	451514	228	31.6	68	0.07	
6735945	451455	208	31.5	70	0.06	
6736118	451667	258	31.3	67	0.06	
6736057	451124	220	31.2	34	0.04	
6736504	451194	504	31.1	34	0.05	
6736080	451461	184	30.9	65	0.03	
6736569	451268	551	29.8	31	0.03	
6736075	451607	225	29.7	69	0.05	
6735994	451359	210	29.5	57	0.05	
6736038	451403	230	28.5	42	0.03	
6736545	451080	501	28.5	31	0.03	
6736120	451200	271	28	42	0.04	
6736322	451132	368	28	37	0.03	
6736322	451132	427	27.0	37	0.04	
6736043	451577	236	20.8	55	0.03	
6736558	451250	230 548	23.7	41	0.03	
6736453	451279	493	24.7	36	0.03	
6736654	451220	536	24.3	30	0.03	
6736137	451220	278	24.3	43	0.04	
6736210	451308	352	23.8	43	0.04	
6736495	451331	510	23.7	28	0.03	
6736583	451331 451284	510	23	28 40	0.02	
6736223	451284	359	22.7	40 29	0.03	
6736006	451320	217	22.3	35	0.04	
6735981	451341	217	22.5	55 60	0.04	
6736096	451328	203	22.1	46		
					0.02	
6736106 6736543	451338 451237	274 538	21.2 20.5	29 50	0.04 0.02	
6736543	451237 451315	538 507	20.5	50 27	0.02	
6736519	451050	483	20.2 19.7	35	0.03	
6736086	451050	483 263	19.7	35 31	0.05	
6736033	451562	203	19.0	35	0.04	
6736465	451300	240 503	19.4	35 30	0.04	
6736632	451300	503	18.8	30 28	0.02	
6736378	451350	533 459	18.5	28 36	0.05	
6736502	451350	459 509	18.2	36 27	0.04	
6736053	451340 451590	230	17	36	0.03	
					0.03	
6736126	451360	285	16.7	26 32	0.02	
6736389	451363	462	16.6			
6736365 6736529	451333 451066	454 492	16 15 6	33 36	0.02 0.03	
6736019	451066	492 237	15.6 15.1	36 31	0.03	
				31 32		
6736109	451188	260	14.1	32	0.02	

		Table A2: Rock Chi	os for C	angai Ea	ast					
		Site ID	Easting	Northing	Sample ID	Comments	Ag	Co	Cu	Zn
		Cangai East					g/t	ppm	ppm	ppm
		Stockpile - Main	451023	6736185	1012532	Handpicked rock specimen	3.1	75	10400	2250
		Stockpile X	450940	6736215	1012533	Handpicked rock specimen	3.8	10	5720	440
		Stockpile MX1	451163	6736167	1012536	Handpicked rock specimen	59	146	79600	1820
		Stockpile MX2	451162	6736162	1012537	Handpicked rock specimen	23.5	177	31300	430
		Double-drive shaft stockpile	451183	6736158	1012538	Handpicked rock specimen	55.5	183	239000	2900
		Bottom of Stockpile X	450944	6736202	1012539	Handpicked rock specimen	10.9	18	26400	4740
		Note: Bulk samples taken betwee Source: ALS	n 21-23 April :	2018						
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	Not applicable as only rock chips and soil sampling being reported								
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Not applicable as only rock chips and soil sampling being reported								
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Not applicable as only rock chips and soil sampling being reported								
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and 	Castillo Copper completed soil sampling and rock chip sampling. The samples were colle and sent for analysis at ALS using procedure ME-MS61-C which uses a 4 acid digest.							ollected	

	 appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Soil sampling was done on dry samples taken 10-20cm below surface, where it was clear soil was insitu not transported. Samples were then sieved with the fines being collected as the soil sample. All co-ordinates are from a Garmin GPSMAP 64 which utilises GPS and GLONASS antenna.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The following elements were analysed; Ag, As, Se, Ca, K, S, Ba, Sb, Sn, Cd, Pd, Zr, Sr, Rb, Pb, Hg, Zn, W, Cu, Ni, Co, V, Ti, Au, Fe, Mn, Cr, Sc, Mo, Th, U, Ta. The lab used is ALS Brisbane
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 NA as only rock chips and soil samples are being reported.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	All co-ordinates are from a Garmin GPSMAP 64 which utilises GPS and GLONASS antenna, and reported as MGA Zone 56 co-ordinates. Accuracy is generally to within 3m
Data spacing	Data spacing for reporting of Exploration Results.Whether the data spacing and distribution is	• Soil sampling was carried out on a nominal 100m line spacing by 20m sample spacing along the line.

and distribution	 sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Data was collected perpendicular to the overall geological strike.
Sample security	The measures taken to ensure sample security.	No additional samples have been obtained at this stage.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits or reviews have yet been undertaken.


Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary				
Mineral enement and and tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	<text></text>				

 Castillo Copper holds EL 8635 of 52 units. The tenure has been granted for a period of thirty-six months until 21st August 2020, for Group 1 minerals. The location of the tenure is shown in Figure 1 below:

Figure 1: Location of EL 8635 Jackadgery South

 Castillo Copper holds EL 8601 of 51 units. The tenure has been granted for a period of thirty-six months until 21st June 2020, for Group 1 minerals. The location of the tenure is shown in Figure 1 below:

Figure 1: Location of EL 8601 Kungabaran Hill

Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous explorers (Brownlow, 1989; Abraham-Jones, 2012) have noted that a 'basement window' of exposed magmatic hydrothermal alteration and historical copper workings may represent the western and upper extent of a much larger hydrothermal system concealed under Mesozoic cover to the east, prospective for: Quartz-tourmaline-sulphide-cemented, magmatic-hydrothermal breccia hosted copper-gold-molybdenum-cobalt (Cu-Au-Mo-Co) deposit; Concealed porphyry copper-gold-molybdenum-cobalt (Cu-Au-Mo-Co) ore body associated with quartz diorite to tonalitic porphyry apophyses proximal to the tourmaline-sulphide cemented breccia's;

		Potential also exists for copper-gold (Cu-Au) skarn;
		Considerable exploration has taken place in and around the Cangai Copper Mine (closed) by several large explorers such as Western Mining and CRA Exploration, the results of which are covered in the Local Geology section.
Geology	• Deposit type, geological setting and style of mineralisation.	Regional Geology
		The underlying geology is contained within the Coffs Harbour Block, east of the Demon Fault. The major basement unit is the Silurian-Devonian Silverwood Group (locally the Willowie Creek Beds), a mixed sequence of tuffaceous mudstones, intermediate to basic igneous rocks, slates, and phyllites, a low stage of regional metamorphism. Overlying this rock formation is a younger tectonic melange of Early Carboniferous age – the Gundahl Complex of slates, phyllites and schist, with chert, greenstone and massive lithic greywackes. These rocks are intruded by the Early Permian Kaloe Granodiorite, which also in turn is intruded by numerous later-stage mafic dykes. Local Geology
		The local geology is well understood as considerable exploration has taken place in and around the Cangai Copper Mine (closed) by several major explorers such as Western Mining and CRA Exploration, the results of which are covered in the section below.
		Western Mining 1982-1984
		Western Mining found that the recognition of substantial amounts of pyrrhotite in high grade ore collected from mine dumps led to the reappraisal of previous explorer's ground magnetics (Brown, 1984). Two soil anomalies were identified @ +60ppm Cu (max 1100ppm) and several strong linear magnetic anomalies (=250nT above background). Soil sampling and detailed ground inspections conducted over the linear magnetic high failed to identify any anomalous geochemistry or a possible source lithology. A 180m diamond drill hole was drilled to test the anomaly. Given the poor results of both the drilling and the follow-up

stream sediment sampling, no further work was recommended. The decision was made to relinquish the licence in 1984.

CRA Exploration 1991-1992

CRA Exploration examined the geological form, setting and genesis of the mineralisation at the Cangai Copper Mine over several years. The work carried out consisted of geological mapping, collection of rock chip samples, and underground investigations at the mine site. Drill core from a CRA exploration program and mine dumps were also inspected. They concluded that the Cangai Copper Mine is hosted by sedimentary rocks of the Siluro-Devonian Willowie Creek Beds of tuffaceous mudstones, tuffaceous sandstones and conglomerates. Mineralisation appears to be associated with steeply plunging ore shoots in and adjacent to the main shear zone (Figure 2). Massive primary ore consists of chalcopyrite, pyrite and pyrrhotite with lesser sphalerite and minor arsenopyrite and galena. A detailed, well documented report was produced, but no reasons were given for the relinquishment of the licence.

		-		011 0				,
		Figure 2	Rock	Chip Sam Appen	npling at (dix 5 Or			ne
		Similar dump samples to those collected by the author were submitted for analysis by CRA Exploration. Selected assays are presented below. Values are ppm unless otherwise stated.						
			1	2	3	4	5	6
		Cu Pb Zn Ag As Mn Au Fe S Co V Ba Ni Bi Cd	15.3% 640 4.68% 76 4750 185 1.80 30.9% 27.5% 70	28.6% 1200 1.27% 86 1650 240 2.50 22.6% 3.73% 25	12.4% 1800 2.35% 30 4850 370 0.72 28.2% 16.6% 300	14.8% 7550 9.50% 49 3800 430 2.30 32.9% 29.6% 330	10.6% 800 6400 160 4750 155 1.32 33.8% 370 <10 <5 30 14	11.0% 2500 5.10% 150 150 1.85 27.4% 300 <10 20 <5 80 90
		1 2 3 4 5	Oxide ma Massive Well bar Weakly h	chalcopyri	lcopyrite -sphalerit ive sulfid	rock with e ore e	gangue cla	ists
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Not app	licable	as only so	bil and ro	ck chip s	ampling i	is being re

Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No compositing has taken place.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Figure below is a cross-section showing the four (4) main near vertical mineralised zones at the Cangai Mine. Figure 3 NW to SE Cross-section of workings at Cangai Mine. Figure 3 NW to SE Cross-section of workings at Cangai Mine. Figure 3 NW to SE Cross-section of workings at Cangai Mine. Figure 3 NW to SE Cross-section of workings at Cangai Mine. Figure 3 NW to SE Cross-section of workings at Cangai Mine. Figure 3 NW to SE Cross-section of workings at Cangai Mine. Figure 3 NW to SE Cross-section of workings at Cangai Mine. Figure 3 NW to SE Cross-section of workings at Cangai Mine. NW Use a constraint of the section of the sect

		Brauhart, C. (1991). The Geology & Mineralisation of the Cangai Copper Mine, Coffs Harbour Block Northeastern New South Wales. CRAE Report No: 17739. University of NSW.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• Current surface anomalies are shown on maps in the report. All historical surface sampling has had their coordinates converted to MGA94, Zone 54.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	• No new exploration results have been reported, but regarding the surface sampling, no results other than duplicates or reference standard assays have been omitted.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	• Historical explorers have also conducted airborne and ground gravity, magnetic, EM, and resistivity surveys over parts of the tenure area but this is yet to be collated.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Castillo Copper intends to followup the encouraging soil sampling results with an infill survey, to define the size and extent of the anomalies at the Canberra and Sydney anomalies.