

19 September 2018

SAMPLING CONFIRMS COPPER-COBALT POTENTIAL OF KOPPAR'S NEW VANGRØFTA PROSPECT

HIGHLIGHTS

- Site visit & rock chip sampling carried out at Koppar's recently pegged Vangrøfta Project
- Historical sampling of the 5 known copper occurrences has returned grades up to 9.99%
 Cu and 0.28% Co with 15 of 28 samples above 1% Cu.
- Expansion of highly prospective Norwegian copper zinc portfolio complete with all remaining exploration permit applications approved
- Preparations for drilling at Grimsdalen well advanced

Koppar Resources Limited (ASX:KRX) (Koppar or the Company) is pleased to announce that their remaining exploration permit applications have been approved, bringing the Company's total footprint in Norway to 737 km² (Figure 6 and Appendix 1). In addition, Koppar has completed a field reconnaissance trip to Vangrøfta, one of its newly pegged project areas. According to the Norwegian Geological Survey's (NGU's) Ore Database, the Vangrøfta Project areas contains five (5) known copper occurrences; Fredrik IV, Flatskarvåsen, Vangrøften Skjerp, Fossgruva, and Storebekdal (Figure 1).

Historical mining recorded by the NGU at these prospects is as follows:

Prospect	Tonnage	Grade
Fredrik IV	2,600	5 – 6% Cu
Flatskarvåsen	Unknown	Unknown
Vangrøften Skjerp	0	-
Fossgruva	17,000	1.0 – 1.2%Cu
Storebekdal	0	=

The NGU has carried out a limited sampling programme across "dumps" at each of these prospects. Results are summarised below with full details in Tables 2 to 6 and Appendix 2. It is noteworthy that of 28 samples taken by the NGU across the Vangrofta Project 15 are above 1%Cu.

Prospect	No. Samples	Range Cu (%)	Range Co (%)	Range Au (g/t)
Fredrik IV	7	0.065 - 9.99	0.001 - 0.159	0.021 - 4.68
Flatskarvåsen	3	2.49 – 4.18	0.043 - 0.282	0.907 - 4.81
Vangrøften Skjerp	4	0.018 - 1.23	0.003 - 0.136	0.007 - 0.027

Prospect	No. Samples	Range Cu (%)	Range Co (%)	Range Au (g/t)
Fossgruva	14	0.01 - 2.97	0.001 - 0.071	0.001 - 0.362
Storebekdal	0	-	-	-

HISTORICAL EM SURVEY

TURAM EM surveys were carried out in the 1980's at Vangrøften Skjerp, and in the 1960's at Fredrik IV. Historical TURAM surveys detected numerous conductors in the project area and the Company's geophysical consultants Newexco are reviewing historical data with the aim of screening out those relating to sulphide occurrences.

SAMPLING

Thirteen (13) rockchip samples were collected by Koppar from the Fredrik IV's mine and Flatskarvåsen localities (Table 1). Samples have been sent to ALS in Sweden for analysis.

Table 1: Grab samples collected from Vangrøfta (Fredrik IV and Flatskarvåsen) by Koppar in September 2018. Note: grid is WGS84 UTM Zone 32. Assay results are pending

Sample ID	Easting	Northing	Sample Type	Description
FR18-001	604501	6934060	Dump grab	Foliated amphibolite with few-cm thick band rich in
				chalcopyrite and minor pyrrhotite and pyrite
FR18-002	604501	6934060	Dump grab	Quartz-chlorite-mica schist with sulphide bands
				(dominantly pyrrhotite, less chalcopyrite and pyrite)
FR18-003	604501	6934060	Dump grab	Almost sugary quartz with rich disseminated
				chalcopyrite and subordiante pyrrhotite and magnetite
FR18-004	604501	6934060	Dump grab	Semimassive to massive pyrrhotite-magnetite with
				minor chalcopyrite
FR18-005	604501	6934060	Dump grab	Quartzitic schist with minor biotite, amphibolite,
				chlorite and disseminated pyrrhotite- chalcopyrite
FR18-006	604567	6934186	Dump grab	Quartz with disseminated chalcopyrite
FR18-007	604567	6934186	Dump grab	Chlorite-amphibole schist with disseminated
				chalcopyrite and quartz lenses and veins
FR18-008	604478	6934097	Dump grab	Semimassive to massive chalcopyrite (very minor
				pyrrhotite) in quartz-chlorite-amphibole schist
FR18-009	604478	6934097	Dump grab	Semimassive chalcopyrite -pyrrhotite in quartz-
				chlorite-amphibole schist
FL18-001	603085	6934108	Dump grab	Fine-grained, almost massive pyrite- chalcopyrite -
				pyrrhotite min
FL18-002	603085	6934108	Dump grab	Massive pyrrhotite-pyrite- chalcopyrite
FL18-003	603085	6934108	Dump grab	Fine grained pyrite- chalcopyrite -pyrrhotite
LL10-003	003083	0934108	Dump grab	disseminated in mainly quartz gangue
FL18-004	603109	6934101	Dump grab	Chlorite-amphibole schist with disseminated
1110-004	003109	0934101	Dullip glab	pyrrhotite-pyrite- chalcopyrite

Figure 1: The Vangrøfta Project exploration permits showing the location of the five (5) known copper occurrences; Vangrøften Skjerp, Fredrik IV, Flatskarvåsen, Storebekdal, and Fossgruva underlain by NGU geological mapping

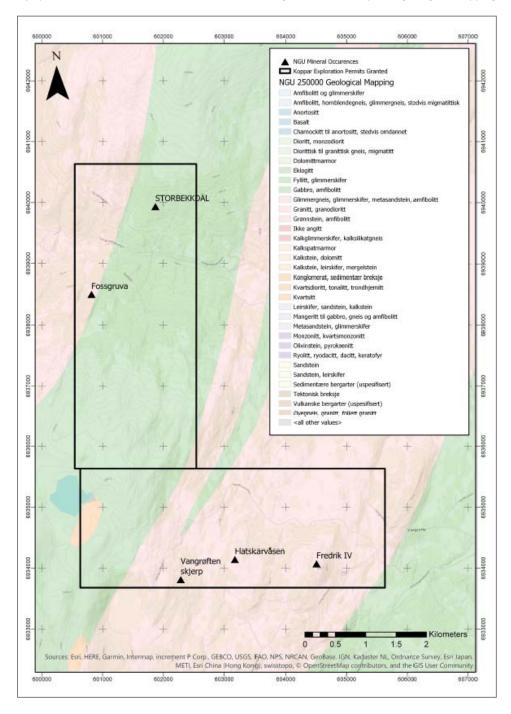


Figure 2: Dronningens shaft at Fredrik IV

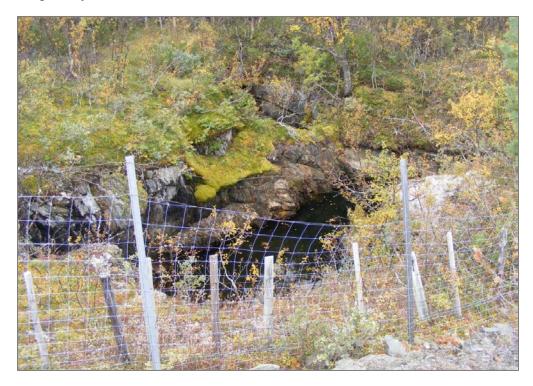


Figure 3: Dump adjacent to Kongens and Dronningens shafts at Fredrik IV

Figure 4: Historical shaft at Flatskarvåsen

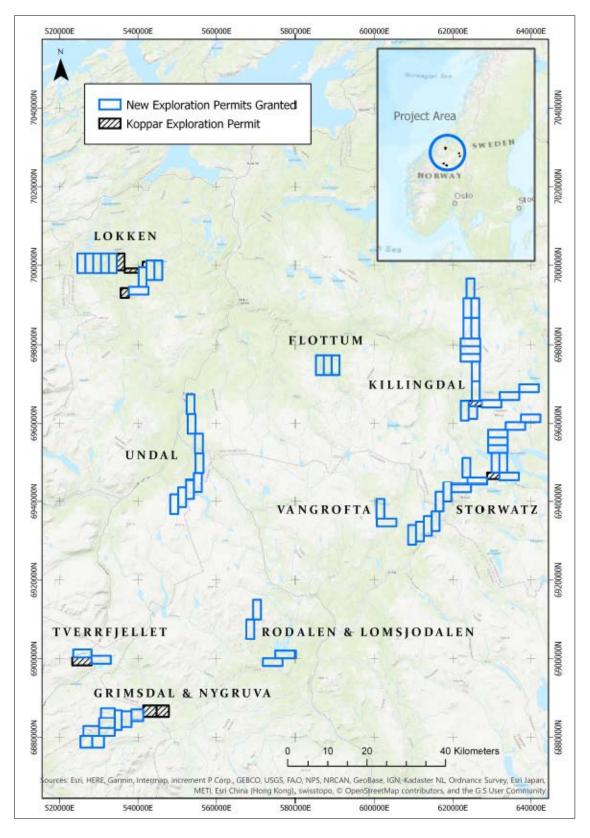


Figure 5: Historical workings at Flatskarvåsen

Figure 6: Location of current and recently granted exploration permits

RECORDED INFORMATION ON MINERAL OCCURRENCES WITHIN THE VANGRØFTA PROJECT

Fredrik IV

Copper mineralisation was discovered at Fredrik IV by two prospectors in 1707, and was mined from 1712 to 1727 by Røros Kobberverk (the Røros Copperworks). The mine, which is situated at the top of the hill Gruvåsen about 4 km west of Dalsbygda, remained abandoned until 1870 and was then mined intermittently up until 1908. Despite the mine existing for over 200 years, it was only worked for a total of 30 years during this period, during which it produced approximately 2,600 t at 5 to 6 % Cu (NGU Ore Database). The mine consists of 19 known workings including the Kongen Shaft (123 m deep) and the Dronningen Shaft.

Copper mineralisation is epigenetic and hydrothermal, plunging steeply to the southwest, and hosted by gabbro. Copper mineralisation is interpretation to be a result of shearing in the gabbro and subsequent migration of Cu, Au and Co in hydrothermal solution, depositing quartz and calcite, also resulting in chlorite alteration. Copper mineralisation consists of irregular veins, of chalcopyrite, pyrrhotite and locally sparse pyrite cubes in a matrix dominated by calcite with abundant needles of actinolite and some quartz, and semi-massive to massive chalcopyrite with lesser amounts of pyrrhotite. Sampling of dumps by the NGU in 1998 produced copper grades of up to 9.99% Cu (Table 2).

Flatskarvåsen

Flatskarvåsen is located 1.3 km to the west of Fredrik IV and has been explored historically by three (3) small shafts/pits. Mineralisation at Flatskarvåsen is believed to be epigenetic hydrothermal bound to shear zones in gabbro, similar to that at Fredrik IV. Copper mineralisation occurs as fine-grained, semi-massive to massive pyrite-chalcopyrite-pyrrhotite mineralisation, massive pyrrhotite dominated mineralisation, and cm thick bands of massive pyrite. Sampling of dumps by the NGU in 1998 produced copper grades of 2.5 to 4.2% Cu (Table 3).

Vangrøften Skjerp

Vangrøften Skjerp is located in Bjørkeskogen, 800 meters south of Nordervolle and was explored by Folldal Verk in the 1980's. Copper mineralisation occurs in semi-massive bands of pyrite (mm to cm thick) with pyrrhotite and chalcopyrite. Sampling of dumps by the NGU produced copper grades of up to 1.2% Cu (Table 4).

Fossgruva

The Fossgruva deposit, which is located on the south side of Vangrøftdalen, approx. 10 km west of Dalsbygda, was mined from 1808 to 1812, and again from 1906 to 1920. Approximately 17,000 tonnes were exploited by a 125 m long adit from Fossgruva with an average grade of 1.0 to 1.2% Cu.

Copper mineralisation at Fossgruva has a known strike length of 40 to 60m, dips steeply (80°) to the west, and averages 1.75 m in thickness (with a maximum thickness of 5 m recorded). Copper mineralisation consists of semi-massive pyrrhotite-chalcopyrite with frequent mm-sized quartz fragments and irregular chalcopyrite lenses. The lenses occur parallel to regional foliation and are intermixed with biotite-chlorite schist lenses. Sampling of dumps by the NGU produced copper grades of up to 2.9% Cu (Table 5 and Table

6). According to the NGU the footwall is a light quartz-rich schist with muscovite (sericite) and scattered mm-sized biotite grains and very weak pyrrhotite dissemination (sample HE0138.02 in Table 5), and the hangingwall is a dark quartz schist with chlorite, biotite and carbonate lenses (sample HE0138.03 in Table 5).

Table 2: Historical dump grab samples collected by NGU at Fredrik IV

Sample ID	HE0137.01	HE0137.02	HE0137.03	HE0137.04	HE0137.05	HE0137.06	HE0137.07
Sample	Dump grab	Dump grab	Dump grab	Dump grab	Dump grab	Dump grab	Dump grab
Type	sample	sample	sample	sample	sample	sample	sample
Cu (ppm)	49760	18711	46368	99798	70540	655	99999
Zn (ppm)	256	43	125	486	338	20	983
Pb (ppm)	27	8	16	-3	6	6	24
Co (ppm)	687	187	440	1778	1018	13	1588
Ni (ppm)	85	28	52	288	199	12	188
Ag (ppm)	7.8	2.9	6.6	20.7	14.2	0.4	30.2
Au (ppb)	728	305	572	3817	234	21	4680
Pt (ppb)	1	-1	-1	2	1	3	2
Pd (ppb)	1	2	-1	7	5	7	4
As (ppm)	208	2	5	139	-2	2	253
Cd (ppm)	4.4	0.8	1.5	8	4.4	0.4	16.3
Ba (ppm)	16	22	21	13	19	9	16
Mo (ppm)	13	3	5	21	6	2	24
Sb (ppm)	-3	-3	-3	18	-3	-3	55
Bi (ppm)	-3	6	11	9	14	-3	124
V (ppm)	38	10	15	13	51	12	8
Cr (ppm)	222	67	55	47	48	28	24
Mn (ppm)	445	700	776	456	363	1802	432
Fe (%)	11.96	4.15	8.53	26.89	18.35	2.22	26.57
Th (ppm)	-2	-2	-2	2	-2	-2	2
U (ppm)	-8	-8	-8	-8	-8	-8	-8
W (ppm)	-2	-2	-2	-2	-2	-2	-2
Sr (ppm)	19	25	20	16	12	87	16
La (ppm)	-1	-1	-1	-1	-1	-1	-1
B (ppm)	8	3	3	25	12	-3	31
Description	Rich chalcopyrite impregnation w/ some pyrrhotite and sparse pyrite cubes in irregular veins in quartz-calcite rock. Some mm needles of actinolite and also thin layers of chlorite	Rich chalcopyrite- pyrrhotite impregnation in calcite with lesser quartz. Frequent 1-3 mm blades and rosettes of light green actinolite in irregular lenses	Semi-massive veins & lenses of chalcopyrite with some pyrrhotite in calcite with lesser quartz and sparse actinolite. Some parts contain very small garnets, and fine grained chlorite and biotite occurs throughout	Semi- massive/massive chalcopyrite- pyrrhotite, irregularly distributed in lenses with patches of actinolite, carbonate, quartz and chlorite. Few 1-2 mm octahedra of magnetite.	Carbonate- quartz band in chlorite- schist with rich irregular impregnation of chalcopyrite and lesser pyrrhotite	Actinolite- calcite rock with few <= 1 mm veinlets and patches of chalcopyrite. Irregular distribution of 1-5 cm aggregates of brown calcite and 1-1.5 cm needles of actinolite in rosettes	Semi-massive to massive chalcopyrite with some pyrrhotite in a partly patchy matrix of calcite, actinolite and garnet.

Table 3: Historical dump grab samples collected by NGU at Flatskarvåsen

Sample ID	HE0154.01	HE0154.02	HE0154.03
Sample Type	Dump grab sample	Dump grab sample	Dump grab sample
Cu (ppm)	41847	25633	24915
Zn (ppm)	145	192	144
Pb (ppm)	-3	4	5
Co (ppm)	1143	431	2824
Ni (ppm)	195	80	48
Ag (ppm)	8.4	3.1	4.5
Au (ppb)	4813	907	2376
Pt (ppb)	-1	2	5
Pd (ppb)	6	-1	18
As (ppm)	97	15	442
Cd (ppm)	-0.2	0.2	-0.2
Ba (ppm)	7	14	7
Mo (ppm)	7	10	12
Sb (ppm)	27	9	18
Bi (ppm)	24	26	36
V (ppm)	11	54	21
Cr (ppm)	18	209	25
Mn (ppm)	110	381	191
Fe (%)	31.03	15.31	19.21
Th (ppm)	2	-2	-2
U (ppm)	-8	-8	-8
W (ppm)	4	-2	5
Sr (ppm)	1	2	1
La (ppm)	-1	-1	-1
B (ppm)	36	11	24
Description	1-1.5 cm band and unevenly distributed finegrained chalcopyrite-pyrrhotite in quartz. Some pyrite with variable grainsize also occur	Irregular network and veinlets of chalcopyrite and pyrrhotite in quartz with chlorite	1-3 cm semimassive band of pyrite and chalcopyrite in quartz-layer in chlorite schist. Pyrite occurs in 1-2 mm subhedral cubes

NOTE: Negative values means below detection limit value

Table 4: Historical grab samples collected by NGU at Vangrøften Skjerp

Sample ID	HE0136.01	HE0136.02	HE0136.03	HE0136.04
Sample Type	Dump grab sample	Dump grab sample	Dump grab sample	Dump grab sample
Cu (ppm)	12415	180	1331	12392
Zn (ppm)	897	51	74	889
Pb (ppm)	451	6	167	582
Co (ppm)	398	35	1359	290
Ni (ppm)	38	18	4	8
Ag (ppm)	2.9	0.5	5.2	10.7
Au (ppb)	7	7	27	58
Pt (ppb)	2	1	-1	-1
Pd (ppb)	6	1	-1	-1
As (ppm)	-2	114	157	113

Sample ID	HE0136.01	HE0136.02	HE0136.03	HE0136.04
Cd (ppm)	7.9	-0.2	-0.2	3.2
Ba (ppm)	2	8	6	8
Mo (ppm)	26	3	7	43
Sb (ppm)	-3	-3	5	-3
Bi (ppm)	4	-3	8	3
V (ppm)	225	218	6	2
Cr (ppm)	101	42	4	4
Mn (ppm)	1670	595	57	202
Fe (%)	23.73	13.28	21.28	16.51
Th (ppm)	2	2	2	2
U (ppm)	-8	-8	-8	-8
W (ppm)	-2	-2	-2	-2
Sr (ppm)	4	3	1	20
La (ppm)	-1	-1	-1	-1
B (ppm)	17	6	22	12
Description	Strongly lineated chlorite schist with abundant elongated (up to 2 cm) lenses of pyrrhotite and chalcopyrite. 1-2 mm amphibole needles are quite common.	3-4 cm quartz layer in chlorite schist with aggregates of fine-grained pyrite. Some mm-pyrite laminae also in the schist. Abundant mm grains and aggregates of brown carbonate.	7-8 cm quartz layer in chlorite schist with mm to cm bands of semimassive, fine-grained pyrite	Quartz with irregularly distributed pyrite and some smaller aggregates of chalcopyrite.

Table 5: Historical dump grab samples collected by NGU at Fossgruva

Sample ID	HE0138.01	HE0138.02	HE0138.03	HE0138.04	HE0138.05	HE0138.06	HE0138.07
Sample Type	Bedrock	Bedrock	Bedrock	Dump	Dump	Dump	Dump
Cu (ppm)	29704	137	100	11501	4232	14524	10775
Zn (ppm)	769	70	105	7178	595	2216	14463
Pb (ppm)	24	-3	5	217	307	121	300
Co (ppm)	434	13	73	114	705	500	502
Ni (ppm)	178	42	369	169	23	30	55
Ag (ppm)	21.6	-0.3	-0.3	10.4	17	19.2	18
Au (ppb)	146	1	1	30	326	303	362
Pt (ppb)	4	-1	-1	16	1	1	3
Pd (ppb)	2	1	1	4	3	2	3
As (ppm)	-2	-2	268	2	400	259	333
Cd (ppm)	4.1	-0.2	0.4	34.4	1.2	11	112.6
Ba (ppm)	13	72	50	8	3	5	4
Mo (ppm)	18	1	1	18	29	34	9
Sn (ppm)							
Sb (ppm)	23	-3	-3	16	7	31	22
Bi (ppm)	29	6	3	10	5	17	9
V (ppm)	52	28	44	2	1	9	4
Cr (ppm)	184	47	233	9	3	6	11
Mn (ppm)	247	260	1388	294	44	110	94
Fe (%)	29.96	3.08	2.3	41.51	35.71	38.46	36.69

Sample ID	HE0138.01	HE0138.02	HE0138.03	HE0138.04	HE0138.05	HE0138.06	HE0138.07
Th (ppm)	2	8	-2	4	3	3	3
U (ppm)	-8	-8	-8	-8	-8	-8	-8
W (ppm)	4	-2	-2	-2	-2	5	2
Rb (ppm)							
Sr (ppm)	1	6	38	1	1	1	1
La (ppm)	-1	9	1	-1	-1	-1	-1
B (ppm)	33	-3	-3	47	36	46	42
Description	Semi-massive 1-3 mm laminated pyrrhotite- chalcopyrite ore in quartz matrix with subordinate mica	Quartz- sericite schist in footwall of ore zone, few pyrite grains	Quartz- chlorite schist with carbonate lenses in hangingwall of ore zone	Semi-massive with 1-3 mm grains of pyrrhotite and irregular aggregates with chalcopyrite. Frequent rounded 1-3 mm quartz aggregates, a few containing chlorite.	Massive fine grained pyrite in quartz.	Massive, fine grained, diffuse on cm-scale banded pyrite-chalcopyrite-pyrrhotite ore. Quartz-matrix.	Fine grained massive pyrite ore with few 0.5 cm bands enriched in sphalerite, some chalcopyrite. Quartz-matrix.

Table 6: Historical dump grab samples collected by NGU at Fossgruva (continued)

Sample ID	HE0138.08a	HE0138.08b	HE0138.09	HE0138.10a	HE0138.10b	HE0138.11a	HE0138.11b
Sample Type	Bedrock	Bedrock	Bedrock	Dump	Dump	Dump	Dump
Cu (ppm)	2894			553		191	
Zn (ppm)	766			45		25	
Pb (ppm)	32			5		3	
Co (ppm)	59			18		8	
Ni (ppm)	75			58		28	
Ag (ppm)	1.9			0.5		0.2	
Au (ppb)	14			9		3	
Pt (ppb)							
Pd (ppb)							
As (ppm)	-1			2		1	
Cd (ppm)	4			0.1		-0.1	
Ba (ppm)	15	108	300	2	28	2	28
Mo (ppm)	49			19		13	
Sn (ppm)	-1			-1		-1	
Sb (ppm)	-1			-1		-1	
Bi (ppm)	-1			-1		-1	
Se (ppm)	15			4		2	
Ga (ppm)	1			4		4	
In (ppm)	-1			-1		-1	
S(%)	10.4	10.29	2.52	3.9	3.01	1.67	1.05
V (ppm)	15	82	126	34	16	40	21
Cr (ppm)	17	131	70	26	24	18	17
Mn (ppm)	1250			494		386	
Fe (%)	17.87			19.91		14.88	

Sample ID	HE0138.08a	HE0138.08b	HE0138.09	HE0138.10a	HE0138.10b	HE0138.11a	HE0138.11b
Th (ppm)	1			-1		-1	
U (ppm)	2			-1		-1	
W (ppm)	7	36	18	6	12	9	22
Rb (ppm)		22	57		-5		-5
Sr (ppm)	18	18	70	17	11	12	-5
Y (ppm)		7	14		-5		-5
Zr (ppm)		18	116		-5		-5
Nb (ppm)		-5	13		-5		-5
La (ppm)	8			-1		-1	
Ce (ppm)		82	70		90		75
Nd (ppm)		-10	-10		-10		-10
Yb (ppm)		-16	-16		-16		-16
B (ppm)	-1			-1		-1	
F (ppm)		2300	-1000		1700		-1000
CI (ppm)		-1000	-1000		-1000		-1000
Sc (ppm)		-10	18		-10		-10
Te (ppm)	1			1		-1	
Hg (ppm)	-1			-1		-1	
Tl (ppm)	-1			-1		-1	
SiO ₂ (%)	55.71		61.68	64.93		72.77	
Al ₂ O ₃ (%)	2.82		12.13	0.81		0.65	
TiO ₂ (%)	0.09		0.6	0.02		0.02	
Fe ₂ O ₃ (%)	26.87		13.53	30.51		24.55	
MnO (%)	0.13		0.04	0.06		0.04	
MgO (%)	0.4		3.77	0.09		0.07	
CaO (%)	1.09		0.29	1.06		0.69	
Na₂O (%)	-0.1		1.36	-0.1		-0.1	
K ₂ O (%)	0.86		2.2	-0.01		-0.01	
P ₂ O ₅ (%)	0.13		0.12	0.01		-0.01	
Description	Pyrrhotite and ch impregnation in s schist. Hanging w pyrrhotite ore (sa HE0138.01), close	ericitic quartz all of massive mple	Chloritic quartz-sericite schist with mm-thick veins of pyrrhotite. From outcrop between the two shafts.	Magnetite-hematite mineralization in irregular network in banded chert. Scattered pyrrhotite and chalcopyrite.		Magnetite-hematite mineralization in irregular network in banded chert. Scattered pyrrhotite and chalcopyrite.	

For and on behalf of the board:

Mauro Piccini Company Secretary

About Koppar

Koppar is a junior exploration company established with the purpose of exploring and developing copper, zinc and other mineral opportunities. The Company owns mineral exploration projects located in the Trøndelag region of Norway, namely the Løkken Project, Tverrfjellet Project, Grimsdal Project, Kllingdal Project, Storwartz Project, Undal Project, Fløttum Project, Vangrøfta Project, and the Rødalen and Lomsjodalen Projects. The Projects are located in a historic mining area, and mining has been previously carried out on several of the projects.

For further information visit www.kopparresources.com

Competent Persons Statement

The technical information in this announcement complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code) and has been compiled and assessed under the supervision of Miss Rebecca Morgan, the Non-Executive Technical Director of Koppar Resources Ltd. Miss Morgan is a Member of the Australasian Institute of Geoscientists. She has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Miss Morgan consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Disclaimer

Some of the statements appearing in this announcement may be in the nature of forward looking statements. You should be aware that such statements are only predictions and are subject to inherent risks and uncertainties. Those risks and uncertainties include factors and risks specific to the industries in which Koppar operates and proposes to operate as well as general economic conditions, prevailing exchange rates and interest rates and conditions in the financial markets, among other things. Actual events or results may differ materially from the events or results expressed or implied in any forward-looking statement. No forward-looking statement is a guarantee or representation as to future performance or any other future matters, which will be influenced by a number of factors and subject to various uncertainties and contingencies, many of which will be outside Koppar's control.

Koppar does not undertake any obligation to update publicly or release any revisions to these forward-looking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions or conclusions contained in this announcement. To the maximum extent permitted by law, none of Koppar, its Directors, employees, advisors or agents, nor any other person, accepts any liability for any loss arising from the use of the information contained in this announcement. You are cautioned not to place undue reliance on any forward-looking statement. The forward-looking statements in this announcement reflect views held only as at the date of this announcement.

This announcement is not an offer, invitation or recommendation to subscribe for, or purchase securities by Koppar. Nor does this announcement constitute investment or financial product advice (nor tax, accounting or legal advice) and is not intended to be used for the basis of making an investment decision. Investors should obtain their own advice before making any investment decision.

APPENDIX 1: TENEMENT SCHEDULE

NAME	STATUS	PERMIT TYPE	AREA (KM2)	REGISTRATION NUMBER
Hoydalsgruva 100	Granted	Exploration	4.0	0090-1/2017
Meldal 100	Granted	Exploration	5.3	0091-1/2017
Svorka 100	Granted	Exploration	1.4	0092-1/2017
Lokken 100	Granted	Exploration	8.6	0093-1/2017
Killingdal	Granted	Exploration	4.5	0100-1/2017
Nygruva	Granted	Exploration	9.14	0097-1/2017
Grimsdalen	Granted	Exploration	9.86	0101-1/2017
Storwartz	Granted	Exploration	5.20	0099-1/2017
Tverrfjellet	Granted	Exploration	9.99	0098-1/2017
Fløttum 101	Granted	Exploration	10	1062/2018
Fløttum 102	Granted	Exploration	10	1063/2018
Fløttum 103	Granted	Exploration	10	1064/2018
Rødalen 101	Granted	Exploration	10	1060/2018
Rødalen 102	Granted	Exploration	10	1061/2018
Undal 101	Granted	Exploration	10	1059/2018
Undal 102	Granted	Exploration	10	1058/2018
Nyberget 101	Granted	Exploration	10	1056/2018
Nyberget 102	Granted	Exploration	10	1057/2018
Meldal 101	Granted	Exploration	10	1050/2018
Meldal 102	Granted	Exploration	10	1051/2018
Meldal 103	Granted	Exploration	10	1052/2018
Meldal 104	Granted	Exploration	10	1053/2018
Lomsjødalen 101	Granted	Exploration	10	1054/2018
Lomsjødalen 102	Granted	Exploration	10	1055/2018
Innerdalen 101	Granted	Exploration	10	1071/2018
Innerdalen 102	Granted	Exploration	10	1072/2018
Innerdalen 103	Granted	Exploration	10	1070/2018
Innerdalen 104	Granted	Exploration	10	1073/2018
Klinkengruva 101	Granted	Exploration	10	
Klinkengruva 102	Granted	Exploration	10	1139/2018
Killingdal 101	Granted	Exploration	10	1148/2018
Killingdal 102	Granted	Exploration	10	1149/2018
Killingdal 103	Granted	Exploration	10	1150/2018
Killingdal 104	Granted	Exploration	10	1151/2018
Killingdal 105	Granted	Exploration	7.5	1152/2018
Klasberget 101	Granted	Exploration	10	1143/2018
Klasberget 102	Granted	Exploration	10	1144/2018
Finnlandsvollen 101	Granted	Exploration	10	1146/2018

NAME	STATUS	PERMIT TYPE	AREA (KM2)	REGISTRATION NUMBER
Finnlandsvollen 102	Granted	Exploration	10	1147/2018
Os 101	Granted	Exploration	10	1129/2018
Os 102	Granted	Exploration	10	1130/2018
Os 103	Granted	Exploration	10	1131/2018
Os 104	Granted	Exploration	10	1132/2018
Abrahams gruve 101	Granted	Exploration	10	1140/2018
Abrahams gruve 102	Granted	Exploration	10	1141/2018
Abrahams gruve 103	Granted	Exploration	10	1142/2018
Rødhammer 101	Granted	Exploration	10	1126/2018
Rødhammer 102	Granted	Exploration	10	1127/2018
Rødhammer 103	Granted	Exploration	10	1128/2018
Gressli 101	Granted	Exploration	10	1121/2018
Gressli 102	Granted	Exploration	10	1122/2018
Gressli 103	Granted	Exploration	10	1123/2018
Gressli 104	Granted	Exploration	10	1124/2018
Gressli 105	Granted	Exploration	10	1125/2018
Løkken 101	Granted	Exploration	10	1133/2018
Løkken 102	Granted	Exploration	10	1134/2018
Løkken 103	Granted	Exploration	10	1135/2018
Løkken 104	Granted	Exploration	10	1136/2018
Løkken 105	Granted	Exploration	10	1137/2018
Storwatz 101	Granted	Exploration	10	1145/2018
Vangrofta 101	Granted	Exploration	10.0	1160/2018
Vangrofta 102	Granted	Exploration	9.8	1161/2018
Roros 101	Granted	Exploration	10.0	1155/2018
Roros 102	Granted	Exploration	10.0	1156/2018
Roros 103	Granted	Exploration	9.8	1157/2018
Roros 104	Granted	Exploration	9.8	1158/2018
Roros 105	Granted	Exploration	10.0	1159/2018
Tverrfjellet 101	Granted	Exploration	9.4	1153/2018
Tverrfjellet 102	Granted	Exploration	10.0	1154/2018
Grimsdalen 101	Granted	Exploration	9.0	1200/2018
Grimsdalen 102	Granted	Exploration	10.0	1201/2018
Grimsdalen 103	Granted	Exploration	8.8	1202/2018
Grimsdalen 104	Granted	Exploration	8.8	1203/2018
Grimsdalen 105	Granted	Exploration	10.0	1204/2018
Grimsdalen 106	Granted	Exploration	8.0	1205/2018
Grimsdalen 107	Granted	Exploration	10.0	1206/2018
Grimsdalen 108	Granted	Exploration	9.0	1207/2018
Grimsdalen 109	Granted	Exploration	9.0	1208/2018

APPENDIX 2: JORC TABLE

Section1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling technique	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used Aspects of the determination of mineralisation that are material to the Public report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	Samples were grab samples for the dump samples and chip samples for the bedrock samples. Samples were collected by the Geological Survey of Norway and reported in their 'Ore Database' Deposit Area • Deposit Area 441 – 005 • Deposit Area 441 – 009 • Deposit Area 441 – 004 • Deposit Area 441 – 006 The web reference for these are: http://aps.ngu.no/pls/oradb/minres_deposit_fakta.Main?p_objid=6451&p_spraak=E http://aps.ngu.no/pls/oradb/minres_deposit_fakta.Main?p_objid=6468&p_spraak=E http://aps.ngu.no/pls/oradb/minres_deposit_fakta.Main?p_objid=6450&p_spraak=E http://aps.ngu.no/pls/oradb/minres_deposit_fakta.Main?p_objid=6450&p_spraak=E
Drilling techniques	Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method etc.).	No drilling results are being presented.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed Measurements taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and wether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No drilling results are being presented.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel etc.) photography. The total length and percentage of the relevant intersections logged 	Samples were geologically described and these are presented in tables in the body of this announcement.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and wether quarter, half or all core taken. If non-core, whether riffles, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	The sample size for assay is not known, however given the nature of rockchip sampling it is likely that the samples may not be representative and instead are indicative of specific geological features.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	The assay technique is not known
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes Documentation of primary data, data entry procedures, data verification, data storage (physically and electronic) protocols. Discuss any adjustment to assay data. 	 No drilling results are being presented. Verification sampling has been carried out at Fredrik IV and Flatskarvåsen. Assay results are pending. Historical results are presented as an indicator of the presence of mineralisation instead of the tenor, therefore this is not material.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resources estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Coordinates of the sample locations is not known.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Reserve and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	The spacing of the dump samples or bedrock samples is not known
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The sampling of the bedrock samples in relation to geological structures is not known.
Sample security	The measures taken to ensure sample security.	Not known
Audits or reviews	The results of and audits or reviews of sampling techniques and data.	Not known

Section2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenements and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interest, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Samples were collected on KRX tenement Vangrofta 101 and Vangrofta 102. The exploration permits are 100% held by Koppar Resources Europe Pty Ltd, which is 100% owned by Koppar Resources. The tenure is secure and in good standing at the time of writing. A full list of the company's exploration permits is available in Appendix 1
Exploration done by other parties	Acknowledgement and appraisal of exploration by other parties.	According to information sourced from the Norwegian Geological Survey (NGU)'s Ore Database, activities that have taken place in the project area by previous permit holders are summarised in Appendix 3.
Geology	Deposit type, geological settings and style of mineralisation.	The deposits are VMS deposits. The deposits are massive sulphides containing pyrite, chalcopyrite, and sphalerite.
Drill hole information	 A summary of all information material for the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced levelelevation above sea level in metres) and the drill hole collar Dip and azimuth of the hole Down hole length and interception depth Hole length 	No drilling results are being presented.
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	No drilling results are being presented.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration results, weighing averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	The assays are reported individually for each sample. There is no data aggregation.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known') 	These are essentially point samples so there are no widths or lengths reported.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts would be included for any significant discovery being reported. These should include, but not be limited too plan view of drill hole collar locations and appropriate sectional views.	Tables 2 to 6 in this announcement contain all known details of the sampling.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Reporting of these sample assay results is considered balanced

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations, geophysical survey results, geochemical survey results, bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or containing substances.	There is no other substantive data to disclose.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, providing this information is not commercially sensitive. 	Verification rock chip samples have been collected by Koppar and submitted to ALS in Sweden. Results are currently pending. Further work will be designed once assay results have been received and all historical data has been complied.

APPENDIX 3: HISTORICAL EXPLORATION ACTIVITIES

Table 7: Vangrøften Skjerp Historical Activity and Exploration Works

From - To	Activity	Comments
	Test mining	Company/Institution :?
1981 - 1984	Detail mapping	Company/Institution : Folldal Verk AS
1981 - 1984	Geochemistry	Company/Institution : Folldal Verk AS
1981 - 1984	Geophysics	Company/Institution :Folldal Verk AS
1983 - 1983	Core drilling	Company/Institution :Folldal Verk AS

Table 8: Flatskarvåsen Historical Activity and Exploration Works

From - To	Activity	Comments
	Pitting	Company/Institution :Røros Kobberverk?
1998 - 1998	Sampling	Company/Institution :NGU

Table 9: Fredrik IV Historical Activity and Exploration Works

From - To	<u>Activity</u>	Comments
1707 - 1727	Regular production	Company/Institution : Røros Kobberverk
1870 - 1875	Regular production	Company/Institution :Fredrik Sjøstedt
1890 - 1891	Regular production	Company/Institution :Os-Hommelvik
		Kobberverk
1905 - 1908	Regular production	Company/Institution : Røros Kobberverk
1966 - 1966	Geophysics	Company/Institution :NGU
1998 - 1998	Sampling	Company/Institution :NGU

Table 10: Fossgruva Historical Activity and Exploration Works

From - To	Activity	<u>Comments</u>
1808 - 1812	Regular production	
1906 - 1920	Regular production	Company/Institution :H & F Backe