

HIGH GRADE RESULTS FROM NEAR MINE EXPLORATION

Awak Mas emerging as centre of a new goldfield

Asia-Pacific gold development company Nusantara Resources Limited ('Nusantara', ASX: NUS) is pleased to provide the following update of ongoing exploration at several near-mine prospects at its 100%-owned Awak Mas Gold Project (Project) located in South Sulawesi, Indonesia.

The current exploration focus is to follow up on historical exploration of numerous Near Mine prospects within a 2km radius of the planned processing plant with the aim of enhancing and extending the proposed eleven-year mining operation¹. To date over 1000m of near mine trenching has been completed which has yielded significant results.

Highlights from the recent trench sampling include:

- Puncak Selatan wide zone of 28m @ 1.2 g/t Au, including 7m @ 2.5 g/t Au and 3 m @2 g/t Au (PSC019)
- Puncak Utara 11m @ 2.6 g/t Au (PU39)
- Tarra wide zone of 37m @ 2.3 g/t Au, including 8m @ 4.1 g/t Au (TR10)

These results from the Puncak Selatan and Puncak Utara prospects emphasise the mineralisation potential of these areas, with drilling to commence in early 2019. At the Tarra prospect, sampling reconfirms the potential of this area.

The exploration program continues to show that the Awak Mas deposit is the at centre of a gold field that hosts a number of significant mineralised zones. The exploration program can now be guided by significant new information provided through the re-processing of historic geophysical data which clearly demonstrates the potential for further discoveries across the entire Contract of Work (CoW) area.

"These new exploration results continue to demonstrate the potential of the Awak Mas Gold Project to grow organically and provide potential high-grade satellite operations to augment production from the existing deposits. The proximity of the Puncak Selatan mineralisation to the Awak Mas deposit has the potential to alter the planned pit and significantly increase the value of the project. Our work continues to define the geological setting of the Contract of Work area and together with geophysics analysis, increases the possibility of further substantial discoveries, that will further enhance the Project" commented Nusantara's Managing Director and CEO, Mike Spreadborough. "Once again, we are seeing our understanding of the geology continue to rapidly evolve, which fits well with our goal of growing the project life beyond eleven years."

¹ Refer to ASX Announcement: 4 October 2018, Definitive Feasibility Study Confirms Robust, Long-life, Low Cost Project

Further gold results from trench sampling continues to define mineralisation adjacent to the Awak Mas, Salu Bulo and Tarra deposits (Figure 1) with potential to grow the mineral resource of each deposit:

Puncak Selatan

- Strong results in new exposures include a wide zone of 28m @ 1.2 g/t Au, including 7m @ 2.5 g/t Au and 3 m @2 g/t Au (PSC019), with further significant mineralised areas sampled (results pending) (Figure 2)
- Results extend interpreted mineralisation in immediate proximity to the Awak Mas pit crest
- Wide zone of surface mineralisation is now defined with a strike extent of ~150 to 200m, located to the south of the previously reported Awak Mas highwall extension mineralisation with potential to alter the economic pit shell² (Figure 3)
- Trend of mineralisation fits structural repetition model within Awak Mas to Salu Bulo corridor
- Follow up drilling to commence in early 2019

Puncak Utara

- Broad continuous zones of mineralisation confirmed, up to 11m @ 2.6 g/t Au (PU39)
- Gold anomalism remains open in several directions with geophysics to assist with targeting initial drilling program

Tarra

- Recent sampling in the Tarra Main zone reported up to 37m @ 2.3 g/t Au, including 8m @ 4.1 g/t Au (TR10)
- Results confirm and expand on historic sampling with further follow up near mine trenching underway

In addition, geophysics analysis demonstrates intrusive related mineralisation at multiple targets in nearmine areas and across the CoW area to be followed up by ground-truthing exploration program.

These results from the follow-up near mine trenching at Puncak Selatan and Puncak Utara support and expand on significant previous near mine trenching and mapping results³ which included:

- Puncak Selatan PS11: 5m @ 2.32 g/t Au, 5m @ 2.8 g/t Au, 2m @ 2.13 g/t Au and PS12: 2m @ 1.28 g/t Au, 2m @ 3.0 g/t Au, 1m @ 2.46 g/t Au, and
- Puncak Utara PU01: 2m @ 5.5 g/t Au, PU03: 3m @ 8.78 g/t Au and PU039: 12m @ 2.39 g/t Au.

The geological model in these areas adjacent to the proposed Awak Mas pit is now well substantiated and further enhanced by mapping of new exposures and recently discovered mineralisation (Figures 1 and 2). The mineralisation interpreted in these areas enhances the substantial Awak Mas highwall extension discovery and has the potential to increase the Awak Mas deposit. Figure 3 is a schematic cross section showing the relationship of the Puncak Selatan mineralisation in context with the proposed pit design; the strategic benefits of Puncak Selatan (and Puncak Utara) are clearly obvious.

These advancements in the exploration program are covered in more detail in *Appendix 1: Awak Mas Gold Project Exploration Update*. Appendix 2 reports significant exploration results completed by Nusantara (with attached JORC Code, 2012 edition, Table 1). All other exploration results for the CoW area are located on Nusantara's website: www.nusantararesources.com.

² Refer to ASX Announcement: 4 April 2018, Significant Results for Awak Mas Extension Drilling
 ³ Refer ASX Announcement: 4 October 2018, Significant Near Mine Mineralisation Identified

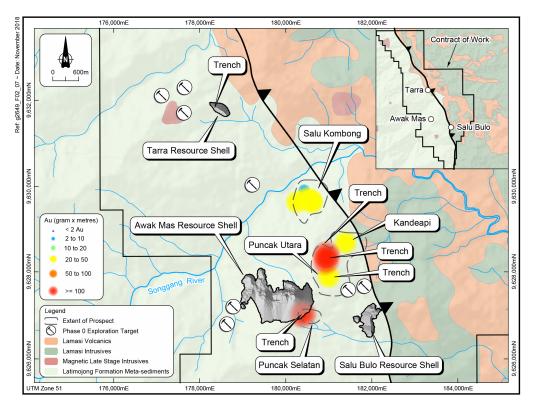


Figure 1: Current exploration areas showing trench locations against Near Mine prospects identified as gram x metre anomalies.

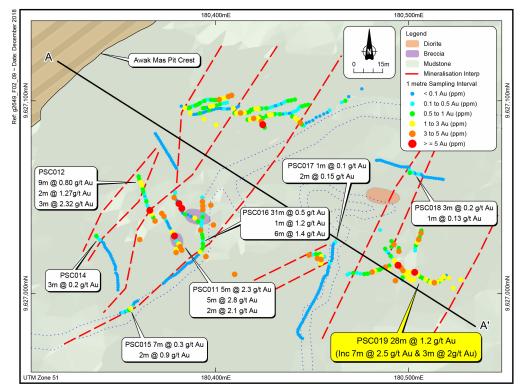
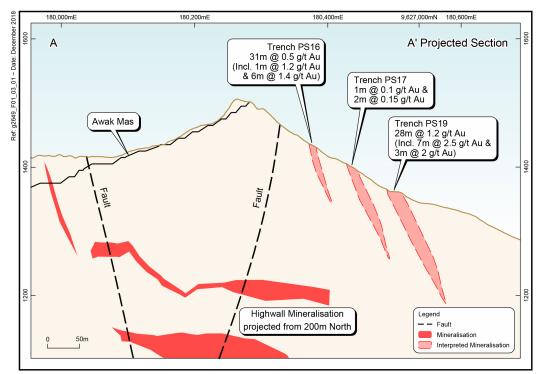



Figure 2: Recent sample results from mechanical trenching at Puncak Selatan; note the proximity to the Awak Mas pit crest; see section A - A' below.

Figure 3: Section A - A' showing interpretation of recent Puncak Selatan sample result locations on a projected cross section through the proposed Awak Mas pit demonstrating the spatial relationship to the pit crest.

APPENDIX 1: AWAK MAS GOLD PROJECT EXPLORATION UPDATE

Near Mine Exploration

Current focus remains on expanding the areas of newly recognised mineralisation at both Puncak Utara and the promising Puncak Selatan 'satellite' deposit locations (Figure 1). Recent results from Puncak Selatan confirm the strategic significance of this mineralisation as an opportunity to expand the Awak Mas mineralisation through the eastern highwall into the structural corridor seen emerging between Awak Mas and Salu Bulo (Figure 2).

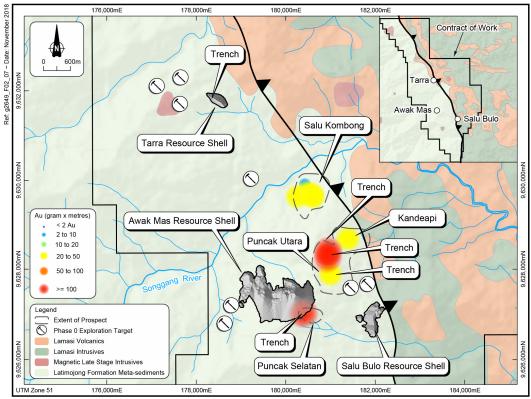
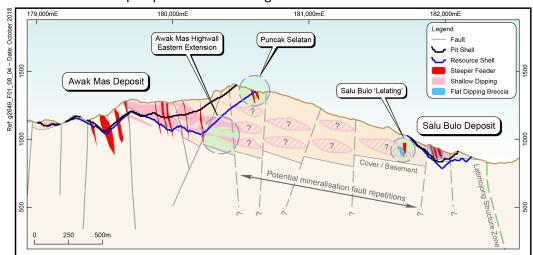



Figure 1: Current exploration areas showing trench locations against Near Mine prospects identified as gram x metre anomalies.

Figure 2: Initial Awak Mas – Salu Bulo corridor exploration model is being substantiated by Puncak Selatan exploration.

Puncak Selatan

Results from more than 250m of mechanical trenching and sampling along new access-road exposures at Puncak Selatan (Figure 3) support and continue to grow the strong mineralisation trend that is evident both from mapping and recent geophysics structural and magnetic/radiometric interpretation. Significant recent mechanical trenching results include:

- PSC016: 31m @ 0.5 g/t Au, including 1m @ 1.2 g/t Au and 6m @ 1.4 g/t Au, and
- PSC019: 28m @ 1.2 g/t Au, including 7m @ 2.5 g/t Au and 3m @ 2 g/t Au

Further near mine trenching and sampling will be conducted as road access is constructed to link Awak Mas with Salu Bulo and subsequently into the untested prospect area of Kandeapi (Figure 1).

The geological model in these areas adjacent to the proposed Awak Mas pit is now well substantiated and further enhanced by mapping of new exposures and recently discovered mineralisation (Figures 1, 3 and 4). The mineralisation interpreted in these areas enhances the substantial Awak Mas highwall extension discovery and has the potential to increase the Awak Mas deposit. Figure 4 is a schematic cross section showing the relationship of the Puncak Selatan mineralisation in context with the proposed pit shell; the strategic benefits of Puncak Selatan (and Puncak Utara) are clearly obvious.

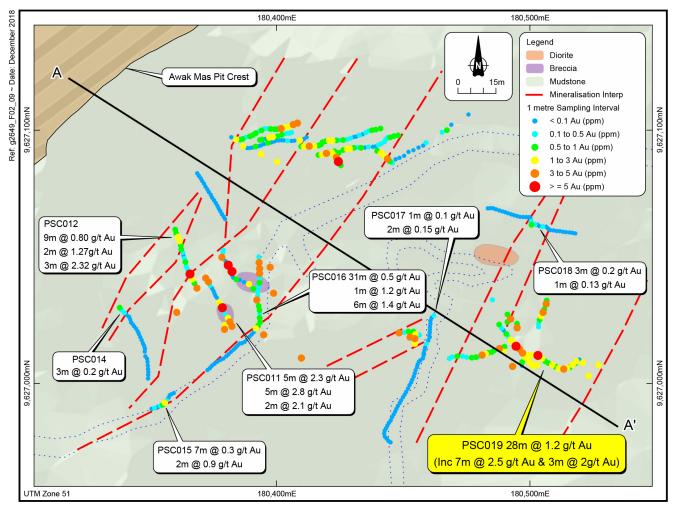
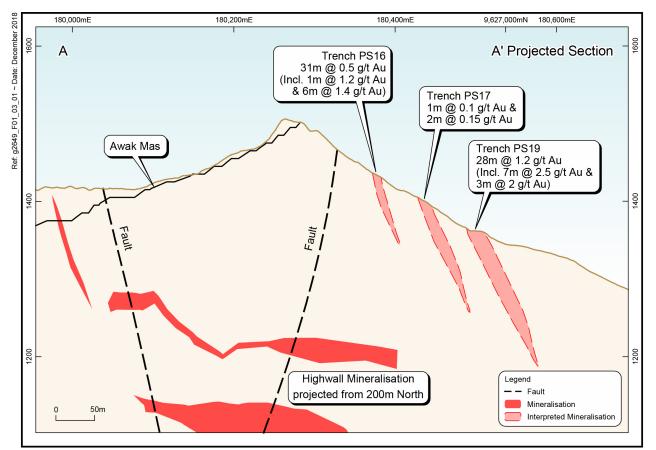



Figure 3: Recent sample results from mechanical trenching at Puncak Selatan; note the proximity to the Awak Mas pit crest; see section A - A' below.

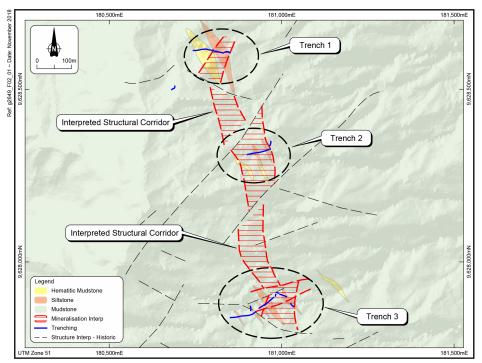
Figure 4: Section A - A' showing interpretation of recent Puncak Selatan sample result locations on a projected cross section through proposed Awak Mas demonstrating the spatial relationship to the pit crest.

Puncak Utara

Puncak Utara has now had in excess of 500m of mechanical trenching completed which has covered areas of both historic significant results and newly sampled outcrops and manual trenching. The overall significance of this area is confirmed with the close proximity to both Awak Mas and Salu Bulo proposed open pits and also the planned haul road to the process plant.

Results of mechanical trenching undertaken at Puncak Utara continues to provide encouragement with several zones of strong mineralisation defined which further confirm the potential of the area as a satellite deposit for short term, additional ore (Figures 5, 6, 7 & 8).

The broad mineralised area previously outlined through manual trenching at Puncak Utara is supported by multiple zones of continuous mineralisation and clearly defined structural geology exposed in the mechanical trenching, including new results (all results from samples received) of:


- PU47: 21m @ 1.0 g/t Au, including 5m @ 2.5 g/t Au, 2m @ 2.6 g/t Au and 10m @ 1.1 g/t Au;
- PU49: 24m @ 0.7 g/t Au, including 3m @ 1.8 g/t Au, 1m @ 1.8 g/t Au and 4m @ 1.9 g/t Au, and
- PU39: 11m @ 2.6 g/t Au.

The geology of this area is becoming better understood and the interpretation from trench mapping and the geophysics structural model, support this as being an area of major mineralisation potential. Both Puncak Utara (to the north) and Puncak Selatan (to the south) sit on the opposite edges of the same highly prospective NW corridor while existing on different structural strands of a permissive NS corridor.

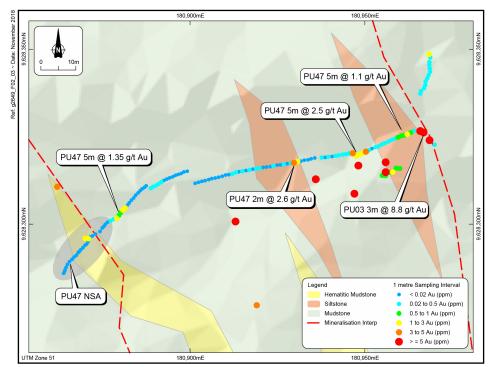
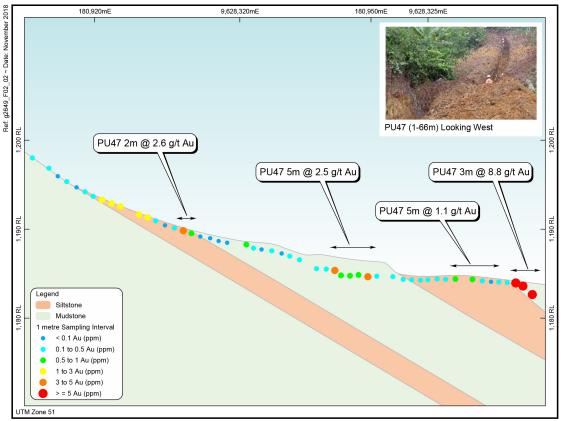


Figure 10 below demonstrates the recognition of multi-directional CoW area scale structures that delineate and define known and potential 'corridors' for mineralisation. The significance of this newly interpreted work is expanded on in the CoW Area Exploration section below.

The extent of the mineralisation at Puncak Utara continues to grow and given its proximity to the planned haul road from Salu Bulo to the proposed processing plant, it represents a strategic opportunity for a satellite deposit that could supplement early mine feed.



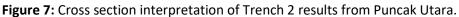

Figure 5: Location of mechanically excavated Trenches 1 to 3 and interpreted structural trend supporting the definition of a mineralised corridor at Puncak Utara.

Figure 6: Trench 2 results from Puncak Utara demonstrating location and continuity of significant newly recognised mineralisation within the encompassing NS trend.

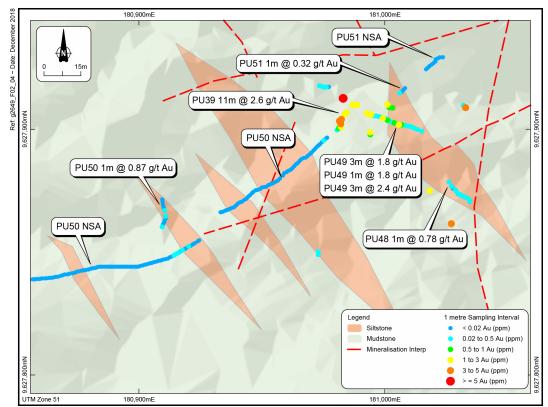
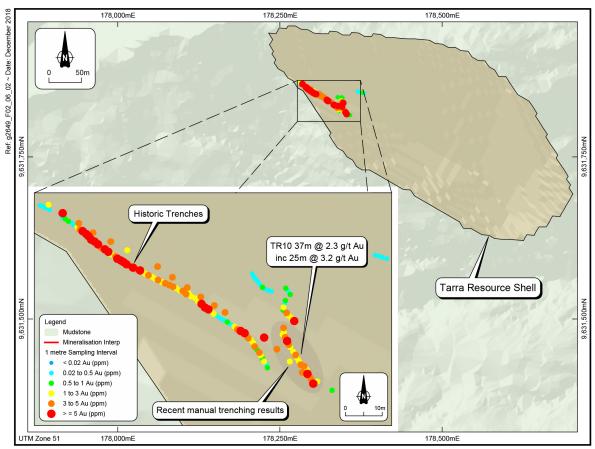


Figure 8: Results from Trench 3 at Puncak Utara demonstrating continuity of structure and mineralisation.


Greater Tarra Area

Precursory manual trenching and mapping at Tarra has identified significant extensions to previously sampled mineralisation and preparation for mechanical trenching is well underway (Figures 1 & 9).

Substantial results from manual trenching at Tarra targeting the along strike and parallel/repetition continuity of the recognised mineralisation, have added further support to the potential of the system to host a much more extensive resource than is currently defined. Recent results include the very impressive continuous trench sample interval:

• TR10: 37m @ 2.3 g/t Au, including 8m @ 4.1 g/t Au.

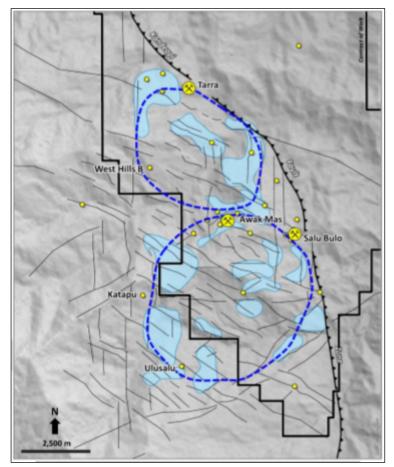
Ongoing mapping and surface outcrop sampling are demonstrating the broad extent of mineralisation at Tarra and show the system to have a far wider extent than previously recognised. Coupled with the importance of the 'on the ground' work being conducted and the recently confirmed realisation of the intrusive related nature of the mineralising systems, Tarra is being considered as a major centre of mineralisation.

Figure 9: New results from manual trenching of TR10 at Tarra deposit, note proximity to current Tarra Resource Shell outline.

Contract of Work (CoW) Area Exploration

In addition to the focus on Near Mine exploration, work continues on defining the geological setting of the Awak Mas deposit and the CoW area to allow improved definition of the CoW area exploration program. A site visit was conducted by leading industry exploration consultants, Global Ore Discovery, during late October to ground-truth the results from the recent reprocessing of historical geophysics results⁴. This is an important step in unlocking the exploration potential of the CoW area and the immediate surrounding ground and the development of a detailed exploration work program for 2019.

Refer ASX Announcement: 4 October 2018, Significant Near Mine Mineralisation Identified


Key outcomes of the visit included confirmation of the Nusantara model that the overall mineralising system is 'intrusion related' (RIRGS = Reduced Intrusion Related Gold System) and also the recognition of significant epithermal signatures (with accompanying historic high gold grade samples) at a prospect area (Ulusalu -Gamaru) towards the south-eastern boundary of the CoW area.

A quote below from the report, qualifies the significant potential that is seen to be available through the application of geophysical methods and continued compilation and interpretation of raw, historic data;

"Nusantara's Awak Mas project contains a significant district-scale mineralisation system. Historic exploration has collected a substantial amount of high quality geological and geochemical information which Nusantara can leverage once compiled and validated."

Implications of the newly obtained geophysics work include the support of the evolving geological model by strengthening the understanding, at a goldfield scale, of the many styles of various intrusive related gold systems and where they occur. Subsequent targets generated can now be compared and ranked against known mineralisation with clear analogies drawn to other global deposits of similar style, building confidence in the Nusantara exploration toolbox.

Figure 10 summarises one of the very pertinent observations made from the first-pass interpretation of the re-processed geophysics data. The clearly identified 'annulus' shapes as shown are supported by the location of the known deposits and the recognised multiple prospect areas.

Figure 10: Local scale magnetic interpretation highlighting potential circular features defined in the re-processed geophysics.

This is the basis upon which ongoing 'ground truthing' will be designed and undertaken in the short-term exploration work plan. Recognition of the RIRGS mineralisation style has delivered an important step in the first-time appreciation of analogous deposits which will give valuable assistance in the development of Nusantara's exploration philosophy.

APPENDIX 2:

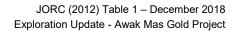
ASSAY RESULTS FROM NUSANTARA SAMPLING AT TARRA, PUNCAK UTARA AND PUNCAK SELATAN UNDERTAKEN DURING Q3 AND Q4 2018

Reporting Criteria: Au and Ag grades reported to two significant figures that greater or equal to 0.5g/t Au. Samples are from outcrop or trenches with channel or chip sampling technique. Rock samples are sent to the laboratory for preparation and assaying. Each assay batch is submitted with duplicates and standards to monitor laboratory quality. Samples analysed for gold using the fire assay (FAA40) technique and analysis for silver multi-acid digest with AAS finish (GAI02) technique

Survey Tag Puncak Utara Pr	Sample ID	Sample Type				Sample			
Puncak Utara Pr			UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t	g/t	ppm
PU46-92 RC	2155593	Channel	180,830	9,628,605	1,159	1.0	1.0	0.6	59
PU46-93 RC	2155594	Channel	180,831	9,628,605	1,159	1.0	0.6	0.3	100
PU46-105 RC	2155607	Channel	180,840	9,628,609	1,151	1.0	0.5	0.3	65
PU46-106 RC	2155608	Channel	180,841	9,628,610	1,151	1.0	0.8	0.3	20
PU46-107 RC	2155609	Channel	180,842	9,628,609	1,151	1.0	0.6	0.3	62
PU47-2 RC	2155686	Channel	180,963	9,628,326	1,209	1.0	0.8	21.0	83
PU47-3 RC	2155687	Channel	180,962	9,628,326	1,209	1.0	2.3	1.0	47
PU47-4 RC	2155688	Channel	180,961	9,628,326	1,209	1.0	0.7	12.0	63
PU47-5 RC	2155689	Channel	180,960	9,628,325	1,209	1.0	0.9	0.3	70
PU47-6 RC	2155690	Channel	180,959	9,628,325	1,210	1.0	0.7	0.7	46
PU47-16 RC	2155701	Channel	180,950	9,628,321	1,212	1.0	4.4	1.1	154
PU47-17 RC	2155702	Channel	180,949	9,628,320	1,213	1.0	1.1	0.3	65
PU47-18 RC	2155703	Channel	180,948	9,628,320	1,213	1.0	1.5	0.7	139
PU47-19 RC	2155704	Channel	180,948	9,628,320	1,213	1.0	1.7	0.8	125
PU47-20 RC	2155705	Channel	180,947	9,628,320	1,213	1.0	4.0	1.3	98
PU47-30 RC	2155716	Channel	180,937	9,628,319	1,217	1.0	0.6	0.6	188
PU47-36 RC	2155722	Channel	180,931	9,628,318	1,220	1.0	2.0	0.8	126
PU47-37 RC	2155724	Channel	180,930	9,628,318	1,221	1.0	3.1	0.6	50
PU47-47 RC	2155734	Channel	180,920	9,628,316	1,225	1.0	0.5	1.0	128
PU48-2 RC	2155766	Channel	181,027	9,627,878	1,195	1.0	0.8	0.3	45
PU49-01 RC	2155779	Channel	180,993	9,627,906	1,197	1.0	2.3	1.2	171
PU49-02 RC	2155780	Channel	180,994	9,627,906	1,197	1.0	1.7	0.3	112
PU49-03 RC	2155781	Channel	180,995	9,627,906	1,197	1.0	1.4	0.6	130
PU49-08 RC	2155786	Channel	180,999	9,627,905	1,195	1.0	1.8	0.3	73
PU49-10 RC	2155788	Channel	181,001	9,627,904	1,195	1.0	0.5	0.5	66
PU49-13 RC	2155792	Channel	181,004	9,627,903	1,194	1.0	0.5	0.3	78
PU49-14 RC	2155793	Channel	181,005	9,627,902	1,194	1.0	4.6	0.8	103
PU49-15 RC	2155794	Channel	181,006	9,627,902	1,194	1.0	1.8	3.1	110
PU49-16 RC	2155795	Channel	181,007	9,627,902	1,193	1.0	0.8	0.3	101
PU50-71 RC	2156072	Channel	180,911	9,627,866	1,234	1.0	0.9	0.6	115
PU47_80 RC	2156194	Channel	180,889	9,628,310	1,271	1.0	0.5	0.3	84.0
PU47_91 RC	2156237	Channel	180,881	9,628,305	1,278	1.0	1.4	0.3	82.0
PU47_92 RC	2156238	Channel	180,881	9,628,304	1,278	1.0	1.8	0.3	60.0
PU47_93 RC	2156239	Channel	180,880	9,628,303	1,279	1.0	0.8	0.3	69.0
PU47_94 RC	2156240	Channel	180,880	9,628,303	1,279	1.0	0.9	0.3	48.0
PU47_95 RC	2156242	Channel	180,879	9,628,302	1,279	1.0	1.8	0.6	96.0
PU47_98 RC	2156245	Channel	180,876	9,628,301	1,280	1.0	1.5	0.3	73.0
PU47_99 RC	2156246	Channel	180,876	9,628,300	1,281	1.0	1.7	0.3	75.0
PU47_100 RC	2156247	Channel	180,875	9,628,299	1,282	1.0	0.8	0.3	89.0
PU47_112 RC	2156260	Channel	180,868	9,628,292	1,288	1.0	1.0	0.3	90.0
PU53_03 RC	0156274	Channel	180,903	9,628,310	1,229	1.0	0.8	0.6	31.0
_	2156275	Channel	180,903	9,628,309	1,229	1.0	1.0	0.3	21.0
	2156276	Channel	180,903	9,628,308	1,228	1.0	0.7	0.3	59.0
_	2156277	Channel	180,903	9,628,307	1,228	1.0	1.1	0.3	93.0
_	2156278	Channel	180,904	9,628,306	1,228	1.0	0.9	0.6	107.0
_	2156280	Channel	180,905	9,628,305	1,228	1.0	0.7	1.3	292.0

Process Feature Process Fe	Survey Tee	Somele ID	Samala Tur	Easting	Northing	Elevation	Sample	Au	Ag	Cu
P515_06 RC156840 Channel 180.355 9,626.992 1,439 1.0 0.8 0.3 2 P515_07 RC155841 Channel 180.355 9,626.992 1,439 1.0 0.9 0.3 2 P516_28 RC15577 Channel 180.392 9,627.022 1,439 1.0 0.5 0.6 4 P516_28 RC15637 Channel 180.393 9,627.023 1,429 1.0 0.6 0.6 0.6 P516_37 RC156382 Channel 180.393 9,627.023 1,426 1.0 0.6 0.6 0.6 P516_38 RC156389 Channel 180.393 9,627.030 1,426 1.0 0.6 0.3 0.5 P516_48 RC156389 Channel 180.393 9,627.040 1,421 1.0 0.6 0.3 0.6 P516_51 RC15640 Channel 180.393 9,627.043 1,421 1.0 0.6 0.3 0.6	Survey Tag	Sample ID	Sample Type	UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t	g/t	ppm
P515_07 RC156341 Channel 180,356 56,56,952 1,439 1.0 0.9 0.3 2 P515_07 RC156377 Channel 180,392 9,67,7021 1,430 1.0 0.5 0.6 4 P515_03 RC156378 Channel 180,393 9,67,7021 1,430 1.0 0.5 0.6 4 P515_037 RC156381 Channel 180,393 9,627,023 1,427 1.0 0.6 0.6 0.5 P516_337 RC156385 Channel 180,393 9,627,023 1,427 1.0 0.6 0.6 0.3 3 P516_48 RC156387 Channel 180,393 9,627,040 1,423 1.0 0.6 0.3 3 P516_48 RC156387 Channel 180,393 9,627,043 1,421 1.0 1.5 0.7 1 P516_54 RC156405 Channel 180,393 9,627,045 1,421 1.0 1.6 0.5 2.	Puncak Selatan Prospect									
P556 28 RC156377 Channel 180,392 9,627,021 1,430 1.0 1.2 0.66 4 P516 29 RC156378 Channel 180,392 9,627,023 1,430 1.0 0.5 0.6 4 P516 30 RC156378 Channel 180,393 9,627,023 1,423 1.0 0.6 0.6 0.6 P516 33 RC156382 Channel 180,393 9,627,030 1,427 1.0 0.6 0.6 0.3 9.5 P516 38 RC156387 Channel 180,393 9,627,000 1,423 1.0 0.6 0.3 0.3 9.5 P516 48 RC156397 Channel 180,393 9,627,040 1,421 1.0 0.5 0.3 0.3 9.5 P516 5.3 RC156402 Channel 180,393 9,627,044 1,421 1.0 1.5 0.6 2 P516 5.5 RC156403 Channel 180,393 9,627,045 1,421 1.0 0.3	PS15_06	RC156340	Channel	180,355	9,626,992	1,439	1.0	0.8	0.3	21
P516_29 RC156378 Channel 180,392 9,627,022 1,430 1.0 0.5 0.6 4 P516_30 RC156379 Channel 180,393 9,627,023 1,429 1.0 0.6 0.3 2 P516_31 RC156381 Channel 180,393 9,627,024 1,428 1.0 0.6 6.6 6 P516_37 RC156386 Channel 180,393 9,627,040 1,425 1.0 0.6 0.3 3 P516_64 RC156398 Channel 180,393 9,627,040 1,422 1.0 0.5 0.3 3 P516_52 RC156402 Channel 180,393 9,627,045 1,421 1.0 1.5 0.6 2 P516_53 RC156405 Channel 180,393 9,627,045 1,421 1.0 1.6 0.5 2 0.3 4 P516_54 RC156405 Channel 180,393 9,627,045 1,420 1.0 0.3 3 4	PS15_07	RC156341	Channel	180,356	9,626,992	1,439	1.0	0.9	0.3	22
P516_30 RC156379 Channel 180,393 9,627,023 1,429 1.0 0.6 0.3 2 P516_32 RC156381 Channel 180,393 9,627,024 1,428 1.0 0.9 0.5 4 P516_33 RC156382 Channel 180,393 9,627,025 1,426 1.0 0.6 0.3 5 P516_38 RC156387 Channel 180,393 9,627,040 1,425 1.0 0.6 0.3 5 P516_48 RC156398 Channel 180,393 9,627,040 1,422 1.0 0.5 0.3 6 P516_52 RC156402 Channel 180,393 9,627,040 1,421 1.0 1.6 0.5 2 P516_54 RC156407 Channel 180,393 9,627,045 1,421 1.0 0.8 0.3 4 P516_55 RC156406 Channel 180,393 9,627,047 1,420 1.0 0.6 0.3 4 P516_55	PS16_28	RC156377	Channel	180,392	9,627,021	1,430	1.0	1.2	0.6	44
P516_32 RC16581 Channel 180,394 9,627,025 1,427 1,0 0,6 0,6 P516_33 RC156382 Channel 180,393 9,627,025 1,427 1,0 0,6 0,6 6 P516_33 RC156385 Channel 180,393 9,627,029 1,426 1,0 0,6 0,3 5 P516_48 RC156385 Channel 180,393 9,627,040 1,422 1,0 0,6 0,3 6 P516_48 RC156395 Channel 180,393 9,627,043 1,421 1,0 0,5 0,3 6 P516_52 RC156402 Channel 180,393 9,627,045 1,421 1,0 1,5 0,7 1 P516_53 RC156405 Channel 180,393 9,627,045 1,421 1,0 0,8 0,3 4 P516_57 RC156405 Channel 180,393 9,627,045 1,420 1,0 0,3 4 P516_57 RC156405 <	PS16_29	RC156378	Channel	180,392	9,627,022	1,430	1.0	0.5	0.6	47
P516_33 R(156382 Channel 180,393 9,627,025 1,427 1.0 0.6 0.6 P516_37 R(156386 Channel 180,393 9,627,030 1,426 1.0 0.8 0.3 5 P516_48 R(156387 Channel 180,393 9,627,040 1,422 1.0 0.6 0.3 5 P516_48 R(156389 Channel 180,393 9,627,040 1,422 1.0 0.5 0.3 0.7 1 P516_52 R(156408 Channel 180,393 9,627,044 1,421 1.0 1.5 0.6 2 P516_53 R(156405 Channel 180,393 9,627,045 1,421 1.0 1.6 0.5 2 P516_57 R(156406 Channel 180,393 9,627,045 1,421 1.0 0.3 0.3 4 P516_57 R(156406 Channel 180,393 9,627,047 1,420 1.0 0.3 0.3 4 P516_	PS16_30	RC156379	Channel	180,393	9,627,023	1,429	1.0	0.6	0.3	24
P516_37 RC156388 Channel 180,393 9,627,020 1,426 1.0 0.8 0.3 5 P516_38 RC156387 Channel 180,393 9,627,030 1,426 1.0 0.6 0.3 3 P516_48 RC156398 Channel 180,393 9,627,040 1,423 1.0 0.5 0.3 0.3 P516_48 RC156490 Channel 180,393 9,627,040 1,421 1.0 1.5 0.7 1.1 P516_53 RC156404 Channel 180,393 9,627,045 1,421 1.0 1.6 0.5 2 P516_54 RC156405 Channel 180,393 9,627,045 1,421 1.0 0.8 0.3 4 P516_54 RC156406 Channel 180,393 9,627,047 1,420 1.0 0.3 0.3 4 P519_04 RC156680 Channel 180,497 9,627,007 1,364 1.0 2.1 0.3 3 P51	PS16_32	RC156381	Channel	180,394	9,627,024	1,428	1.0	0.9	0.5	43
P516_38 RC156387 Channel 180,933 9,627,030 1,426 1.0 0.6 0.3 5 P516_48 RC156398 Channel 180,333 9,627,040 1,423 1.0 0.9 0.3 3 P516_49 RC156399 Channel 180,333 9,627,040 1,422 1.0 0.5 0.3 0.6 P516_54 RC156402 Channel 180,333 9,627,045 1,421 1.0 1.5 0.6 2 P516_54 RC156405 Channel 180,333 9,627,045 1,421 1.0 0.8 0.3 4 P516_55 RC156406 Channel 180,393 9,627,045 1,420 1.0 0.8 0.3 4 P516_55 RC156408 Channel 180,393 9,627,045 1,420 1.0 0.3 4 P516_56 RC156408 Channel 180,497 9,627,010 1,364 1.0 1.0 0.3 3 P519_0.57 <td< td=""><td>PS16_33</td><td>RC156382</td><td>Channel</td><td>180,393</td><td>9,627,025</td><td>1,427</td><td>1.0</td><td>0.6</td><td>0.6</td><td>62</td></td<>	PS16_33	RC156382	Channel	180,393	9,627,025	1,427	1.0	0.6	0.6	62
P516_48 RC156398 Channel 180,393 9,627,040 1,423 1.0 0.9 0.3 3 P516_49 RC156399 Channel 180,393 9,627,040 1,422 1.0 0.5 0.3 0.0 P516_52 RC156402 Channel 180,393 9,627,043 1,421 1.0 1.5 0.7 1.7 P516_53 RC156404 Channel 180,393 9,627,045 1,421 1.0 1.6 0.5 2 P516_55 RC156405 Channel 180,393 9,627,045 1,421 1.0 0.8 0.3 4 P516_57 RC156408 Channel 180,393 9,627,046 1,420 1.0 0.8 0.3 4 P516_57 RC156408 Channel 180,497 9,627,010 1,364 1.0 0.8 0.3 2 P519_05 RC156583 Channel 180,499 9,627,011 1,364 1.0 1.3 0.3 2 P51	PS16_37	RC156386	Channel	180,393	9,627,029	1,426	1.0	0.8	0.3	54
Psi6_49 RC156399 Channel 180.393 9,627,040 1,422 1.0 0.5 0.3 0 Psi6_52 RC156402 Channel 180,393 9,627,043 1,421 1.0 1.5 0.6 2 Psi6_53 RC156404 Channel 180,393 9,627,045 1,421 1.0 1.6 0.5 2 Psi6_54 RC156405 Channel 180,393 9,627,045 1,421 1.0 0.8 0.3 4 Psi6_55 RC156407 Channel 180,393 9,627,047 1,420 1.0 0.8 0.3 4 Psi6_57 RC156407 Channel 180,497 9,627,009 1,364 1.0 0.6 0.3 4 Psi9_04 RC155830 Channel 180,497 9,627,019 1,364 1.0 1.1 0.3 4 Psi9_05 RC155830 Channel 180,499 9,627,011 1,364 1.0 1.3 0.3 2 Psi9_0<	PS16_38	RC156387	Channel	180,393	9,627,030	1,426	1.0	0.6	0.3	54
PS16_52 RC156402 Channel 180,393 9,627,043 1,421 1.0 1.5 0.7 1 PS16_53 RC156404 Channel 180,393 9,627,044 1,421 1.0 1.5 0.6 2 PS16_54 RC156405 Channel 180,393 9,627,045 1,421 1.0 0.8 0.3 4 PS16_55 RC156408 Channel 180,393 9,627,045 1,421 1.0 0.8 0.3 4 PS16_57 RC156408 Channel 180,393 9,627,047 1,420 1.0 0.9 0.3 4 PS16_57 RC156408 Channel 180,493 9,627,009 1,364 1.0 0.6 0.3 4 PS19_05 RC156583 Channel 180,493 9,627,010 1,364 1.0 0.3 0.3 2 PS19_05 RC156585 Channel 180,493 9,627,011 1,364 1.0 1.3 0.3 3 PS19_05	PS16_48	RC156398	Channel	180,393	9,627,040	1,423	1.0	0.9	0.3	37
PS16_53 RC156404 Channel 180,393 9,627,044 1,421 1.0 1.5 0.6 2 PS16_54 RC156405 Channel 180,393 9,627,045 1,421 1.0 1.6 0.5 2 PS16_55 RC156406 Channel 180,393 9,627,046 1,421 1.0 0.8 0.3 4 PS16_57 RC156407 Channel 180,393 9,627,048 1,420 1.0 0.9 0.3 4 PS10_03 RC156580 Channel 180,497 9,627,019 1,364 1.0 0.6 0.3 4 PS19_04 RC156581 Channel 180,499 9,627,010 1,364 1.0 0.3 0.3 2 PS19_05 RC156583 Channel 180,499 9,627,011 1,364 1.0 1.3 0.3 0.3 3 PS19_05 RC156584 Channel 180,501 9,627,011 1,364 1.0 1.4 0.3 4 <tr< td=""><td>PS16_49</td><td>RC156399</td><td>Channel</td><td>180,393</td><td>9,627,040</td><td>1,422</td><td>1.0</td><td>0.5</td><td>0.3</td><td>6</td></tr<>	PS16_49	RC156399	Channel	180,393	9,627,040	1,422	1.0	0.5	0.3	6
PS16_54 RC156405 Channel 180,393 9,627,045 1,421 1.0 1.6 0.5 2 PS16_55 RC156406 Channel 180,393 9,627,046 1,421 1.0 0.8 0.3 4 PS16_57 RC156407 Channel 180,393 9,627,048 1,420 1.0 0.2 0.3 4 PS16_57 RC156408 Channel 180,393 9,627,009 1,364 1.0 0.6 0.3 4 PS10_03 RC156580 Channel 180,497 9,627,009 1,364 1.0 0.6 0.3 4 PS10_04 RC156581 Channel 180,499 9,627,010 1,364 1.0 0.8 0.3 0.3 4 PS10_05 RC156585 Channel 180,499 9,627,011 1,364 1.0 1.3 0.3 3 PS10_05 RC156585 Channel 180,501 9,627,011 1,364 1.0 1.4 0.3 3 <tr< td=""><td>PS16_52</td><td>RC156402</td><td>Channel</td><td>180,393</td><td>9,627,043</td><td>1,421</td><td>1.0</td><td>1.5</td><td>0.7</td><td>12</td></tr<>	PS16_52	RC156402	Channel	180,393	9,627,043	1,421	1.0	1.5	0.7	12
PS16_55 RC156406 Channel 180,393 9,627,046 1,421 1.0 0.8 0.3 4 PS16_56 RC156407 Channel 180,393 9,627,047 1,420 1.0 2.2 0.3 5 PS16_57 RC156408 Channel 180,393 9,627,048 1,420 1.0 0.9 0.3 4 PS19_03 RC156580 Channel 180,497 9,627,009 1,364 1.0 0.6 0.3 4 PS19_04 RC156581 Channel 180,499 9,627,010 1,364 1.0 1.9 0.3 4 PS19_05 RC156583 Channel 180,499 9,627,011 1,364 1.0 1.8 0.3 3 PS19_06 RC156584 Channel 180,500 9,627,011 1,364 1.0 1.8 0.3 3 PS19_07 RC156586 Channel 180,501 9,627,011 1,364 1.0 1.4 0.3 3 PS19_10	PS16_53	RC156404	Channel	180,393	9,627,044	1,421	1.0	1.5	0.6	28
P516_56 RC156407 Channel 180,393 9,627,047 1,420 1.0 2.2 0.3 5 P516_57 RC156408 Channel 180,393 9,627,048 1,420 1.0 0.9 0.3 4 P519_03 RC156580 Channel 180,497 9,627,009 1,364 1.0 0.6 0.3 4 P519_04 RC156583 Channel 180,499 9,627,009 1,364 1.0 1.9 0.3 4 P519_05 RC156584 Channel 180,499 9,627,011 1,364 1.0 1.8 0.3 3 P519_05 RC156584 Channel 180,500 9,627,011 1,364 1.0 1.8 0.3 3 P519_08 RC156586 Channel 180,501 9,627,011 1,364 1.0 1.8 0.3 4 P519_10 RC156587 Channel 180,505 9,627,011 1,364 1.0 8.4 1.6 1.6 P519_	PS16_54	RC156405	Channel	180,393	9,627,045	1,421	1.0	1.6	0.5	26
PS16_57 RC156408 Channel 180,393 9,627,048 1,420 1.0 0.9 0.3 4 PS19_03 RC15580 Channel 180,497 9,627,009 1,364 1.0 0.6 0.3 4 PS19_04 RC15581 Channel 180,498 9,627,009 1,364 1.0 2.1 0.3 3 PS19_05 RC15583 Channel 180,499 9,627,010 1,364 1.0 1.9 0.3 4 PS19_06 RC15584 Channel 180,499 9,627,011 1,364 1.0 0.8 0.3 3 PS19_07 RC15588 Channel 180,501 9,627,011 1,364 1.0 1.6 0.6 6 PS19_09 RC15587 Channel 180,502 9,627,011 1,364 1.0 1.4 0.3 4 PS19_10 RC15588 Channel 180,505 9,627,010 1,363 1.0 0.4 0.3 2 PS19_12	PS16_55	RC156406	Channel	180,393	9,627,046	1,421	1.0	0.8	0.3	45
P519_03 RC156580 Channel 180,497 9,627,009 1,364 1.0 6.6 0.3 4 P519_04 RC156581 Channel 180,498 9,627,009 1,364 1.0 2.1 0.3 3 P519_05 RC156583 Channel 180,499 9,627,010 1,364 1.0 1.9 0.3 4 P519_05 RC156583 Channel 180,499 9,627,011 1,365 1.0 0.8 0.3 2 P519_06 RC156585 Channel 180,500 9,627,011 1,364 1.0 1.3 0.3 3 P519_09 RC156587 Channel 180,502 9,627,011 1,364 1.0 1.4 0.3 4 P519_09 RC156587 Channel 180,502 9,627,010 1,364 1.0 8.4 1.6 16 P519_10 RC156588 Channel 180,505 9,627,010 1,363 1.0 0.7 0.3 2 P519_1	PS16_56	RC156407	Channel	180,393	9,627,047	1,420	1.0	2.2	0.3	54
PS19_04 RC156581 Channel 180,498 9,627,009 1,364 1.0 2.1 0.3 3 PS19_05 RC156583 Channel 180,499 9,627,010 1,364 1.0 1.9 0.3 4 PS19_06 RC156583 Channel 180,499 9,627,011 1,364 1.0 1.9 0.3 4 PS19_07 RC156585 Channel 180,500 9,627,011 1,364 1.0 1.3 0.33 3 PS19_08 RC156585 Channel 180,500 9,627,011 1,364 1.0 1.6 0.6 6 PS19_09 RC156587 Channel 180,502 9,627,011 1,364 1.0 1.4 0.33 4 PS19_10 RC156588 Channel 180,503 9,627,010 1,363 1.0 1.4 0.3 4 PS19_12 RC156590 Channel 180,505 9,627,009 1,363 1.0 0.5 0.3 4 PS19_	PS16_57	RC156408	Channel	180,393	9,627,048	1,420	1.0	0.9	0.3	42
Psine RC156583 Channel 180,499 9,627,010 1,364 1.0 1.9 0.3 4 PS19_06 RC156584 Channel 180,499 9,627,011 1,365 1.0 0.8 0.3 2 PS19_07 RC156585 Channel 180,500 9,627,011 1,364 1.0 1.3 0.33 0.3<	PS19_03	RC156580	Channel	180,497	9,627,009	1,364	1.0	0.6	0.3	46
PS19_06 RC156584 Channel 180,499 9,627,011 1,365 1.0 0.8 0.3 2 PS19_07 RC156585 Channel 180,500 9,627,011 1,364 1.0 1.3 0.3 3 PS19_08 RC156586 Channel 180,501 9,627,011 1,364 1.0 1.6 0.6 6 PS19_09 RC156586 Channel 180,502 9,627,011 1,364 1.0 1.4 0.3 4 PS19_10 RC156588 Channel 180,505 9,627,010 1,363 1.0 1.2 0.3 2 PS19_12 RC156590 Channel 180,505 9,627,010 1,363 1.0 0.7 0.3 2 PS19_13 RC156591 Channel 180,505 9,627,008 1,363 1.0 0.6 0.3 4 PS19_14 RC156593 Channel 180,507 9,627,007 1,363 1.0 0.8 0.3 4 PS19_15	PS19_04	RC156581	Channel	180,498	9,627,009	1,364	1.0	2.1	0.3	39
PS19_07 RC156585 Channel 180,500 9,627,011 1,364 1.0 1.3 0.3 3 PS19_08 RC156586 Channel 180,501 9,627,011 1,364 1.0 1.6 0.6 6 PS19_09 RC156587 Channel 180,502 9,627,011 1,364 1.0 1.4 0.3 4 PS19_09 RC156588 Channel 180,502 9,627,011 1,364 1.0 8.4 1.6 0.3 4 PS19_10 RC156588 Channel 180,505 9,627,010 1,363 1.0 0.7 0.3 2 PS19_12 RC156590 Channel 180,505 9,627,008 1,363 1.0 0.6 0.3 4 PS19_13 RC156593 Channel 180,505 9,627,008 1,363 1.0 0.6 0.3 4 PS19_15 RC156594 Channel 180,507 9,627,007 1,363 1.0 0.5 0.3 4 <tr< td=""><td>PS19_05</td><td>RC156583</td><td>Channel</td><td>180,499</td><td>9,627,010</td><td>1,364</td><td>1.0</td><td>1.9</td><td>0.3</td><td>44</td></tr<>	PS19_05	RC156583	Channel	180,499	9,627,010	1,364	1.0	1.9	0.3	44
PS19_08 RC156586 Channel 180,501 9,627,011 1,364 1.0 1.6 0.6 6 PS19_09 RC156587 Channel 180,502 9,627,011 1,364 1.0 1.4 0.3 4 PS19_09 RC156587 Channel 180,503 9,627,011 1,364 1.0 8.4 1.6 1.6 0.3 4 PS19_10 RC156588 Channel 180,503 9,627,010 1,363 1.0 8.4 1.6 1.6 0.3 2 PS19_12 RC156590 Channel 180,505 9,627,009 1,363 1.0 0.7 0.3 2 PS19_14 RC156593 Channel 180,506 9,627,008 1,363 1.0 0.6 0.3 4 PS19_15 RC156593 Channel 180,507 9,627,007 1,363 1.0 0.6 0.3 4 PS19_16 RC156594 Channel 180,513 9,627,007 1,363 1.0 0.3	PS19_06	RC156584	Channel	180,499	9,627,011	1,365	1.0	0.8	0.3	23
PS19_09 RC156587 Channel 180,502 9,627,011 1,364 1.0 1.4 0.3 4 PS19_10 RC156588 Channel 180,503 9,627,011 1,364 1.0 8.4 1.6 1.6 PS19_12 RC156590 Channel 180,505 9,627,010 1,363 1.0 1.2 0.3 2 PS19_13 RC156591 Channel 180,505 9,627,009 1,363 1.0 0.7 0.3 2 PS19_13 RC156591 Channel 180,505 9,627,008 1,363 1.0 0.6 0.3 4 PS19_15 RC156593 Channel 180,507 9,627,007 1,363 1.0 0.8 0.3 4 PS19_16 RC156593 Channel 180,507 9,627,007 1,363 1.0 0.8 0.3 4 PS19_16 RC156594 Channel 180,519 9,627,007 1,363 1.0 0.9 0.3 8 PS19_	PS19_07	RC156585	Channel	180,500	9,627,011	1,364	1.0	1.3	0.3	36
PS19_10 RC156588 Channel 180,503 9,627,011 1,364 1.0 8.4 1.6 1.6 PS19_12 RC156590 Channel 180,505 9,627,010 1,363 1.0 1.2 0.3 2 PS19_13 RC156591 Channel 180,505 9,627,009 1,363 1.0 0.7 0.3 2 PS19_13 RC156591 Channel 180,505 9,627,009 1,363 1.0 0.6 0.3 4 PS19_14 RC156592 Channel 180,506 9,627,008 1,363 1.0 0.6 0.3 4 PS19_15 RC156593 Channel 180,507 9,627,007 1,363 1.0 0.6 0.3 4 PS19_15 RC156594 Channel 180,509 9,627,007 1,363 1.0 0.9 0.3 4 PS19_17 RC156599 Channel 180,512 9,627,007 1,362 1.0 0.9 0.3 3 PS19_	PS19_08	RC156586	Channel	180,501	9,627,011	1,364	1.0	1.6	0.6	65
PS19_12 RC156590 Channel 180,505 9,627,010 1,363 1.0 1.2 0.3 2 PS19_13 RC156591 Channel 180,505 9,627,009 1,363 1.0 0.7 0.3 2 PS19_14 RC156592 Channel 180,505 9,627,008 1,363 1.0 0.6 0.3 4 PS19_14 RC156593 Channel 180,507 9,627,008 1,363 1.0 0.6 0.3 4 PS19_15 RC156593 Channel 180,507 9,627,007 1,363 1.0 0.8 0.3 4 PS19_15 RC156594 Channel 180,508 9,627,007 1,363 1.0 0.8 0.3 4 PS19_17 RC156596 Channel 180,518 9,627,007 1,363 1.0 0.9 0.3 8 PS19_20 RC156600 Channel 180,513 9,627,005 1,362 1.0 1.9 0.3 3 PS19_22	PS19_09	RC156587	Channel	180,502	9,627,011	1,364	1.0	1.4	0.3	44
PS19_13 RC156591 Channel 180,505 9,627,009 1,363 1.0 0.7 0.3 2 PS19_14 RC156592 Channel 180,506 9,627,008 1,363 1.0 0.6 0.3 4 PS19_14 RC156593 Channel 180,507 9,627,008 1,363 1.0 0.6 0.3 4 PS19_15 RC156593 Channel 180,507 9,627,007 1,363 1.0 0.8 0.3 4 PS19_16 RC156594 Channel 180,508 9,627,007 1,363 1.0 0.5 0.3 4 PS19_16 RC156594 Channel 180,508 9,627,007 1,363 1.0 0.9 0.3 4 PS19_17 RC156599 Channel 180,511 9,627,007 1,363 1.0 0.9 0.3 8 PS19_21 RC156600 Channel 180,513 9,627,005 1,362 1.0 1.9 0.3 3 PS19_23	PS19_10	RC156588	Channel	180,503	9,627,011	1,364	1.0	8.4	1.6	165
PS19_14 RC156592 Channel 180,506 9,627,008 1,363 1.0 0.6 0.3 4 PS19_15 RC156593 Channel 180,507 9,627,008 1,363 1.0 0.6 0.3 4 PS19_15 RC156593 Channel 180,507 9,627,008 1,363 1.0 0.8 0.3 4 PS19_16 RC156594 Channel 180,508 9,627,007 1,363 1.0 0.5 0.3 5 PS19_17 RC156596 Channel 180,509 9,627,007 1,363 1.0 0.9 0.3 4 PS19_20 RC156599 Channel 180,511 9,627,005 1,362 1.0 0.9 0.3 8 PS19_21 RC156600 Channel 180,512 9,627,005 1,362 1.0 1.9 0.3 3 PS19_22 RC156601 Channel 180,513 9,627,005 1,362 1.0 3.0 0.8 3 PS19_23	PS19_12	RC156590	Channel	180,505	9,627,010	1,363	1.0	1.2	0.3	25
PS19_15 RC156593 Channel 180,507 9,627,008 1,363 1.0 0.8 0.3 4 PS19_16 RC156594 Channel 180,508 9,627,007 1,363 1.0 0.5 0.3 5 PS19_16 RC156594 Channel 180,508 9,627,007 1,363 1.0 0.5 0.3 5 PS19_17 RC156596 Channel 180,509 9,627,007 1,363 1.0 0.9 0.3 4 PS19_20 RC156599 Channel 180,511 9,627,005 1,362 1.0 0.9 0.3 8 PS19_21 RC156600 Channel 180,512 9,627,005 1,362 1.0 1.9 0.3 3 PS19_21 RC156601 Channel 180,513 9,627,005 1,362 1.0 3.0 0.8 1 PS19_23 RC156601 Channel 180,515 9,627,006 1,362 1.0 0.6 0.3 3 PS19_24	PS19_13	RC156591	Channel	180,505	9,627,009	1,363	1.0	0.7	0.3	28
PS19_16 RC156594 Channel 180,508 9,627,007 1,363 1.0 0.5 0.3 5 PS19_17 RC156596 Channel 180,509 9,627,007 1,363 1.0 0.9 0.3 4 PS19_17 RC156596 Channel 180,509 9,627,006 1,363 1.0 0.9 0.3 4 PS19_20 RC156599 Channel 180,511 9,627,006 1,362 1.0 0.9 0.3 8 PS19_21 RC156600 Channel 180,512 9,627,005 1,362 1.0 0.9 0.3 3 PS19_22 RC156601 Channel 180,513 9,627,005 1,362 1.0 3.0 0.8 1 PS19_23 RC156602 Channel 180,514 9,627,006 1,362 1.0 1.0 0.3 3 PS19_24 RC156603 Channel 180,515 9,627,007 1,361 1.0 0.6 0.3 2 PS19_24	PS19_14	RC156592	Channel	180,506	9,627,008	1,363	1.0	0.6	0.3	48
PS19_17 RC156596 Channel 180,509 9,627,007 1,363 1.0 0.9 0.3 4 PS19_20 RC156599 Channel 180,511 9,627,006 1,362 1.0 0.9 0.3 8 PS19_20 RC156609 Channel 180,511 9,627,005 1,362 1.0 0.9 0.3 8 PS19_21 RC156600 Channel 180,512 9,627,005 1,362 1.0 1.9 0.3 3 PS19_22 RC156601 Channel 180,513 9,627,005 1,362 1.0 3.0 0.8 1 PS19_23 RC156602 Channel 180,514 9,627,006 1,362 1.0 3.0 0.8 3 PS19_24 RC156603 Channel 180,515 9,627,007 1,361 1.0 0.6 0.3 3 PS19_25 RC156604 Channel 180,516 9,627,007 1,361 1.0 0.6 0.3 2 PS19_26	PS19_15	RC156593	Channel	180,507	9,627,008	1,363	1.0	0.8	0.3	45
PS19_20 RC156599 Channel 180,511 9,627,006 1,362 1.0 0.9 0.3 8 PS19_21 RC156600 Channel 180,512 9,627,005 1,362 1.0 0.9 0.3 3 PS19_21 RC156600 Channel 180,512 9,627,005 1,362 1.0 1.9 0.3 3 PS19_22 RC156601 Channel 180,513 9,627,005 1,362 1.0 3.0 0.8 1 PS19_23 RC156602 Channel 180,514 9,627,006 1,362 1.0 1.0 0.3 3 PS19_24 RC156603 Channel 180,515 9,627,006 1,362 1.0 0.6 0.3 7 PS19_24 RC156604 Channel 180,516 9,627,007 1,361 1.0 0.6 0.3 7 PS19_25 RC156604 Channel 180,517 9,627,007 1,361 1.0 0.6 0.3 2 PS19_26	PS19_16	RC156594	Channel	180,508	9,627,007	1,363	1.0	0.5	0.3	51
PS19_21 RC156600 Channel 180,512 9,627,005 1,362 1.0 1.9 0.3 3 PS19_22 RC156601 Channel 180,513 9,627,005 1,362 1.0 3.0 0.8 1 PS19_23 RC156602 Channel 180,514 9,627,006 1,362 1.0 1.0 0.3 3 PS19_23 RC156602 Channel 180,514 9,627,006 1,362 1.0 1.0 0.3 3 PS19_24 RC156603 Channel 180,515 9,627,006 1,362 1.0 0.6 0.3 3 PS19_25 RC156604 Channel 180,516 9,627,007 1,361 1.0 0.6 0.3 2 PS19_25 RC156605 Channel 180,517 9,627,007 1,361 1.0 0.6 0.3 2 PS19_26 RC156605 Channel 180,517 9,627,007 1,361 1.0 1.1 0.3 1	PS19_17	RC156596	Channel	180,509	9,627,007	1,363	1.0	0.9	0.3	43
PS19_21 RC156600 Channel 180,512 9,627,005 1,362 1.0 1.9 0.3 3 PS19_22 RC156601 Channel 180,513 9,627,005 1,362 1.0 3.0 0.8 1 PS19_23 RC156602 Channel 180,514 9,627,006 1,362 1.0 1.0 0.3 3 PS19_23 RC156602 Channel 180,514 9,627,006 1,362 1.0 1.0 0.3 3 PS19_24 RC156603 Channel 180,515 9,627,006 1,362 1.0 0.6 0.3 3 PS19_25 RC156604 Channel 180,515 9,627,007 1,361 1.0 0.6 0.3 2 PS19_25 RC156604 Channel 180,517 9,627,007 1,361 1.0 0.6 0.3 2 PS19_26 RC156605 Channel 180,517 9,627,007 1,361 1.0 1.1 0.3 1	PS19_20	RC156599	Channel	180,511	9,627,006	1,362	1.0	0.9	0.3	85
PS19_23 RC156602 Channel 180,514 9,627,006 1,362 1.0 1.0 0.3 3 PS19_24 RC156603 Channel 180,515 9,627,006 1,362 1.0 0.6 0.3 3 PS19_24 RC156604 Channel 180,515 9,627,007 1,361 1.0 0.6 0.3 3 PS19_25 RC156604 Channel 180,516 9,627,007 1,361 1.0 0.6 0.3 2 PS19_26 RC156605 Channel 180,517 9,627,007 1,361 1.0 0.6 0.3 2		RC156600	Channel	180,512	9,627,005	1,362	1.0	1.9	0.3	34
PS19_24 RC156603 Channel 180,515 9,627,006 1,362 1.0 0.6 0.3 7 PS19_25 RC156604 Channel 180,516 9,627,007 1,361 1.0 0.6 0.3 2 PS19_26 RC156605 Channel 180,517 9,627,007 1,361 1.0 0.6 0.3 2 PS19_26 RC156605 Channel 180,517 9,627,007 1,361 1.0 1.1 0.3 1	PS19_22	RC156601	Channel	180,513	9,627,005	1,362	1.0	3.0	0.8	19
PS19_24 RC156603 Channel 180,515 9,627,006 1,362 1.0 0.6 0.3 7 PS19_25 RC156604 Channel 180,516 9,627,007 1,361 1.0 0.6 0.3 2 PS19_26 RC156605 Channel 180,517 9,627,007 1,361 1.0 0.6 0.3 2 PS19_26 RC156605 Channel 180,517 9,627,007 1,361 1.0 1.1 0.3 1		RC156602	Channel	180,514	9,627,006			1.0	0.3	38
PS19_25 RC156604 Channel 180,516 9,627,007 1,361 1.0 0.6 0.3 2 PS19_26 RC156605 Channel 180,517 9,627,007 1,361 1.0 0.6 0.3 2	PS19_24	RC156603	Channel	180,515	9,627,006	1,362	1.0	0.6	0.3	7
PS19_26 RC156605 Channel 180,517 9,627,007 1,361 1.0 1.1 0.3 1										22
										14
PS19_27 KC156606 Channel 180,518 9,627,008 1,361 1.0 0.6 0.3 1	PS19_27	RC156606	Channel	180,518	9,627,008	1,361	1.0	0.6	0.3	15
										31

			Easting	Northing	Elevation	Sample	Au	Ag	Cu
Survey Tag	Sample ID	Sample Type	UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t	g/t	ppm
Tarra Prospect	t								
TR10_01	RC155850	Channel	178,353	9,631,816	1,076	1.0	5.6	1.4	30
TR10_02	RC155851	Channel	178,352	9,631,817	1,077	1.0	3.8	1.5	72
TR10_03	RC155852	Channel	178,352	9,631,818	1,077	1.0	3.8	0.9	66
TR10_04	RC155853	Channel	178,351	9,631,819	1,078	1.0	6.5	1.4	42
TR10_05	RC155854	Channel	178,351	9,631,820	1,079	1.0	2.4	0.9	76
TR10_06	RC155855	Channel	178,350	9,631,821	1,079	1.0	4.0	0.9	163
TR10_07	RC155856	Channel	178,349	9,631,822	1,079	1.0	4.1	0.9	133
TR10_08	RC155857	Channel	178,349	9,631,822	1,080	1.0	2.9	0.8	142
TR10_09	RC155858	Channel	178,349	9,631,823	1,080	1.0	2.6	0.8	97
TR10_10	RC155859	Channel	178,348	9,631,824	1,080	1.0	3.1	0.7	64
TR10_11	RC155861	Channel	178,348	9,631,825	1,081	1.0	1.9	0.8	71
TR10_12	RC155862	Channel	178,347	9,631,826	1,081	1.0	0.9	0.9	88
TR10_13	RC155863	Channel	178,347	9,631,826	1,082	1.0	1.8	0.9	79
TR10_14	RC155864	Channel	178,346	9,631,827	1,082	1.0	4.4	1.0	100
TR10_15	RC155865	Channel	178,346	9,631,828	1,082	1.0	5.2	1.2	94
TR10_16	RC155866	Channel	178,345	9,631,829	1,083	1.0	3.7	1.0	147
TR10_17	RC155867	Channel	178,345	9,631,830	1,083	1.0	1.8	0.5	55
TR10_18	RC155868	Channel	178,345	9,631,830	1,084	1.0	1.8	0.6	90
TR10_19	RC155869	Channel	178,345	9,631,831	1,084	1.0	3.5	0.9	189
TR10_20	RC155870	Channel	178,348	9,631,834	1,092	1.0	6.4	0.9	98
TR10_21	RC155872	Channel	178,347	9,631,834	1,092	1.0	1.6	0.3	61
TR10_22	RC155873	Channel	178,346	9,631,835	1,092	1.0	1.4	0.3	43
TR10_23	RC155874	Channel	178,345	9,631,836	1,093	1.0	4.1	0.7	74
TR10_24	RC155875	Channel	178,345	9,631,836	1,093	1.0	0.7	0.3	135
TR10_25	RC155876	Channel	178,345	9,631,837	1,094	1.0	1.1	0.5	140
TR10_27	RC155878	Channel	178,345	9,631,839	1,095	1.0	0.9	0.3	144
TR10_28	RC155879	Channel	178,347	9,631,841	1,098	1.0	0.6	0.3	112
TR10_30	RC155881	Channel	178,345	9,631,842	1,098	1.0	0.8	0.6	208
TR10_34	RC155886	Channel	178,339	9,631,842	1,091	1.0	0.5	0.3	154
TR10_35	RC155887	Channel	178,338	9,631,843	1,092	1.0	0.5	0.3	122
TR10_36	RC155888	Channel	178,338	9,631,844	1,093	1.0	0.5	0.3	123
TR12_05	RC155896	Channel	178,579	9,631,733	1,053	1.0	1.3	1.2	163
TR12_06	RC155897	Channel	178,579	9,631,734	1,053	1.0	0.5	0.5	109
TR12_07	RC155898	Channel	178,580	9,631,734	1,052	1.0	1.1	0.5	73
TR12_09	RC155900	Channel	178,582	9,631,735	1,052	1.0	0.5	0.3	54
TR12_10	RC155902	Channel	178,583	9,631,735	1,052	1.0	0.6	0.5	31
TR12_11	RC155903	Channel	178,584	9,631,735	1,051	1.0	0.6	0.3	58
TR12_12	RC155904	Channel	178,584	9,631,736	1,052	1.0	0.8	0.6	186
TR13_02	RC155908	Channel	178,599	9,631,744	1,042	1.0	0.7	0.9	237
TR13_03	RC155909	Channel	178,600	9,631,744	1,042	1.0	3.8	1.2	327
TR13_04	RC155911	Channel	178,601	9,631,744	1,042	1.0	1.8	0.7	81
TR13_05	RC155912	Channel	178,601	9,631,745	1,041	1.0	2.3	0.7	179
TR13_06	RC155913	Channel	178,602	9,631,745	1,041	1.0	1.1	0.5	165
TR13_07	RC155914	Channel	178,603	9,631,746	1,040	1.0	0.5	0.6	170
TR13_10	RC155917	Channel	178,603	9,631,749	1,040	1.0	0.6	1.0	157
TR13_13	RC155920	Channel	178,604	9,631,752	1,039	1.0	0.6	0.9	91
TR13_14	RC155922	Channel	178,604	9,631,753	1,039	1.0	0.5	0.7	200
TR13_30	RC155938	Channel	178,614	9,631,775	1,043	1.0	0.9	1.0	99
TR14_05	RC155944	Channel	178,598	9,631,788	1,059	1.0	0.6	0.8	147
TR14_06	RC155945	Channel	178,598	9,631,788	1,058	1.0	0.9	0.9	124
TR14_18	RC155958	Channel	178,595	9,631,799	1,058	1.0	0.8	0.5	199
TR14_19	RC155959	Channel	178,596	9,631,800	1,058	1.0	0.5	1.4	141

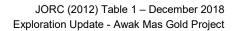


JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

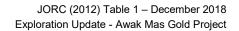
(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling Techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 Sampling of historic sample locations has been carried out by Nusantara using channel and single-point grab samples. A total of 1,794 channel or grab samples were collected by Nusantara, 1,454 of which comprise the three areas of this report, aiming to confirm previous sampling where mapped sample locations could be determined. Where no evidence of historic sampling was evident, samples were collected from exposed surface outcrops. Most samples were taken over an interval length of approximately one (1) metre or composites of sub-intervals. Where this was not possible, a single point grab sample was taken. The process included: Construct new channel or exposure (in the case of road-cuttings) using mechanical trenching (excavator) or open and clean previous channels to
		 expose the outcrop; Take continuous channel or single point grab sample within the available interval (1m, 2m etc); Place sample in calico bag and number using ticket book; Package and send samples to Geoservices Laboratory in Jakarta, and Analyse samples for Au with FAA40 – Fire Assay (40g) and Ag, As, Cu, Mg, Mo, Pb, Sb and Zn with ICP Package Element. No specialised measurement tools, e.g. handheld XRF instrument, were
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 employed. All sampling was carried out under the company's protocols and procedures meeting industry standard practice. Quality Assurance ("QA") and Quality Control ("QC") protocols included the monitoring and analysis of inserted certified reference material, blanks and duplicates samples which to ensure sample representivity.



Criteria	JORC Code explanation	Commentary
	Aspects of the determination of mineralization that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralization types (eg submarine nodules) may warrant disclosure of detailed information.	All Nusantara samples were subjected to the standard procedures of preparation, analytical process and reporting as have been previously undertaken by PT Geoservices LTD at Cikarang – Bekasi, Indonesia.
Drilling Techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	No drilling performed, channel and grab sampling only.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	No drilling performed, channel and grab sampling only.
	Measures taken to maximize sample recovery and ensure representative nature of the samples.	No drilling performed, channel and grab sampling only.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No drilling performed, channel and grab sampling only.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	No drilling performed, channel and grab sampling only.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel etc) photography.	All sample material was geologically assessed and reported in terms of the standard terminology used for Awak Mas Gold Project. Sample reporting has been conducted both qualitatively and quantitatively – full description of lithologies, alteration and comments are recorded, as well as percentage estimates on veining and sulphide amount.

Criteria	JORC Code explanation	Commentary
	The total length and percentage of the relevant intersections logged.	Total length of Nusantara sample intervals has been recorded in the relevant table for reporting exploration results; Significant Assay Table 12Dec2018.xlsx Total cumulative length of all significant channel sample data in this report (>0.1
		g/t Au) is 239m. Single point samples were collected from a further 3 locations reported as being significant (>0.1g/t Au).
Sub- Sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	No drilling undertaken.
Techniques and Sample Preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	No drilling undertaken.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Nusantara samples were prepared at PT Geoservices LTD using their "Total Sample Preparation Package", which included:
		 Samples were weighed, dried at 105°C; Jaw crushed (to nominal 4mm) if required; Whole sample is pulverized via LM5 ring mill pulverisers, and Samples >3kg are split and pulverised in separate lots.
		The nature, quality and appropriateness of the sample preparation technique is consistent with industry standard practices.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	All samples were channel or grab samples, no sub-sampling applicable.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Coarse reject duplicate, coarse blanks, and both intra and umpire laboratory pulp duplicates were used to ensure the sampling is representative and un-biased.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	A sample size of 2.5-5 kg is considered appropriate and representative of the material being sampled given the width and continuity of the intersections and the grain size of the material being collected.
Quality of Assay Data	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is	Current gold analysis by Nusantara has used a 40g charge fire assay method with an AAS finish.
and Laboratory	considered partial or total.	The primary assay laboratory used is PT. Geoservices at Cikarang-Bekasi, Jakarta.
Tests		Additional element analysis included;
		Aqua Regia digest plus ICP elements (GA102_ICP09);



Criteria	JORC Code explanation	Commentary
		• Ag, As, Cu, Mg, Mo, Pb, Sb, and Zn.
		These analyses are total assay methods, which is an industry standard for gold analysis, and an appropriate assay method for this type of deposit.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used or data analysed.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 The following Quality Control ('QC") sampling protocols and insertion rates have been adopted by Nusantara for the current diamond drilling; Certified Refence Material (5%) Coarse Blank Material (2.5%) Coarse Duplicate Samples (5%) Performance of the control samples are regularly monitored, with any disparities investigated and remedied. Acceptable levels of accuracy and precision have been established.
Verification of Sampling and Assaying	The verification of significant intersections by either independent or alternative company personnel.	 For Nusantara, verification protocols involved: Significant intersections were reviewed by the Manager Geology and Senior Geologists following receipt of the assay results. All assay results are processed and validated by the GIS/Database Administrator prior to loading into the database. This includes plotting standard and blank performances, review of duplicate results. Original assay certificates are issued as PDF's for all results and compared against digital CSV files as part of data loading procedure into the database. General Manager Geology reviews all tabulated assay data as the Competent Person for the reporting of Exploration Results.
	The use of twinned holes.	Not applicable.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 For Nusantara, documentation procedures included: Field sampling data is recorded directly into Logging templates in Excel spreadsheet format on laptop computers. Excel spreadsheets are imported to MS Access format for validation and management by the GIS/Database Administrator onsite.

Criteria	JORC Code explanation	Commentary		
		 All sampling data is uploaded and managed via a centralised Dropbox facility with restricted access. 		
	Discuss any adjustment to assay data.	No adjustments have been made to any of the assay data.		
Location of Data Points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Nusantara sample locations were initially located by hand held GPS with an accuracy of about 5-15m, dependent on satellite coverage. All Nusantara sample locations considered to be significant will be located by third party surveyors using Differential Global Positioning System (" DGPS ") or total station electronic EDM equipment to an accuracy of approximately 0.1m if deemed further exploration or drilling work is required.		
		The 3D location of the individual samples is considered to be adequately established, consistent with accepted industry standards		
_	Specification of the grid system used.	All sample data is referenced in the UTM WGS 84 Zone 51 (Southern Hemisphere) coordinate system.		
	Quality and adequacy of topographic control.	Topographic mapping of the Awak Mas Gold Project area by Airborne Laser Scanning (LiDAR) survey was carried out by P.T. Surtech in November 2017. Topographic control now exists to a vertical and horizontal accuracy of 0.15m and has been incorporated into all sample location references where possible.		
Data Spacing and	Data spacing for reporting of Exploration Results.	Prospect sample spacing is on a variable basis to verify historical exploration results and help establish future exploration programs.		
Distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Sampling is of an initial reconnaissance nature and spacing is not sufficient at this early exploration phase to establish geological or grade continuity.		
	Whether sample compositing has been applied.	Channel samples were composited to specific intervals at the point of collection where individual outcrop length of exposure allowed.		
Orientation of Data in Relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Single point grab samples were unable to be orientated due to insufficient exposure of the mineralisation. Where sufficient outcrop exposure existed, sampling was performed at orientations perpendicular to the strike of the mineralised host rocks.		

Criteria		JORC Code explanation	Commentary
Geological Structure		If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Sampling is at an early stage and the geological structure and mineralisation orientation has not been established.
Sample		The measures taken to ensure sample security.	Chain of Custody was managed by Nusantara whereby;
Security			 All samples are placed into calico bags with sample tickets and clear sample ID numbering on the outside; Samples were bagged into polyweave sacks, zip tied, with the sample numbers written on the outside of the sack; Samples were stored onsite within a locked facility ready for dispatch; Prior to sample dispatch, the sample numbers, duplicates, standards were checked against the dispatch form; Samples were freighted by road to Belopa, and then air freighted to the Geoservices laboratory in Jakarta, and Geoservices in Jakarta notified Nusantara when the samples had been securely received intact.
Audits Reviews	or	The results of any audits or reviews of sampling techniques and data.	The results are part of preliminary exploration orientation work and reviews are not considered relevant at this early stage.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral Tenement and Land Tenure		The Awak Mas Gold Project includes the three main deposit areas of Awak Mas, Salu Bulo and Tarra for which current mineral Resources exist and have been reported to JORC Code (2012) guidelines.
Status	park and environmental settings.	Nusantara Resources Limited holds a 100% beneficial interest in the Awak Mas Gold Project via a 7th Generation Contract of Work (" CoW ") through its wholly owned subsidiary PT Masmindo Dwi Area.
		PT Masmindo Dwi Area is an Indonesian foreign investment company, which owns the exploration and mining rights to the Awak Mas Project through the CoW with the Government of the Republic of Indonesia.
		The Awak Mas Gold Project has a long history involving multiple companies through direct ownership, joint venture farm-ins, option to purchase agreements, or equity arrangements;
		 Battle Mountain discovered the Awak Mas deposit in 1991 after earning a 60% equity in the original partnership between New Hope and PT Asminco; Lone Star (1994) acquired the equity of both Battle Mountain and New Hope; Gascoyne structured an agreement which combined the various equities under Masmindo; Placer (1998) entered, and then later withdrew from a Joint Venture ("JV") with Masmindo; Vista Gold (2004) purchased 100% of Masmindo; Pan Asia (2009), now One Asia, acquired a 60% interest via a JV with Vista Gold upon completion of a Feasibility Study ("FS") and Environmental Impact Assessment ("AMDAL"); One Asia (2013) through its subsidiary Awak Mas Holdings purchased 100% of the Project from Vista Gold, and Nusantara Resources Limited (formerly Awak Mas Holdings) demerged from One Asia with a 100% interest in the Awak Mas Gold Project and listed on the Australian Securities Exchange ("ASX") on the 2nd August 2017.
		The Nusantara IPO Prospectus dated 15 June 2017 as lodged on ASX on 1 August 2017 priors an overview of all significant previous exploration on the CoW. The 7th Generation CoW was granted on 19 February 1998 and covers an area of 14,390 ha.

Criteria	JORC Code explanation	Commentary
		The CoW allows for 100% ownership and is located within a non-forested area – (APL) Land for Other Uses.
		The AMDAL for the project has been approved and Environment Permit Issued April 2017. The Competent Person is not aware of any other agreements that are material to the Project.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate	The CoW defines a construction period of 3 years and an operating period of 30 years.
	in the area.	The Competent Person has not been advised of any environmental liabilities associated with the Awak Mas Gold Project at this time.
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	Previous exploration work at Awak Mas Gold Project has been characterised by surface geochemical studies and geological mapping, which identified numerous mineralised targets, three of which have become mineral resources. The exploration prospects include the three areas of Salu Kombong, Puncak Utara and Puncak Selatan.
		Prior to One Asia, the most recent exploration work was conducted by Placer Dome in 1999, who completed a core drilling program based on the surface exploration results.
		Infill diamond core drilling by One Asia in 2011-2013 at Awak Mas resulted in the completion of a mineral resource estimate by Tetra Tech which was reported in accordance with the JORC Code (2012) guidelines.
Geology	Deposit type, geological setting and style of mineralization.	The geological setting and mineralisation style at Awak Mas Gold Project is described as being associated with a high level, low sulphidation hydrothermal system has notably developed at the Awak Mas, Salu Bulo and Tarra deposits. A strong sub-vertical fracture control over-print event has then channelled mineralising fluids.
		The mineralising fluids have exploited these pathways with limited lateral migration along foliation parallel shallowly dipping favourable strata (predominantly hematitic mudstone) and along low angle thrusts.
		The multi-phase gold mineralisation is characterised by milled and crackle breccias, vuggy quartz infill, and stockwork quartz veining with distinct sub-vertical feeder structures.

Criteria	JORC Code explanation	Commentary
		Dominant host lithologies for mineralisation are a sequence of chloritic and intercalating hematitic meta-sedimentary rocks metamorphosed to greenschist grade. The geology of the three exploration prospect areas all demonstrate similar geological traits as the main deposits; with the notable exception of the occurrence of elevated Cu at Salu Kombong which appears to be related to fine sheeted to stock work quartz veins with associated secondary copper (malachite) and what is possibly primary enargite which is thought to be possibly associated to nearby late stage intrusives.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	No drilling has been completed by Nusantara on the prospect areas that are part of this Reporting of Exploration Results.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	No drilling has been completed by Nusantara on the prospect areas that are part of this Reporting of Exploration Results.
Data Aggregation Methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	No weighting or grade cutting techniques have been used in the Reporting of Exploration Results.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No aggregation of assay results has been used in the Reporting of Exploration Results.

Criteria	JORC Code explanation	Commentary
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Metal equivalent values have not been used.
Relationship between Mineralization Widths and Intercept Lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralization with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	No drilling has been completed on the prospect areas, with the collection of channel or grab samples only. Sampling is at an early stage and the geometry of the mineralisation has not been established.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Relevant sample location plans are included within the main text of this ASX release. All mineralised sample intervals used in the reporting of the Exploration Results are tabulated in Appendix 1.
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All exploration results from the current sampling program have been reported.
Other Substantive Exploration Data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Historic surface geological mapping and grab or channel sampling have been used to build the geological framework for this surface sampling program.
Further Work T la d D e fu	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	The Awak Mas Gold Project is an active growth project with additional areas to those reported having been identified for further exploration. Within the immediate area of these three exploration prospects, additional and ongoing work will be completed contiguously with the work to date. Planned further exploration sampling and mapping will focus on defining the known areas through the opening up of exposures, manual trenching for additional confirmation of geology and sampling after which mechanical trenching may be

Criteria	JORC Code explanation	Commentary
		performed. The results of this further work will be used to assess whether drill testing is warranted.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Not applicable to this reporting of Exploration results, no Mineral Resource estimate has been conducted.

APPENDIX 1 Awak Mas Gold Project – Significant Exploration Results Tabulation (Au ≥ 0.1 ppm)

Survey Tag	Sample _Id	Sample Type	Easting	Northing	Elevation	Interval	Au (ppm)	Ag (ppm)	As (ppm)	Cu (ppm)	Mg (%)	Mo (ppm)	Zn (ppm)	Prospect	Domain	Litho
PS14-30	RC155681	Channel	180,340	9,627,028	1,456	1	0.18	0.25	85	16	0.02	7	16	Puncak Selatan	Puncak Selatan	Siltstone
PS14-31	RC155683	Channel	180,339	9,627,029	1,457	1	0.11	0.25	99	9	0.03	19	13	Puncak Selatan	Puncak Selatan	Siltstone
PS14-32	RC155684	Channel	180,338	9,627,030	1,457	1	0.26	0.25	46	18	0.03	11	14	Puncak Selatan	Puncak Selatan	Siltstone
PS15_02	RC156336	Channel	180,352	9,626,990	1,440	1	0.12	0.25	61	14	0.02	1	21	Puncak Selatan	Puncak Selatan	Siltstone
PS15_05	RC156339	Channel	180,354	9,626,991	1,439	1	0.1	0.25	24	9	0.01	3	11	Puncak Selatan	Puncak Selatan	Siltstone
PS15_06	RC156340	Channel	180,355	9,626,992	1,439	1	0.81	0.25	82	21	0.01	2	28	Puncak Selatan	Puncak Selatan	Quartz Vein
PS15_07	RC156341	Channel	180,356	9,626,992	1,439	1	0.93	0.25	106	22	0.01	7	25	Puncak Selatan	Puncak Selatan	Hem Mudstone
PS15_08	RC156342	Channel	180,357	9,626,993	1,438	1	0.11	0.25	211	35	0.01	10	53	Puncak Selatan	Puncak Selatan	Hem Mudstone
PS16_28	RC156377	Channel	180,392	9,627,021	1,430	1	1.2	0.6	29	44	0.05	1	89	Puncak Selatan	Puncak Selatan	Siltstone
PS16_29	RC156378	Channel	180,392	9,627,022	1,430	1	0.51	0.6	24	47	0.14	1	102	Puncak Selatan	Puncak Selatan	Siltstone
PS16_30	RC156379	Channel	180,393	9,627,023	1,429	1	0.6	0.25	34	24	0.03	1	53	Puncak Selatan	Puncak Selatan	Siltstone
PS16_32	RC156381	Channel	180,394	9,627,024	1,428	1	0.86	0.5	25	43	0.16	1	106	Puncak Selatan	Puncak Selatan	Siltstone
PS16_33	RC156382	Channel	180,393	9,627,025	1,427	1	0.56	0.6	28	62	0.63	1	135	Puncak Selatan	Puncak Selatan	Siltstone
PS16_34	RC156383	Channel	180,393	9,627,026	1,427	1	0.14	0.6	32	68	1.18	1	155	Puncak Selatan	Puncak Selatan	Siltstone
PS16_35	RC156384	Channel	180,393	9,627,027	1,427	1	0.25	0.25	35	66	0.96	1	144	Puncak Selatan	Puncak Selatan	Siltstone
PS16_37	RC156386	Channel	180,393	9,627,029	1,426	1	0.81	0.25	19	54	0.39	1	118	Puncak Selatan	Puncak Selatan	Siltstone
PS16_38	RC156387	Channel	180,393	9,627,030	1,426	1	0.62	0.25	27	54	0.7	1	119	Puncak Selatan	Puncak Selatan	Siltstone
PS16_42	RC156392	Channel	180,393	9,627,034	1,425	1	0.17	0.25	86	50	0.36	1	114	Puncak Selatan	Puncak Selatan	Siltstone
PS16_45	RC156395	Channel	180,393	9,627,037	1,424	1	0.31	0.25	62	54	0.26	1	95	Puncak Selatan	Puncak Selatan	Siltstone
PS16_46	RC156396	Channel	180,393	9,627,038	1,424	1	0.11	0.25	97	74	0.97	1	121	Puncak Selatan	Puncak Selatan	Siltstone
PS16_47	RC156397	Channel	180,393	9,627,039	1,423	1	0.17	0.5	105	59	0.18	1	81	Puncak Selatan	Puncak Selatan	Quartz Vein
PS16_48	RC156398	Channel	180,393	9,627,040	1,423	1	0.9	0.25	86	37	0.21	3	69	Puncak Selatan	Puncak Selatan	Quartz Vein
PS16_49	RC156399	Channel	180,393	9,627,040	1,422	1	0.5	0.25	23	6	0.01	1	22	Puncak Selatan	Puncak Selatan	Quartz Vein
PS16_50	RC156400	Channel	180,393	9,627,041	1,422	1	0.22	0.25	7	2	0.01	1	7	Puncak Selatan	Puncak Selatan	Quartz Vein
PS16_52	RC156402	Channel	180,393	9,627,043	1,421	1	1.47	0.7	68	12	0.02	7	34	Puncak Selatan	Puncak Selatan	Quartz Vein
PS16_53	RC156404	Channel	180,393	9,627,044	1,421	1	1.5	0.6	76	28	0.02	5	45	Puncak Selatan	Puncak Selatan	Siltstone
PS16_54	RC156405	Channel	180,393	9,627,045	1,421	1	1.56	0.5	79	26	0.03	6	48	Puncak Selatan	Puncak Selatan	Siltstone
PS16_55	RC156406	Channel	180,393	9,627,046	1,421	1	0.8	0.25	105	45	0.03	1	52	Puncak Selatan	Puncak Selatan	Siltstone
PS16_56	RC156407	Channel	180,393	9,627,047	1,420	1	2.22	0.25	110	54	0.03	6	68	Puncak Selatan	Puncak Selatan	Siltstone
PS16_57	RC156408	Channel	180,393	9,627,048	1,420	1	0.92	0.25	88	42	0.02	5	62	Puncak Selatan	Puncak Selatan	Siltstone
PS16_58	RC156409	Channel	180,393	9,627,049	1,420	1	0.12	0.25	80	57	0.09	1	94	Puncak Selatan	Puncak Selatan	Siltstone
PS17_01	RC156474	Channel	180,462	9,627,027	1,382	1	0.11	0.25	41	36	0.6	0	91	Puncak Selatan	Puncak Selatan	Siltstone
PS17_12	RC156486	Channel	180,460	9,627,016	1,383	1	0.1	0.25	39	30	0.28	0	47	Puncak Selatan	Puncak Selatan	Siltstone
PS17_13	RC156487	Channel	180,459	9,627,015	1,383	1	0.21	0.25	31	48	0.53	0	104	Puncak Selatan	Puncak Selatan	Siltstone
PS18_21	RC156556	Channel	180,501	9,627,064	1,390	1	0.19	0.25	32	13	0.03	0	15	Puncak Selatan	Puncak Selatan	Diorite
PS18_22	RC156557	Channel	180,501	9,627,063	1,390	1	0.25	0.25	40	19	0.04	0	13	Puncak Selatan	Puncak Selatan	Diorite
	RC156558	Channel	180,502	9,627,063	1,389	1	0.14	0.52	41	21	0.48	0	68	Puncak Selatan	Puncak Selatan	Diorite
	RC156562	Channel	180,505	9,627,062	1,388	1	0.13	0.6	40	58	0.37	0	42	Puncak Selatan	Puncak Selatan	Diorite

Survey Tag	Sample_Id	Sample Type	Easting	Northing	Elevation	Interval	Au (ppm)	Ag (ppm)	As (ppm)	Cu (ppm)	Mg (%)	Mo (ppm)	Zn (ppm)	Prospect	Domain	Litho
PS19_02	RC156579	Channel	180,497	9,627,008	1,364	1	0.29	0.25	132	45	0.62	0	81	Puncak Selatan	Puncak Selatan	Siltstone
PS19_03	RC156580	Channel	180,497	9,627,009	1,364	1	0.59	0.25	166	46	0.12	0	82	Puncak Selatan	Puncak Selatan	Siltstone
PS19_04	RC156581	Channel	180,498	9,627,009	1,364	1	2.12	0.25	72	39	0.06	0	67	Puncak Selatan	Puncak Selatan	Siltstone
PS19_05	RC156583	Channel	180,499	9,627,010	1,364	1	1.9	0.25	97	44	0.07	0	79	Puncak Selatan	Puncak Selatan	Siltstone
PS19_06	RC156584	Channel	180,499	9,627,011	1,365	1	0.76	0.25	63	23	0.04	0	65	Puncak Selatan	Puncak Selatan	Siltstone
PS19_07	RC156585	Channel	180,500	9,627,011	1,364	1	1.34	0.25	87	36	0.06	0	66	Puncak Selatan	Puncak Selatan	Siltstone
PS19_08	RC156586	Channel	180,501	9,627,011	1,364	1	1.63	0.58	94	65	0.07	0	140	Puncak Selatan	Puncak Selatan	Siltstone
PS19 09	RC156587	Channel	180,502	9,627,011	1,364	1	1.43	0.25	103	44	0.07	0	112	Puncak Selatan	Puncak Selatan	Siltstone
PS19_10	RC156588	Channel	180,503	9,627,011	1,364	1	8.43	1.56	280	165	0.07	0	510	Puncak Selatan	Puncak Selatan	Siltstone
PS19_12	RC156590	Channel	180,505	9,627,010	1,363	1	1.17	0.25	67	25	0.03	0	44	Puncak Selatan	Puncak Selatan	Siltstone
PS19_13	RC156591	Channel	180,505	9,627,009	1,363	1	0.71	0.25	71	28	0.06	0	43	Puncak Selatan	Puncak Selatan	Siltstone
	RC156592	Channel	180,506	9,627,008	1,363	1	0.57	0.25	150	48	0.22	0	67	Puncak Selatan	Puncak Selatan	Siltstone
PS19_15	RC156593	Channel	180,507	9,627,008	1,363	1	0.79	0.25	121	45	0.11	0	95	Puncak Selatan	Puncak Selatan	Siltstone
PS19 16	RC156594	Channel	180,508	9,627,007	1,363	1	0.48	0.25	135	51	0.29	0	123	Puncak Selatan	Puncak Selatan	Siltstone
 PS19_17	RC156596	Channel	180,509	9,627,007	1,363	1	0.9	0.25	139	43	0.06	0	85	Puncak Selatan	Puncak Selatan	Siltstone
PS19 18	RC156597	Channel	180,510	9,627,007	1,362	1	0.3	0.25	102	47	0.12	0	105	Puncak Selatan	Puncak Selatan	Siltstone
PS19 19	RC156598	Channel	180,511	9,627,006	1,362	1	0.41	0.25	147	68	0.37	0	172	Puncak Selatan	Puncak Selatan	Siltstone
PS19 20	RC156599	Channel	180,511	9,627,006	1,362	1	0.86	0.25	103	85	0.11	0	150	Puncak Selatan	Puncak Selatan	Siltstone
 PS19_21	RC156600	Channel	180,512	9,627,005	1,362	1	1.9	0.25	51	34	0.01	0	56	Puncak Selatan	Puncak Selatan	Siltstone
PS19 22	RC156601	Channel	180,513	9,627,005	1,362	1	3.03	0.82	85	19	0.03	3	106	Puncak Selatan	Puncak Selatan	Siltstone
 PS19_23	RC156602	Channel	180,514	9,627,006	1,362	1	1.01	0.25	42	38	0.03	2		Puncak Selatan	Puncak Selatan	Siltstone
PS19 24	RC156603	Channel	180,515	9,627,006	1,362	1	0.63	0.25	79	7	0.01	18	29	Puncak Selatan	Puncak Selatan	Siltstone
 PS19_25	RC156604	Channel	180,516	9,627,007	1,361	1	0.62	0.25	67	22	0.01	8	32	Puncak Selatan	Puncak Selatan	Siltstone
PS19 26	RC156605	Channel	180,517	9,627,007	1,361	1	1.05	0.25	50	14	0.01	9	30	Puncak Selatan	Puncak Selatan	Siltstone
PS19 27	RC156606	Channel	180,518	9,627,008	1,361	1	0.57	0.25	45	15	0.01	5		Puncak Selatan	Puncak Selatan	Siltstone
PS19 28	RC156608	Channel	180,518	9,627,008	1,361	1	0.94	0.53	87	31	0.04	6	48	Puncak Selatan	Puncak Selatan	Siltstone
 PS19_29	RC156609	Channel	180,519	9,627,009	1,361	1	0.33	0.25	102	43	0.03	0	50	Puncak Selatan	Puncak Selatan	Siltstone
 PU46-105	RC155607	Channel	180,840	9,628,609	1,151	1	0.5	0.25	10	65	1.13	1	77	Puncak Utara	Puncak Utara	Siltstone
PU46-106	RC155608	Channel	180,841	9,628,610	1,151	1	0.81	0.25	4	20	0.09	1	65	Puncak Utara	Puncak Utara	Siltstone
PU46-107	RC155609	Channel	180,842	9,628,609	1,151	1	0.64	0.25	11	62	0.49	1	67	Puncak Utara	Puncak Utara	Siltstone
PU46-115	RC155618	Channel	180,849	9,628,606	1,152	1	0.16	0.25	5	72	3.1	1	65	Puncak Utara	Puncak Utara	Siltstone
PU46-7	RC155500	Channel	180,750	9,628,613	1,179	1	0.1	0.25	10	73	1.45	1		Puncak Utara	Puncak Utara	Siltstone
PU46-84	RC155584	Channel	180,822	9,628,607	1,156	1	0.17	0.6	11	42	0.61	1	57	Puncak Utara	Puncak Utara	Siltstone
PU46-85	RC155585	Channel	180,823	9,628,607	1,156	1	0.1	0.25	9	54	0.84	1		Puncak Utara	Puncak Utara	Siltstone
PU46-92	RC155593	Channel	180,830	9,628,605	1,159	1	0.96	0.6	12	59	1.55	1		Puncak Utara	Puncak Utara	Siltstone
PU46-93	RC155594	Channel	180,831	9,628,605	1,159	1	0.55	0.25	15	100	1.24	1		Puncak Utara	Puncak Utara	Siltstone
PU47 100	RC156247	Channel	180,875	9,628,299	1,282	1	0.79	0.25	5	89	1.81	1		Puncak Utara	Puncak Utara	Siltstone
PU47_112	RC156260	Channel	180,868	9,628,292	1,288	1	1.04	0.25	13	90	1.19	1		Puncak Utara	Puncak Utara	Siltstone
PU47 79	RC156193	Channel	180,889	9,628,311	1,271	1	0.23	0.25	3	58	2.46	1		Puncak Utara	Puncak Utara	Mudstone
PU47 80	RC156194	Channel	180,889	9,628,310	1,271	1	0.46	0.25	6		2.41	1		Puncak Utara	Puncak Utara	Mudstone

Survey Tag	Sample_Id	Sample Type	Easting	Northing	Elevation	Interval	Au (ppm)	Ag (ppm)	As (ppm)	Cu (ppm)	Mg (%)	Mo (ppm)	Zn (ppm)	Prospect	Domain	Litho
PU47_91	RC156237	Channel	180,881	9,628,305	1,278	1	1.42	0.25	7	82	0.6	1	52	Puncak Utara	Puncak Utara	Siltstone
PU47_92	RC156238	Channel	180,881	9,628,304	1,278	1	1.75	0.25	7	60	0.42	1	64	Puncak Utara	Puncak Utara	Siltstone
PU47_93	RC156239	Channel	180,880	9,628,303	1,279	1	0.8	0.25	11	69	0.54	1	81	Puncak Utara	Puncak Utara	Siltstone
PU47_94	RC156240	Channel	180,880	9,628,303	1,279	1	0.88	0.25	7	48	0.67	1	66	Puncak Utara	Puncak Utara	Siltstone
PU47_95	RC156242	Channel	180,879	9,628,302	1,279	1	1.82	0.6	9	96	0.27	1	57	Puncak Utara	Puncak Utara	Siltstone
PU47_98	RC156245	Channel	180,876	9,628,301	1,280	1	1.46	0.25	10	73	0.16	1	61	Puncak Utara	Puncak Utara	Siltstone
PU47_99	RC156246	Channel	180,876	9,628,300	1,281	1	1.73	0.25	7	75	0.09	1	67	Puncak Utara	Puncak Utara	Siltstone
PU47-1	RC155685	Channel	180,964	9,628,327	1,209	1	0.14	0.25	16	60	1.31	1	86	Puncak Utara	Puncak Utara	Siltstone
PU47-11	RC155695	Channel	180,955	9,628,323	1,211	1	0.2	0.25	6	90	2.23	1	88	Puncak Utara	Puncak Utara	Silstone
PU47-15	RC155700	Channel	180,951	9,628,321	1,212	1	0.42	0.25	11	88	2.25	1	98	Puncak Utara	Puncak Utara	Mudstone
PU47-16	RC155701	Channel	180,950	9,628,321	1,212	1	4.43	1.1	52	154	0.28	1	78	Puncak Utara	Puncak Utara	Mudstone
PU47-17	RC155702	Channel	180,949	9,628,320	1,213	1	1.07	0.25	37	65	0.45	1	83	Puncak Utara	Puncak Utara	Siltstone
PU47-18	RC155703	Channel	180,948	9,628,320	1,213	1	1.51	0.7	34	139	0.96	1	122	Puncak Utara	Puncak Utara	Siltstone
PU47-19	RC155704	Channel	180,948	9,628,320	1,213	1	1.69	0.8	22	125	1.29	1	93	Puncak Utara	Puncak Utara	Mudstone
PU47-2	RC155686	Channel	180,963	9,628,326	1,209	1	0.82	21	16	83	0.81	1	94	Puncak Utara	Puncak Utara	Siltstone
PU47-20	RC155705	Channel	180,947	9,628,320	1,213	1	3.97	1.3	16	98	1.01	1	84	Puncak Utara	Puncak Utara	Mudstone-Silstone
PU47-21	RC155706	Channel	180,946	9,628,320	1,214	1	0.12	6.3	41	147	1.03	1	91	Puncak Utara	Puncak Utara	Mudstone-Silstone
PU47-29	RC155715	Channel	180,938	9,628,319	1,217	1	0.21	0.25	29	114	1.4	1	74	Puncak Utara	Puncak Utara	Mudstone-Silstone
PU47-3	RC155687	Channel	180,962	9,628,326	1,209	1	2.34	1	8	47	0.99	1	86	Puncak Utara	Puncak Utara	SIltstone
PU47-30	RC155716	Channel	180,937	9,628,319	1,217	1	0.58	0.6	61	188	0.5	1	92	Puncak Utara	Puncak Utara	Mudstone-Silstone
PU47-36	RC155722	Channel	180,931	9,628,318	1,220	1	2.02	0.8	57	126	0.09	1	76	Puncak Utara	Puncak Utara	Mudstone
PU47-37	RC155724	Channel	180,930	9,628,318	1,221	1	3.11	0.6	24	50	0.13	1	75	Puncak Utara	Puncak Utara	Siltstone
PU47-4	RC155688	Channel	180,961	9,628,326	1,209	1	0.7	12	10	63	1.38	1	79	Puncak Utara	Puncak Utara	SIltstone
PU47-40	RC155727	Channel	180,927	9,628,317	1,222	1	0.4	0.25	12	85	1.54	1	88	Puncak Utara	Puncak Utara	Siltstone
PU47-47	RC155734	Channel	180,920	9,628,316	1,225	1	0.46	1	26	128	0.55	1	85	Puncak Utara	Puncak Utara	Silstone
PU47-48	RC155735	Channel	180,919	9,628,316	1,226	1	0.17	1	50	185	1.42	1	106	Puncak Utara	Puncak Utara	Silstone
PU47-5	RC155689	Channel	180,960	9,628,325	1,209	1	0.86	0.25	15	70	0.83	1	88	Puncak Utara	Puncak Utara	SIltstone
PU47-50	RC155738	Channel	180,917	9,628,316	1,227	1	0.18	1	64	144	0.41	1	94	Puncak Utara	Puncak Utara	Mudstone
PU47-52	RC155740	Channel	180,915	9,628,315	1,228	1	0.22	0.6	24	146	1.09	1	89	Puncak Utara	Puncak Utara	Mudstone
PU47-54	RC155742	Channel	180,913	9,628,315	1,228	1	0.24	0.25	8	72	1.24	1	108	Puncak Utara	Puncak Utara	Mudstone
PU47-6	RC155690	Channel	180,959	9,628,325	1,210	1	0.69	0.7	10	46	0.4	1	84	Puncak Utara	Puncak Utara	SIltstone
PU47-7	RC155691	Channel	180,958	9,628,325	1,210	1	0.23	0.25	12	85	0.94	1	120	Puncak Utara	Puncak Utara	SIltstone
PU47-8	RC155692	Channel	180,958	9,628,324	1,210	1	0.37	2.6	12	59	0.38	1	77	Puncak Utara	Puncak Utara	Silstone
PU47-9	RC155693	Channel	180,957	9,628,324	1,210	1	0.34	0.25	32	73	0.65	1	91	Puncak Utara	Puncak Utara	Silstone
PU48-11	RC155775	Channel	181,033	9,627,872	1,197	1	0.2	0.25	35	83	0.04	1	62	Puncak Utara	Puncak Utara	Siltstone
PU48-12	RC155776	Channel	181,034	9,627,872	1,197	1	0.22	0.25	34	91	0.5	1	85	Puncak Utara	Puncak Utara	Siltstone
PU48-13	RC155778	Channel	181,035	9,627,871	1,197	1	0.41	0.25	10	24	0.23	1	46	Puncak Utara	Puncak Utara	Siltstone
PU48-2	RC155766	Channel	181,027	9,627,878	1,195	1	0.78	0.25	24	45	0.38	1	85	Puncak Utara	Puncak Utara	Siltstone
PU48-3	RC155767	Channel	181,027	9,627,877	1,195	1	0.18	0.25	17	43	0.1	1	75	Puncak Utara	Puncak Utara	Siltstone
PU48-8	RC155772	Channel	181,031	9,627,874	1,196	1	0.33	0.25	55	68	0.18	1	79	Puncak Utara	Puncak Utara	Siltstone

Survey Tag	Sample_Id	Sample Type	Easting	Northing	Elevation	Interval	Au (ppm)	Ag (ppm)	As (ppm)	Cu (ppm)	Mg (%)	Mo (ppm)	Zn (ppm)	Prospect	Domain	Litho
PU49-01	RC155779	Channel	180,993	9,627,906	1,197	1	2.34	1.2	191	171	0.39	1	93	Puncak Utara	Puncak Utara	Siltstone
PU49-02	RC155780	Channel	180,994	9,627,906	1,197	1	1.72	0.25	35	112	0.55	1	84	Puncak Utara	Puncak Utara	Siltstone
PU49-03	RC155781	Channel	180,995	9,627,906	1,197	1	1.42	0.6	43	130	0.52	1	80	Puncak Utara	Puncak Utara	Siltstone
PU49-07	RC155785	Channel	180,998	9,627,905	1,196	1	0.21	0.25	102	117	0.33	1	96	Puncak Utara	Puncak Utara	Siltstone
PU49-08	RC155786	Channel	180,999	9,627,905	1,195	1	1.81	0.25	57	73	0.15	1	79	Puncak Utara	Puncak Utara	Siltstone
PU49-09	RC155787	Channel	181,000	9,627,904	1,195	1	0.15	0.25	33	89	1.11	1	85	Puncak Utara	Puncak Utara	Siltstone
PU49-10	RC155788	Channel	181,001	9,627,904	1,195	1	0.51	0.5	40	66	1.16	1	61	Puncak Utara	Puncak Utara	Siltstone
PU49-13	RC155792	Channel	181,004	9,627,903	1,194	1	0.53	0.25	29	78	3.56	1	111	Puncak Utara	Puncak Utara	Siltstone
PU49-14	RC155793	Channel	181,005	9,627,902	1,194	1	4.62	0.8	41	103	2.77	1	75	Puncak Utara	Puncak Utara	Siltstone
PU49-15	RC155794	Channel	181,006	9,627,902	1,194	1	1.78	3.1	57	110	1.82	3	101	Puncak Utara	Puncak Utara	Siltstone
PU49-16	RC155795	Channel	181,007	9,627,902	1,193	1	0.75	0.25	21	101	1.51	1	91	Puncak Utara	Puncak Utara	Siltstone
PU49-18	RC155797	Channel	181,009	9,627,902	1,193	1	0.12	0.25	10	97	1.88	1	93	Puncak Utara	Puncak Utara	Siltstone
PU49-20	RC155799	Channel	181,011	9,627,901	1,192	1	0.17	0.25	9	94	2.16	1	92	Puncak Utara	Puncak Utara	Siltstone
PU49-21	RC155800	Channel	181,011	9,627,901	1,192	1	0.1	0.25	10	89	2.31	1	100	Puncak Utara	Puncak Utara	Siltstone
PU49-24	RC155804	Channel	181,015	9,627,899	1,192	1	0.11	0.25	12	108	1.42	1	84	Puncak Utara	Puncak Utara	Siltstone
PU50-70	RC156070	Channel	180,910	9,627,867	1,234	1	0.34	0.25	32	86	0.11	1	123	Puncak Utara	Puncak Utara	Mudstone
PU50-71	RC156072	Channel	180,911	9,627,866	1,234	1	0.87	0.6	26	115	0.17	1	149	Puncak Utara	Puncak Utara	Mudstone
PU51_11	RC156215	Channel	181,006	9,627,915	1,193	1	0.32	0.25	3	103	2.17	1	64	Puncak Utara	Puncak Utara	Siltstone
PU53_03	RC156274	Channel	180,903	9,628,310	1,229	1	0.75	0.6	11	31	0.36	1	101	Puncak Utara	Puncak Utara	Hem Mudstone Bx
PU53_04	RC156275	Channel	180,903	9,628,309	1,229	1	0.97	0.25	7	21	0.06	1	71	Puncak Utara	Puncak Utara	Qtz Bx
PU53_05	RC156276	Channel	180,903	9,628,308	1,228	1	0.68	0.25	13	59	0.22	1	68	Puncak Utara	Puncak Utara	Qtz Bx
PU53_06	RC156277	Channel	180,903	9,628,307	1,228	1	1.05	0.25	18	93	0.39	1	89	Puncak Utara	Puncak Utara	Qtz Bx
PU53_07	RC156278	Channel	180,904	9,628,306	1,228	1	0.85	0.6	19	107	0.1	1	71	Puncak Utara	Puncak Utara	Hem Mudstone Bx
PU53_08	RC156279	Channel	180,905	9,628,306	1,228	1	0.17	1.2	12	120	0.08	1	70	Puncak Utara	Puncak Utara	Hem Mudstone
PU53_09	RC156280	Channel	180,905	9,628,305	1,228	1	0.66	1.3	16	292	0.04	1	92	Puncak Utara	Puncak Utara	Hem Mudstone
PU53_10	RC156281	Channel	180,906	9,628,304	1,228	1	0.26	1	10	115	0.06	1	81	Puncak Utara	Puncak Utara	Hem Mudstone
PU53_12	RC156284	Channel	180,908	9,628,303	1,227	1	0.2	0.6	4	62	0.26	1	96	Puncak Utara	Puncak Utara	Hem Mudstone
PU53 13	RC156285	Channel	180,909	9,628,303	1,227	1	0.34	0.7	7	63	0.45	1	113	Puncak Utara	Puncak Utara	Hem Mudstone
 PU54_78	RC156447	Channel	181,084	9,627,912	1,150	1	0.13	0.25	26	67	0.2	0	55	Puncak Utara	Puncak Utara	Siltstone
	RC155850	Channel	178,353	9,631,816	1,076	1	5.64	1.4	49	30	0.03	1	39	Tarra	Main Tara	Mudstone
	RC155851	Channel	178,352	9,631,817	1,077	1	3.83	1.5	69	72	0.06	1	66	Tarra	Main Tara	Mudstone
	RC155852	Channel	178,352	9,631,818	1,077	1	3.82	0.9	43	66	0.03	1		Tarra	Main Tara	Mudstone
TR10 04	RC155853	Channel	178,351	9,631,819	1,078	1	6.47	1.4	66	42	0.02	1		Tarra	Main Tara	Mudstone
TR10 05	RC155854	Channel	178,351	9,631,820	1,079	1	2.4	0.9	55	76	0.04	1		Tarra	Main Tara	Mudstone
TR10 06	RC155855	Channel	178,350	9,631,821	1,079	1	3.99	0.9	47	163	0.05	1		Tarra	Main Tara	Mudstone
	RC155856	Channel	178,349	9,631,822	1,079	1	4.06	0.9	49	133	0.06	1		Tarra	Main Tara	Mudstone
TR10_08	RC155857	Channel	178,349	9,631,822	1,080	1	2.85	0.8	59	142	0.06	1		Tarra	Main Tara	Mudstone
TR10 09	RC155858	Channel	178,349	9,631,823	1,080	1	2.6	0.8	35	97	0.05	1		Tarra	Main Tara	Mudstone
TR10_00	RC155859	Channel	178,348	9,631,824	1,080	1	3.13	0.7	30	64	0.03	1		Tarra	Main Tara	Mudstone

Survey Tag	Sample _Id	Sample Type	Easting	Northing	Elevation	Interval	Au (ppm)	Ag (ppm)	As (ppm)	Cu (ppm)	Mg (%)	Mo (ppm)	Zn (ppm)	Prospect	Domain	Litho
TR10_11 F	RC155861	Channel	178,348	9,631,825	1,081	1	1.91	0.8	9	71	0.02	1	63	Tarra	Main Tara	Mudstone
TR10_12 F	RC155862	Channel	178,347	9,631,826	1,081	1	0.85	0.9	16	88	0.05	1	87	Tarra	Main Tara	Mudstone
TR10_13 F	RC155863	Channel	178,347	9,631,826	1,082	1	1.79	0.9	34	79	0.04	1	52	Tarra	Main Tara	Mudstone
TR10_14 F	RC155864	Channel	178,346	9,631,827	1,082	1	4.36	1	34	100	0.07	1	57	Tarra	Main Tara	Mudstone
TR10_15 F	RC155865	Channel	178,346	9,631,828	1,082	1	5.15	1.2	39	94	0.05	1	53	Tarra	Main Tara	Mudstone
TR10_16 F	RC155866	Channel	178,345	9,631,829	1,083	1	3.68	1	17	147	0.06	1	61	Tarra	Main Tara	Mudstone
TR10_17 F	RC155867	Channel	178,345	9,631,830	1,083	1	1.76	0.5	17	55	0.05	1	44	Tarra	Main Tara	Mudstone
TR10_18 F	RC155868	Channel	178,345	9,631,830	1,084	1	1.83	0.6	20	90	0.04	1	68	Tarra	Main Tara	Mudstone
TR10_19 F	RC155869	Channel	178,345	9,631,831	1,084	1	3.48	0.9	48	189	0.03	1	93	Tarra	Main Tara	Mudstone
TR10_20 F	RC155870	Channel	178,348	9,631,834	1,092	1	6.44	0.9	25	98	0.02	1	53	Tarra	Main Tara	Siltstone
TR10_21 F	RC155872	Channel	178,347	9,631,834	1,092	1	1.59	0.25	23	61	0.05	1	46	Tarra	Main Tara	Siltstone
TR10_22 F	RC155873	Channel	178,346	9,631,835	1,092	1	1.36	0.25	27	43	0.03	1	58	Tarra	Main Tara	Siltstone
TR10_23 F	RC155874	Channel	178,345	9,631,836	1,093	1	4.05	0.7	74	74	0.05	1	72	Tarra	Main Tara	Siltstone
TR10_24 F	RC155875	Channel	178,345	9,631,836	1,093	1	0.71	0.25	85	135	0.08	1	74	Tarra	Main Tara	Siltstone
TR10_25 F	RC155876	Channel	178,345	9,631,837	1,094	1	1.12	0.5	72	140	0.04	1	86	Tarra	Main Tara	Siltstone
TR10_26 F	RC155877	Channel	178,345	9,631,838	1,094	1	0.36	0.25	76	143	0.05	1	80	Tarra	Main Tara	Siltstone
TR10_27 F	RC155878	Channel	178,345	9,631,839	1,095	1	0.88	0.25	78	144	0.05	1	80	Tarra	Main Tara	Siltstone
TR10_28 F	RC155879	Channel	178,347	9,631,841	1,098	1	0.56	0.25	84	112	0.02	1	101	Tarra	Main Tara	Siltstone
TR10_29 F	RC155880	Channel	178,346	9,631,841	1,098	1	0.34	0.25	199	107	0.02	1	122	Tarra	Main Tara	Siltstone
TR10_30 F	RC155881	Channel	178,345	9,631,842	1,098	1	0.79	0.6	81	208	0.03	1	90	Tarra	Main Tara	Siltstone
TR10_31 F	RC155883	Channel	178,341	9,631,841	1,093	1	0.28	0.25	17	156	0.02	1	77	Tarra	Main Tara	Siltstone
TR10_32 F	RC155884	Channel	178,341	9,631,842	1,092	1	0.42	0.25	144	182	0.03	1	76	Tarra	Main Tara	Siltstone
TR10_33 F	RC155885	Channel	178,340	9,631,842	1,092	1	0.26	0.25	20	151	0.02	1	84	Tarra	Main Tara	Siltstone
TR10_34 F	RC155886	Channel	178,339	9,631,842	1,091	1	0.54	0.25	22	154	0.02	1	67	Tarra	Main Tara	Siltstone
TR10_35 F	RC155887	Channel	178,338	9,631,843	1,092	1	0.49	0.25	22	122	0.02	1	115	Tarra	Main Tara	Siltstone
TR10_36 F	RC155888	Channel	178,338	9,631,844	1,093	1	0.46	0.25	15	123	0.02	1	85	Tarra	Main Tara	Siltstone
TR10_37 F	RC155889	Channel	178,337	9,631,844	1,093	1	0.15	0.25	10	108	0.02	1	80	Tarra	Main Tara	Siltstone
TR12_01 F	RC155892	Channel	178,577	9,631,728	1,054	1	0.11	0.9	3	280	0.04	1	80	Tarra	Main Tara	Mudstone
TR12_03 F	RC155894	Channel	178,578	9,631,731	1,053	1	0.3	1.1	4	285	0.08	1	197	Tarra	Main Tara	Mudstone
TR12_04 F	RC155895	Channel	178,579	9,631,732	1,053	1	0.38	0.9	1	107	0.05	1	116	Tarra	Main Tara	Mudstone
TR12_05 F	RC155896	Channel	178,579	9,631,733	1,053	1	1.33	1.2	2	163	0.07	1	159	Tarra	Main Tara	Mudstone
TR12_06 F	RC155897	Channel	178,579	9,631,734	1,053	1	0.49	0.5	1	109	0.11	1	115	Tarra	Main Tara	Mudstone
TR12_07 F	RC155898	Channel	178,580	9,631,734	1,052	1	1.11	0.5	1	73	0.08	1	102	Tarra	Main Tara	Mudstone
TR12_08 F	RC155899	Channel	178,581	9,631,734	1,052	1	0.32	0.5	1	27	0.07	1	119	Tarra	Main Tara	Mudstone
TR12_09 F	RC155900	Channel	178,582	9,631,735	1,052	1	0.48	0.25	1	54	0.09	1	103	Tarra	Main Tara	Mudstone
TR12_10 F	RC155902	Channel	178,583	9,631,735	1,052	1	0.62	0.5	1	31	0.11	1	110	Tarra	Main Tara	Mudstone
TR12_11 F	RC155903	Channel	178,584	9,631,735	1,051	1	0.64	0.25	1	58	0.11	1	119	Tarra	Main Tara	Mudstone
TR12_12 F	RC155904	Channel	178,584	9,631,736	1,052	1	0.83	0.6	1	186	0.09	1	104	Tarra	Main Tara	Mudstone
TR12_13 F	RC155905	Channel	178,585	9,631,737	1,053	1	0.19	0.6	3	159	0.04	1	103	Tarra	Main Tara	Mudstone
	RC155906	Channel	178,585	9,631,738	1,053	1	0.22	0.9	2	181	0.04	1	109	Tarra	Main Tara	Mudstone

TR13_01 RC155907 Channel 178,598 9,631,744 1,042 1 0.29 0.39 1 27 Tran Main Tar Mudstone TR13_02 RC155908 Channel 178,609 9,631,744 1,042 1 3.8 0.71 1 38 Tara Main Tara Mudstone TR13_06 RC155911 Channel 178,609 9,631,745 1,042 1 3.8 0.7 3 18 0.05 103 Tara Main Tara Mudstone TR13_06 RC155912 Channel 178,609 9,631,745 1,044 1 0.23 10 0.33 1 0.23 103 177 Main Tara Mudstone TR13_06 RC155912 Channel 178,609 9,631,743 1,040 1 0.26 1 103 104 177 0.66 130 130 177 Main Tara Mudstone TR13_09 RC155912 Channel 178,609 9,631,743 1,040 1 0.28 1 103 104 104 178 Mu	Survey Tag	Sample_Id	Sample Type	Easting	Northing	Elevation	Interval	Au (ppm)	Ag (ppm)	As (ppm)	Cu (ppm)	Mg (%)	Mo (ppm)	Zn (ppm)	Prospect	Domain	Litho
TR13_03 RC15990 Channel 178,000 9,631,744 1,042 1 8 1 2 3 0.000 1 0.000 Trra Main Tara Mudstone TR13_04 RC155911 Channel 178,010 6,631,745 1,041 1 2.31 0.7 3 1 6,51<1767	TR13_01	RC155907	Channel	178,598	9,631,744	1,042	1	0.22	0.9	1	239	0.03	1	72	Tarra	Main Tara	Mudstone
TR3_0 RC15911 Channel 178,001 963,744 1,04 1 23 0.07 1 180 0.05 1 100 Tarra Main Tara Mudstone R13_05 RC155913 Channel 178,002 9631,745 1,041 1 0.6 0.5 2 165 0.33 1 627 Tarra Main Tara Mudstone R13_007 RC155913 Channel 178,603 9,631,745 1,040 1 0.4 0.5 1 160 0.3 1 621 Tarra Main Tara Mudstone R13_00 RC155915 Channel 178,603 9,631,745 1,040 1 0.5 6 137 0.06 1 301 Tarra Main Tara Mudstone R13_10 RC155915 Channel 178,604 9,631,751 1,039 1 0.6 0.9 4 19 0.65 1 961 Tarra Main Tara Mudstone R13_148 RC155912 Channel 178,604	TR13_02	RC155908	Channel	178,599	9,631,744	1,042	1	0.69	0.9	4	237	0.04	1	85	Tarra	Main Tara	Mudstone
PR13 OS PR15912 Channel 178,601 9631,745 1,041 1 2.31 0.7 3 772 0.03 1 72 Tara Main Tara Muistone PR13 06 RC155914 Channel 178,603 9,631,745 1,040 1 0.46 0.5 2 165 0.03 1 69 Tara Main Tara Muistone PR13 08 RC155914 Channel 178,603 9,631,744 1,040 1 0.26 3 1370 0.03 1 104 Tara Main Tara Muistone TR13 08 C155917 Channel 178,603 9,631,745 1,040 1 0.55 1 10 1.30 1 92 Fara Main Tara Muistone TR13 1.081 Tara Main Tara Muistone 1 1.04 1 0.4 1 94 Tara Main Tara Muistone TR13 Tara	TR13_03	RC155909	Channel	178,600	9,631,744	1,042	1	3.8	1.2	3	327	0.04	1	89	Tarra	Main Tara	Mudstone
TR13 G6 RC15S913 Channel 178.602 963.745 1.041 1 1.06 0.5 2 1.65 0.03 1 63 Tara Main Tara Muistone R13 07 R155915 Channel 178.603 9.631.747 1.040 1 0.36 0.66 2 160 0.03 1 1.04 Tara Main Tara Muistone R13.00 RC155915 Channel 178.603 9.631.747 1.040 1 0.2 0.6 1 370.05 1 92 Tara Main Tara Muistone R13.10 RC155915 Channel 178.603 9.631.751 1.040 1 0.14 0.9 8 107 0.4 1 94 Tara Main Tara Muistone R13.12 RC155920 Channel 178.604 9.631.751 1.039 1 0.1 0.7 1 1.36 0.6 1 94 Tara Main Tara Muistone R13.12 RC155920 Channel 178.604 9.631.751 1.039	TR13_04	RC155911	Channel	178,601	9,631,744	1,042	1	1.81	0.7	1	81	0.05	1	103	Tarra	Main Tara	Mudstone
TR13 07 RC15914 Channel 178,033 6,617,74 1,040 1 0.46 0.6 1 170 0.03 1 0.91 Trara Main Tara Mudstone R13 08 RC155915 Channel 178,033 6,617,74 1,040 1 0.25 6 3 137 0.03 1 92 Tarra Main Tara Mudstone R13 10 RC155916 Channel 178,603 9,631,748 1,040 1 0.56 1 157 0.06 1 130 Tarra Main Tara Mudstone R13 11 RC155916 Channel 178,604 9,631,751 1,039 1 0.1 0.9 8 100 0.4 1 49 Tarra Main Tara Mudstone R13 13 RC155922 Channel 178,604 9,631,751 1,039 1 0.1 0.7 14 138 0.4 4 41 Tara Main Tara Mudstone R13 13 RC155924 Channel 178,605 9,631,756 1,039 1 0.7 14 138 0.0 1 <	TR13_05	RC155912	Channel	178,601	9,631,745	1,041	1	2.31	0.7	3	179	0.03	1	72	Tarra	Main Tara	Mudstone
TR13 D8 RC159515 Channel 178,603 9,631,747 1,040 1 0.38 0.6 2 160 0.03 1 104 Tara Main Tara Mudstone R13 08 R155917 Channel 178,603 9,631,749 1,040 1 0.58 1 6 157 0.06 1 30 Tara Main Tara Mudstone R13 11 RC155917 Channel 178,603 9,631,750 1,004 1 0.14 0.9 7 95 0.04 1 94 Tara Main Tara Mudstone R13 128 RC155922 Channel 178,604 9,631,751 1,039 1 0.16 0.9 4 91 0.05 1 94 Tara Main Tara Mudstone R13 128 RC155922 Channel 178,604 9,631,755 1,039 1 0.11 0.7 6 57 0.03 1 164 Tara Main Tara Mudstone R13 128 RC155924 Channel	TR13_06	RC155913	Channel	178,602	9,631,745	1,041	1	1.06	0.5	2	165	0.03	1	63	Tarra	Main Tara	Mudstone
FR13 09 RC155916 Channel 178,603 9,631,748 1,040 1 0.2 0.6 3 137 0.03 1 92 Tara Main Tara Mudstone R13 10 RC155917 Channel 178,603 9,631,750 1,040 1 0.58 1 6 157 0.06 1 130 Tara Main Tara Mudstone R13 11 RC155918 Channel 178,604 9,631,752 1,039 1 0.1 0.9 7 95 0.04 1 94 Tara Main Tara Mudstone R13 13 RC155924 Channel 178,604 9,631,755 1,039 1 0.17 0.7 14 138 0.44 1 94 Tara Main Tara Mudstone R13 13 RC155924 Channel 178,604 9,631,755 1,039 1 0.10 0.7 14 138 0.44 14 Tara Main Tara Mudstone R13 14 RC155924 Channel 178,605 9,631,755 1,039 1 0.47 1.9 104	TR13_07	RC155914	Channel	178,603	9,631,746	1,040	1	0.46	0.6	1	170	0.03	1	69	Tarra	Main Tara	Mudstone
TR13_10 RC155917 Channel 178,603 9,631,749 1,040 1 0.58 1 6 157 0.06 1 130 Tara Main Tara Mudstone TR13_11 RC155919 Channel 178,604 9,631,751 1,039 1 0.1 0.9 7 95 0.04 1 94 Tarra Main Tara Mudstone TR13_13 RC155920 Channel 178,604 9,631,751 1,039 1 0.6 0.9 7 95 0.04 1 94 Tarra Main Tara Mudstone TR13_14 RC155920 Channel 178,604 9,631,754 1,039 1 0.17 0.7 14 138 0.04 1 94 Tarra Main Tara Mudstone TR13_16 RC155924 Channel 178,605 9,631,756 1,039 1 0.17 0.7 14 138 0.03 1 114 Tarra Main Tara Mudstone TR13_18 RC155926 Channel 178,605 9,631,751 1,039 1 0.12 13 135 1037<	TR13_08	RC155915	Channel	178,603	9,631,747	1,040	1	0.38	0.6	2	160	0.03	1	104	Tarra	Main Tara	Mudstone
RE13 RC155918 Channel 178,603 9,631,750 1,040 1 0.14 0.09 8 107 0.04 1 89 Tarra Main Tara Mudstone R13 12 RC155920 Channel 178,604 9,631,752 1,039 1 0.6 0.9 4 91 0.05 1 94 Tarra Main Tara Mudstone R13 13 RC155920 Channel 178,604 9,631,751 1,039 1 0.46 0.7 14 138 0.04 1 94 Tarra Main Tara Mudstone R13 16 RC155924 Channel 178,605 9,631,756 1,039 1 0.11 0.7 6 57 0.03 1 144 Tarra Main Tara Mudstone R13 18 RC155925 Channel 178,605 9,631,756 1,039 1 0.1 0.4 1 144 Tarra Main Tara Mudstone R13 RC155927 Channel	TR13_09	RC155916	Channel	178,603	9,631,748	1,040	1	0.2	0.6	3	137	0.03	1	92	Tarra	Main Tara	Mudstone
TR13_12 RC155919 Channel 178,04 9,631,751 1,039 1 0.1 0.9 7 95 0.04 1 94 Parra Main Tara Mudstone TR13_14 RC155920 Channel 178,604 9,631,751 1,039 1 0.66 0.7 19 1005 1 94 Tarra Main Tara Mudstone TR13_15 RC155922 Channel 178,604 9,631,751 1,039 1 0.17 0.7 14 138 0.04 1 94 Tarra Main Tara Mudstone TR13_16 RC155925 Channel 178,605 9,631,756 1,039 1 0.11 0.7 6 57 0.03 1 117 Tarra Main Tara Mudstone TR13_18 RC155926 Channel 178,605 9,631,757 1,039 1 0.14 1 13 152 0.03 1 107 Tarra Main Tara Mudstone TR13_20 RC155927 Channel 178,606 9,631,775 1,039 1 0.32 1.2 5 155	TR13_10	RC155917	Channel	178,603	9,631,749	1,040	1	0.58	1	6	157	0.06	1	130	Tarra	Main Tara	Mudstone
TR13_13 RC155920 Channel 178,004 9,631,752 1,039 1 0.6 0.9 4 91 0.05 1 94 Tarra Main Tara Mudstone TR13_15 RC155922 Channel 178,004 9,631,754 1,039 1 0.46 0.7 19 200 0.55 1 94 Tarra Main Tara Mudstone TR13_15 RC155924 Channel 178,604 9,631,756 1,039 1 0.11 0.7 6 57 0.03 1 114 Tarra Main Tara Mudstone TR13_16 RC155925 Channel 178,605 9,631,756 1,039 1 0.1 0.9 5 108 0.03 1 117 Tara Main Tara Mudstone TR13_19 RC155927 Channel 178,606 9,631,757 1,039 1 0.42 1.2 15 109 Tarra Main Tara Mudstone TR13_29 RC155927 Channel 178,606 9,631,757 1,038 1 0.32 1.2 1.3 1.03 1.3 0.33 <t< td=""><td>TR13_11</td><td>RC155918</td><td>Channel</td><td>178,603</td><td>9,631,750</td><td>1,040</td><td>1</td><td>0.14</td><td>0.9</td><td>8</td><td>107</td><td>0.04</td><td>1</td><td>89</td><td>Tarra</td><td>Main Tara</td><td>Mudstone</td></t<>	TR13_11	RC155918	Channel	178,603	9,631,750	1,040	1	0.14	0.9	8	107	0.04	1	89	Tarra	Main Tara	Mudstone
TR13_14 RC155922 Channel 178,604 9,631,753 1,039 1 0.46 0.7 19 200 0.05 1 961 Tara Main Tara Mudstone R13_15 RC155924 Channel 178,605 9,631,755 1,039 1 0.11 0.7 6 57 0.03 1 136 Tarra Main Tara Mudstone R13_17 RC155924 Channel 178,605 9,631,755 1,039 1 0.11 0.7 6 57 0.03 1 144 Tarra Main Tara Mudstone R13_18 RC155924 Channel 178,605 9,631,757 1,039 1 0.4 1.1 3 1.00 1 1.09 1.09 1.00 1.00 1.00 1.00 1 1.01 1.4 3 400 0.03 1 1.09 1.01 1.04 1.03 1.03 1.03 1.0 1.04 1.04 1.03 1.05 1.03 1.0 1.01 1.4 3 4.00 1.05 1.05 1.03 1.03 1.03 1.03 </td <td>TR13_12</td> <td>RC155919</td> <td>Channel</td> <td>178,604</td> <td>9,631,751</td> <td>1,039</td> <td>1</td> <td>0.1</td> <td>0.9</td> <td>7</td> <td>95</td> <td>0.04</td> <td>1</td> <td>94</td> <td>Tarra</td> <td>Main Tara</td> <td>Mudstone</td>	TR13_12	RC155919	Channel	178,604	9,631,751	1,039	1	0.1	0.9	7	95	0.04	1	94	Tarra	Main Tara	Mudstone
TR13_15 RC155923 Channel 178,064 9,631,754 1,039 1 0.17 0.7 14 138 0.04 1 94 Tara Main Tara Mudstone TR13_17 RC155924 Channel 178,605 9,631,756 1,039 1 0.11 0.7 6 57 0.03 1 144 Tara Main Tara Mudstone TR13_17 RC155925 Channel 178,605 9,631,756 1,039 1 0.1 0.9 5 108 0.03 1 117 Tara Main Tara Mudstone TR13_10 RC155927 Channel 178,609 9,631,757 1,039 1 0.11 1.4 3 400 0.6 1 82 Tara Main Tara Mudstone TR13_21 RC155927 Channel 178,609 9,631,775 1,039 1 0.11 1.4 3 400 0.6 1 82 Tara Main Tara Mudstone TR13_20 RC155937 Channel 178,613 9,631,785 1,062 1	TR13_13	RC155920	Channel	178,604	9,631,752	1,039	1	0.6	0.9	4	91	0.05	1	94	Tarra	Main Tara	Mudstone
TR13_16 RC155924 Channel 178,605 9,631,755 1,039 1 0.11 0.7 6 57 0.03 1 136 Tara Main Tara Mudstone TR13_17 RC155925 Channel 178,605 9,631,756 1,039 1 0.1 0.9 5 108 0.03 1 171 Tara Main Tara Mudstone TR13_18 RC155926 Channel 178,605 9,631,757 1,039 1 0.4 1.1 3 152 0.03 1 109 Tara Main Tara Mudstone TR13_20 RC155928 Channel 178,605 9,631,759 1,039 1 0.32 1.2 5 155 0.03 1 109 Tara Main Tara Mudstone TR13_21 RC155926 Channel 178,601 9,631,757 1,034 0.01 0.18 1.2 13 10.3 0.3 1 109 Tara Main Tara Mudstone TR13_12 RC155936 Channel 178,693 9,631,781 1,062	TR13_14	RC155922	Channel	178,604	9,631,753	1,039	1	0.46	0.7	19	200	0.05	1	96	Tarra	Main Tara	Mudstone
TR13_17 RC155925 Channel 178,605 9,631,756 1,039 1 0.26 0.8 7 171 0.04 1 144 Tara Main Tara Mudstone TR13_18 RC155926 Channel 178,606 9,631,756 1,039 1 0.1 0.9 5 108 0.03 1 177 Tara Main Tara Mudstone TR13_19 RC155927 Channel 178,606 9,631,759 1,039 1 0.32 1.2 5 195 0.03 1 109 Tara Main Tara Mudstone TR13_20 RC155927 Channel 178,613 9,631,775 1,043 1 0.18 1.2 13 1.03 1 57 Tara Main Tara Mudstone TR14_01 RC155938 Channel 178,518 9,631,785 1,062 1 0.89 1 16 99 0.4 1 12 Tara Main Tara Mudstone TR14_05 RC155945 Channel 178,598 9,631,785 1,062 1 0.62 <td>TR13_15</td> <td>RC155923</td> <td>Channel</td> <td>178,604</td> <td>9,631,754</td> <td>1,039</td> <td>1</td> <td>0.17</td> <td>0.7</td> <td>14</td> <td>138</td> <td>0.04</td> <td>1</td> <td>94</td> <td>Tarra</td> <td>Main Tara</td> <td>Mudstone</td>	TR13_15	RC155923	Channel	178,604	9,631,754	1,039	1	0.17	0.7	14	138	0.04	1	94	Tarra	Main Tara	Mudstone
TR13_18 RC155926 Channel 178,605 9,631,756 1,039 1 0.1 0.9 5 108 0.03 1 117 Tarra Main Tara Mudstone TR13_19 RC155927 Channel 178,606 9,631,757 1,039 1 0.32 1.2 5 103 1 97 Tarra Main Tara Mudstone TR13_20 RC155927 Channel 178,607 9,631,759 1,038 1 0.1 1.4 3 400 0.06 1 82 Tarra Main Tara Mudstone TR13_21 RC155937 Channel 178,613 9,631,775 1,043 1 0.88 1 10 9 0.4 1 112 Tarra Main Tara Mudstone TR14_05 RC155937 Channel 178,598 9,631,788 1,062 0.8 10 147 0.06 1 69 Tarra Main Tara Mudstone TR14_05 RC155944 Channel 178,598 9,631,781 1,058 1 0.62 0.8 157 </td <td>TR13_16</td> <td>RC155924</td> <td>Channel</td> <td>178,605</td> <td>9,631,755</td> <td>1,039</td> <td>1</td> <td>0.11</td> <td>0.7</td> <td>6</td> <td>57</td> <td>0.03</td> <td>1</td> <td>136</td> <td>Tarra</td> <td>Main Tara</td> <td>Mudstone</td>	TR13_16	RC155924	Channel	178,605	9,631,755	1,039	1	0.11	0.7	6	57	0.03	1	136	Tarra	Main Tara	Mudstone
TR13_19 RC155927 Channel 178,606 9,631,757 1,039 1 0.4 1.1 3 152 0.03 1 97 Tara Main Tara Mudstone TR13_20 RC155928 Channel 178,606 9,631,758 1,039 1 0.32 1.2 5 195 0.03 1 109 Tarra Main Tara Mudstone TR13_21 RC155928 Channel 178,607 9,631,759 1,048 1 0.18 1.2 13 10.03 1 57 Tarra Main Tara Mudstone TR13_29 RC155938 Channel 178,614 9,631,775 1,043 1 0.89 1 16 99 0.4 1 112 Tarra Main Tara Mudstone TR14_01 RC155939 Channel 178,598 9,631,785 1,062 1 0.32 0.9 15 124 0.6 1 69 Tarra Main Tara Mudstone TR14_06 RC155945 Channel 178,508 9,631,781 1,054 1 0.1<	TR13_17	RC155925	Channel	178,605		1,039	1	0.26	0.8	7	171	0.04	1	144	Tarra	Main Tara	Mudstone
TR13_20 RC155928 Channel 178,606 9,631,758 1,039 1 0.32 1.2 5 195 0.03 1 109 Tarra Main Tara Mudstone TR13_21 RC155929 Channel 178,607 9,631,779 1,038 1 0.11 1.4 3 400 0.6 1 82 Tarra Main Tara Mudstone TR13_20 RC155939 Channel 178,613 9,631,775 1,040 1 0.18 1.2 13 113 0.03 1 57 Tarra Main Tara Mudstone TR14_01 RC155939 Channel 178,598 9,631,785 1,062 1 0.32 0.9 15 227 0.11 1 199 Tarra Main Tara Mudstone TR14_05 RC155944 Channel 178,598 9,631,788 1,058 1 0.62 0.8 10 147 0.06 1 50 Tarra Main Tara Mudstone TR14_11 RC155954 Channel 178,600 9,631,791 1,054 <	TR13 18	RC155926	Channel	178,605	9,631,756	1,039	1	0.1	0.9	5	108	0.03	1	117	Tarra	Main Tara	Mudstone
TR13_20 RC155928 Channel 178,606 9,631,758 1,039 1 0,32 1,2 5 195 0.03 1 109 Tara Main Tara Mudstone TR13_21 RC155929 Channel 178,607 9,631,775 1,038 1 0.11 1.4 3 400 0.66 1 82 Tara Main Tara Mudstone TR13_20 RC155937 Channel 178,613 9,631,775 1,043 1 0.89 1 16 99 0.4 1 12 Tara Main Tara Mudstone TR14_01 RC155938 Channel 178,598 9,631,785 1,062 1 0.62 0.8 10 1 4 0.6 1 69 Tara Main Tara Mudstone TR14_06 RC155945 Channel 178,598 9,631,781 1,058 1 0.62 0.8 1 1 6 170 0.05 1 150 Tara Main Tara Mudstone TR14_12 RC155954 Channel 178,600 9,63		RC155927	Channel	178,606	9,631,757	1,039	1	0.4	1.1	3	152	0.03	1	97	Tarra	Main Tara	Mudstone
TR13_21 RC155929 Channel 178,607 9,631,759 1,038 1 0.11 1.4 3 400 0.06 1 82 Tarra Main Tara Mudstone TR13_29 RC155937 Channel 178,613 9,631,770 1,043 1 0.89 1 6 9 0.4 1 121 Tarra Main Tara Mudstone TR14_01 RC155939 Channel 178,598 9,631,785 1,062 1 0.32 0.9 15 227 0.11 199 Tarra Main Tara Mudstone TR14_05 RC155944 Channel 178,598 9,631,785 1,062 1 0.62 0.8 10 147 0.08 1 89 Tarra Main Tara Mudstone TR14_06 RC155945 Channel 178,508 9,631,781 1,054 1 0.62 0.8 10 147 0.06 1 69 Tarra Main Tara Mudstone TR14_12 RC155950 Channel 178,600 9,631,792 1,053 1 0.36 0.5 157 0.1 <td< td=""><td>TR13 20</td><td>RC155928</td><td>Channel</td><td>178,606</td><td>9,631,758</td><td>1,039</td><td>1</td><td>0.32</td><td>1.2</td><td>5</td><td>195</td><td>0.03</td><td>1</td><td>109</td><td>Tarra</td><td>Main Tara</td><td>Mudstone</td></td<>	TR13 20	RC155928	Channel	178,606	9,631,758	1,039	1	0.32	1.2	5	195	0.03	1	109	Tarra	Main Tara	Mudstone
TR13_30 RC155938 Channel 178,614 9,631,775 1,043 1 0.89 1 16 99 0.4 1 112 Tara Main Tara Mudstone TR14_01 RC155934 Channel 178,598 9,631,785 1,062 1 0.32 0.9 15 227 0.11 1 199 Tara Main Tara Mudstone TR14_05 RC155944 Channel 178,598 9,631,788 1,059 1 0.62 0.8 10 147 0.08 1 89 Tara Main Tara Mudstone TR14_05 RC155945 Channel 178,508 9,631,791 1,054 1 0.1 1 6 170 0.5 1 150 Tara Main Tara Mudstone TR14_12 RC155950 Channel 178,509 9,631,799 1,058 1 0.8 0.5 199 0.13 1 135 Tara Main Tara Mudstone TR14_18 RC155950 Channel 178,596 9,631,801 1,057 1 0.8		RC155929	Channel	178,607	9,631,759	1,038	1	0.11	1.4	3	400	0.06	1	82	Tarra	Main Tara	Mudstone
TR14_01 RC155939 Channel 178,598 9,631,785 1,062 1 0.32 0.9 15 227 0.11 1 199 Tarra Main Tara Mudstone TR14_05 RC155944 Channel 178,598 9,631,788 1,059 1 0.62 0.8 10 147 0.08 1 89 Tarra Main Tara Mudstone TR14_06 RC155944 Channel 178,598 9,631,781 1,054 1 0.62 0.8 15 124 0.06 1 69 Tarra Main Tara Mudstone TR14_11 RC155950 Channel 178,600 9,631,792 1,053 1 0.36 0.8 5 157 0.1 1 84 Tarra Main Tara Mudstone TR14_18 RC155958 Channel 178,595 9,631,792 1,058 1 0.8 1.4 4 141 0.02 1 133 Tarra Main Tara Mudstone TR14_19 RC155950 Channel 178,596 9,631,801 1,057 <t< td=""><td></td><td>RC155937</td><td>Channel</td><td>178,613</td><td>9,631,770</td><td>1,040</td><td>1</td><td>0.18</td><td>1.2</td><td>13</td><td>113</td><td>0.03</td><td>1</td><td>57</td><td>Tarra</td><td>Main Tara</td><td>Mudstone</td></t<>		RC155937	Channel	178,613	9,631,770	1,040	1	0.18	1.2	13	113	0.03	1	57	Tarra	Main Tara	Mudstone
TR14_05RC155944Channel178,5989,631,7881,05910.620.8101470.08189TarraMain TaraMudstoneTR14_06RC155945Channel178,5989,631,7881,05810.860.9151240.06169TarraMain TaraMudstoneTR14_11RC155950Channel178,6009,631,7911,05410.1161700.051150TarraMain TaraMudstoneTR14_12RC155958Channel178,6009,631,7921,05310.360.851570.1184TarraMain TaraMudstoneTR14_19RC155958Channel178,5969,631,7901,05810.511.441410.021133TarraMain TaraMudstoneTR14_19RC155959Channel178,5969,631,8001,05810.511.441410.021133TarraMain TaraMudstoneTR14_20RC155950Channel178,5969,631,8001,05610.25111530.111146TarraMain TaraMudstoneTR14_29RC155970Channel178,5989,631,8251,04910.150.25122420.031110TarraMain TaraMudstoneTR16_01RC155976Channel178,6079,6	TR13 30	RC155938	Channel	178,614	9,631,775	1,043	1	0.89	1	16	99	0.4	1	112	Tarra	Main Tara	Mudstone
TR14_05 RC155944 Channel 178,598 9,631,788 1,059 1 0.62 0.8 10 147 0.08 1 89 Tarra Main Tara Mudstone TR14_06 RC155945 Channel 178,598 9,631,788 1,058 1 0.86 0.9 15 124 0.06 1 69 Tarra Main Tara Mudstone TR14_11 RC155950 Channel 178,600 9,631,799 1,053 1 0.36 0.8 5 157 0.1 1 84 Tarra Main Tara Mudstone TR14_12 RC155958 Channel 178,596 9,631,799 1,058 1 0.51 1.4 4 141 0.02 1 133 Tarra Main Tara Mudstone TR14_19 RC155958 Channel 178,596 9,631,801 1,057 1 0.18 1.3 6 119 0.03 1 131 Tarra Main Tara Mudstone </td <td></td> <td>RC155939</td> <td>Channel</td> <td>178,598</td> <td>9,631,785</td> <td>1,062</td> <td>1</td> <td>0.32</td> <td>0.9</td> <td>15</td> <td>227</td> <td>0.11</td> <td>1</td> <td>199</td> <td>Tarra</td> <td>Main Tara</td> <td>Mudstone</td>		RC155939	Channel	178,598	9,631,785	1,062	1	0.32	0.9	15	227	0.11	1	199	Tarra	Main Tara	Mudstone
TR14_06 RC155945 Channel 178,598 9,631,788 1,058 1 0.86 0.9 15 124 0.06 1 69 Tarra Main Tara Mudstone TR14_11 RC155950 Channel 178,600 9,631,791 1,054 1 0.1 1 6 170 0.05 1 150 Tarra Main Tara Mudstone TR14_12 RC155952 Channel 178,600 9,631,792 1,053 1 0.36 0.8 5 157 0.1 1 84 Tarra Main Tara Mudstone TR14_19 RC155950 Channel 178,596 9,631,800 1,058 1 0.51 1.4 4 141 0.02 1 133 Tarra Main Tara Mudstone TR14_19 RC155950 Channel 178,596 9,631,801 1,057 1 0.18 1.3 6 119 0.03 1 131 Tarra Main Tara Mudstone TR14_20 RC155970 Channel 178,598 9,631,802 1,056 1	_	RC155944	Channel			1,059	1	0.62	0.8	10	147	0.08	1	89	Tarra	Main Tara	Mudstone
TR14_11RC155950Channel178,6009,631,7911,05410.1161700.051150TarraMain TaraMudstoneTR14_12RC155952Channel178,6009,631,7921,05310.360.851570.1184TarraMain TaraMudstoneTR14_18RC155958Channel178,5959,631,7991,05810.80.551990.131133TarraMain TaraMudstoneTR14_19RC155959Channel178,5969,631,8011,05710.181.361190.031131TarraMain TaraMudstoneTR14_20RC155970Channel178,5989,631,8011,05710.181.361190.031131TarraMain TaraMudstoneTR14_29RC155970Channel178,5989,631,8011,05710.181.361190.031131TarraMain TaraMudstoneTR14_20RC155970Channel178,6989,631,8251,04910.150.25122420.031110TarraMain TaraMudstoneTR16_01RC155976Channel178,6089,631,8271,04910.150.2581590.011113TarraMain TaraMudstoneTR16_02RC155976Channel178,607<		RC155945	Channel	178,598	9,631,788	1,058	1	0.86	0.9	15	124	0.06	1			Main Tara	Mudstone
TR14_12RC155952Channel178,6009,631,7921,05310.360.851570.1184TarraMain TaraMudstoneTR14_18RC155958Channel178,5959,631,7991,05810.80.551990.131135TarraMain TaraMudstoneTR14_19RC155959Channel178,5969,631,8001,05810.511.441410.021133TarraMain TaraMudstoneTR14_20RC155960Channel178,5969,631,8011,05710.181.361190.031131TarraMain TaraMudstoneTR14_29RC155970Channel178,5989,631,8091,05610.270.25111530.111146TarraMain TaraMudstoneTR16_01RC155974Channel178,6089,631,8251,04910.150.25122420.031110TarraMain TaraMudstoneTR16_02RC155976Channel178,6079,631,8271,04910.150.2581590.011113TarraMain TaraMudstoneTR16_03RC155976Channel178,6079,631,8471,04910.160.2581590.011113TarraMain TaraMudstoneTR16_03RC155976Channel17		RC155950	Channel	178,600		1,054	1	0.1	1	6	170	0.05	1	150	Tarra	Main Tara	Mudstone
TR14_18RC155958Channel178,5959,631,7991,05810.80.551990.131135TaraMain TaraMudstoneTR14_19RC155959Channel178,5969,631,8001,05810.511.441410.021133TaraMain TaraMudstoneTR14_20RC155960Channel178,5969,631,8001,05710.181.361190.031131TaraMain TaraMudstoneTR14_29RC155970Channel178,5989,631,8091,05510.270.25111530.111146TaraMain TaraMudstoneTR16_01RC155974Channel178,6089,631,8251,04910.150.25122420.031110TaraMain TaraMudstoneTR16_02RC155975Channel178,6079,631,8251,04910.150.25181590.011113TaraMain TaraMudstoneTR16_02RC155975Channel178,6079,631,8271,04910.130.2561800.021113TaraMain TaraMudstoneTR16_22RC155976Channel178,5089,631,8441,05110.180.25161800.021147TaraMain TaraMudstoneTR16_23RC155997Channel178,5	_						1	0.36					1				
TR14_19RC155959Channel178,5969,631,8001,05810.511.441410.021133TarraMain TaraMudstoneTR14_20RC155960Channel178,5969,631,8011,05710.181.361190.031131TarraMain TaraMudstoneTR14_29RC155970Channel178,5989,631,8091,05610.270.25111530.111146TarraMain TaraMudstoneTR16_01RC155974Channel178,6089,631,8251,04910.150.25122420.031110TarraMain TaraMudstoneTR16_02RC155975Channel178,6079,631,8251,04910.160.2581590.011113TarraMain TaraMudstoneTR16_02RC155975Channel178,6079,631,8271,04910.160.2581590.011113TarraMain TaraMudstoneTR16_22RC155977Channel178,6079,631,8471,04910.130.2561800.021147TarraMain TaraMudstoneTR16_23RC155977Channel178,5989,631,8441,05110.180.2581510.031230TarraMain TaraMudstoneTR16_24RC155999Channel<		RC155958	Channel	178,595	9,631,799	1,058	1	0.8	0.5	5	199	0.13	1	135	Tarra	Main Tara	Mudstone
TR14_20RC155960Channel178,5969,631,8011,05710.181.361190.031131TarraMain TaraMudstoneTR14_29RC155970Channel178,5989,631,8091,05610.270.25111530.111146TarraMain TaraMudstoneTR16_01RC155974Channel178,6089,631,8251,04910.150.25122420.031110TarraMain TaraMudstoneTR16_02RC155975Channel178,6079,631,8251,04910.160.2581590.011113TarraMain TaraMudstoneTR16_02RC155976Channel178,6079,631,8271,04910.130.2561800.021173TarraMain TaraMudstoneTR16_03RC155976Channel178,5089,631,8431,05110.230.2561800.021173TarraMain TaraMudstoneTR16_22RC155997Channel178,5989,631,8441,05110.230.2581510.031147TarraMain TaraMudstoneTR16_23RC155998Channel178,5989,631,8441,05110.180.2581510.031230TarraMain TaraMudstoneTR16_24RC155999Channel							1		1.4			0.02	1				
TR14_29RC155970Channel178,5989,631,8091,05610.270.25111530.111146TarraMain TaraMudstoneTR16_01RC155974Channel178,6089,631,8251,04910.150.25122420.031110TarraMain TaraMudstoneTR16_02RC155975Channel178,6079,631,8251,04910.160.2581590.011113TarraMain TaraMudstoneTR16_03RC155976Channel178,6079,631,8271,04910.130.2561800.021173TarraMain TaraMudstoneTR16_22RC155976Channel178,5089,631,8431,05110.230.2591540.021147TarraMain TaraMudstoneTR16_23RC155998Channel178,5989,631,8441,05110.180.2581510.031230TarraMain TaraMudstoneTR16_24RC155999Channel178,5979,631,8441,05210.20.25101440.021153TarraMain TaraMudstoneTR16_24RC155999Channel178,5859,631,8441,05210.20.25101440.021153TarraMain TaraMudstoneTR16_24RC156000Channel <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>6</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	_						1			6			1				
TR16_01RC155974Channel178,6089,631,8251,04910.150.25122420.031110TarraMain TaraMudstoneTR16_02RC155975Channel178,6079,631,8261,04910.160.2581590.011113TarraMain TaraMudstoneTR16_03RC155976Channel178,6079,631,8271,04910.130.2561800.021173TarraMain TaraMudstoneTR16_22RC155976Channel178,5989,631,8431,05110.230.2591540.021147TarraMain TaraMudstoneTR16_23RC155998Channel178,5989,631,8441,05110.180.2581510.031230TarraMain TaraMudstoneTR16_24RC155999Channel178,5979,631,8441,05210.20.25101440.021153TarraMain TaraMudstoneTR16_24RC155999Channel178,5859,631,8441,05210.20.25101440.021153TarraMain TaraMudstoneTR16_27RC156000Channel178,5859,631,8441,05210.2581501153TarraMain TaraMudstoneTR17_01RC156000Channel178,5859,631,							1	0.27	0.25		153	0.11	1				
TR16_02 RC155975 Channel 178,607 9,631,826 1,049 1 0.16 0.25 8 159 0.01 1 113 Tarra Main Tara Mudstone TR16_03 RC155976 Channel 178,607 9,631,827 1,049 1 0.13 0.25 6 180 0.02 1 173 Tarra Main Tara Mudstone TR16_03 RC155976 Channel 178,607 9,631,827 1,049 1 0.13 0.25 6 180 0.02 1 173 Tarra Main Tara Mudstone TR16_22 RC155997 Channel 178,598 9,631,843 1,051 1 0.23 0.25 9 154 0.02 1 147 Tarra Main Tara Mudstone TR16_23 RC155998 Channel 178,598 9,631,844 1,051 1 0.18 0.25 8 151 0.03 1 230 Tarra Main Tara Mudstone TR16_24 RC155999 Channel 178,555 9,631,844 1,051				-		-	1			12			1				
TR16_03 RC155976 Channel 178,607 9,631,827 1,049 1 0.13 0.25 6 180 0.02 1 173 Tarra Main Tara Mudstone TR16_22 RC155997 Channel 178,598 9,631,843 1,051 1 0.23 0.25 9 154 0.02 1 147 Tarra Main Tara Mudstone TR16_23 RC155998 Channel 178,598 9,631,844 1,051 1 0.18 0.25 8 151 0.03 1 230 Tarra Main Tara Mudstone TR16_24 RC155999 Channel 178,597 9,631,844 1,052 1 0.2 0.25 10 144 0.00 1 153 Tarra Main Tara Mudstone TR16_24 RC155999 Channel 178,597 9,631,844 1,052 1 0.2 0.25 10 144 0.002 1 153 Tarra Main Tara Mudstone TR17_01 RC156000 Channel 178,585 9,631,842 1,061	_												1				
TR16_22 RC155997 Channel 178,598 9,631,843 1,051 1 0.23 0.25 9 154 0.02 1 147 Tarra Main Tara Mudstone TR16_23 RC155998 Channel 178,598 9,631,844 1,051 1 0.18 0.25 8 151 0.03 1 230 Tarra Main Tara Mudstone TR16_24 RC155999 Channel 178,597 9,631,844 1,052 1 0.2 0.25 8 151 0.03 1 153 Tarra Main Tara Mudstone TR16_24 RC156000 Channel 178,585 9,631,844 1,052 1 0.2 0.25 10 144 0.02 1 153 Tarra Main Tara Mudstone TR17_01 RC156000 Channel 178,585 9,631,842 1,061 1 0.19 0.25 8 190 0.02 1 148 Tarra Main Tara Mudstone TR17_02 RC156001 Channel 178,585 9,631,842 1,061	_			-													
TR16_23 RC155998 Channel 178,598 9,631,844 1,051 1 0.18 0.25 8 151 0.03 1 230 Tarra Main Tara Mudstone TR16_24 RC155999 Channel 178,597 9,631,844 1,052 1 0.2 0.2 10 144 0.02 1 153 Tarra Main Tara Mudstone TR17_01 RC156000 Channel 178,585 9,631,844 1,061 1 0.19 0.25 8 190 0.02 1 148 Tarra Main Tara Mudstone TR17_01 RC156001 Channel 178,585 9,631,842 1,061 1 0.3 0.25 8 190 0.02 1 148 Tarra Main Tara Mudstone TR17_02 RC156001 Channel 178,585 9,631,842 1,061 1 0.3 0.25 8 291 0.05 1 142 Tarra Main Tara Mudstone TR17_02 RC156001 Channel 178,585 9,631,842 1,061						,											
TR16_24 RC155999 Channel 178,597 9,631,844 1,052 1 0.2 0.25 10 144 0.02 1 153 Tarra Main Tara Mudstone TR16_24 RC155999 Channel 178,597 9,631,844 1,052 1 0.2 0.25 10 144 0.02 1 153 Tarra Main Tara Mudstone TR17_01 RC156000 Channel 178,585 9,631,841 1,061 1 0.19 0.25 8 190 0.02 1 148 Tarra Main Tara Mudstone TR17_02 RC156001 Channel 178,585 9,631,842 1,061 1 0.3 0.25 8 291 0.05 1 142 Tarra Main Tara Mudstone TR17_02 RC156001 Channel 178,585 9,631,842 1,061 1 0.3 0.25 8 291 0.05 1 142 Tarra Main Tara Mudstone	_																
TR17_01 RC156000 Channel 178,585 9,631,841 1,061 1 0.19 0.25 8 190 0.02 1 148 Tarra Main Tara Mudstone TR17_02 RC156001 Channel 178,585 9,631,842 1,061 1 0.3 0.25 8 190 0.02 1 148 Tarra Main Tara Mudstone																	
TR17_02 RC156001 Channel 178,585 9,631,842 1,061 1 0.3 0.25 8 291 0.05 1 142 Tarra Main Tara Mudstone				-		-											
	_																
	TR17 04	RC156004	Channel	178,584	9,631,844	1,060	1	0.21	0.25	8	172	0.02	1			Main Tara	Mudstone
TR17 05 RC156005 Channel 178,584 9,631,844 1,060 1 0.1 0.25 10 199 0.02 1 166 Tara Main Tara Mudstone						,											

About Nusantara Resources

Nusantara is an ASX-listed gold development company with its flagship project comprising the 1.1 million-ounce Ore Reserve and 2.0 million-ounce Mineral Resource Awak Mas Gold Project located in South Sulawesi, Indonesia. Discovered in 1988, the Project has over 135 km of drilling completed in over 1,100 holes.

The Project is 100% owned through a 7th Generation CoW with the Government of Indonesia (GoI). The CoW was secured prior to the current Mining Law and has recently been amended by mutual agreement to align with the current law.

PT Masmindo Dwi Area (Masmindo), a wholly owned subsidiary of Nusantara, has sole rights to explore and exploit any mineral deposits within the project area until 2050. After this period, the operations under the CoW may be extended in the form of a special mining business license (IUPK) in accordance with prevailing laws and regulations, which currently allows for an extension of 10 years and a further extension of 10 years.

In the 10th year after commercial production, Masmindo is required to offer at least 51% of its share capital to willing Indonesian participants at fair market value according to international practice.

Nusantara's development strategy is for construction of a modern, low strip ratio open pit operation with ore processed by standard carbon-in-leach (CIL) processing delivering high gold recoveries. Environmental approval has already been received for the Project, which is favourably located in non-forestry land close to established roads, ports, airports, and grid power.

Nusantara's second strategy is to grow the resource base and support a mining operation beyond the initial project life of 11 years. Multiple drill-ready targets have already been outlined extending from the three main deposits and in other areas of the 140km² CoW.

Competent Persons Statement

The information in this announcement that relates to the exploration results and Mineral Resources of Nusantara Resources is summarised from publicly available reports as released to the ASX of the respective companies. The results are duly referenced in the text of this report and the source documents noted above.

Exploration and Resource Targets

Any discussion in relation to the potential quantity and grade of Exploration Targets is only conceptual in nature. While Nusantara Resources may report additional JORC compliant resources for the Awak Mas Gold Project, there has been insufficient exploration to define mineral resources in addition to the current JORC compliant Mineral Resource inventory and it is uncertain if further exploration will result in the determination of additional JORC compliant Mineral Resources.

Exploration Results

The information in this report which relates to Exploration Results is based on, and fairly represents, information compiled by Mr Colin McMillan, (BSc) for Nusantara Resources. Mr McMillan is an employee of Nusantara Resources and is a Member of the Australian Institute of Mining and Metallurgy (AusIMM No: 109791).

Mr McMillan has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr McMillan consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

New Information or Data

Nusantara Resources confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of estimates of Mineral Resources and Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not materially changed from the original market announcement.

For more information please contact: Mike Spreadborough

Managing Director and Chief Executive Officer Nusantara Resources Limited +61 (0)419 329 687 info@nusantararesources.com

Nusantara Resources

Nusantara_ASX

Nusantara.com