ASX Code: MTB

24 September 2018

PRESENTATION IN RESPECT OF VANADIUM AND GERMANIUM

The Company has compiled the attached presentation relating specifically to Vanadium and Germanium at the Kihabe/Nxuu Zn/Pb/Ag Project in Botswana. This is in response to a request from the Ministry of Mines in Botswana.

ACN: 009 067 476 8/800 Albany Hwy, East Victoria Park, Western Australia 6101 Tel: (61 8) 9355 0123 Fax: (61 8) 9355 1484 mtb@mountburgess.com www.mountburgess.com

KIHABE-NXUU Zn/Pb/Ag/V/Ge PROJECT BOTSWANA

ACN: 009 067 476 8/800 Albany Hwy East Victoria Park Western Australia 6101 Tel: (61 8) 9355 0123 Fax: (61 8) 9355 1484 mtb@mountburgess.com

Is Vanadium the Energy Storage Solution of the Future?

Date: Sep 14, 2018

Vanadium is an abundant silvery-gray metal, cousin to niobium and tantalum, that is primarily mined in China, Russia, South Africa and Brazil. Part one of our vanadium coverage will focus on the invention, use and applications of vanadium batteries.

While there has been a lot of discussion around which metals will be used in electric vehicle (EV) batteries, predominantly in the nickel, cobalt and lithium space, the EV sector isn't the only one that needs to secure a long term sustainable, green and efficient energy supply.

Vanadium has been pegged as an up and coming energy storage metal especially in relation to large scale applications due to its ability to store extensive amounts of energy.

Invented decades ago, vanadium redox flow batteries, or VRFBs, have only recently gained popularity as a contender for large scale energy storage. VRFBs are a viable option for large scale storage because they are able to provide hundreds of megawatt hours at grid scale. Meaning, they are able to be charged thousands of times without losing capacity, while holding large amounts of energy.

How it works

The positive and negative sides of a vanadium redox-flow battery are separated by a membrane that selectively allows protons to pass through. While charging, the applied voltage causes vanadium ions to lose one electron each on the positive side. The freed electrons flow through the outside circuit to the negative side, where they are stored. During use, those stored electrons are released, allowing them to flow back through the outside circuit to the positive side.

Since their inception in 1984, VRFBs have slowly advanced and refined their storage capacity and delivery technique. The first generation of vanadium batteries weren't able to hold much energy, roughly 12 to 15 watt-hours per liter of electrolyte.

In order to perform, the batteries had to be extremely large, approximately the size of a one or two basketball courts, making them an unrealistic energy solution.

In the 30 plus years since then, VRFBs have come a long way. Today's vanadium batteries are produced in high tech giga-factories, and are a third of the size as the gigantic VRFBs of the 80s. Not only are they smaller, they pack double the energy capacity of the first generation batteries.

https://www.vanadiumprice.com/is-vanadium-the-energy-storage-solution-of-the-future/

Vanadium Pentoxide 98% Min. China US\$ per pound for Last Three Years

thanks to www.vandiumprice.com

21 September 2018

NAMIBIA

KIHABE AND NXUU DEPOSITS 2004 JORC CODE Zn/Pb RESOURCE STATEMENTS

KIHABE **DOES NOT INCLUDE** VANADIUM OR GERMANIUM NXUU **DOES NOT INCLUDE** SILVER, VANADIUM OR GERMANIUM

	External	Indicated	Inferred	Total		Contained Z	inc	Contained Lead
Deposit	Zn-eq Cut %	M Tonnes %	M Tonnes %	M Tonnes	%	metal (kt))	metal (kt)
Kihabe	1.5%	11.4 @ 2.90%*	3.0 @ 2.60%*	14.4 @ 2.84	%*	259kt		115kt
Nxuu	0.3%	-	10.9 @ 3.20%*	10.9 @ 3.20	%*	196kt		153kt
		11.4 @ 2.90%*	13.9 @ 3.07%*	25.3 @ 3.00	%*	455kt		268kt
*Zinc Equ	uivalent		:	Zn	Pb	А	g	
Kihabe re 17/7/200	esource calcula 08	ted on metal price	es as at	US\$1,810/t	US\$	1,955/t U	S\$	18.75/oz
Kihabe G	rades		;	Zn 1.8%	Pb ().8% A	g 7	'.7g/t
Nyuuroo	ourcos coloulat	مما مم جنمه ممما امه	ما به مع برما برم					

Nxuu resources calculated on zinc and lead par value metal prices

Nxuu Grades	Zn 1.8%	Pb 1.4%

This information was prepared and first disclosed under the JORC Code 2004. It has not been updated since to comply with the JORC Code 2012 on the basis that the information has not materially changed since it was last reported.

KIHABE-NXUU METAL RECOVERIES

Independent metallurgical test work has confirmed the metal recoveries shown in the table below. Accordingly, the Company believes these recoveries are achievable. Zinc recovered from acid leaching oxide zones will enable Zn metal to be recovered on site from electro-winning.

DEPOSIT	Zone	Time	Zinc	Lead	Silver
Kihabe					
Oxide Zone					
Acid leaching @40°C	Oxide *	24 hrs	96.9%	91.9%	n/a
30 kg/t acid					
Sulphide Zone					
Rougher float	Sulphide	90 seconds	91.9%	84.8%	94%
	Sulphide	15.5 mins	93.8%	88.1%	96.4%
Nxuu					
All Oxide					
Acid leaching @25 [°] C	Oxide	12 hrs	93%	93%	n/a
30 kg/t acid					

* Note: Zn mineralisation in the oxidised zones is hosted within Smithsonite (Nxuu) and Baileychlore (Kihabe) and independent test work has confirmed both of these are amenable to acid leaching.

NXUU DEPOSIT VANADIUM

NXUU DEPOSIT CURRENTLY KNOWN HIGHER GRADE VANADIUM ZONE

.

AVERAGE WIDTH PER HOLE 11.55m AVERAGE GRADE 1,005ppm AREA 270M x 100M

5.00m @ 509ppm

3.00m @ 192ppm

4.39m @ 1,805ppm

19.39m

NXDD030 3m – 25m 22m @ 1,832ppm Vanadium

AREA OF KNOWN MINERALISATION VANADIUM

NXUU DEPOSIT GERMANIUM

NXUU GERMANIUM

The Nxuu Deposit contains Germanium which if shown to be recoverable through metallurgical test work could represent a valuable credit. Germanium was not systematically assayed for or assessed in previous drilling campaigns, although it is known to be associated with zinc deposits. Germanium grades of interest were recorded in several holes in the recent drilling programme as shown in the table below.

Germanium is classified as a strategic metal with applications in fibre-optic systems, infrared optics, solar cell applications, and light-emitting diodes (LEDs). The Germanium price quoted by Kitco Germanium on 13 September 2018 was US\$2,291.65 per kg.

Zinc Equivalent grade calculations do not take into account Germanium as the Company does not yet have sufficient information in respect of potential metallurgical recoveries for this strategic metal.

HOLE ID	COORDIN	ATES	DIP	AZIMUTH	EOH	INTERVAL			Ge Grade
	Easting	Northing	Degrees	Degrees	(m)	From (m)	To (m)	Width (m)	g/t
NXDD029	509900	7821900	-90	0	41.95	7.00	15.00	8.00	7.10
						17.00	19.00	2.00	5.50
						30.00	34.00	4.00	5.75
NXDD032	508900	7821800	-90	0		39.00	42.00	3.00	5.15
NXDD040	508900	7821850	-90	0	38.35	20.00	29.88	9.88	5.98
NXDD034	508850	7821800	-90	0	49.62	23.00	27.95	4.95	5.25
NXDD030	508800	7821750	-90	0	41.95	3.00	7.00	4.00	5.00
						8.00	11.90	3.90	5.13
						19.00	32.00	13.00	6.62
						37.25	39.00	1.75	5.20
NXDD037	508700	7821750	-90	0	41.95	12.00	14.00	2.00	5.59
						25.42	28.00	2.58	5.24
						30.00	33.00	3.00	6.67

Germanium Grades over 5.00 g/t

Drilling into the Nxuu deposit was conducted for the following objectives: -

- 1. To define an accurate Zn/Pb/Ag grade, based on diamond core results as opposed to RC results.
- 2. To understand the distribution of Germanium and its potential to contribute to the economics of the Project.
- 3. To ultimately enable the estimation of a resource for the Nxuu deposit to be reported in accordance with the 2012 JORC Code with the inclusion of potential silver and germanium credits, which were not considered in the historical resource estimate that was reported under JORC 2004 Guidelines.

Allowing for natural variability of the mineralisation, the recent results are consistent with previous diamond core drilling results in the target zone with mineralisation occurring in a quartz wacke/sandstone with zones of calcrete near surface under Kalahari sand cover.

Mineralisation occurs as shallow as three metres from surface (NXDD030), with several other holes intercepting mineralisation within the first 10m.

KIHABE DEPOSIT VANADIUM

-				 	 	 	
	1						
		Zл р	m				
			Det				
	LECEND	1	358				
	LEGEND	1.1	235				
-	50m RL Dolomite Contact	2	150				
			141				
	Contact		119				
	the second second second		102				
	Calcrete Cover Masking Anomaly		91.8				
	in the second		82.1				
	Granite / Zone of Potential Mineralisation		72.4				
		1.0	53.6				
	Drill Hole (Proposed White)		55.6				
			69.4				
-	IP Line / Conductor		991				
	+	1.0	20.0				
	IP Anomaly (Bill Pelers)	100	7.04				
	ŝ	-	1.00				
	5						

145m DHD

FOH

 \rightarrow

DH = DOWN HOLE

HOH

MINERALISED SULPHIDIC QUARTZ WACKE

DHD = DOWN HOLE DEPTH

.

DHD = DOWN HOLE DEPTH

DHD = DOWN HOPLE DEPTH

SILVER

LEAD

ZINC

VANADIUM

LEGEND

2.821.600m

150 Deg →

DHD = DOWN HOLE DEPTH

ZONE 4

ZONE 4

KIHABE DEPOSIT VANADIUM MINERALISATION

SECTION 5

DH = DOWN HOLE

ZONE 4

KIHABE DEPOSIT VANADIUM MINERALISATION

SECTION 6

DH= DOWN HOLE

ZONE 4

KIHABE DEPOSIT GERMANIUM

WANCHU WEST ANOMALY

VANADIUM

KIHABE NORTH ANOMALY

VANADIUM

GOSSAN ANOMALY

VANADIUM

			1		THE G	OSSAN		ALY				
7,812,980N				INNOW	F BURG	ESS DIA	MOND	COREHOL	ES -			
7,812,960N	Sac Des	- O GRC002	₽.	VAI	NADIU	M	INERAL	ISATION				
7,812,940N	GDD02	AP018										
7,812,920N	→190 0200	AP017		 	1 80000	4.00m - 6	.10m 2.10m	@ 246ppm		on-ver	Second Barrier Contraction Contraction	
7,812,900N	020 B90	AP016			003	6.46m - 1 11.00m - 58.00m - 61.00m -	14.00m 3.54n 14.00m 3.00 59.00m 1.00 62.00m 1.00	л @ 177ррт т @ 308ррт т @ 106ррт т @ 104ррт		34.00	n - 35.00m	1.00m @ 144ppm © GDD03
7.812.880N	89(@ AP 015	GDD01A	- Д ^{сово} сво 1. Д ^{сов} осво 1. Д ^{со} Д ^с 1. Д ^{сов} осво 1.						a proven de la contra de	XXS Des	
7,812,860N	J OSE ← ♥	019	Ref: APPENI	35.00m - 41.00m - 43.90m - 61.80m -	- 39.00m 4.0 - 43.00m 2.0 45.00m 1.0 - 62.70m 0.9	00m @ 181p 00m @ 125p 00m @ 154p 10m @ 116p	u d					
7,812,840N		Ref: APF						ny na analas da anala			the set of	er fas i se de tre
203 000 203 205'380E	7000(005	203'040E	203'000E	203'080E	203'T00E	203'TS0E	203'140E	203'T60E	203'780E	203,200E	203'550E	203'540E

THE GOSSAN ANOMALY **MOUNT BURGESS** DIAMOND CORE HOLES 45 Deg →

VANADIUM MINERALISATION

> 18.00m 19.0000

> > 104.000

105.000

1.0500

1.00m@17699m

3.00m@140ppm

EOH 130m

60

170.00m

112.000

123.000 126.000

L. O.L.

7,812,848N

8.60m

00m @ 29800m

00m 1.00m @ 155ppm

30.00m

32.00m 33.00m 37.000

.00m

200m@317ppm

1.00m@121ppm

2.00m@ 297.00m

4.00m@ 404ppm

1,20100

(OD)

1.00%

900

AABIE

12,678/2 15.338/1

190 2200 2500

178/2

503,028E

Competent Person Statement

The information in this report related to both the 2017 Exploration Results as well as Historical exploration results is extracted from ASX Announcements dated 5 Feb, 12 Feb, 16 March, 22 March, 3 April, 26 June, 9 July, 16 July and 13 August 2018 and are all available to view at <u>www.mountburgess.com</u>.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

The information in the Kihabe-Nxuu Resource Statement that relates to the Kihabe Resources is compiled by Byron Dumpleton, B.Sc., a member of the Australasian Institute of Geoscientists. The information that relates to the Nxuu Resource is compiled by Mr Ben Mosigi, M.Sc., (Leicester University – UK), B.Sc., (University of New Brunswick – Canada), Diploma Mining Tech (Haileybury School of Mines – Canada), a member of the Geological Society of South Africa. Mr Dumpleton is an independent qualified person and Mr Mosigi was a Technical Director of the Company for the period in which the resource was developed. Both Mr Dumpleton and Mr Mosigi have sufficient experience relevant to the style of mineralisation under consideration and to the activity to which they have undertaken to qualify as a Competent Person as defined in the 2004 Edition of the "Australasian Code of Reporting of Mineral Resources and Ore Reserves". Both Mr Dumpleton and Mr Mosigi consent to the inclusion in this report of the matters based on the information in the form and context in which it appears. The information regarding Kihabe and Nxuu Resources was first released 8/10/2008 and 20/1/10 respectively and updated with recovery information 12/4/2012. The information was prepared and first disclosed under the JORC Code 2004. It has not been updated since to comply with the JORC Code 2012 on the basis that the information has not materially changed