

YAMARNA EXPLORATION UPDATE: MORE VISIBLE GOLD AT GILMOUR

Well-funded mid-tier gold development and exploration company Gold Road Resources Limited (Gold Road) reports receipt of positive assay results (Figure 1 and Table 1) from diamond, reverse circulation (RC) and regional aircore drilling from the 2018 exploration programmes on Gold Road's 100% owned Yamarna Project and the 50% owned Gruyere Joint Venture (Gruyere JV).

Highlights

ASX Code GOR

ABN 13 109 289 527

COMPANY DIRECTORS

Tim Netscher

Chairman

Duncan Gibbs

Managing Director & CEO

Ian Murray

Executive Director

Justin Osborne

Executive Director,
Exploration & Growth

Brian Levet

Non-Executive Director

Sharon Warburton

Non-Executive Director

Carol Marinkovich

Company Secretary

CONTACT DETAILS

Principal & Registered Office Level 2, 26 Colin St West Perth WA 6005

www.goldroad.com.au perth@goldroad.com.au

T +61 8 9200 1600 F +61 8 9481 6405

PROJECT DEFINITION - YAMARNA PROJECT (100% GOLD ROAD)

Gilmour: Infill and extensional drilling in progress designed to support estimation of a Maiden Mineral Resource. Coarse visible gold observed in diamond core and panned from RC samples.

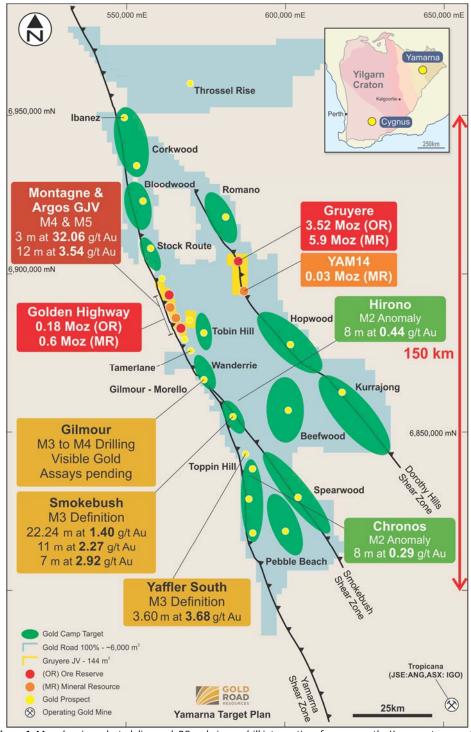
Smokebush: Best results from infill drilling include: **22.24 metres at 1.40 g/t Au** from 82.17 metres (18SMDD0013), **11 metres at 2.27 g/t Au** from 47 metres (18SMRC0022), and **7 metres at 2.92 g/t Au** from 165 metres (18SMRC0016)¹.

Yaffler South: Bedrock gold mineralisation confirmed, with visible gold in diamond drilling returning **3.6 metres** at **3.68 g/t Au** from 281 metres (17SYRC0107).

TARGET GENERATION – YAMARNA PROJECT (100% GOLD ROAD)

Early stage aircore drilling results extended and refined existing gold anomalies² at the Hirono and Cronos targets.

ORE RESERVE DEVELOPMENT - GRUYERE JV (50% GOLD ROAD)


Golden Highway: Drilling as part of Pre-feasibility Studies returned high-grade results including **3 metres at 32.06 g/t Au** from 84 metres (18ALRC0325) at Montagne and **12 metres at 3.54 g/t Au** from 15 metres (18ALRC0376) at Argos.

¹ Diamond and RC intersections reported at 0.5 g/t cut-off including up to 2 metres of samples below that cut-off, aircore intersections reported at 0.1 g/t cut-off including up to 4 metres of samples below that cut-off, unless otherwise stated. Refer Tables in Appendices for individual grades >10 g/t Au. All intersections reported uncut.

Gold Road Executive Director - Exploration & Growth Justin Osborne commented: "At the close of 2018, we look back with satisfaction on a successful year of exploration. As planned, we drill tested our 10 highest ranked bedrock targets across Yamarna which led to the discovery of the exciting Gilmour deposit which quickly advanced to the resource assessment stage. With visible gold consistently intersected at Gilmour, this project is proving to be predictable and a relatively simple deposit, showing upside both along strike and at depth.

As we move into 2019, the exploration team is fully occupied with data review and target assessment. We will shortly commence refining our 2019 exploration program, to deliver our primary strategic goal of discovering and developing gold mines on our 100% owned Yamarna Project."

Figure 1: Map showing selected diamond, RC and aircore drill intersections from across the Yamarna tenements. Refer to "About Gold Road" section for explanation of the Project Pipeline and Milestones used by Gold Road for managing exploration success

Table 1: Selected diamond, RC and aircore drilling results by Project and/or Prospect and ranked by gram x metres.

		Selected	d Project I	Definition Inter	sections - F	Ranked by gram x i	metres	
Project / Camp	Prospect	Length (m)	Au (g/t)	Gram x metre	From (m)	Exploration Milestone	Context	Strike Length
				Southe	rn Yamarna			
		22.24	1.40	31	82.17		Bedrock infill to determine	
Smokebush	Smokebush	11	2.27	25	47	M3 - Target Definition	mineralisation continuity and orientation (50 by 100 m)	>1.3 km
		7	2.92	20	165		, , ,	
Yaffler	Yaffler	3.60	3.68	13	281.00	M3 - Target	Second round of bedrock tests to confirm	> 1.5
Turrier	South	1.12	4.53	5	244.78	Definition	mineralisation at broad spacing (50 to 100 by 800 m)	km
				Gruyere .	loint Ventu	re		
Golden Highway	Montagne	3	32.06	96	84	M4 to M5 - Conversion	Mineral Resource and Ore Reserve Development for the Gruyere Project (25 to 50 by	> 2.0 km
півнімаў	Argos	12	3.54	43	15	Process	50 m)	KIII
		Selected	l Target G	eneration Inte	rsections - I	Ranked by gram x	metres	
Project / Camp	Prospect	Length (m)	Au (g/t)	Gram x metre	From (m)	Exploration Milestone	Context	Strike Length
				Southe	rn Yamarna			
Toppin Hill	Cronos	8	0.44	4	4	M2 - Anomaly	Refinement of existing anomaly	> 1.0 km
Smokebush	Hirono	4	0.29	1	56	M2 - Anomaly	NE striking anomaly > 0.25 g/t Au	> 3.0 km

PROJECT DEFINITION

Gilmour - Milestone 3 to 4

Visible gold was observed in diamond core and panned from RC samples from the recently completed drilling programme³. The programme was designed to support a potential maiden Mineral Resource estimate, with assays pending (Figure 2). On receipt of the full complement of assay results the RC drill spacing will be approximately 50 metres by 50 metres to a depth of 150 metres below surface. Below this depth, the target diamond drill spacing will be at 100 metre centres to approximately 300 metres depth. The geology is proving to be both predictable and relatively continuous, with coarse visible gold intersected in most drill holes.

³ Refer ASX announcement dated 19 November 2018

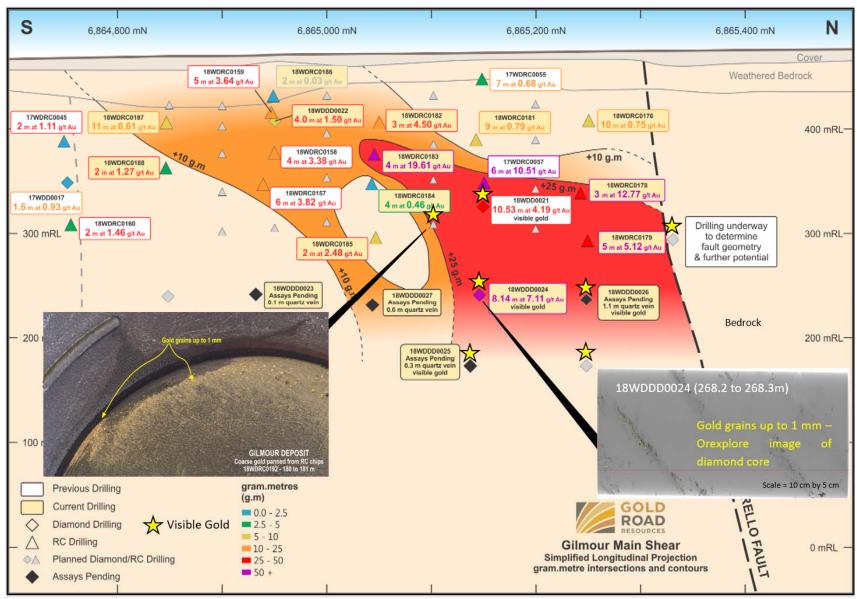


Figure 2: South to north longitudinal projection of the Gilmour deposit showing geologically selected intersections on the Main Shear

Smokebush - Milestone 3

The latest programme of drilling, including eight diamond holes (2,410 metres) and 13 RC holes (2,244 metres) at Smokebush infills the 1.3 kilometre strike length to 50 metre by 100 metre spacing (Figure 3 and Appendix 1 Figure 1). This programme included new diamond holes twinned with existing holes to test short scale grade variability. Best intersections returned included:

- 22.24 metres at 1.40 g/t Au from 82.17 metres (18SMDD0013)
- 11 metres at 2.27 g/t Au from 47 metres (18SMRC0022)
- 7 metres at 2.92 g/t Au from 165 metres (18SMRC0016)

The geological and drilling data is encouraging with at least one +10 gram.metre intersection reported approximately every 100 metres, and five intersections greater than 25 gram.metres over the strike length of the deposit. A recent detailed structural study of diamond core has added support to a geological model that interprets gently north plunging shoots of high-grade mineralisation associated with zones of complex veining.

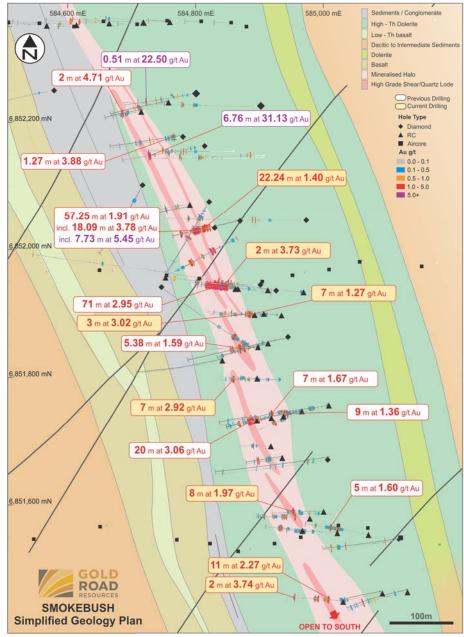
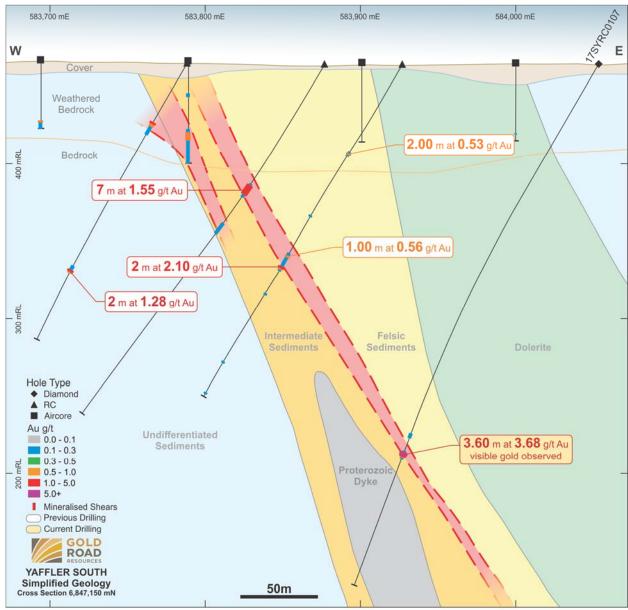


Figure 3: Simplified geological plan of the Smokebush prospect area showing selected intersections



Yaffler South – Milestone 3

Visible gold has been observed in the first round of diamond drilling at Yaffler South (1 hole from surface and 2 tails on existing holes for 555 metres). Drilling was designed to test continuity of mineralisation at a broad 400 metre section spacing over the 1.5 kilometre strike length, previously identified (Figure 4 and Appendix 1 Figure 2). Best intersections included:

- 3.6 metres at 3.68 g/t Au from 281 metres (17SYRC0107 diamond tail) with visible gold
- 1.12 metres at 4.53 g/t Au from 244.78 metres (18FYDD0001)

Gold mineralisation is hosted in a shear zone developed on a stratigraphic contact with higher grades associated with visible gold, brecciation and albite-pyrite alteration.

Figure 4: Cross section of Yaffler South showing interpreted geology and selected intersections.

Refer Appendix for detailed collar location map

Breelya (Toppin Hill Camp) - Milestone 3

An eight-hole RC programme (1,298 metres) tested a coincident gold and pathfinder element anomaly in a structurally favourable target zone (Appendix 1 Figure 3). The best intersection returned was 2 metres at 1.49 g/t Au from 141 metres (18BRRC0076). Several holes returned broad low-grade intersections, including 18 metres at 0.33 g/t Au from 127 metres, also in hole 18BRRC0076. The results are consistent with a promising mineralised gold system requiring further drill definition.

Tamerlane - Milestone 3

Two diamond holes (459 metres) and 16 RC holes (2,724 metres) followed up on a previously reported intersection of 3 metres at 34.07 g/t Au from 111 metres (18TARC0039)⁴ (Appendix 1 Figure 4). Results failed to repeat the initial mineralisation, with the best intersection of 1 metre at 1.92 g/t Au from 83 metres (18TARC0032).

Further Work

As part of the data review and target assessment process the projects will undergo further analysis, geological interpretation and/or 3D modelling. The projects will be evaluated and ranked using geological criteria and an appropriate level of economic assessment. The rankings will be used to prioritise the drilling strategy for 2019 with the aim of discovering and developing new gold mines.

TARGET GENERATION

Hirono – Milestone 2

A 61 hole aircore programme (4,225 metres) infilling and extending previous drilling to the north and east returned a best assay of 4 metres at 0.29 g/t Au from 56 metres (18KGAC0102) (Appendix 3 Figure 1). The gold anomaly has been extended to 3 kilometres in strike length, coincident with a north-east striking magnetic feature. Further work will involve bedrock testing the gold anomalism.

Cronos – Milestone 2

All results from the programme reported in September 2018⁵ have been received (41 aircore holes for 2,403 metres and 4 RC holes for 837 metres) (Appendix 3 Figure 2). The aircore results have refined the existing anomaly, with the best follow-up RC result returning 1 metre at 3.19 g/t Au from 187 metres (18BRRC0002). Several RC holes reported broad low-grade intersections, including 23 metres at 0.40 g/t Au from 179 metres (18BRRC0004). Geological evaluation of the existing data is required prior to further drilling.

Romano – Milestone 1

Results from the aircore programme delivered very low level gold anomalism over interpreted structures and geological contacts, with no significant assays (Appendix 3 Figure 3). In some areas basement was not intersected due to thick palaeochannel cover, while in other areas the weathering profiles have been stripped away which limits the potential development of supergene dispersion anomalies. Further analysis of the effectiveness of drilling is required including review of pathfinder elements and new aeromagnetic data.

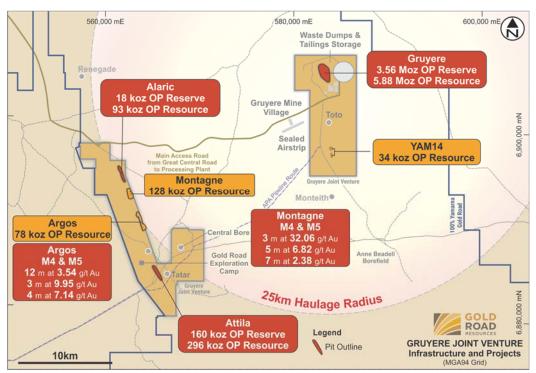
Throssel Rise – Milestone 1

No significant assays were returned from an initial reconnaissance aircore programme over this untested geological belt outside of the Yamarna Greenstone (Appendix 3 Figure 4). No further work is planned.

⁴ Refer ASX announcement dated 20 September 2018

⁵ Refer ASX announcement dated 20 September 2018

ORE RESERVE DEVELOPMENT


Golden Highway (Gruyere JV) - Milestone 4 and 5

The final drilling programme was completed at the Montagne and Argos deposits located along the 14 kilometre, 0.6 million ounce Golden Highway trend (Figure 5 and Appendix 1 Figures 5 and 6). The 69 RC holes (4,495 metres) were designed to infill and extend existing Mineral Resources in support of Pre-feasibility Studies. The deposits are within economic haulage distance to the Gruyere mine (under construction) and could potentially be exploited as a group of satellite open pits to complement the long-life Gruyere mine plan. With the Attila and Alaric deposits recently incorporated into the Gruyere production schedule⁶, there is clear demonstration of the incremental value potential of further Reserve additions along this trend.

Best recent intersections include:

- 3 metres at 32.06 g/t Au from 84 metres at Montagne (18ALRC0325)
- 12 metres at 3.54 g/t Au from 15 metres at Argos (18ALRC0376)

Geological modelling is complete and further work involves finalisation of geotechnical, metallurgical and mine design parameters to support the studies.

Figure 5: Gruyere JV infrastructure plan showing Mineral Resource and Ore Reserve locations and selected new intercepts at Montagne and Argos. Refer Appendix for detailed collar location map

For further information, please visit www.goldroad.com.au or contact:

Gold Road Resources

Duncan Gibbs

Managing Director & CEO

Duncan Hughes

Manager - Business Development &

Investor Relations

Tel: +61 8 9200 1600

Media Enquiries – Cannings Purple

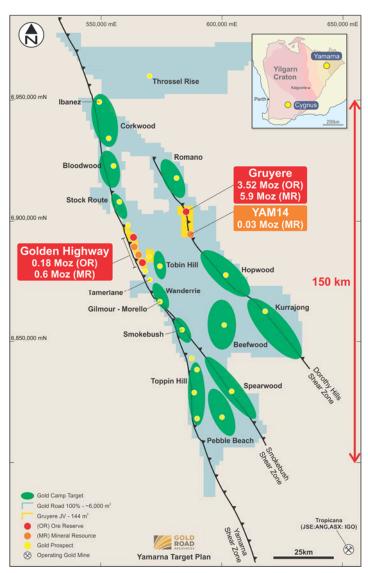
Warrick Hazeldine or Peter Klinger

whazeldine@canningspurple.com.au / pklinger@canningspurple.com.au

Tel: +61 417 944 616 or +61 411 251 540

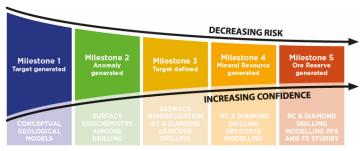
⁶ Refer ASX announcement dated 6 December 2018

About Gold Road


Gold Road is pioneering development of Australia's newest goldfield, the Yamarna Belt, 200 kilometres east of Laverton in Western Australia. The Company holds interests in tenements covering approximately 6,000 km² in the region, which is historically underexplored and highly prospective for gold mineralisation. In November 2016, Gold Road entered a 50:50 partnership with Gold Fields for the Gruyere Joint Venture covering 144 km².

The Yamarna leases contain a gold resource of 6.5 million ounces, including 5.9 million ounces at the Gruyere deposit. All current Mineral Resources and Ore Reserves are contained within the Gruyere JV project areas, of which the Company owns 50%.

The Current Operational Plan for Gruyere indicates the Project's Ore Reserve supports an average annualised production of 300,000 ounces for at least 12 years. Construction is underway on the Project, with first gold scheduled for the June 2019 quarter.


Gold Road continues to explore for multi-million ounce discoveries on its 100%-owned Yamarna tenements, and additional high-value deposits to add mine life to the Gruyere JV.

The Company is focused on unlocking the potential of the Yamarna Belt and has developed an extensive exploration plan for 2018 focusing on new gold discoveries in the region.

Location and Geology of the Yamarna Tenements (plan view MGA Grid) showing Gold Road's 100% tenements (blue outline) and Gold Road-Gold Fields Gruyere JV tenements (yellow outline), Mineral Resources, Ore Reserves (100% basis) and main Exploration Projects.

Gold Road uses a staged **Project Pipeline** approach to manage, prioritise and measure success of the exploration portfolio. Each target is classified by **Milestone** and ranked using geological and economic criteria. Regular peer review, prioritisation and strategy ensure that the highest quality projects are progressed across all stages of exploration.

Exploration Project Pipeline and Milestones used by Gold Road for managing exploration success

Mineral Resource Estimate for the Yamarna Leases - December 2017

	Gruyere Pro	ject Joint Ven basis	ture - 100%	G	old Road - 509	%
Project Name / Category	Tonnes	Grade	Contained Metal	Tonnes	Grade	Contained Metal
	(Mt)	(g/t Au)	(Moz Au)	(Mt)	(g/t Au)	(Moz Au)
Gruyere Total	143.46	1.27	5.88	71.73	1.27	2.94
Measured	14.06	1.16	0.53	7.03	1.16	0.26
Indicated	91.52	1.27	3.73	45.76	1.27	1.87
Measured and Indicated	105.58	1.25	4.26	52.79	1.25	2.13
Inferred	37.88	1.33	1.62	18.94	1.33	0.81
Attila + Alaric + Montagne + Argos + YAM14 Total	13.19	1.48	0.63	6.59	1.48	0.31
Measured	0.29	1.99	0.02	0.14	1.99	0.01
Indicated	7.11	1.63	0.37	3.56	1.63	0.19
Measured and Indicated	7.40	1.64	0.39	3.70	1.64	0.20
Inferred	5.79	1.28	0.24	2.89	1.28	0.12
Total Yamarna	156.65	1.29	6.51	78.32	1.29	3.25
Measured	14.35	1.18	0.54	7.17	1.18	0.27
Indicated	98.63	1.29	4.10	49.31	1.29	2.05
Measured and Indicated	112.98	1.28	4.65	56.49	1.28	2.32
Inferred	43.67	1.32	1.86	21.83	1.32	0.93

Ore Reserve Estimate for the Yamarna Leases - December 2017

	Gruyere Pr	oject Joint Ven	ture - 100% basis	C	Gold Road - 50)%
Project Name / Category	Tonnes	Grade	Contained Metal	Tonnes	Grade	Contained Metal
	(Mt)	(g/t Au)	(Moz Au)	(Mt)	(g/t Au)	(Moz Au)
Gruyere Total	93.76	1.18	3.56	46.88	1.18	1.78
Proved	14.91	1.09	0.52	7.45	1.09	0.26
Probable	78.85	1.20	3.04	39.43	1.20	1.52
Attila + Alaric Total	3.59	1.5	0.18	1.80	1.5	0.09
Proved	0.32	1.7	0.02	0.16	1.7	0.01
Probable	3.27	1.5	0.16	1.63	1.5	0.08
Total Yamarna	97.35	1.20	3.74	48.68	1.20	1.87
Proved	15.23	1.11	0.54	7.62	1.11	0.27
Probable	82.12	1.21	3.20	41.06	1.21	1.60

Notes:

- All Mineral Resources and Ore Reserves are completed in accordance with the JORC Code 2012 Edition
- Mineral Resources are inclusive of Ore Reserves
- All figures are rounded to reflect appropriate levels of confidence. Apparent differences may occur due to rounding
- All dollar amounts are in Australian dollars
- All Mineral Resources are reported at various cut-off grades according to material type, metallurgical recovery and distance to the Gruyere Mill (in construction). Gruyere 0.34 g/t Au (fresh), 0.30 g/t Au (transition), 0.29 g/t Au (Oxide). Attila, Argos, Montagne and Alaric 0.50 g/t Au. YAM14 0.40 g/t Au. All Mineral Resources are constrained within a A\$1,850/oz optimised pit shell derived from mining, processing and geotechnical parameters from ongoing Pre-Feasibility Studies and operational studies
- The **Ore Reserves** are evaluated using variable **cut off grades**: Gruyere 0.34 g/t Au (fresh), 0.30 g/t Au (transition), 0.29 g/t Au (oxide). Attila 0.70 g/t Au (fresh), 0.60 g/t Au (transition), 0.55 g/t Au (oxide). Alaric 0.67 g/t Au (fresh), 0.62 g/t Au (transition), 0.57 g/t Au (oxide). The Ore Reserves are constrained within a **A\$1,600/oz mine design** derived from mining, processing and geotechnical parameters as defined by Pre-Feasibility Studies and operational studies. **Ore block tonnage dilution averages and gold loss estimates**: Gruyere 4.9% and 0.4%. Attila 14% and 3%. Alaric 20% and 6%. The 2016 Ore Reserve was evaluated using a gold price of A\$1,400/oz (ASX announcement dated 8 February 2016)
- The Gruyere JV is a 50:50 joint venture between Gold Road and Gruyere Mining Company Pty Limited a wholly owned Australian subsidiary
 of Gold Fields. Figures are reported on a 100% basis unless otherwise specified
- Gold Road holds an uncapped 1.5% net smelter return royalty on Gold Fields' share of production from the Gruyere JV once total gold production from the Gruyere JV exceeds 2 million ounces

Competent Persons Statements

Exploration Results

The information in this report which relates to Exploration Results is based on information compiled by Mr Justin Osborne, Executive Director-Exploration and Growth for Gold Road. Mr Osborne is an employee of Gold Road, and a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM 209333). Mr Osborne is a shareholder and a holder of Performance Rights. Mr Osborne has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Osborne consents to the inclusion in the report of the matters based on this information in the form and context in which it appears

Mineral Resources

The information in this report that relates to the Mineral Resource for Gruyere is based on information compiled by Mr Mark Roux. Mr Roux is an employee of Gold Fields Australia and is a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM 324099) and is registered as a Professional Natural Scientist (400136/09) with the South African Council for Natural Scientific Professions. Mr Justin Osborne, Executive Director-Exploration and Growth for Gold Road and Mr John Donaldson, General Manager Geology for Gold Road have endorsed the Mineral Resource for Gruyere on behalf of Gold Road.

- Mr Osborne is an employee of Gold Road and a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM 209333). Mr Osborne is a shareholder and a holder of Performance Rights.
- Mr Donaldson is an employee of Gold Road and a Member of the Australian Institute of Geoscientists and a Registered Professional Geoscientist (MAIG RPGeo Mining 10147). Mr Donaldson is a shareholder and a holder of Performance Rights.

The information in this report that relates to the Mineral Resource Estimation for Attila, Argos, Montagne, Alaric and YAM14 is based on information compiled by Mr Justin Osborne, Executive Director-Exploration and Growth for Gold Road, Mr John Donaldson, General Manager Geology for Gold Road and Mrs Jane Levett, Principal Resource Geologist for Gold Road.

• Mrs Levett is an employee of Gold Road and is a Member of the Australasian Institute of Mining and Metallurgy and a Chartered Professional (MAusIMM CP 112232).

Messrs Roux, Osborne and Donaldson and Mrs Levett have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as Competent Persons as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Messrs Roux, Osborne and Donaldson and Mrs Levett consent to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Ore Reserves

The information in this report that relates to the Ore Reserve for Gruyere is based on information compiled by Mr Daniel Worthy. Mr Worthy is an employee of Gruyere Mining Company Pty Ltd and is a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM 208354). Mr Max Sheppard, Principal Mining Engineer for Gold Road has endorsed the Ore Reserve for Gruyere on behalf of Gold Road.

• Mr Sheppard is an employee of Gold Road and is a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM 106864).

The information in this report that relates to the Ore Reserve for Attila and Alaric is based on information compiled by Mr Max Sheppard, Principal Mining Engineer for Gold Road.

Mr Worthy and Mr Sheppard have sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity currently being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Worthy and Mr Sheppard consent to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

New Information or Data

Gold Road confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of estimates of Mineral Resources and Ore Reserves that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not materially changed from the original market announcement.

Appendix 1 – Diamond and RC Drilling Information

Table 1: Collar coordinate details for diamond drilling

Project Group	Prospect	Hole ID	End of Hole Depth (m)	Easting MGA94-51 (m)	Northing MGA94-51 (m)	RL (m)	MGA94- 51 Azimuth	Dip	DDH Tail Depth (m)
Smokebush	Smokebush	18SMDD0008	415.05	584,902	6,852,226	496	270	-60	
		18SMDD0009	300.90	584,859	6,852,155	497	270	-60	
		18SMDD0009_W01	238.20	584,859	6,852,155	497	270	-60	
		18SMDD0010	342.90	584,907	6,852,148	498	270	-60	
		18SMDD0012	410.60	584,973	6,852,046	499	270	-60	
		18SMDD0013	220.00	584,829	6,852,034	496	270	-80	
		18SMDD0014	270.95	584,904	6,852,145	498	270	-59	
		18SMDD0015	212.10	584,901	6,851,945	498	273	-60	
Tamerlane	Tamerlane	18TADD0005	200.00	569,071	6,878,481	466	253	-60	_
		18TADD0006	258.70	569,133	6,878,507	465	253	-60	
Yaffler	Yaffler South	17SYRC0107	360.60	584,054	6,847,153	464	270	-60	100.40
		17SYRC0121	292.00	584,224	6,846,746	457	270	-60	100.00
		18YFDD0001	355.10	583,551	6,847,934	476	270	-65	

Table 2: Collar coordinate details for RC drilling

Project Group	Prospect	Hole ID	End of Hole Depth (m)	Easting MGA94-51 (m)	Northing MGA94-51 (m)	RL (m)	MGA94-51 Azimuth	Dip
Toppin Hill	Breelya	18BRRC0070	172	585,462	6,844,145	429	273	-60
		18BRRC0071	160	585,564	6,844,144	430	273	-60
		18BRRC0072	154	585,663	6,844,144	430	273	-60
		18BRRC0073	150	585,763	6,844,145	430	273	-60
		18BRRC0074	184	585,864	6,844,146	431	273	-60
		18BRRC0075	148	585,962	6,844,143	431	273	-60
		18BRRC0076	170	586,279	6,844,144	427	273	-60
		18BRRC0077	160	586,382	6,844,144	426	273	-60
	Cronos	18BRRC0001	147	586,096	6,840,758	475	270	-60
		18BRRC0002	250	586,199	6,840,758	474	269	-60
		18BRRC0003	184	586,097	6,841,148	471	274	-61
		18BRRC0004	256	586,198	6,841,151	470	272	-61
Smokebush	Smokebush	18SMRC0010	178	584,892	6,851,899	498	267	-62
		18SMRC0011	200	584,906	6,851,900	498	268	-61
		18SMRC0012	232	584,934	6,851,898	498	272	-61
		18SMRC0013	175	584,897	6,851,848	498	267	-60
		18SMRC0014	130	584,896	6,851,799	498	269	-61
		18SMRC0015	154	584,914	6,851,797	499	271	-60
		18SMRC0016	184	584,932	6,851,797	499	268	-61
		18SMRC0017	154	584,937	6,851,740	499	270	-60
		18SMRC0018	100	584,917	6,851,692	499	272	-61
		18SMRC0019	166	584,978	6,851,580	496	274	-61
		18SMRC0020	170	585,000	6,851,590	501	271	-61
		18SMRC0021	202	585,019	6,851,585	501	273	-60
		18SMRC0022	199	585,030	6,851,450	502	278	-62
Tamerlane	Tamerlane	18CBRC0137	150	569,653	6,881,032	454	249	-61
		18TARC0032	160	567,909	6,881,542	451	251	-60
		18TARC0033	178	568,007	6,881,576	450	251	-60
		18TARC0034	180	568,598	6,880,719	456	253	-60
		18TARC0035	180	568,494	6,880,683	456	253	-60
		18TARC0036	160	568,358	6,880,638	456	253	-60
		18TARC0037	178	567,935	6,880,500	458	251	-60
		18TARC0043	163	569,031	6,878,644	465	253	-60
		18TARC0044	148	569,068	6,878,335	465	250	-60
		18TARC0045	200	569,139	6,878,352	465	253	-60
		18TARC0046	208	569,008	6,878,734	465	253	-61
		18TARC0047	135	569,108	6,874,873	473	253	-60

Project Group	Prospect	Hole ID	End of Hole Depth (m)	Easting MGA94-51 (m)	Northing MGA94-51 (m)	RL (m)	MGA94-51 Azimuth	Dip
	-	18TARC0048	190	569,176	6,874,886	473	253	-60
		18TARC0049	180	568,926	6,875,350	473	253	-60
		18TARC0050	190	569,066	6,878,335	465	251	-61
		18TARC0051	124	569,110	6,874,873	473	250	-60
Gruyere JV	Argos	18ALRC0355	52	562,988	6,890,604	418	252	-60
		18ALRC0356	52	562,981	6,890,650	418	252	-60
		18ALRC0357	52	562,968	6,890,698	418	252	-60
		18ALRC0358	82	562,982	6,890,703	418	252	-60
		18ALRC0359	118	563,007	6,890,709	418	252	-60
		18ALRC0360	70	563,433	6,889,344	422	252	-60
		18ALRC0361	60	563,006	6,890,553	418	252	-60
		18ALRC0362	80	563,048	6,890,510	418	252	-60
		18ALRC0363	70	563,030	6,890,504	418	252	-60
		18ALRC0364	70	563,037	6,890,454	418	252	-60
		18ALRC0365	80	563,081	6,890,417	419	252	-60
		18ALRC0366	50	563,065	6,890,413	419	252	-60
		18ALRC0367	60	563,066	6,890,363	419	252	-60
		18ALRC0368	90	563,087	6,890,323	419	252	-60
		18ALRC0369	80	563,145	6,890,120	420	252	-60
		18ALRC0370	50	563,116	6,890,117	420	252	-60
		18ALRC0373	40	563,341	6,889,585	423	252	-60
		18ALRC0374	60	563,483	6,889,133	423	252	-60
		18ALRC0375	50	563,746	6,888,266	425	252	-60
		18ALRC0376	40	563,137	6,890,015	420 420	252 252	-60 60
		18ALRC0377	50	563,109	6,890,068		252 252	-60 60
		18ALRC0378	50	563,020	6,890,448	418		-60
		18ALRC0379	66	563,544	6,888,828	423	252	-60
		18ALRC0380	60 66	563,565	6,888,735	423 424	252 252	-60
		18ALRC0381	80	563,608	6,888,645	424	252 252	-60 -60
		18ALRC0382		563,656	6,888,551			
		18ALRC0383 18ALRC0384	60 60	563,675	6,888,450 6,888,367	424 425	252 252	-60 -60
		18ALRC0385	40	563,706 563,691	6,888,134	425	252	-60
		18ALRC0386	50	563,714	6,888,111	425	252	-60
		18ALRC0387	50	563,744	6,888,015	426	252	-60
		18ALRC0317	60	562,840	6,891,175	416	252	-60
		18ALRC0317	76	562,868	6,891,175	417	252	-60
	Montagne	18ALRC0319	60	562,854	6,891,130	417	252	-60
	Wiontagne	18ALRC0319	87	562,514	6,892,196	414	252	-60
		18ALRC0321	123	562,915	6,891,097	417	252	-60
		18ALRC0322	80	562,887	6,891,089	417	252	-60
		18ALRC0323	60	562,866	6,891,082	417	252	-60
		18ALRC0324	75	562,534	6,892,151	414	252	-60
		18ALRC0325	111	562,561	6,892,159	414	252	-60
		18ALRC0326	129	562,583	6,892,165	414	252	-60
		18ALRC0327	105	562,539	6,892,203	414	252	-60
		18ALRC0328	129	562,569	6,892,213	414	252	-60
		18ALRC0329	45	562,571	6,891,930	414	252	-60
		18ALRC0330	45	562,640	6,891,764	415	252	-60
		18ALRC0331	40	562,651	6,891,722	415	252	-60
		18ALRC0332	60	562,667	6,891,707	415	252	-60
		18ALRC0333	50	562,646	6,891,661	415	252	-60
		18ALRC0334	60	562,673	6,891,625	415	252	-60
		18ALRC0335	60	562,693	6,891,588	415	252	-60
		18ALRC0336	60	562,720	6,891,553	415	252	-60
		18ALRC0337	60	562,755	6,891,411	416	252	-60
		18ALRC0338	40	562,803	6,891,271	416	252	-60
		18ALRC0339	40	562,819	6,891,220	416	252	-60
		18ALRC0340	60	562,527	6,892,093	414	252	-60
		18ALRC0341	60	562,542	6,892,047	414	252	-60
		25. 11.00541	00	302,372	0,002,047		232	

Project Group	Prospect	Hole ID	End of Hole Depth (m)	Easting MGA94-51 (m)	Northing MGA94-51 (m)	RL (m)	MGA94-51 Azimuth	Dip
	-	18ALRC0342	60	562,563	6,892,016	414	252	-60
		18ALRC0343	60	562,566	6,891,975	414	252	-60
		18ALRC0344	63	562,587	6,891,936	414	252	-60
		18ALRC0345	80	562,613	6,891,890	414	252	-60
		18ALRC0346	60	562,618	6,891,850	414	252	-60
		18ALRC0347	80	562,656	6,891,827	415	252	-60
		18ALRC0348	60	562,666	6,891,771	415	252	-60
		18ALRC0349	60	562,735	6,891,512	415	252	-60
		18ALRC0350	60	562,756	6,891,465	415	252	-60
		18ALRC0351	40	562,791	6,891,315	416	252	-60
		18ALRC0352	39	562,778	6,891,368	416	252	-60
		18ALRC0353	60	562,542	6,892,010	414	252	-60
		18ALRC0354	60	562,627	6,891,818	414	252	-60

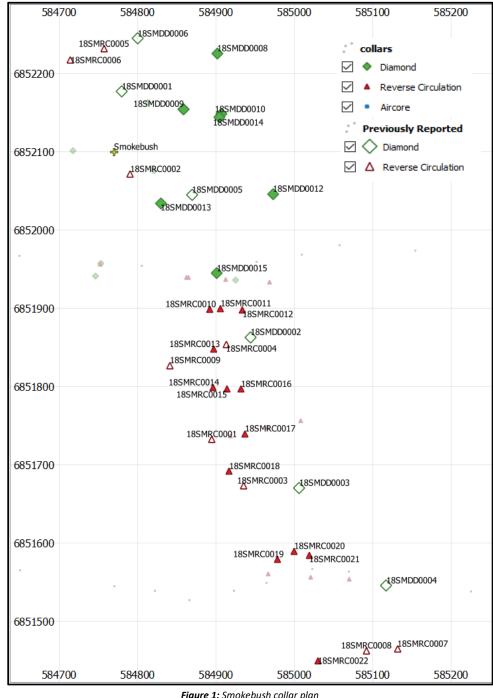


Figure 1: Smokebush collar plan

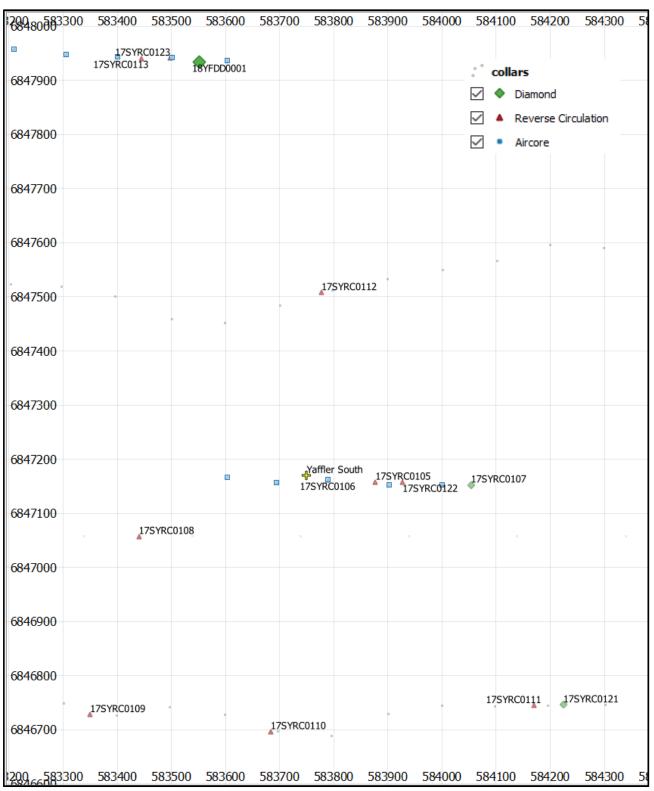


Figure 2: Yaffler South collar plan

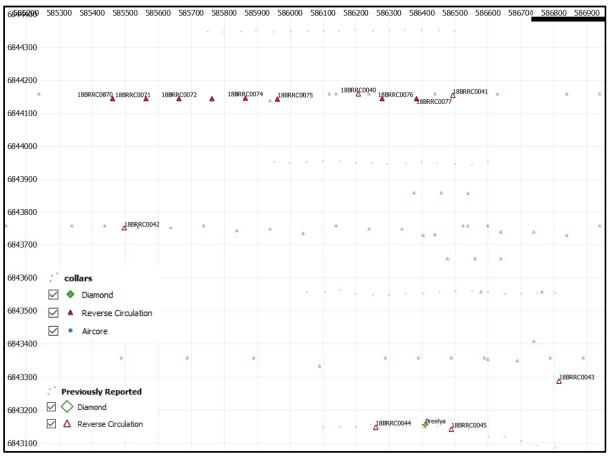


Figure 3: Breelya collar plan

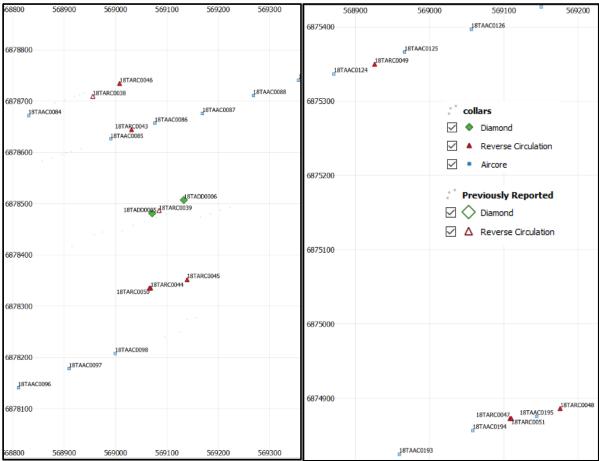


Figure 4: Tamerlane collar plan

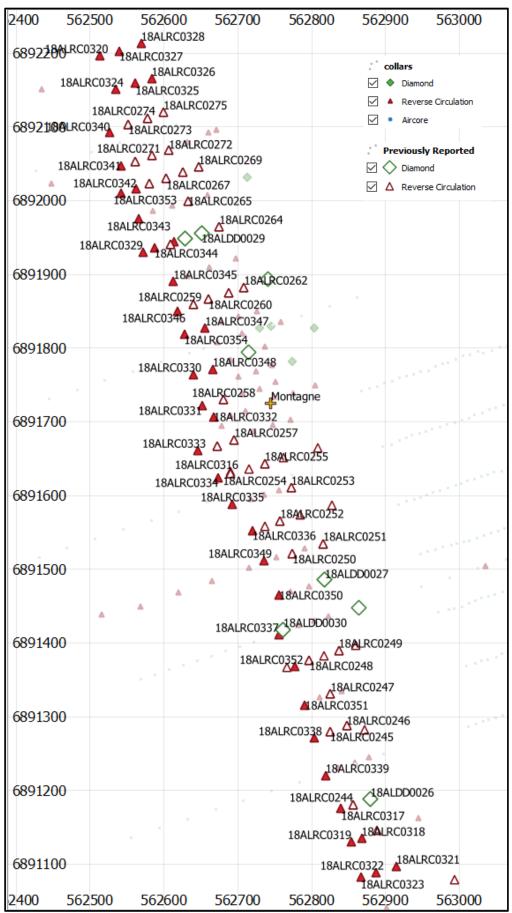


Figure 5: Montagne collar plan

5 62908 00 56	52800 563000△ 563	200 563	3400 563	600 563	3800	564	000 56	4200
6890700	18ALRC0358 18ALRC0359	4						
	18ALRC0358 18ALRC035	.T 1312			° colla			
6890600	18ALRO	20309			_	ars Diamond		
C000E00	18ALRC0363418ALRC03	862					Circulation	
6890500	. ALOMERCUS	U-T			_		Circulation	
6890400	18ALRC0378	0365			•	Aircore		
0090400	18ALRC0367	.0368			. Prev	/iously	Reported	
6890300					_ ^	Diamond	•	
0030500	18ALDD0031 28A	LRC0306			_ `		Circulation	
6890200	\	<u> </u>			_	Reverse	Circulation	
	18ALRC0370, 18A	L R€0369						
6890100	M & ALF							
	18ALD 0374							
6890000	18ALRC0376	LRC0305						
6000000	_	<u> </u>						
6889900	**							
6889800		A A A						
0009000		A -						
6889700			7					
0003700	1.00							
6889600	18A	RC0373	8ALRC0303					
			18AARC0302					
6889500		44	Argos					
			A8A£RC030)1				
6889400		A A	184LRC					
6000000		18ALRC03	66 18ALRC0	299				
6889300								
6889200			A A A *					
0003200			18ALRX	0374				
6889100			_ _ <	> =				
00000			∆18ALI	€0298				
6889000			-					
			18AL	RC0297				
6888900					296			
		1	8ALRC0294 ALRC0379	SVI DCUSO	5			
6888800		184	10ALDC0300	18ALD (02)	03			
6888700			18ALRC0380					
0000/00			18ALRC0381	18AARC	0292			
6888600			4					
000000				18ALRC				
6888500			19410	C0200 . A	8ALRC	0290		
			18ALRO	C0288	LRC02	89		
6888400			18ALR	.C0384	8ALRC	0287		
5000055				<u> </u>	1941	DCU36	5	
6888300			18	ALRC0283 LRC0375	ASVI D	CU20	,	
6000200								
6888200			18AI R	0385 18AL	RC028	2		
6888100			10010	C0385	∆8ALR	C0281		
0000100			10AL	LDC0307	18AI	RC027	8	
6888000			18A	LRC0387 ALRC0276 600 56.	18ALR	C0277		
62600 56	52800 563000 563	200 563	3400 563	600 56	3800	564	000 56	4200

Figure 6: Argos collar plan

Appendix 2 - Significant drill results - Diamond and RC

Table 1: Significant intercepts diamond drilling (all intercepts >0.5 g/t Au)

Project Group	Prospect	Hole ID	From (m)	To (m)	Length (m)	Au (g/t)	Gram x metre
Smokebush	Smokebush	18SMDD0008	203.47	204.18	0.71	0.54	0.4
			206.90	207.68	0.78	0.54	0.4
			237.00	240.26	3.26	0.51	1.7
			357.75	358.22	0.47	5.05	2.4
		18SMDD0009	150.00	151.03	1.03	0.64	0.7
			160.00	161.00	1.00	0.70	0.7
			185.00	186.00	1.00	0.86	0.9
			211.26	211.51	0.25	0.66	0.2
		18SMDD0009_W01	152.26	152.79	0.53	1.83	1.0
			158.60	158.80	0.20	2.87	0.6
			185.32	185.96	0.64	0.95	0.6
			206.88	208.94	2.06	1.24	2.5
		18SMDD0010	42.00	44.10	2.10	1.40	2.9
			53.00	54.00	1.00	0.55	0.5
			178.00	179.00	1.00	0.74	0.7
			184.51	185.00	0.49	0.62	0.3
			191.00	192.34	1.34	0.68	0.9
			250.23	251.26	1.03	0.55	0.6
			342.27	342.70	0.43	1.49	0.6
		18SMDD0012	159.10	159.96	0.86	1.00	0.9
			168.00	169.00	1.00	2.25	2.2
			322.24	323.00	0.76	0.62	0.5
			347.00	348.00	1.00	1.09	1.1
		18SMDD0013	42.00	43.00	1.00	0.52	0.5
			82.17	104.41	22.24	1.40	31.1
			172.31	173.06	0.75	1.92	1.4
		18SMDD0014	189.00	190.00	1.00	0.76	0.8
			194.09	195.17	1.08	1.55	1.7
			245.33	245.97	0.64	5.27	3.4
		18SMDD0015	92.00	93.00	1.00	0.75	0.8
			101.00	102.00	1.00	0.51	0.5
			111.03	111.40	0.37	0.57	0.2
			121.00	123.00	2.00	3.73	7.5
			133.00	134.00	1.00	0.70	0.7
Гamerlane	Tamerlane	18TADD0005	81.00	82.00	1.00	0.64	0.6
		18TADD0006	160.00	161.14	1.14	0.84	1.0
			250.20	251.00	0.80	0.96	0.8
Yaffler	Yaffler South	17SYRC0107	281.00	284.60	3.60	3.68	13.2
-		17SYRC0121	212.97	213.48	0.51	0.57	0.3
		18YFDD0001	186.00	187.00	1.00	0.91	0.9
		10.1100001	196.50	201.00	4.50	0.74	3.3
			210.83	211.36	0.53	0.54	0.3
			228.48	228.80	0.32	0.66	0.2
			244.78	245.90	1.12	4.53	5.1
			269.00	270.00	1.00	0.84	0.8

Table 2: Significant intercepts diamond drilling (all individual assays >10 g/t Au)

Project Group	Prospect	Hole ID	From (m)	To (m)	Length (m)	Au (g/t)	Gram x metre
Smokebush	Smokebush	18SMDD0014	245.71	245.97	0.26	11.99	3.12

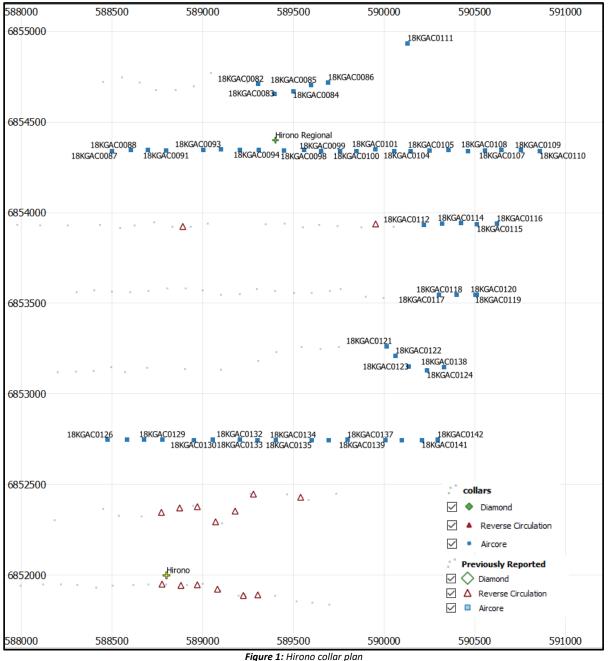
 Table 6: Significant intercepts RC drilling (all intercepts >0.5 g/t Au, Montagne and Argos intersections reported at greater than 1.0g.m Au)

Project Group	Prospect	Hole ID	From (m)	To (m)	Length (m)	Au (g/t)	Gram x metre
Toppin Hill	Cronos	18BRRC0001	65	66	1	0.77	0.8
		18BRRC0002	187	188	1	3.19	3.2
		18BRRC0003	79	82	3	0.63	1.9
			89	90	1	0.81	0.8
			102	105	3	0.50	1.5
		18BRRC0004	119 165	122 167	3 2	0.63 1.33	1.9 2.7
		18BKKC0004	181	182	1	2.74	2.7
			186	187	1	0.51	0.5
			191	192	1	0.51	0.6
			198	201	3	0.50	1.5
oppin Hill	Breelya	18BRRC0074	131	133	2	0.61	1.2
	,.		145	146	1	0.68	0.7
			162	163	1	0.94	0.9
		18BRRC0076	135	136	1	1.10	1.1
			141	143	2	1.49	3.0
			165	167	2	1.08	2.2
mokebush	Smokebush	18SMRC0010	78	79	1	1.96	2.0
			103	105	2	0.77	1.5
		18SMRC0011	50	53	3	3.02	9.1
			87	88	1	0.64	0.6
			119	120	1	0.96	1.0
		18SMRC0012	45	47	2	0.72	1.4
			92	94	2	1.41	2.8
			98	105	7	1.28	8.9
			112	114	2	0.78	1.6
		4.058.40.6004.3	195	196	1	0.61	0.6
		18SMRC0013	41	46	5	0.87	4.3
			54 66	55 67	1 1	2.06 0.96	2.1 1.0
		1001100010		85			
		18SMRC0015 18SMRC0016	84 102	103	1 1	0.60	0.6
		1031/1/1/1010	102	103	1	0.62	0.6
			118	121	3	0.02	1.3
			165	172	7	2.92	20.4
		18SMRC0017	98	99	1	2.42	2.4
		18SMRC0018	54	55	1	1.05	1.0
		18SMRC0019	45	49	4	1.07	4.3
		200	72	74	2	1.05	2.1
			78	81	3	1.00	3.0
			85	86	1	2.32	2.3
			111	114	3	0.43	1.3
			141	143	2	1.71	3.4
		18SMRC0020	76	77	1	0.85	0.9
			96	104	8	1.97	15.8
			114	115	1	0.55	0.6
		18SMRC0021	82	83	1	0.59	0.6
			109	110	1	0.80	0.8
		18SMRC0022	47	58	11	2.27	25.0
			61	62	1	0.54	0.5
			81	85	4	1.05	4.2
			90	94	4	0.91	3.6
			169	171	2	3.75	7.5
amerlane	Tamerlane	18TARC0032	83	84	1	1.92	1.9
		10TA DC0022	130	131	1	0.65	0.7
		18TARC0033	176	177	1	0.90	0.9
		18TARC0034	110	111	1	0.76	0.8
		18TARC0043	112	113	1	0.77	0.8
		19TADC0044	132	133	1	0.67	0.7
		18TARC0044	145	146	1	0.74	0.7
		18TARC0048	151	152	1	0.62	0.6
		18TARC0049	74 115	75 116	1	0.62	0.6
			115	116	1	0.93	0.9
				1 1 1	4	0.77	0.0
	Arges	1041 000250	140	141	1	0.77	0.8
	Argos	18ALRC0356	140 5	7	2	0.62	1.2
	Argos	18ALRC0356	140				

 Prospect	Hole ID	From (m)	To (m)	Length (m)	Au (g/t)	Gram x metr
	18ALRC0358	6	23	17	1.46	24.8
		26	30	4	1.21	4.8
		45	46	1	4.87	4.9
	18ALRC0359	58	64	6	0.94	5.7
		70	77	7	1.39	9.7
		84 96	87 97	3 1	6.44 3.78	19.3 3.8
		105	107	2	3.76	6.7
	18ALRC0360	14	15	1	2.53	2.5
	IOALICOSOO	21	26	5	0.62	3.1
	18ALRC0361	12	13	1	22.64	22.6
	18ALRC0362	26	33	7	0.87	6.1
		53	54	1	2.03	2.0
	18ALRC0363	2	4	2	1.03	2.1
		12	16	4	1.86	7.4
		25	26	1	12.14	12.1
	18ALRC0364	14	18	4	7.14	28.5
	18ALRC0365	28	29	1	1.11	1.1
		36	42	6	0.94	5.6
		53	54	1	1.03	1.0
		73	74	1	2.22	2.2
	18ALRC0366	11	22	11	1.39	15.3
		31	35 50	4	0.31	1.2
	1011000007	49	50	1	1.20	1.2
	18ALRC0367	10 37	12 39	2	0.71 1.32	1.4 2.6
		37 42	39 43	2 1	1.32	1.6
	18ALRC0368	17	26	9	0.81	7.3
	18ALNC0308	38	39	1	5.65	5.6
		58	59	1	1.21	1.2
	18ALRC0369	4	15	11	0.82	9.0
	20/12/100000	48	49	1	1.69	1.7
	18ALRC0370	39	41	2	1.15	2.3
	18ALRC0374	18	37	19	1.05	20.0
		40	42	2	2.84	5.7
		55	56	1	2.32	2.3
	18ALRC0376	15	27	12	3.54	42.5
	18ALRC0380	59	60	1	1.98	2.0
	18ALRC0382	23	28	5	0.62	3.1
		71	73	2	3.14	6.3
	18ALRC0383	39	40	1	8.26	8.3
Montagne	18ALRC0317	8	10	2	2.01	4.0
	18ALRC0318	18	19	1	1.60	1.6
		26	33	7	2.38	16.6
	1011500010	49	50	1	1.34	1.3
	18ALRC0319	5	8	3	1.39	4.2
	18ALRC0320	25 55	29 56	<u>4</u> 1	1.20 1.06	4.8
	18ALRC0320 18ALRC0321	72	74	2	0.84	1.7
	TOUTUCOSTI	72 84	74 85	1	1.87	1.7
	18ALRC0322	31	34	3	1.01	3.0
	10/11/100322	37	44	7	1.46	10.2
	18ALRC0323	5	7	2	2.96	5.9
		32	33	1	5.12	5.1
	18ALRC0324	44	45	1	2.02	2.0
	18ALRC0325	34	36	2	0.83	1.7
		55	57	2	0.55	1.1
		61	72	11	0.67	7.3
		76	81	5	6.82	34.1
		84	87	3	32.06	96.2
		90	91	1	1.21	1.2
	18ALRC0326	61	62	1	1.31	1.3
		108	110	2	0.86	1.7
		115	116	1	1.17	1.2
				7	0.00	
	101:5555	119	121	2	0.88	1.8
	18ALRC0327	40	43	3	0.63	1.9
	18ALRC0327					

Project Group	Prospect	Hole ID	From (m)	To (m)	Length (m)	Au (g/t)	Gram x metre
-		•	80	81	1	2.18	2.2
			92	93	1	1.14	1.1
			98	99	1	1.16	1.2
			102	105	3	1.17	3.5
			108	109	1	1.41	1.4
		18ALRC0332	23	24	1	1.01	1.0
			48	49	1	11.93	11.9
		18ALRC0334	15	19	4	0.42	1.7
		18ALRC0336	19	25	6	0.42	2.5
			34	38	4	0.49	1.9
		18ALRC0337	37	38	1	1.51	1.5
		18ALRC0339	9	11	2	1.19	2.4
			18	19	1	1.08	1.1
		18ALRC0344	43	44	1	1.20	1.2
		18ALRC0347	48	49	1	1.76	1.8
		18ALRC0348	33	36	3	0.90	2.7
		18ALRC0349	57	58	1	2.36	2.4
		18ALRC0350	4	12	8	1.62	13.0
			18	19	1	1.62	1.6
			35	37	2	4.09	8.2
			43	48	5	0.47	2.4
		18ALRC0351	12	13	1	1.27	1.3
		18ALRC0352	13	16	3	4.39	13.2
			30	31	1	8.56	8.6

Table 3: Significant intercepts RC drilling (all individual assays > 10.0 g/t Au)


Project Group	Prospect	Hole ID	From (m)	To (m)	Length (m)	Au (g/t)	Gram x metre
Smokebush	Smokebush	18SMRC0022	47	48	1	15.24	15.2
Gruyere JV	Argos	18ALRC0357	20	21	1	29.09	29.1
		18ALRC0359	84	85	1	17.71	17.7
		18ALRC0361	12	13	1	22.64	22.6
		18ALRC0363	25	26	1	12.14	12.1
		18ALRC0364	16	17	1	24.22	24.2
		18ALRC0376	23	24	1	26.23	26.2
	Montagne	18ALRC0325	78	79	1	11.55	11.6
			79	80	1	19.56	19.6
			85	86	1	89.58	89.6
		18ALRC0332	48	49	1	11.93	11.9
		18ALRC0352	15	16	1	12.17	12.2

Appendix 3 - Aircore Drilling Information and Significant Results

Table 1: Collar coordinate details and significant intercepts aircore drilling (all intercepts >0.1 g/t Au)

Project Group	Prospect	Hole ID	Easting MGA94- 51 (m)	Northing MGA94-51 (m)	RL (m)	MGA94- 51 Azimuth	Dip	From (m)	To (m)	Length (m)	Au (g/t)	Gram x metre
Toppin												
Hill	Cronos	18BRAC0058	585,943	6,842,560	476	270	-60	52	56	4	0.22	0.9
		18BRAC0060	585,900	6,842,560	476	270	-60	68	72	4	0.36	1.4
		18BRAC0069	585,884	6,842,160	476	270	-60	4	8	4	0.11	0.5
		18BRAC0071	586,054	6,842,560	474	270	-60	36	38	2	0.35	0.7
		18BRAC0093	585,936	6,841,426	476	270	-60	4	12	8	0.44	3.5
		18BRAC0094	585,991	6,841,416	476	270	-60	4	12	8	0.16	1.3
		18BRAC0094	585,991	6,841,416	476	270	-60	40	53	13	0.31	4.0
		18BRAC0095	586,036	6,841,399	477	270	-60	48	50	2	0.14	0.3
Hirono	Hirono	18KGAC0101	589,949	6,854,351	542	273	-60	56	60	4	0.11	0.4
		18KGAC0102	590,053	6,854,340	500	273	-60	56	60	4	0.29	1.2
		18KGAC0103	590,146	6,854,341	468	273	-60	72	76	4	0.21	0.9
		18KGAC0108	590,646	6,854,349	469	273	-60	57	58	1	0.15	0.2

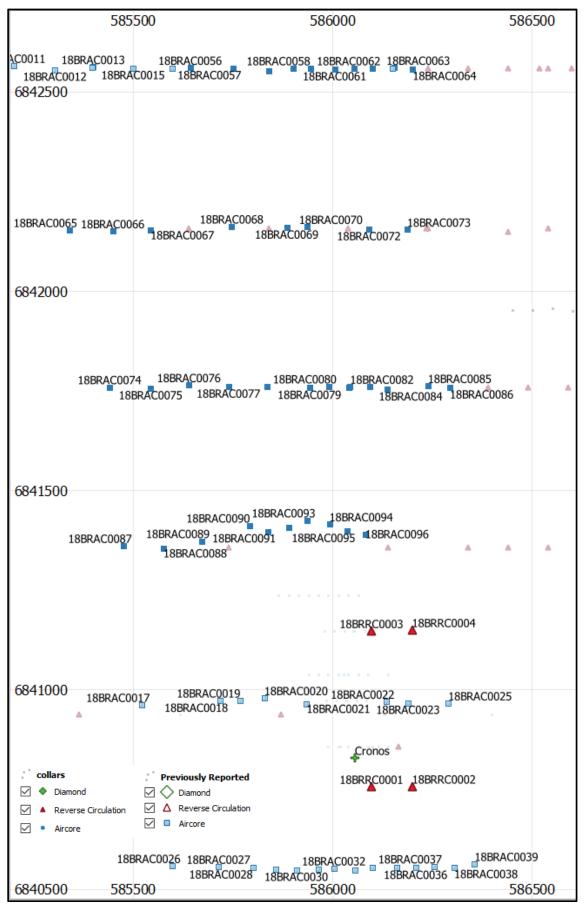


Figure 2: Cronos collar plan

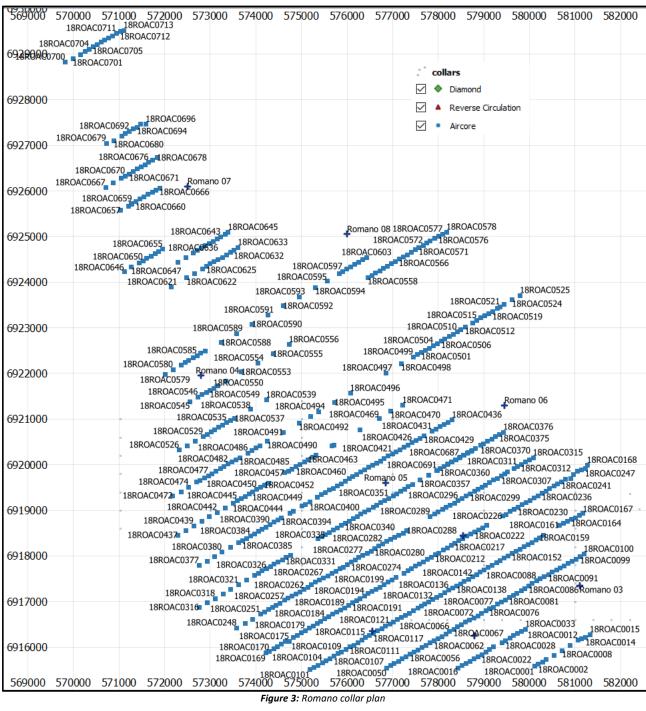


Figure 3: Romano collar plan

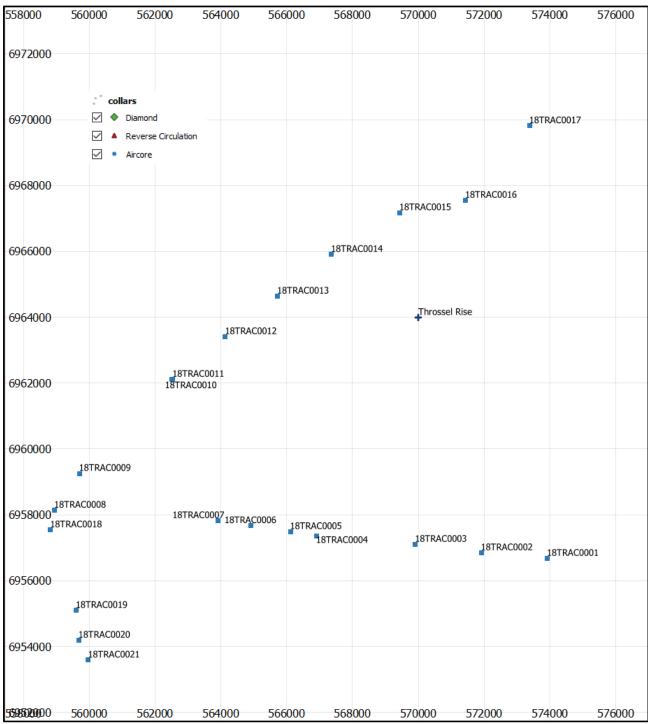


Figure 4: Throssel Rise collar plan

Appendix 4 - JORC Code 2012 Edition Table 1 Report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria and JORC Code explanation

Sampling techniques

Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.

Commentary

Golden Hwy

The sampling has been carried out using a combination of Reverse Circulation (RC), diamond drilling (DDH) and aircore (AC) from the following projects and targets:

Throssel Rise 21 AC holes Romano 653 AC holes

Smokebush 13 RC holes, 8 DDH holes
Tamerlane 16 RC holes, 2 DDH holes
Yaffler 3 DDH holes at Yaffler South

Hirono Regional 61 AC holes

Toppin Hill 8 RC holes at Breelya

41 AC holes at Cronos, 4 RC holes 69 RC holes at Montagne and Argos

DDH: Drill core is logged geologically and marked up for assay at approximate 0.20-1.20 m intervals based on geological observations. Drill core is cut in half by a diamond saw and half core samples submitted for assay analysis.

RC: Samples were collected as drilling chips from the RC rig using a cyclone collection unit and directed through a static cone splitter to create a 2-3 kg sample for assay. Samples were taken as individual metre samples.

AC: Composite chip samples collected with a scoop from sample piles were used to derive samples for aircore programmes.

Project Group	Hole_Type	Number of Holes	Metres (m)
Yamarna	DDH	13	3,424.90
	RC	41	7,103
	AC	776	27,798
Gruyere JV	DDH		
	RC	69	4,495
	AC		
Total	DDH	13	3,424.90
	RC	110	11,598
	AC	776	27,798
	All Holes	899	42,820.90

Include reference to measures taken to ensure sample representation and the appropriate calibration of any measurement tools or systems used.

Aspects of the determination of mineralisation that are Material to the Public Report.

In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.

Sampling was carried out under Gold Road's protocol and QAQC procedures. Laboratory QAQC was also conducted. See further details below.

DDH: Diamond drilling was completed using a HQ3 or NQ2 drilling bit for all holes. Core is cut in half for sampling, with a half core sample sent for assay at measured intervals.

RC: holes were drilled with a 5.5 inch face-sampling bit, 1 m samples collected through a cyclone and static cone splitter, to form a 2-3 kg sample. For all samples the entire 1m sample was sent to the laboratory for analysis.

AC: 1 m AC samples were collected and composited to 4 m to produce a bulk 2 to 3 kg sample. Samples were dried, and fully pulverised at the laboratory to -75 um and split to produce a nominal 200 g sub sample of which 10 g was analysed using aqua-regia digestion. This is deemed acceptable and industry standard for detection of low level gold anomalism in weathered terranes. The samples assayed in the AC programme were analysed using an MS finish with a 1 ppb detection limit.

For all AC programme holes the final metre of each hole (end-of-hole) is collected as a single metre sample. The end-of-hole sample is assayed for gold as described above and is additionally assayed for a suite of 60 different accessory elements (multi-element) using the Intertek 4A/OM20 routine which uses a 4 acid digestion and finish by a combination of ICP-OES and ICP-MS depending on which provides the best detection limit.

All RC and DDH samples were dried and fully pulverised at the lab to -75 um, to produce a 50 g charge for Fire Assay with AAS finish. All pulps from the samples were also analysed by the laboratory using a desk mounted Portable XRF machine to provide a 30 element suite of XRF assays.

Criteria and JORC Code explanation	Commentary
Drilling techniques Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	DDH: Diamond drilling rigs operated by DDH1 Drilling Pty Ltd collected the diamond core as HQ3 (61.1 mm) and NQ2 (45.1 mm) size for sampling and assay. All suitably competent drill core (100%) is oriented using Reflex orientation tools, with core initially cleaned and pieced together at the drill site, and fully orientated by GOR field staff at the Yamarna Exploration facility. RC: RC drilling rigs, owned and operated by Ranger Drilling, were used to collect the RC samples. The face-sampling RC bit has a diameter of 5.5 inches (140 mm). AC: AC drilling rigs, owned and operated by Ranger Drilling, were used to collect the AC samples. The AC bit has a diameter of 3.5 inch (78 mm) and collects samples through an inner tube.
Drill sample recovery Method of recording and assessing core and chip sample recoveries and results assessed.	The majority of samples collected from all drilling were dry, minor RC and AC samples were damp. DDH: All diamond core collected is dry. Driller's measure core recoveries for every drill run completed using 3 and 6 m core barrels. The core recovered is physically measured by tape measure and the length recovered is recorded for every 3 m "run". Core recovery can be calculated as a percentage recovery. Almost 100% recoveries were achieved, with minimal core loss recorded in strongly weathered material near surface. RC: The majority of RC samples were dry. Drilling operators' ensured water was lifted from the face of the hole at each rod change to ensure water did not interfere with drilling and to make sure samples were collected dry. Wet or damp samples are recorded in the database. RC recoveries were visually estimated, and recoveries recorded in the log as a percentage. Recovery of the samples was good, generally estimated to be full, except for some sample loss at the top of the hole. All mineralised samples were dry. GOR procedure is to stop RC drilling if water cannot be kept out of hole and continue with a DDH tail at a later time if required. AC: The AC rig collects samples through an inner tube reducing hole sample contamination and improving sample recovery.
Measures taken to maximise sample recovery and ensure representative nature of the samples.	DDH: Diamond drilling collects uncontaminated fresh core samples which are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling. RC: Face-sample bits and dust suppression were used to minimise sample loss. Drilling airlifted the water column above the bottom of the hole to ensure dry sampling. RC samples are collected through a cyclone and static cone splitter, the rejects deposited in a plastic bag and a 2 to 3 kg lab collected, to enable a full sample pulverisation. AC: One-metre drill samples were channelled through a cyclone and then collected in a plastic bucket and deposited on the ground in rows of 10 samples per row (10 m).
Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	DDH: No sample bias or material loss was observed to have taken place during drilling activities. RC: No significant sample bias or material loss was observed to have taken place during drilling activities. AC: This style of AC drilling is designed to test the rock profile for the presence of geochemical anomalism in gold and other elements that can be related to a gold mineralisation signature. The absolute value is not as important as identification of anomalism above back ground levels, and coincidence of a variety of elements. Overall sample recoveries do not adversely affect the identification of anomalism and the presence of water does not affect the overall sample. The entire sample is collected to minimal loss of material is reported. Samples reported with significant assays were all recorded as being dry, with no water or visible contamination.
Logging Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All chips and drill core were geologically logged by Gold Road geologists, using the Gold Road logging scheme. Detail of logging was sufficient for mineral resource estimation and technical studies.

Criteria and JORC Code explanation	Commentary
Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging of DDH core records lithology, mineralogy, mineralisation, alteration, structure, weathering, colour and other features of the samples. All core is photographed in the core trays, with individual photographs taken of each tray both dry and wet. Logging of RC chips records lithology, mineralogy, mineralisation, weathering, colour and other features of the samples. All samples are wet-sieved and stored in a chip tray. Logging of AC chips records lithology, mineralogy, mineralisation, weathering, colour and other features of the samples. All final end of hole samples are wet-sieved and stored in a chip tray. Remaining samples are left in the field in sequential numbered piles for future reference. All of the chip piles are photographed in the field and kept in digital photographic archives. Portable XRF (pXRF) measurements are taken at the Intertek Laboratory in Perth for all of the RC and diamond samples to assist with mineralogical and lithological determination.
The total length and percentage of the relevant intersections logged	All holes were logged in full.
Sub-sampling techniques and sample preparation If core, whether cut or sawn and whether quarter, half or all core taken.	Core samples were cut in half using an automated Corewise diamond saw. Half core samples were collected for assay, and the remaining half core samples stored in the core trays.
If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC: 1 m drill samples are channelled through a static cone-splitter, installed directly below a rig mounted cyclone, and an average 2-3 kg sample is collected in a numbered calico bag, and positioned on top of the plastic bag. >95% of samples were dry, and whether wet or dry is recorded. AC: 1m drill samples were laid out onto the ground in 10 m rows, and 4 m composite samples, amounting to 2-3 kg, were collected using a metal scoop, into pre-numbered calico bags. The majority of samples were dry, and whether wet or dry is recorded.
For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples (DDH, RC and AC) were prepared at the Intertek Laboratory in Kalgoorlie. Samples were dried, and the whole sample pulverised to 85% passing 75 um, and a sub-sample of approx. 200 g retained. A nominal 50 g was used for the Fire Assay analysis (DDH & RC), and 10 g was analysed using aqua-regia digestion (AC). The procedure is industry standard for this type of sample.
Quality control procedures adopted for all sub-sampling stages to maximise representation of samples.	DDH: No duplicates were collected for diamond holes. RC: A duplicate field sample is taken from the cone splitter at a rate of approximately 1 in 60 samples. At the laboratory, regular Repeats and Lab Check samples are assayed. AC: At the laboratory 5-10% Repeats and Lab Check samples are analysed per assay batch. No field duplicates are collected.
Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	RC: 1 m samples are split on the rig using a static cone-splitter, mounted directly under the cyclone. Samples are collected to weigh between 2 to 3 kg to ensure total preparation at the pulverisation stage.
Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered appropriate to give an indication of mineralisation given the expected particle size.
Quality of assay data and laboratory tests The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	DDH and RC: Samples were analysed at the Intertek Laboratory in Perth. The analytical method used was a 50 g Fire Assay with ICP finish for gold only, which is considered to be appropriate for the material and mineralisation. The method gives a near total digestion of the material intercepted. AC: Samples were analysed at Intertek Laboratory in Perth. The analytical method used for gold was a 10 g Aqua Regia digestion with MS finish for gold only, which is considered to be appropriate for the material and mineralisation. The method gives a near total digestion of the regolith intercepted in AC drilling. Portable XRF provides a semi-quantitative scan on a prepared pulp sample. The scan is done through the pulp packet in an air path. A total of 30 elements are reported using the "soil" mode i.e. calibrated for low level silicate matrix samples. The reported data includes the XRF unit and operating parameters during analysis. The elements available are; Ag, As, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mn, Mo, Ni, P, Pb, Rb, S, Sb, Se, Sn, Sr, Th, Ti, U, V, W, Y, Zn and Zr. Portable XRF data on a prepared pulp are subject to limitations which include absorption by the air path, as well as particle size and mineralogical effects. Light elements in particular are very prone to these effects. Matrix effect correction algorithms and X-ray emission line overlaps (e.g. Fe on Co) are a further source of uncertainty in the data. Gold Road uses XRF only to assist with determination of rock

Criteria and JORC Code explanation	Commentary
For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	types, and to identify potential anomalism in the elements which react most appropriately to the analysis technique. Representative lithological units, and AC end-of-hole samples, were also analysed using the Intertek multi-element 4A/MS60 routine which uses a 4 acid digestion of the pulp sample and then analysis of 60 individual elements using a combination of either ICP-OES or ICP-MS. Individual elements have different detection limits with each type of machine and the machine that offers the lowest detection limit is used. Four acid digestion, with the inclusion of hydrofluoric acid targeting silicates, will decompose almost all mineral species and are referred to as "near-total digestions". Highly resistant minerals such as zircon (Zr), cassiterite (Sn), columbite—tantalite (Ta), rutile and wolframite (W) will require a fusion digest to ensure complete dissolution. Four acid digests may volatilise some elements. XRF analysis in the lab is completed by Lab Staff. XRF machines are calibrated at beginning of each shift. Read times for all analyses are recorded and included in the Lab Assay reports. Detection limits for each element are included in Lab reports. Gold Road protocols for: DDH programmes is for Field Standards (Certified Reference Materials) and Blanks inserted at a rate of 4 Standards and 4 Blanks per 100 samples. No field duplicates are collected. RC programmes is for Field Standards (certified Reference Materials) and Blanks inserted at a rate of 3 Standards and 4 Blanks per 100 samples. Field duplicates are generally inserted at a rate of approximate 1 in 60. AC programmes is for Field Standards (certified Reference Materials) and Blanks inserted at a rate of 3 Standards and 3 Blanks per 100 samples. No field duplicates are collected. Number of assays and QAQC samples submitted by drilling type tabulated below.
	Total Sample Submission 3,376 12,875 8,519
	Assays 3,036 11,466 7,802
	Field Blanks 155 512 360
	Field Standards 156 513 357
	Field Duplicates na 384 na
	Laboratory Blanks 158 524 371
	Laboratory Checks 142 469 336
	Laboratory Standards 156 514 378
	Resample 29
	Field duplicates for DDH and AC not required. Umpire checks not required for early stage projects.
Verification of sampling and assaying The verification of significant intersections by either independent or alternative company personnel.	Significant results are checked by the Exploration Manager, General Manager Geology and Executive Director. Additional checks are completed by the Database Manager. High grade gold RC samples are panned or sieved to check for visual evidence of coarse gold.
The use of twinned holes.	No specific twinned holes were completed at the reported projects.
	Golden Highway: A number of RC and DDH holes drilled in 2017 and 2018 have been designed to twin historical drilling. These holes confirm the position, width and topos of gold minoralisation, proviously
	the position, width and tenor of gold mineralisation previously intersected.
Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All field logging is carried out on Xplore tablets using LogChief. Logging data is submitted electronically to the Database Geologist in the Perth office. Assay files are received electronically from the Laboratory. All data is stored in a Datashed/SQL database system and maintained by
Discuss any adjustment to assay data.	the Database Manager. No assay data was adjusted. The lab's primary Au field is the one used for plotting and resource purposes. No averaging is employed.

Criteria and JORC Code explanation	Commentary
Location of data points	AC, RC and DDH locations were determined by handheld GPS, with an
Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	accuracy of 5 m in Northing and Easting. DDH and RC collars are surveyed post drilling by a Certified Surveyor using a DGPS system. For angled DDH and RC drill holes, the drill rig mast is set up using a clinometer. RC & diamond drillers use a true north seeking gyroscope at 30 m
Constitution of the evidence and	intervals and end-of-hole.
Specification of the grid system used. Quality and adequacy of topographic control.	Grid projection is GDA94, MGA Zone 51. RC and DDH RL's are surveyed by a Qualified Surveyor using DGPS & RTK GPS. RL's are allocated to the AC drill hole collars using detailed DTM's generated during aeromagnetic surveys in 2011. The accuracy of the DTM is estimated to be better than 1 to 2 m in elevation. Over the central area of the leases a Lidar survey flown in 2015 provides accurate elevation to better than 0.01 to 0.02 meteors.
Data spacing and distribution	elevation to better than 0.01 to 0.02 metres. Throssel Rise: Holes are completed at approximately 200 -100 m
Data spacing for reporting of Exploration Results.	intervals, no regular line spacing. Romano: Holes are completed at approximately 100 – 200 m intervals on 800m spaced lines. Tamerlane: Holes are completed at approximately 70 - 400 m intervals on 100 m spaced lines, with one line of drilling 2,000 m north. Smokebush: Holes are completed at approximately 20 - 50 m intervals on 100 m spaced lines. Yaffler South: Holes completed at various spacing's approximately 50 - 400 m intervals on 400 m spaced lines. Hirono Regional: Holes are completed at approximately 100 m intervals on 400 m spaced lines. Cronos - Breelya:: Holes are completed at approximately 50 - 100 m intervals on 400 m spaced lines. Golden Highway: Holes are completed at approximately 25 - 50 m intervals on 50 m spaced lines.
Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	This is not considered relevant for this report.
Whether sample compositing has been applied.	No sample compositing was applied to RC or DD samples. AC samples are composited to 4 m.
Orientation of data in relation to geological structure Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Thossell Rise: All holes are drilled -90 degrees angled (vertical). Romano: The orientation of the drill holes (240 degrees azimuth) is approximately perpendicular to the strike of the regional geology (350 degrees). All holes are drilled -60 degrees angled (vertical). Tamerlane: The orientation of the drill holes (250 degrees azimuth) is approximately perpendicular to the strike of the regional geology (340 degrees). All holes are drilled -60 degrees angled to the West (250). Smokebush: The orientation of the drill holes (270 degrees azimuth) is approximately perpendicular to the strike of the regional geology (340 degrees). All holes are drilled -60 degrees angled to the West (270). Yaffler South: The orientation of the drill holes (270 degrees azimuth) is approximately perpendicular to the strike of the regional geology (340 degrees). All holes are drilled -60 degrees angled to the West (270). Hirono Regional: The orientation of the drill holes (270 degrees azimuth) is approximately perpendicular to the strike of the regional geology (340 degrees). All holes are drilled -60 degrees angled to the West (270). Cronos: The orientation of the drill holes (270 degrees azimuth) is approximately perpendicular to the strike of the regional geology (340 degrees). All holes are drilled -60 degrees angled to the West (270). Breelya: The orientation of the drill holes (270 degrees azimuth) is approximately perpendicular to the strike of the regional geology (340 degrees). All holes are drilled -60 degrees angled to the West (270). Breelya: The orientation of the drill holes (270 degrees azimuth) is approximately perpendicular to the strike of the regional geology (340 degrees). All holes are drilled -60 degrees angled to the West (270). Golden Highway: The orientation of the drill holes (250 degrees azimuth) is approximately perpendicular to the strike of the regional geology (340 degrees). All holes are drilled -60 degrees angled to the West (270).
If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Bedrock drill testing is considered to have been approximately perpendicular to strike and dip of mineralisation. The true width is not known at this stage, with the exception of mineralisation at Argos and

Criteria and JORC Code explanation	Commentary
	Montagne, where mineralised shears are approximately 5-10 m in thickness. Aircore traverses are oriented approximately perpendicular to known regional strike, however aircore drilling is designed to detect regional mineralisation and not for definition purposes.
Sample security The measures taken to ensure sample security.	Pre-numbered calico sample bags were collected in plastic bags (five calico bags per single plastic bag), sealed, and transported by company transport to the Intertek Laboratory in Kalgoorlie. Pulps were despatched by Intertek to their laboratory in Perth for assaying.
Audits or reviews The results of any audits or reviews of sampling techniques and data.	Sampling and assaying techniques are industry-standard. No specific external audits or reviews have been undertaken at this stage in the programme.

Section 2 Reporting of Exploration Results
(Criteria listed in the preceding section also apply to this section.)

Criteria and JORC Code explanation	Commentary
Mineral tenement and land tenure status Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	All the Yamarna Tenements are located within the Yilka Native Title Determination Area (NNTT Number: WCD2017/005), determined on 27 September 2017. The following activity occurred within the Cosmo Newberry Reserves for the Use and Benefit of Aborigines. Gold Road has signed a Deed of Agreement with the Cosmo Newberry Aboriginal Corporation in January 2008, which governs the exploration activities on these Reserves. Throssel Rise: drilling occurred within tenement E38/3207. Romano: drilling occurred within tenement E38/2797. Tamerlane: drilling occurred within tenement E38/2325 and E38/1931. Smokebush: drilling occurred within tenement E38/2355. Yaffler South: drilling occurred within tenement E38/2355. Hirono Regional: drilling occurred within tenement E38/2355. Breelya: drilling occurred within tenement E38/2355. Cronos: drilling occurred within tenement E38/2363. Golden Highway: drilling occurred within tenement M38/814. The tenement forms part of the Gruyere JV in which Gold Fields Limited hold a 50% interest and where Gold Road is the manager. The mining leases have been incorporated into the Gruyere and Central Bore Native Title Mining Agreement.
The security of the tenure held at the time of reporting along with any	The tenements are in good standing with the Western Australia
known impediments to obtaining a licence to operate in the area.	Department of Mines, Infrastructure, Resource and Safety.
Acknowledgment and appraisal of exploration by other parties	Throssel Rise: Previous exploration was completed by BHP. Romano: All work has been completed by Gold Road Resources. Tamerlane: Previous exploration was completed by Asarco Exploration Company Inc. Smokebush: First exploration on the tenements in the eighties was completed by BHP/MMC, followed by Western Mining Corporation Ltd (WMC) with Kilkenny Gold in the nineties and in early-mid 2000 by AngloGold Ashanti with Terra Gold. Yaffler South: Previous exploration was completed by WMC. Hirono Regional: Previous exploration was completed by WMC, Kilkenny, Anglogold and from 1990 to 2006. From 2006 onwards, all exploration work has been completed by Gold Road Resources. Toppin Hill, Breelya, Cronos: Previous exploration was completed by BHP, WMC, Kilkenny, Anglogold, and Asarco from 1990 to 2006. From 2006 onwards, all exploration work has been completed by Gold Road Resources.
Acknowledgment and appraisal of exploration by other parties.	Golden Highway: Exploration has been completed by numerous other parties: 1990-1994 Metall Mining Australia 1994-1997 Zanex NL 1997-2006 Asarco Exploration Company Inc 2006-2010 Eleckra Mines Limited (renamed Gold Road in 2010) 2010-November 2016 Gold Road November 2016 – Present Gold Road and Gold Fields (Gruyere JV) Gold Road understands that previous exploration has been completed to industry standard.

Criteria and JORC Code explanation

Geology

 $Deposit\ type,\ geological\ setting\ and\ style\ of\ mineralisation.$

Commentary

The prospects are located in the Yamarna Terrane of the Archaean Yilgarn Craton of WA, under varying depths (0 to +60 m) of recent cover. The mafic-intermediate volcano-sedimentary sequence of the Yamarna Greenstone Belt has been multiply deformed and metamorphosed to Lower Amphibolite grade and intruded by later porphyries/granitoids. The Archaean sequence is considered prospective for structurally controlled primary orogenic gold mineralisation, as well as remobilised supergene gold due to subsequent Mesozoic weathering.

Throssel Rise: Antiformal dome consisting of granitic rock and gneissic rock of granitic origin. Variable thickness of poorly-consolidated Quaternary to Cenozoic cover.

Romano: Northern extension of the Dorothy Hills greenstone belt characterised by amphibolite facies volcanosedimentary sequences that includes early-deformed granitoids and later undeformed stitching granitoids intruding the earlier sequences. Cover comprises of localised Cenozoic paleochannels; Archaean regolith is primarily stripped.

Tamerlane: The Tamerlane area includes the Granodiorite South, Tamerlane and Beck trends which respectively are hosted at the sheared contacts between granodiorite and sediments, Cr rich sediments and arenites, and ultramafics and sediments (northern strike extent of Santana)

Toppin Hill, Breelya, Cronos: Breelya and Toppin Hill are located on the southern continuation of the Yamarna Shear Zone that hosts the Attila and Alaric deposits. The geology of the area consists of sequences of dacitic to intermediate volcanics and volcaniclastics of varying grainsizes, mafic volcanics, doleritic sills and late porhyries. There are several mineralised trends that transect the area with mineralisation commonly occurring on sheared lithological contacts. Mineralisation typically occurs as sulphidated shear zones with disseminated pyrrhotite-pyrite-arsenopyrite and a generally contain only minor veining. Dolerites are differentiated with well-defined magnetite bearing horizons. Cronos is hosted within the western mafic sequence, adjacent to Toppin Hill and the Yamarna Shear Zone.

Smokebush: Smokebush Project is a shear-hosted deposit, propagating through an interpreted package of foliated dolerites and intermediate volcaniclastic sediments within the Yamarna Greenstone Belt. Gold mineralisation is best developed where the shear intersects a brittle granophyric dolerite zone, where quartz veining with biotite-arsenopyrite-pyrrhotite alteration characterise discrete lode structures. The prospect is covered by a thin (~ 3 m) veneer of Quaternary Sands and Cenozoic Calcrete, with a well-developed saprolitic profile. The true thickness, orientation and extent of mineralisation is yet to be determined.

Yaffler South: North-west trending sedimentary sequence dominated by felsic – intermediate arenite and intermediate tuffaceous units, intruded by granite and aplitic units. Overburden thickness varies from $10-20\,$ m in thickness, with Quaternary Aeolian sands and Permian sediments. A gabbroic unit has been observed on the eastern side of the project area.

Hirono Regional: Folded sequence of intermediate-mafic sediments intruded by gabbroic unit and minor porphyries. N-S trending shear structures cross-cut the stratigraphy and folding.

Golden Highway: Gold mineralisation along the Golden Highway is hosted in a sequence of mafic and felsic volcanic intrusives and sediments on the western margin of the Yamarna Greenstone Belt. The sequence is metamorphosed to amphibolite facies and is strongly foliated, with the sequence striking northwest and dipping steeply to the east.

Gold mineralisation at Montagne and Argos is defined by shear zones characterised by laminated quartz-mica-amphibole schist units. Highgrade mineralisation occurs as discrete 3 to 10 m wide, gently north plunging, or horizontal, shoots contained within a 50 m wide low grade halo. Mineralisation is laterally continuous. Mineralisation has both a lithological and structural control, being contained within the mafic, iron rich units of the sequence with the morphology of high-grade zones appearing to be structurally controlled by W-E cross-cutting structures. The Montagne deposit forms part of the anomalous structural corridor termed the Golden Highway that has been defined over 17 km in strike.

Criteria and JORC Code explanation Commentary All assay results above 0.5 g/t Au and individual assays >10 g/t Au for **Drill hole Information** DDH and RC and collar information are provided in Appendix 1 to 3. A summary of all information material to the understanding of the All assay results for AC are reported at 0.1 g/t Au cut-off, only the collar exploration results including a tabulation of the following information for all Material drill holes: information from these holes are provided in Appendix 1 to 3, all other collar locations (with no significant assays) are indicated on plans. easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole lenath. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. Data agareagtion methods No top cuts have been applied to the reporting of the assay results. In reporting Exploration Results, weighting averaging techniques, Intersections lengths and grades for all holes are reported as down-hole length-weighted averages of grades above a cut-off and may include up maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. to 2 m (cut-offs of 0.3 g/t Au and higher) or 4 m (0.1 g/t Au cut-off) of grades below that cut-off. Cut-offs of 0.1, 0.5, 1.0 and/or 5.0 g/t Au are used depending on the drill type and results. Individual grades > 10 g/t Au are also reported. Where aggregate intercepts incorporate short lengths of high grade Intersections lengths and grades are reported as down-hole lengthresults and longer lengths of low grade results, the procedure used for weighted averages of grades above a cut-off and may include up to 2 m such aggregation should be stated and some typical examples of such (cut-offs of 0.3 g/t Au and higher) or 4 m (0.1 g/t Au cut-off) of grades aggregations should be shown in detail. below that cut-off. Not used in this report: Geologically selected intervals are used in more advanced stage projects. They are selected to honour interpreted thickness and grade from the currently established geological interpretation of mineralisation and may include varying grade lengths below the cut-off. The assumptions used for any reporting of metal equivalent values No metal equivalent values are used. should be clearly stated. Relationship between mineralisation widths and intercept lengths Drill hole intersections are reported down hole. With the exception of These relationships are particularly important in the reporting of Argos and Montagne, true width is not yet known. Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). Refer to Figures and Tables in the body of this and previous ASX Appropriate maps and sections (with scales) and tabulations of announcements. intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. **Balanced reporting** Intersections lengths and grades for all holes are reported as down-hole length-weighted averages of grades above a cut-off and may include up Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades to 2 m (cut-offs of 0.3 g/t Au and higher) or 4 m (0.1 g/t Au cut-off) of grades below that cut-off. Cut-offs of 0.1, 0.3, 0.5, 1.0 and/or 5.0 g/t and/or widths should be practiced to avoid misleading reporting of Au are used depending on the drill type and results. Individual grades Exploration Results. > 10 g/t Au are also reported. Numbers of drill holes and metres are included in table form in the body of the report. Other substantive exploration data A new regional geological and stratigraphic interpretation of the Yamarna and Dorothy Hills Greenstone Belts as a collaborative effort Other exploration data, if meaningful and material, should be reported with Concept2Discovery consulting has recently been completed. including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.

Criteria and JORC Code explanation

Further work

The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.

Commentary

Throssel Rise, Romano, Tamerlane, Yaffler South, Hirono Regional, Toppin Hill (Cronos and Breelya) and Smokebush are undergoing a period of data consolidation and project review pending the receipt of all assays from drill programmes conducted over the duration of the activity reported in this release. This review will be completed in the March quarter CY19 and will form the basis of planning subsequent field activity on these projects.

Golden Highway: An update to the Mineral Resource is ongoing. Work targeting updated and maiden Ore Reserves has commenced.