

ASX ANNOUNCEMENT 20 December 2018

Australian Securities Exchange Code: NST

Board of Directors

Mr Bill Beament Executive Chairman

Mr John Fitzgerald Lead Independent Director

Mr Chris Rowe Non-Executive Director

Mr Peter O'Connor Non-Executive Director

Ms Shirley In't Veld Non-Executive Director

Issued Capital

Shares 639.45 million Performance Rights 10.38 million

Current Share Price A\$9.00

Market Capitalisation A\$5.7 billion

Cash and Cash Equivalents 30 Sept 2018 - A\$277 million Level 1, 388 Hay St Subiaco WA 6008

T +6 8 6188 2100 F +6 8 6188 2111 E infoatnsrltd.com www.nsrltd.com

ABN: 43 092 832 892

AUSTRALIAN OPERATIONS: EXPLORATION UPDATE

OUTSTANDING RESULTS PAVE WAY FOR SUBSTANTIAL INCREASE IN INVENTORY AND MINE LIVES

KEY POINTS

Kalgoorlie Operations

Kanowna Belle:

- Resource extension drilling at Kanowna Belle has returned outstanding results which are expected to underpin substantial increases in Resource and Reserve inventory; These results include:
 - 4.4m at 671g/t, including 0.3m at 12,860g/t, 3.6m at 115.3g/t, 12.4m at 4.9g/t and 4.5m at 14.5g/t (true widths)
- Recent drilling results support Northern Star's growing view that the Velvet lode at Kanowna Belle will link back to the Lowes deposit supported by the discovery of multiple mineralised structures down plunge from Velvet; Results from these structures include:
 - 31.3m at 21.7g/t, 15.8m at 9.5g/t, 7.4m at 13.7 g/t, 5.5m at 17.8g/t, 6.5m at 12.4g/t and 9.7m at 6.6g/t (true widths)
- Several new structures have been identified in the hanging wall at Kanowna; These will provide new mining areas adjacent to existing infrastructure; Results include:
 - 6.4m at 14.1g/t, 15.8m at 9.5g/t, 5.5m at 17.8g/t and 2.4m at 10.3g/t (true widths)

Kundana (NST 100%):

- Strong drilling results have extended the known mineralisation at the Millennium mine to the north; Results include:
 - 1.8m at 80.4g/t, 1.6m at 73.2g/t and 2.2m at 29.4g/t (true widths)
- Recent surface diamond drilling has extended the known Xmas-Moonbeam mineralisation and greatly improved the understanding of all the geological settings
- Decline development from Millennium/Pope John to Xmas-Moonbeam has commenced and will provide an excellent platform to infill drill the significant Inferred Resource

Kundana EJKV (NST 51%):

- In-mine extensional drilling across the Rubicon-Hornet-Pegasus mining complex continues to extend the mineralised Pode system and the main K2 structure northwards and down-plunge from Pegasus; Results include:
 - 2.6m at 35.3g/t, 1.5m at 26.9g/t and 7.5m at 4.5g/t (true widths)
- Extensional surface and underground drilling have continued to extend the Raleigh Main Vein mineralisation southwards from the existing resource model; Results include:
 - o 0.7m at 136.2g/t, 1.1m at 54.7g/t and 1.3m at 42.1g/t (true widths)

- Further south on the Raleigh structure towards the Golden Hind prospect, surface exploration drilling has confirmed the presence of high-grade intersections including;
 - 0.6m at 171.6g/t, 1.1m at 89.9g/t and 4.2m at 21.5g/t (true widths)

South Kalgoorlie Operation:

- In-mine drilling at the HBJ underground mine has extended all mining surfaces significantly, with Resource and Reserve growth expected next year
- Regional exploration across the extensive tenement package has begun to achieve excellent results at several prospects. The six major geological trends are being systematically tested

Jundee Operation

- In-mine resource and extension drilling continue to expand the known extent of all the major mining areas with Reserve growth expected next year
- A surface drilling program is currently in progress to confirm the structural trends of the Zodiac system; The initial completed wedge hole successfully intersected mineralisation at all modelled target zones together with some additional unmodelled mineralisation
- Intersections returned from the first hole of this program include 7.4m at 3.4g/t and 9.8m at 3.6g/t (including 3.2m at 9.2g/t)
- The Zodiac system has now been traced over a strike length of approximately 2km and is open in all directions
- At the new Ramone deposit, Northern Star has committed to the development of an open-pit this financial year; Extensive infill grade control drilling has been completed with assays indicating an increase in the expected production grade
- Excellent surface diamond drilling results have indicated the underground potential of the Ramone system; Results include:
 - 10.6m at 4.89g/t, 18.3m at 2.3g/t, 6.3m at 2.8g/t and 1.4m at 20.4g/t (true widths)

Northern Star Resources (ASX: NST) is pleased to announce strong exploration results which lay the foundations for a further significant increase in inventory and mine lives across its Australian operations.

The results, which stem from Northern Star's record A\$60 million FY2019 exploration budget, are expected to underpin both increases in Resources and conversion of existing Resources to Reserves when the Company publishes its annual inventory update in the middle of next year.

As at June 30, 2018, Resources at Northern Star's Australian operations stood at 15.9 million ounces, including Reserves of 4Moz.

Northern Star Executive Chairman Bill Beament said the latest results vindicated the Company's strategy to invest heavily in organic growth.

"We continue to find more and more gold around our tier-one operations," Mr Beament said.

"As we have demonstrated repeatedly, this highly successful organic growth strategy drives our industryleading financial returns.

"Based on these results and the exploration activity planned for the next six months, we expect to generate substantial increases in our Resources and convert more of them into Reserves by the middle of next year.

"This will underpin further extensions in mine lives and provide us with options to continue growing production."

Northern Star intends to publish an operations update on its Pogo Gold Mine in Alaska early in the new year.

Details of Exploration Update

Kalgoorlie Gold Operations

Kanowna Belle

In-mine expansion and exploration drilling adjacent to the existing mining areas has continued with considerable success. These excellent results, together with new discoveries in the Velvet Lower and Porphyry Xenoliths corridors, are expected to underpin a significant increase in Resources and Reserves at Kanowna in mid-2019 (Figure 1)¹.

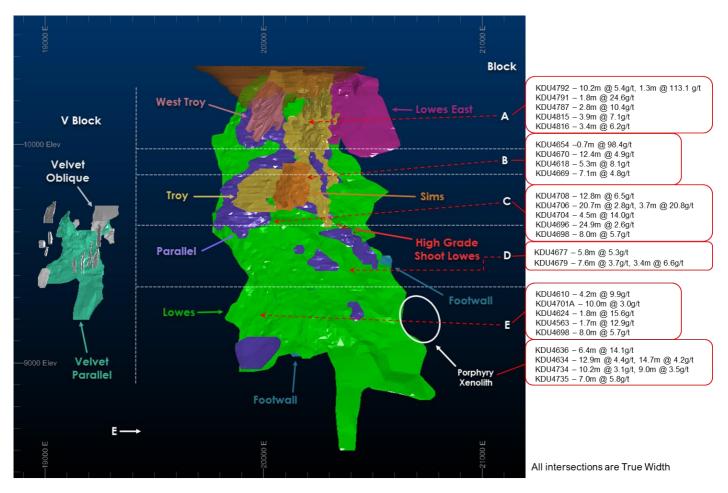


Figure 1 – Long section view Kanowna Belle Mine with significant resource areas

Deep drilling into the hanging wall of the main Lowes ore system across A, B and C blocks has outlined new, strongly mineralised structures up to 150 metres from the Fitzroy Fault which will provide additional mining areas adjacent to existing infrastructure.

In addition, new extensions to the high-grade Sims Lode have been intersected along the eastern margin of C and D blocks including a stunning intersection of 4.4m at 671g/t, including 0.3m at 12,860g/t gold in KDU4623 (Figure 2).

¹ For all figures in this announcement, all intersection widths are estimated true widths unless stated.

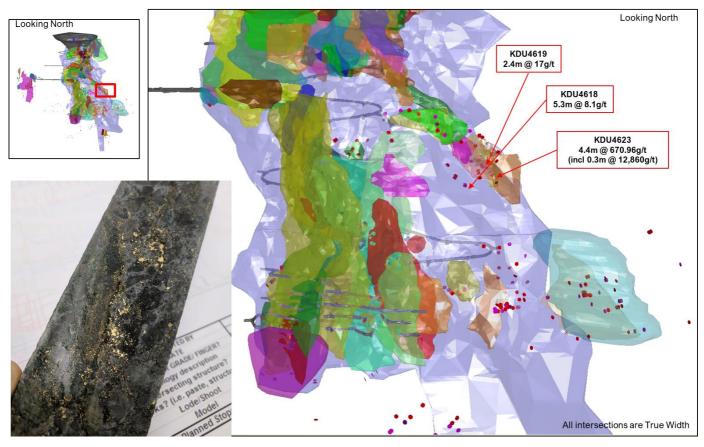


Figure 2 – Hanging wall intersection in D Block East with visible gold intersection in KDU4623

Further down, exploration drilling from the 9245-drill drive has outlined a new mineralised position at Porphyry Xenoliths (KDU4636 - 6.4m at 14.1g/t) extending 260 metres down plunge in a hanging wall position to the east of the controlling Fitzroy Fault (Figure 3). Infill drilling of this new position to the east of E Block continues with a maiden resource expected to be completed in the next quarter.

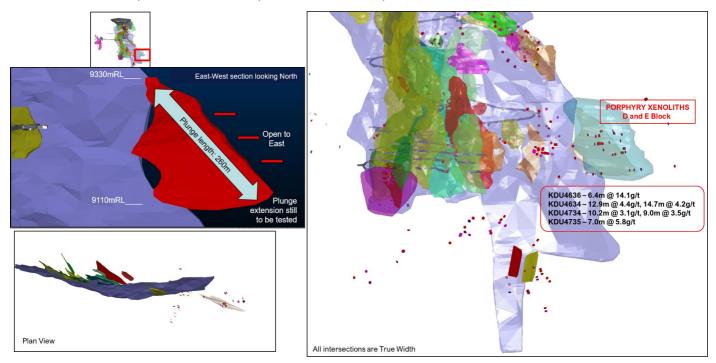


Figure 3 - Long section of Kanowna Belle Mine highlighting new Porphyry Xenoliths mineralisation

At Velvet, recent diamond drilling continues to expand the mineralisation footprint with both parallel zones adjacent to the main production area (Velvet NW, East and HW) and new down plunge extension (Velvet Lower) outlined.

In addition, drilling from the new 9410 DDR and 9112SP platforms has outlined a new mineralised position down plunge from Velvet (Figure 4). The discovery of multiple mineralised surfaces mid-way between Velvet and Lowes ore systems provides strong encouragement that the Velvet trend will ultimately link back into the main Lowes ore deposit.

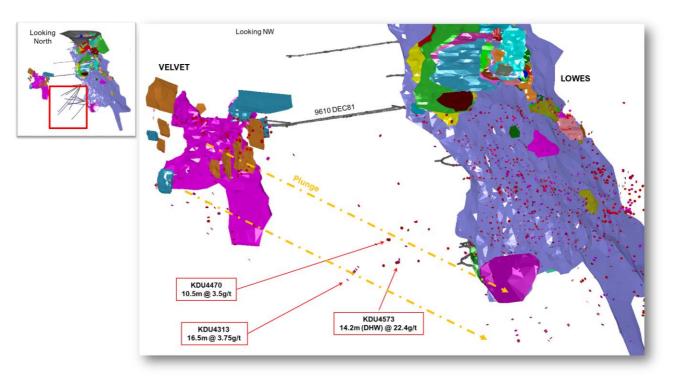


Figure 4 – Long section through Lowes and Velvet highlighting recent significant intersections at Velvet Lower and potential linkage to the main Lowes deposit

<u>Kundana (NST 100%)</u>

With the Millennium Mine in production and underground development progressing into the Pope John deposit, the focus of growth and development drilling has moved further southwards to the Xmas-Moonbeam deposits (Figure 5).

Moonbeam is the southern continuation of the Millennium-Centenary-Pope John K2 mineralisation across the major Lucifer Fault while the adjacent Xmas deposit is the extension of the Strzelecki mineralisation south of the Lucifer Fault. Although the two ore systems are different in character, spatially they straddle the Lucifer Fault and will combine into a single mining operation and enhance to ounces per vertical metre.

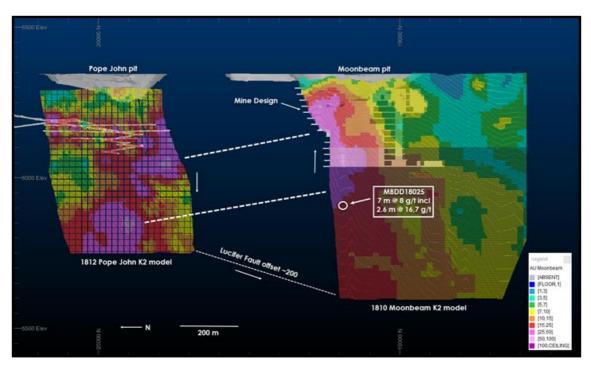


Figure 5 - Pope John-Moonbeam long section across Lucifer Fault

Modelling indicates that Moonbeam is the faulted offset of the Pope John deposit with recent surface diamond drilling extending the Moonbeam resource at depth adjacent to the Lucifer Fault contact (Figure 5) consistent with the north plunge direction evident at Pope John.

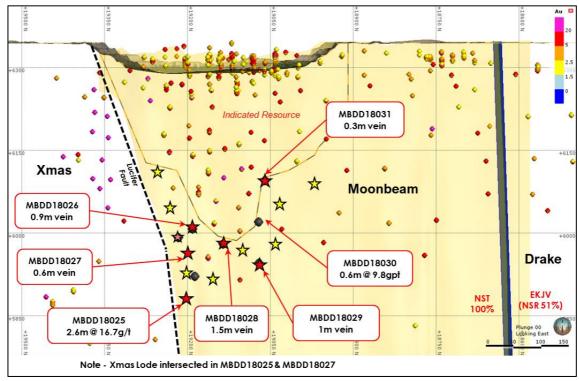


Figure 6 - Long section Xmas-Moonbeam showing current drilling activity

In addition, several Moonbeam drill holes intersected the Xmas structure in the upper portion of the drill holes indicating a flexure in the Lucifer Fault which provides for a potential overlap of the two structures with a southerly strike extension to the Xmas structure. Assay results for these holes are pending (Figure 6).

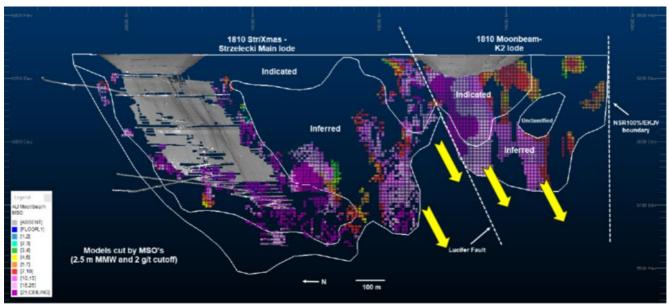


Figure 7 - Moonbeam and Xmas long sections with modelled resource outlines

Decline access development from Pope John to Xmas-Moonbeam has commenced which will provide an excellent underground diamond drill platform to infill drill the significant inferred Resource areas in the Xmas structure (Figure 7).

<u>Kundana EKJV (NST 51%)</u>

In-mine extensional underground diamond drilling across the Rubicon-Hornet-Pegasus mining complex continues to extend the mineralised Pode system and the main K2 structure northwards and down-plunge from Pegasus.

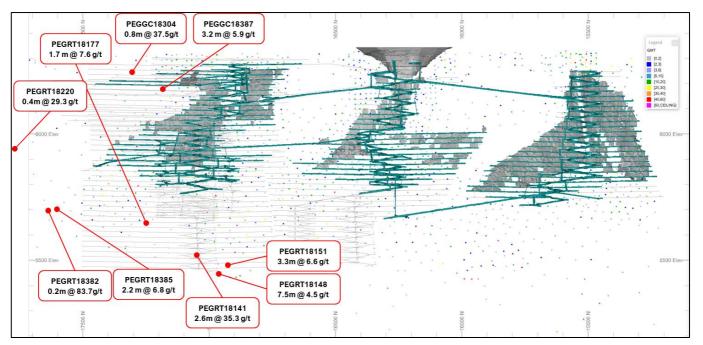


Figure 8 – Long section view of EKJV Rubicon-Hornet-Pegasus mining complex with significant drill hole intersections

With mining operations commencing, the Pode zone, associated with the K2B structure, continues to expand both down dip and northward from the current Pegasus infrastructure with recent high-grade intersections including PEGGC18319 – 1.9m at 34.6g/t, PEGGC18325 – 2.6m at 13.1g/t and PEGGC18304 – 0.8m at 37.5g/t (Figure 8). In addition, sub-parallel hanging wall zones to the Pode system at depth have provided further excellent results with the new Hebe zone returning PEGRSD18145 - 1.2m at 98.0g/t and PEGRSD18146 – 1.0m at 97.0g/t outside the existing resource inventory.

At Raleigh South, extensional surface and underground drilling have continued to extend the Raleigh Main Vein mineralisation southwards from the existing resource model towards the proposed internal Sadler decline development (Figure 9). While grades are variable, the overall economic intersection ratio is consistent with the historical average on the Raleigh structure with the better results including RALRSD18068 – 0.7m at 136.2g/t, RALRSD18185 – 1.1m at 54.7g/t and RALRSD18204 – 1.3m at 42.1g/t.

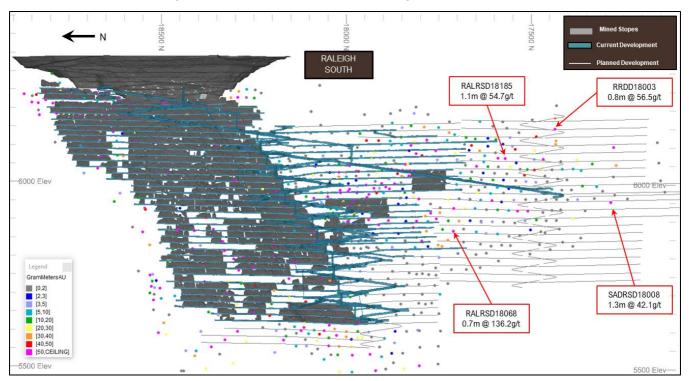


Figure 9 - Raleigh South long section with selected significant intersections

Further south on the Raleigh structure, surface exploration drilling at Sir Walter has confirmed the presence of high-grade intersections another 350 metres south of the proposed internal Sadler decline. The southernmost and last hole in the current program, SWCD18108, recorded the best result of 4.2m at 21.5g/t with the Raleigh structure remaining open in all directions.

South Kalgoorlie

HBJ Mine

In-mine drilling at the HBJ underground mine has advanced ahead of the current production areas with resource definition and extensional drilling programs at COZ, Jubilee and NOZ mine areas.

Down plunge drilling at COZ has extended the current mining block with intersections within, and on the contacts of, the central quartz-feldspar porphyry body including HBJUG0497 – 11.2m at 8.1g/t and HBJUG0486 – 3.7m at 7.1g/t.

Similarly, within the Jubilee area, initial extensional drilling has returned better than anticipated results from the eastern side of the ore zone including HBJUG0565B – 6.1m at 5.2g/t, HBJUG0553B – 2.7m at 9.7g/t and HBJU0552 – 3.5m at 7.7g/t.

Definition drilling at NOZ has achieved excellent widths and grades adjacent to, and beneath, the current mining front including HBJUG0525 -11.6m at 10.0g/t, HBJU0527 - 8.5m at 13.1g/t HBJU0511 - 10.5m at 6.1g/t and HBJU0530 - 7.3m at 7.5g/t. In addition, extensional drilling northwards from a new drill platform has commenced with first results including HBJUG0594 - 3.8m at 10.4g/t indicating potential higher resource grades from the NOZ area.

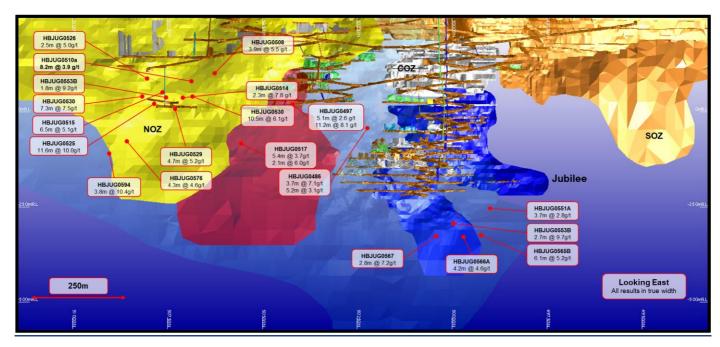


Figure 10 - South Kalgoorlie HBJ Mine - Significant drill hole intersections

Regional

Regional exploration across the extensive South Kalgoorlie tenements has begun to achieve success in several areas.

At the Tornado prospect within the Zuleika Shear corridor, diamond drilling beneath historical shallow oxide mineralisation returned encouraging multiple intersections from the first hole including TODD 18162 – 15.0m at 1.01g/t from 97m and 26.2m at 1.64g/t from 152.5m (Figures 12 and 13).

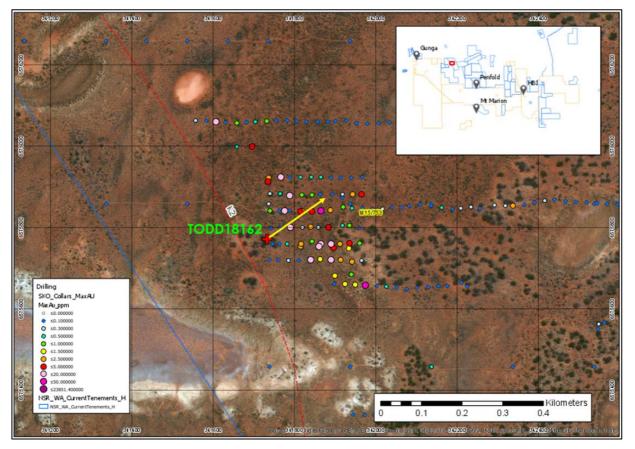


Figure 11 – South Kalgoorlie - Tornado Prospect Location Plan

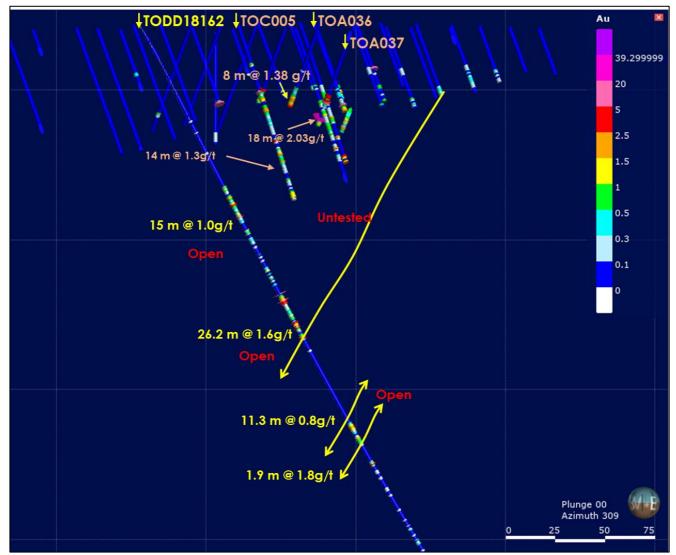


Figure 12 - Tornado Prospect - TODD18161 cross section looking north with significant assay results

Further east at the new Glasswing prospect, reconnaissance RC drilling of historic RAB anomalies has returned a strong initial result of XGRC18005 – 21.0m at 2.3g/t from 58m depth. Further step out drilling along strike is currently in progress.

Broad spaced reconnaissance diamond drilling below the historic Samphire open pit has outlined a series of stacked mineralised veins containing visible gold across a strike length of at least 400 metres. Results from the first two holes include SPDD 18001 - 1.4m at 8.9g/t from 222.9m, 2.0m at 43.8g/t from 233.6m, 3.3m at 4.5g/t from 305.6m and SPDD18002 – 1.9m at 5.2g/t from 151.3m, 0.35m at 17.6g/t indicate the potential for a significant mineralised system (Figure 13)

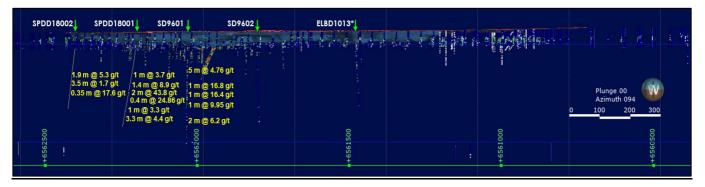


Figure 13 - Long Section through Samphire Prospect looking west highlighting recent diamond drill holes

<u>Jundee</u>

In-mine resource and extension drilling continue to expand the known extent of all the major mining areas at Jundee while scoping the potential of the new Zodiac discovery to the south of the main production areas.

Zodiac

The Zodiac system, represented by a broad zone with multiple mineralised intercepts, has been traced over a strike length of approximately 2km to date, remaining open in all directions (Figure 14).

A surface diamond drilling program of 4 wedge holes off the original JRD10447 diamond drill hole at Zodiac is currently in progress to confirm the structural trends of the Zodiac system. The initial wedge JRD10447W4 has been completed at 2,165m depth successfully intersecting mineralisation at all modelled target zones together with some additional unmodelled mineralisation. Combined intersections include 7.36m at 3.44g/t from 1,836.0m, 9.78m at 3.56g/t from 1,920.3m including 3.18m at 9.23g/t from 1,926.9m.

The second wedge hole, currently at 1,792m, has also successfully intersected multiple zones of extensive alteration and veining at the target depths and is drilling ahead to a total planned depth of 2,200m.

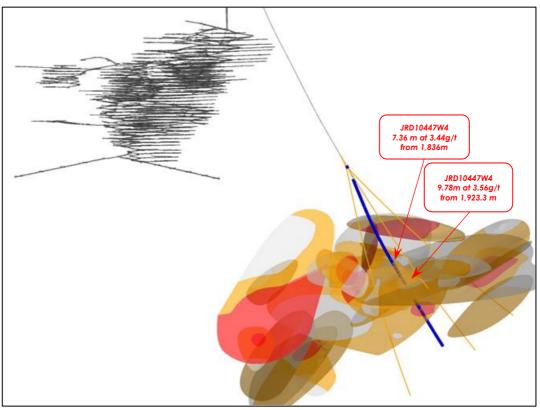


Figure 14 – Schematic up long section of Zodiac target area with JRD10447W4 drill hole intersections

Ramone

Northern Star has committed to the development of a new open-pit mining operation at the Ramone site during the current financial year. Permitting and a range of pre-development activities have commenced at the site together with the initial grade control drilling program for the upper levels of the planned open pit.

Infill grade control drilling has been completed over approximately 75% of the planned pit area to a vertical depth of approximately 60 metres. Initial assay results have significantly exceeded expectations from resource modelling indicating the potential for increased production from the upper portion of the open pit.

Selected better results include: NSRJRC11676 – 11.5m at 11.4g/t from 3m; NSRJRC11572 – 15.0m at 5.5g/t from 9m; NSRJRC11655 – 13.5m at 4.4g/t from surface; NSRJRC11555 - 5.0m at 10.6g/t from 12m; NSRJRC688 – 20.0m at 2.6g/t from16m and NSRJRC700 – 11.5m at 5.4g/t (all true widths).

In addition, surface diamond drilling has commenced to confirm the underground potential of the Ramone system beneath the planned open pit. To date, a total of 5 holes have been completed revealing several discrete high-grade cores within broader stockwork envelopes at depth with the deepest intersection in NSRJRD10489 returning the excellent result of 17.6m at 4.9g/t from 334m (Figure 15).

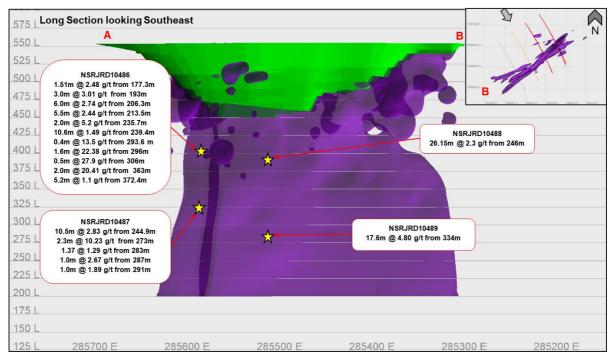


Figure 15 - Long section looking south west through Ramone deposit with diamond drilling results

Within the broader Ramone area, RC drilling has extended the Ramone mineralisation to the southwest including NSRJRC11383 – 5m at 14.24g/t from 65m. Along strike to the north-east, RC drilling at the Mosley prospect has identified extensions to the Ramone trend indicating the potential for additional small open pit development (Figure 16).

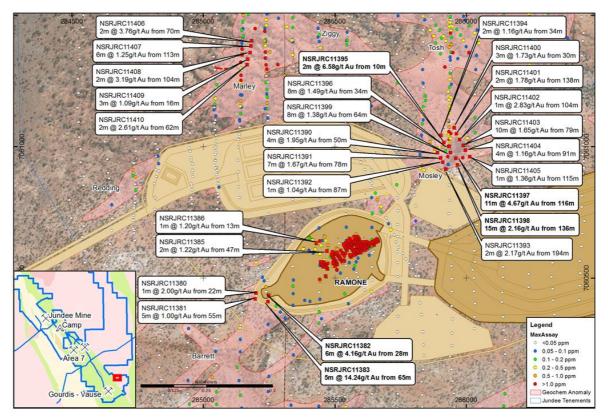


Figure 16 - Plan view of Ramone region showing extensional RC drilling results

Central Tanami Joint Venture (NST 40%)

As part of the ongoing evaluation of the Central Tanami Project, a program of RC and diamond drilling was completed beneath the existing treatment plant infrastructure testing for potential shallow extensions to the main Hurricane-Repulse mineralisation.

RC drilling intersected significant gold mineralisation at varying depths in all 23 drill holes completed beneath all major infrastructure at the CTP Plant (Figure 17).

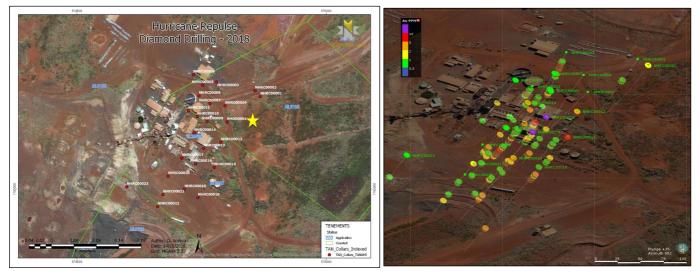


Figure 17 – Central Tanami - Hurricane-Repulse Collar Plan Figure 18 - Significant RC gold intercepts (Oblique view looking NW)

Significant intersections from the RC drilling program include:

NHRC00003 - 3m at 20.47g/t Au from 140m and 12m at 4.58g/t Au from 147m; NHRC00007 - 19m at 4.64g/t Au from 136m; NHRC00009 - 14m at 3.19g/t Au from 150m, and NHRC00015 - 15m at 2.89g/t Au from 92m.

In addition, single diamond drill hole testing the down plunge continuity of the new mineralised zones, intersected a wide zone of significant gold mineralisation located approximately 130 metres below the base of the existing Hurricane pit to the north. Significants assays included NHDD001 - 8.5m (dth) at 6.6 g/t gold from 177.9m depth confirming the potential for significant depth extensions to the Hurricane-Repulse mineralisation beneath the Central Tanami Processing Plant (Figure 18).

Further south at Jim's, diamond drilling beneath the existing Jim's open pit also returned significant gold intersections up to 170 metres beneath the base of the open pit. Significant results included: JDD001 - 7.2m at 2.31g/t Au from 184.5m and 26m at 3.88g/t Au from 224m; JDD002 – 10.0m at 5.70g/t gold from 401.0m; JDD003 – 8.0m at 3.94g/t gold from 219.1m; and JDD004 - 20.5m at 2.20g/t gold from 253.5m and 10.3m at 1.11g/t gold from 258.56m (Figure 19).

Further extensional RC and diamond drilling is planned at both locations commencing in late quarter three following cessation of the Wet season.

Figure 19 - Plan view of Jim's open pit and location of diamond drill holes

Yours faithfully

Bill Beament

BILL BEAMENT Executive Chairman Northern Star Resources Limited

Investor Relations Enquiries:

Luke Gleeson Northern Star Resources Limited T: +61 8 6188 2103 E: Igleeson@nsrltd.com

Competent Persons Statements

<u>Media Enquiries</u>:

Paul Armstrong Read Corporate T: +61 8 9388 1474 E: paul@readcorporate.com.au

The information in this announcement that relates to exploration results, data quality, geological interpretations for the Company's Australian Project areas is based on information compiled by Michael Mulroney, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy and a full-time employee of Northern Star Resources Limited. Mr Mulroney has sufficient experience that is relevant to the styles of mineralisation and type of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" for the Company's Australian Project areas. Mr Mulroney consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

Forward Looking Statements

Northern Star Resources Limited has prepared this announcement based on information available to it. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this announcement. To the maximum extent permitted by law, none of Northern Star Resources Limited, its directors, employees or agents, advisers, nor any other person accepts any liability, including, without limitation, any liability arising from fault or negligence on the part of any of them or any other person, for any loss arising from the use of this announcement or its contents or otherwise arising regarding it.

This announcement is not an offer, invitation, solicitation or other recommendation with respect to the subscription for, purchase or sale of any security, and neither this announcement nor anything in it shall form the basis of any contract or commitment whatsoever. This announcement may contain forward looking statements that are subject to risk factors associated with gold exploration, mining and production businesses. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially, including but not limited to price fluctuations, actual demand, currency fluctuations, drilling and production results, Reserve estimations, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory changes, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimates.

APPENDIX A – DRILL RESULTS

Table 1 - Kanowna Significant Intersections

Drill Hole	Easting	Northing	Collar RL	Dip	Azimuth (degrees,	Hole Depth	Downhole From	Downhole To	Downhole Intersection	Au (gpt)	Est True Thicknes
brill Hole #	(Mine Grid)	(Mine Grid)	(Mine Grid)	(degrees)	(degrees, Mine Grid) A BLOCK	(m)	(m)	(m)	(m)	(gpt) uncut	(m)
KDU4815	20067	49949	10091	3	235	88	18.2	20.0	1.9	4.9	0.7
KDU4816	20067	49949	10090	-12	227	82	27.0 17.0	34.9 24.0	7.9 7.0	7.1 6.2	3.9 3.4
							36.8	37.1	0.3	31.7	0.2
KDU4816 KDU4817	20067 20067	49949 49949	10090	-12 -22	227 219	82 145	52.4 19.0	56.8 22.0	4.4 3.0	2.9 15.0	2.1 1.3
KDU4017	20067	47747	10070	-22	217	143	39.4	44.0	4.6	2.3	2.0
							54.7	60.9	6.2	3.5	2.7
KDU4818	20067	49949	10090	-17	212	129.2	120.7 18.71	125.6 21.55	4.9 2.84	3.9 10.1	3.4
							43.00	47.20	4.20	4.2	2.3
KDU4847	20068	49949	10093	34	213	43.8	16.00	17.38	1.38	2.9	1.2
KDU4784 KDU4785	20073 20071	49949 49949	10093 10093	38 40	117	37 32	4.0 22.7	12.2 28.6	8.2 5.9	2.4 1.0	5.0 5.0
KDU4786	20071	49949	10092	12	137	37	33.8	36.5	2.7	2.2	2.0
KDU4787	20069	49948	10091	3	177	36	10.2 21.0	12.1 24.1	1.9 3.1	3.1 10.4	1.7 2.8
							27.7	30.6	3.0	2.9	2.6
KDU4788	20070	49949	10090	-20	146	61	25.8	30.2	4.4	2.8	2.2
							31.6 36.5	33.9 38.9	2.3 2.4	10.0 2.4	1.1 1.2
							43.2	45.3	2.4	3.3	1.1
KDU4789	20070	49949	10090	-30	166	58	18.8	26.2	7.4	5.9	2.3
					-		31.1 44.6	33.3 44.9	2.2 0.3	3.0 12.0	0.1
KDU4790	20069	49949	10090	-21	188	51	7.7	12.4	4.7	3.0	3.0
							19.8	21.5	1.7	13.0	1.1
KDU4791	20067	49949	10090	-15	231	72	46.0 20.0	46.6 24.4	0.6 4.4	12.5 6.7	0.3
1004771		-777-7	10070				56.4	59.2	2.8	24.6	1.8
KDU4792	20067	49949	10090	-5	237	71	20.0	34.4	14.4	5.4	10.2
KDU4726	19895	49872	10055	23	71	95	60.4 52.8	62.2 57.0	1.8 4.2	113.1 3.4	1.3 2.1
KDU4727	19895	49872	10055	14	77	91	62.5	65.5	3.0	2.7	1.8
KDU4728	19895	49872	10055	18	80	103	64.6	77.0	12.4	3.3	6.5
KDU4729	19895	49872	10055	12	85	195	90.2 90.0	92.4 97.0	2.2 7.0	2.2 3.4	1.1 4.0
							135.0	137.3	2.3	3.5	1.3
KDU4795	19895	49872	10055	23	62	92	67.0	76.2	9.2	3.2	5.5
KDU4822 KDU4823	19930 19931	49877 49877	10049	-34 -3	116 91	80 75	35.0 47.6	35.8 48.9	0.8	0.0	0.0
							53.7	54.7	1.0	2.7	0.4
KDU4824 KDU4825	19932 19932	49879 49878	10050 10051	3	67 96	48	32.0 72.4	35.9 76.4	3.9 4.1	6.8 2.7	2.5 0.9
KD04025	17732	47070	10031	12	70	115	79.0	84.0	5.0	3.3	1.1
KDU4826	19929	49880	10051	21	69	47	26.0	27.6	1.6	0.0	0.0
KDU4827	19915	49889	10054	35	43 B BLOCK	53	15.7	18.9	3.2	7.5	1.3
KDU4618	20461	49672	9511	-33	212	156	101.8	115.0	13.2	8.1	5.3
KDU4622	20464	49672	9511	-33	173	128	66.3	68.8	2.4	10.2	1.0
							90.0	96.0	6.0	3.1	2.5
KDU4653	20381	49915	9860	-30	131	441	103.1 215.6	109.0 217.0	5.9 1.4	3.5 3.5	2.5 Unknow
1.000	20001		7000				231.0	237.0	6.0	2.7	Unknow
							279.0	279.5	0.5	10.1	Unknow
KDU4654	20381	49915	9861	-10	118	393	308.0 274.0	310.0 283.4	2.0 9.4	2.4 2.4	Unknow 2.5
							306.1	312.0	5.9	2.1	1.5
KDU4655	20381	49915	00(1	7	130	2.40	341.5	342.2	0.8	98.4	0.7
KDU4655	20381	47715	9861	/	130	342	290.0 181.0	291.0 187.0	1.0 6.0	4.5 2.5	0.1
							221.5	230.7	9.1	2.7	1.1
KDU4657	20381	49915	9862	24	97	436	315.6	316.0	0.4	13.6	0.1
					+		315.6 339.0	316.0 345.0	0.4 6.0	13.6 3.0	0.1
KDU4667	20085	49937	9967	19	186	30	27.1	29.7	2.6	1.7	Unknow
KDU4669	20091	49938	9968	25	171	66	32.3	40.8	8.5	4.8	7.1
							50.0 58.0	53.1 58.9	3.1 0.9	3.2 10.0	2.6
KDU4670	20091	49938	9967	17	171	67	32.1	45.0	12.9	4.9	12.4
							47.6	48.0	0.4	11.4	0.4
	1		1		C BLOCK		51.0	52.2	1.2	3.2	1.1
KDU4580	20146	49742	9809	-5	226	273	167.9	169.6	1.7	12.3	Unknow
							185.3	191.9	6.7	13.8	Unknow
KDU4581	20146	49742	9810	11	224	208	143.0 185.1	146.0 185.4	3.0 0.3	2.7 14.2	Unknow
KDU4532	19860	49810	9685	15	179	204	18.0	26.0	8.0	5.3	7.6
							31.0	40.5	9.5	3.1	9.1
							58.9 91.6	63.0 94.4	4.1 2.8	6.9 3.7	4.0 2.7
		(0010	9685	17	199	269	16.0	17.5	1.5	3.1	1.4
	19860	49810	7000	17							
	19860	49810	7003	17			34.7	51.0	16.3	2.6	15.3
KDU4534							117.0	119.0	2.0	2.6 2.7	1.8
	19860 19819 20146	49810	9687	30	213	210				2.6	

							Downhole	Downhole	Downhole	A.:	Est True
Drill Hole #	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Azimuth (degrees, Mine Grid)	Hole Depth (m)	From (m)	To (m)	Intersection (m)	Au (gpt) uncut	Thickness (m)
							226.6 230.7	227.2 231.2	0.6	6.0 6.1	0.5
KDU4690	20142	49745	9809	1	234	184	3.0	7.0	4.0	3.5	3.7
							60.2 93.0	62.7 95.0	2.5 2.0	2.9 2.3	2.1
KDU4691	20141	49745	9809	13	234	183	4.0 47.7	8.0 50.6	4.0 2.9	4.1 2.1	3.6 2.6
							77.0	80.0	3.0	5.6	2.0
							106.0 112.3	107.0 113.0	1.0 0.7	61.1 18.8	1.0 0.7
							121.0	124.0	3.0	6.2	2.9
KDU4692	20141	49745	9809	3	244	213	50.9	52.2 60.4	1.3	3.2 2.4	1.1
								79.0	2.0	2.7	1.8
								103.0 106.2	1.2	3.8 12.1	1.1
								117.0	1.8	3.4	1.6
KDU4693	20141	49746	9811	26	236	195	6.1	142.5 8.2	2.5 2.1	2.1 8.9	2.3 1.9
							19.1	24.6	5.5	2.3	5.0
							175.0 182.0	175.7 184.0	0.7 2.0	12.4 3.2	0.4
KDU4695	20141	49746	9809	9	254	401	13.0	22.0	9.0	2.7	9.0
							30.0 41.0	33.6 43.5	3.6 2.5	3.2 4.2	3.4 1.8
							46.0 66.0	48.0 66.3	2.0 0.3	4.8 10.6	1.9 0.3
							80.0	83.0	3.0	2.1	2.0
							93.4 102.6	96.7 105.0	3.3 2.4	2.6 4.4	3.2 2.4
							136.2	137.9	1.7	4.0	1.7
							219.4 225.3	220.0 226.6	0.6	10.3 3.3	0.6
KDU4696	20140	49746	9809	18	257	222	19.0	46.8	27.8	2.6	24.9
							62.0 84.0	62.3 86.0	0.3 2.0	11.1 5.7	0.3
							130.0	136.1	6.1	3.4	5.0
KDU4697	20140	49746	9809	19	251	177	16.0 41.0	21.3 45.4	5.3 4.4	3.4 3.6	5.2 4.4
							80.6	82.8	2.2	5.0	2.1
KDU4698	20141	49746	9810	31	251	192	126.8 10.0	128.2 18.0	1.4 8.1	2.3 5.7	1.4 8.0
							26.0	29.0	3.0	3.2	3.0
							36.1 49.0	40.0 53.3	3.9 4.3	3.0 2.8	3.9 4.3
							73.0	75.4	2.4	4.0	2.4
							107.1 124.7	108.0 125.8	0.9	10.1 9.2	0.9
KDU4793	19782	49843	9689	30	222	300	15.2	15.8	0.6	0.8	0.5
KDU4794 KDU4804	19776 19849	49846 49812	9684 9686	-31 30	263 204	348 233.8	251.3 14.00	252.0 17.45	0.7 3.45	23.2 2.5	0.2 3.4
							25.00 33.00	28.00 39.00	3.00 6.00	3.0 4.4	2.8 5.6
							54.00	55.85	1.85	4.4 3.5	1.7
KDU4805	19820	49826	9687	12	199	239	15.6 60.0	20.0 61.4	4.4	8.9 5.2	4.0
KDU4806	19785	49842	9689	30	204	161	15.0	17.0	2.0	2.3	2.0
KDU4807	19780	49844	9685	9	200	166	46.0 65.9	49.0 66.3	3.0 0.4	4.5 28.7	3.0 0.3
KDU4703	19818	49833	9617	29	213	114	44.7	46.3	1.6	3.6	1.4
KDU4704	19818	49833	9616	17	194	150	58.5 57.0	60.8 62.0	2.3 5.0	10.7 14.0	2.2 4.5
	17010	11000	,,,,,	.,		100	96.0	99.4	3.4	5.5	3.3
KDU4705	19907	49780	9652	17	187	141	132.7 58.0	134.0 59.4	1.3 1.4	3.9 2.8	1.2
			,				64.7	66.1	1.4	3.5	1.3
							87.8 107.5	92.0 107.8	4.2 0.3	2.7 6.8	3.9 0.1
KDU4706	19907	49780	9652	6	187	147	56.4	79.0	22.6	2.8	20.7
							88.0 96.0	92.0 99.0	4.0 3.0	20.8 2.4	3.7 2.7
10111202	10001	1072.1	0.450		100	1.17	111.0	115.0	4.0	1.9	3.7
KDU4707	19891	49784	9652	11	198	147	43.1 75.5	45.8 84.3	2.8 8.8	3.4 4.0	2.5 7.9
							97.5	98.6	1.1	2.3	1.0
KDU4708	19856	49792	9652	-3	185	123	112.6 60.7	113.7 76.0	1.1 15.4	19.9 6.5	1.0 12.8
KDU4709	19846	49796	9653	19	230	141	57.6	60.0	2.4	2.2	1.6
				<u> </u>	D BLOCK		65.2	69.3	4.2	4.8	2.8
KDU4620	20462	49672	9511	-26	198	159	66.9	71.9	5.0	1.6	0.0
KDU4621	20462	49672	9511	-18	185	110	46.6 70.3	48.5 70.9	1.9 0.6	2.2 10.6	1.8 0.6
KDU4671	20452	49672	9511	-30	176	105	77.0	83.0	6.0	2.2	2.3
KDU4672 KDU4673	20452 20462	49672 49672	9511 9511	-38 -24	168 165	116 156	90.0 54.6	91.6 62.0	1.6 7.4	2.3 3.8	0.5
							83.4	88.0	4.6	6.0	1.2
KDU4674	20462	49672	9512	-16	138	174	61.4 84.0	66.0 93.0	4.6 9.0	4.0 2.9	1.3 3.7
							141.0	143.0	2.0	4.0	0.8
KDU4702 KDU4619	20451 20462	49672 49672	9511 9511	-21 -40	222 195	115 227	87.0 116.5	90.9 123.8	3.9 7.4	7.3 7.1	1.9 2.4
KDU4619	20462	49672	9511	-40	195	227	185.8	186.7	0.9	3.9	0.3
KDU4623	20464	49672	9511	-30	154	186	72.7 76.8	73.9 87.7	1.2 10.9	14.9 671.0	0.5 4.4
							87.7	97.9	10.9	2.8	4.4

			KANO	WNA SIGN		NTERSEC					
Drill Hole #	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Azimuth (degrees, Mine Grid)	Hole Depth (m)	Downhole From (m)	Downhole To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
								Including	0.5	12860.0	0.2
KDU4675	20378	49706	9589	19	177	75	32.4 50.0	35.1 53.3	2.7 3.3	2.0 2.5	2.1 2.6
KDU4676	20378	49706	9589	9	189	80	70.3	70.7	0.5	12.2	0.4
KDU4677	20354	49708	9588	27	179	80	4.0 36.0	11.0 40.0	7.0 4.0	5.3 2.5	5.8 3.9
KDU4678	20354	49708	9588	15	189	83	35.1	36.0	1.0	4.3	0.8
	00010	(0700	0.507				47.0	55.0	8.0	2.4	6.9
KDU4679	20318	49709	9587	15	171	82	34.6 47.0	37.0 58.0	2.4 11.0	3.0 3.7	1.7 7.6
KDU4680	20318	49709	9587	-3	169	90	47.6	52.0	4.4	6.6	3.4
KDU4681 KDU4682	20318 20318	49709 49709	9586 9587	-13 -7	173 184	97 91	57.0 51.7	58.5 54.4	1.5 2.6	2.5	1.2 2.2
KDU4683	20307	49710	9588	32	180	87	47.0	50.6	3.6	1.3	3.3
KDU4684	20307	49710	9588	14 24	178	84	66.0	69.0	3.0	2.1	2.9 4.9
KDU4685 KDU4686	20307 20292	49710 49711	9588 9587	14	184 179	87 85	63.0 45.4	68.3 47.4	5.3 2.1	2.5 2.7	2.0
							60.0	64.2	4.2	1.7	4.0
KDU4687 KDU4688	20292 20262	49711 49711	9588 9588	24 22	191 184	95 94	60.1 78.0	61.4 87.0	1.4 9.0	9.1 2.3	1.3 7.7
KDU4689	20254	49711	9587	17	201	60	34.8	38.0	3.2	5.1	3.0
KDU4699 KDU4700	20318 20319	49709 49709	9587 9587	5 -26	178 181	85 83	47.0 62.0	52.0	5.0	2.2 0.0	4.4 0.0
KDU4701	20318	49709	9587	-20	161	84	45.0	62.6 49.0	0.6 4.0	3.0	1.9
					E BLOCK						
KDU4529	20474	49289	9242	24	37	363	17.6	20.0	2.4	7.9	0.0
KDU4562	20000	49616	9097	3	220	148	317.2 24.3	320.8 25.0	3.6 0.7	2.6 18.7	0.0
	20000			Ŭ,		9	76.0	76.7	0.8	12.1	0.7
KDU4588	20008	49554	9130	-23	201	95	96.8 78.0	97.2 80.0	0.4 2.0	11.8 6.7	0.2
KD04300	20008	47554	7130	-23	201	75	83.0	85.0	2.0	2.2	1.3
KDU4589	20008	49554	9130	-4	214	66	43.0	45.0	2.0	4.0	1.8
KDU4591	20008	49554	9130	2	246	183	61.9 67.0	64.0 69.0	2.1 2.0	3.8 2.3	1.8
							82.3	91.0	8.8	3.2	7.3
KDU4592 KDU4593	19990 19990	49558 49558	9127 9127	-13 -4	207 221	63 64	40.1 51.3	43.3 60.2	3.2 8.9	2.1 2.7	2.5 8.0
KDU4599	20523	49561	9260	9	142	156	94.0	94.5	0.5	16.8	0.3
KDU4600	20523 20523	49561 49561	9260 9260	20	155 168	150 140	101.0 84.5	104.0 97.4	3.0 12.9	2.8 2.3	2.7 11.7
KDU4601 KDU4602	20523	49561	9260	-11	167	140	78.9	93.0	14.2	2.3	10.3
KDU4603	20523	49561	9260	-19	169	198	104.3	108.7	4.4	2.6	2.6
KDU4604	20523	49561	9260	11	182	144	115.0 71.6	120.0 73.3	5.0 1.7	4.4 2.1	3.0 1.4
							136.0	138.0	2.0	2.1	1.7
KDU4605 KDU4606	20523 20523	49561 49561	9260 9260	6 -5	189 187	147	83.0 18.4	89.0 22.2	6.0 3.9	2.9 4.1	4.9 3.2
KD04000	20020	47501	7200	-5	10/	100	83.5	90.0	6.5	2.1	5.4
KDUAAAZ	00500	405.(1	00/0	15	107	144	93.2	95.0	1.8	2.7	1.5
KDU4607 KDU4608	20523 20523	49561 49561	9260 9260	-15 29	187 186	144	104.0 68.2	110.0 75.0	6.0 6.8	3.1 2.7	3.8 6.7
							121.0	123.0	2.0	2.2	2.0
KDU4609 KDU4610	20523 20523	49561 49561	9260 9260	28 34	207 160	167 152	119.1 69.0	123.3 73.3	4.2 4.3	3.7 9.9	3.4 4.2
KDU4611	20474	49289	9240	-16	15	183	26.4	27.3	0.9	7.2	0.0
							162.8 175.8	167.1 177.5	4.3 1.8	2.2 8.2	3.7 1.5
KDU4612	20474	49289	9240	-14	25	201	56.2	59.0	2.8	4.7	0.0
							167.5	170.4	2.9	2.1	2.2
KDU4614	20474	49289	9240	-31	14	222	172.0 87.8	178.0 89.0	6.0 1.3	3.1 3.9	4.6 0.0
							134.0	136.0	2.0	2.5	0.0
							150.0 162.0	154.5 167.5	4.5 5.5	3.4 2.3	4.2 5.1
KDU4615	20474	49289	9240	-26	27	222	16.0	17.0	1.0	10.1	0.0
							109.1 150.0	112.6 151.4	3.5 1.4	2.1	0.0
							192.0	198.0	6.0	3.0	4.9
KDU4616	20474	49289	9240	-19	28	237	86.1 167.9	89.0 171.0	2.9 3.2	12.6 3.9	0.0 3.0
							175.6	179.0	3.4	2.9	3.2
KDU4617	20474	49289	9240	-14	32	246	15.0	15.3	0.3	22.1	Unknown
							44.0 73.0	45.0 74.4	1.0	6.2 2.5	Unknown Unknown
							88.0	89.6	1.6	3.1	Unknown
							188.6 220.0	189.7 221.7	1.2	2.6	1.0 1.5
KDU4710A	20527	49561	9258	-36	138	441	261.0	292.0	31.0	2.3	6.9
KDU4594	20523	49561	9260	-21	1.49	219	416.7	437.0	20.3	3.0 5.1	10.0
KDU4374	20323	47301	7200	-21	148	217	122.1 210.0	126.5 212.0	4.5 2.0	5.1 3.0	2.5 Unknown
KDU4597	20523	49561	9260	-8	147	186	141.0	159.0	18.0	0.0	Unknown
KDU4598 KDU4624	20523 19891	49561 49784	9260 9651	-1	149 203	159 454	59.5 66.5	60.9 68.4	1.4	2.2 4.5	Unknown 1.5
							76.0	78.2	2.2	15.6	1.8
KDU4563	20000	49616	9097	8	220	188	23.0 91.7	25.0 93.0	2.0 1.3	12.9 12.1	1.7 1.2
							96.4	99.0	2.6	5.3	2.3
KDU4563	20000	49616	9097	8	220	188	110.0	113.3	3.3	2.4	2.9
KDU4571	19887	49608	9115	38	272	280	145.0 178.6	148.0 180.7	3.0 2.1	3.4 3.6	2.4
							244.7	249.7	4.9	3.0	2.5
KDU4572	19887	49609	9115	27	283	341	211.0 235.6	212.0 237.1	1.0	2.9 5.1	0.3

ASX: NST

			KANO	WNA SIGN		NTERSEC					
Drill Hole #	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Azimuth (degrees, Mine Grid)	Hole Depth (m)	Downhole From (m)	Downhole To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
							250.7	253.0	2.3	2.4	0.7
							258.0 266.0	263.8 268.0	5.8 2.0	4.9 6.1	1.9 0.7
KDU4573	19887	49608	9113	3	271	375	276.0	290.2	14.2	22.4	10.7
KDU4574	19890	49771	9413	-33	217	273	338.3 268.0	343.4 271.5	5.1 3.5	4.2 3.3	Unknown Unknown
KDU4587	20008	49554	9130	-13	199	81	67.8	68.4	0.6	3.5	0.3
KDU4590	20008	49554	9130	-21	211	78	69.0	70.1	1.1	8.3	0.8
KDU4632	20477	49286	9242	-12	50	377	115.7	118.7	3.0	2.7	Unknown
KD04032	20477	47200	7242	-12	50	5//	191.7	196.2	4.4	5.0	Unknown
KDU4/22	00.477	40007	0040	-7	50	200	228.2	230.0	1.8	2.6	Unknown
KDU4633	20477	49286	9242	-/	59	309	209.0 273.8	218.0 279.0	9.0 5.3	2.2 5.8	6.9 4.0
							282.0	289.0	7.0	3.5	5.3
KDU4634	20477	49286	9242	3	66	570	233.5 288.0	255.5 315.0	22.1 27.0	4.4 4.2	12.9 14.7
							512.1	513.0	0.9	14.1	0.0
KDU4635	20477	49287	9242	-6	66	411	236.0 247.0	239.0 259.0	3.0 12.0	3.6 5.8	1.8 7.0
							267.8	271.0	3.2	2.4	1.8
							291.3	302.0	10.8	2.7	6.0
KDU4636	20477	49286	9242	-11	71	433	313.0 261.8	319.0 263.0	6.0	2.3 12.9	3.3 0.7
							333.8	345.0	11.2	14.1	6.4
KDU4730 KDU4731	20477 20477	49286 49286	9242 9242	7-2	68 73	422 426	277.1 243.5	279.8 246.3	2.7 2.8	3.1 1.3	1.3 0.5
KDU4732	20477	49286	9242 9242	-2	73	426	67.8	68.5	0.7	34.6	0.5
KDU4734	20477	49286	9240	-18	73	471	79.0	79.3	0.3	10.4	0.0
							231.0 300.9	250.0 304.0	19.0 3.1	3.1 2.7	10.2 3.0
							310.0	311.5	1.5	12.7	0.7
							317.0	317.6	0.6	43.7	0.3
					SIMS		351.0	369.4	18.4	3.5	9.0
KDU4493	20159	49804	9861	21	221	144	3.9	5.2	1.3	NSI	0.0
KDU4496	20183	49803	9861	8	191	238	0.0	3.0	3.0	1.4	2.8
							6.3 54.4	9.2 60.1	2.9 5.6	1.7 2.3	2.3 4.4
							64.0	66.3	2.3	2.8	1.7
							206.0	207.2	1.2	82.4	1.0
KDU4577	20145	49742	9809	1	209	267	221.0 96.0	222.4 99.0	1.4 3.0	28.6 5.4	1.1
							217.0	219.0	2.0	53.2	1.4
KDU4871	20141	49745	9808	1	224	333.3	127.00 220.60	130.70 224.50	3.70 3.90	4.4 115.1	3.3 3.6
KDU4872	20141	49745	9808	-11	223	294.3	103.30	104.40	1.10	8.5	0.9
							112.00 173.05	115.76 175.47	3.76 2.42	7.1 7.6	3.2 2.1
							226.48	226.78	0.30	24.3	0.3
							244.20	246.66	2.46	2.5	2.2
KDU4873	20141	49745	9808	-3	220	300.8	106.65 134.90	109.55 139.00	2.90 4.10	2.9 2.5	2.5 3.7
							160.00	161.00	1.00	35.6	0.9
							184.82	187.48	2.66	10.3	2.4
							206.00 237.40	210.65 239.00	4.65 1.60	2.5 13.2	4.2
KDU4875	20141	49745	9808	10	213	342.4	85.28	91.00	5.72	2.7	4.7
							97.81 118.50	101.00 121.05	3.19 2.55	2.7 6.8	2.7 2.2
							127.90	132.30	4.40	3.3	3.7
KD114570	001.44	107.10	0010	10	010	010	200.00	202.75	2.75	2.5	2.4
KDU4578	20146	49742	9810	-10	210	210	35.0 48.5	36.0 55.4	1.0 6.9	18.5 3.7	0.6
							145.2	149.0	3.8	2.7	2.1
KDU4581	20146	49742	9810	11	224 VELVET	208	85.0	86.3	1.3	15.4	0.4
KDU4628	19285	50011	9633	-22	214	140	59.0	69.0	10.0	3.8	9.6
							79.2	91.0	11.8	2.0	11.3
KDU4631	19285	50014	9635	32	249	118	100.0 27.0	102.0 29.0	2.0	3.9 2.1	1.9
KDU4631 KDU4759	19285	49988	9635 9440	<u>32</u> 0	249 220	118	1.40	1.97	0.57	0.0	1.6
KDU4760	19262	49997	9441	0	41	9.7	0.30	1.00	0.70	0.0	0.0
KDU4761	19244	50005	9440	0	220	9.9	3.00 0.00	5.00 1.42	2.00 1.42	0.0 10.7	0.0
KDU4762	19232	50015	9440	0	217	9.0	0.00	1.00	1.00	8.3	0.9
KDU4763	19212	50039	9440	0	38	12.0	3.53	5.55	2.02	2.8	1.8
KDU4764 KDU4765	19186 19174	50064 50074	9440 9440	0	41 40	10.0 9.1	0.00	6.30 1.26	6.30 1.26	3.6 2.3	5.5 1.1
KDU4766	19160	50080	9440	-5	257	51.1	24.20	27.22	3.02	3.3	2.6
KDU4819 KDU4820	19257 19250	50010 50017	9478 9478	-4 0	47 42	17	0.0 4.0	1.0 5.0	1.0	0.0	0.0
KDU4821	19230	50032	9479	3	236	108	26.0	30.0	4.0	2.5	3.6
KDUMOOL	10051	50000	0.470		007	0/	34.0	37.6	3.6	2.4	3.3
KDU4821A KDU4849	19251 19179	50008 50063	9479 9441	2	237 255	96 56.1	34.0 0.00	37.8 1.69	3.8 1.69	2.2 5.1	3.4
							6.00	16.00	10.00	6.6	9.7
KDU4850	19189	50053	9440	-19	256	86.6	30.00 7.00	33.41 9.00	3.41 2.00	2.5 2.5	3.3
KD04000	17107	30033	744U	-17	200	0.00	15.00	9.00 27.70	12.00	2.5	11.5
KDU4851	19252	49998	9440	-21	254	102.0	0.00	4.10	4.10	4.0	2.0
KDU4852	19262	49990	9443	42	248	100.0	40.41 31.50	40.71 38.00	0.30 6.50	17.7 3.0	0.3 5.2
							50.00	52.35	2.35	3.8	1.9
KDU4853	19110	50133	9403	-18	236	110.7	22.77	28.49	5.72	4.6	4.0

			KANO	WNA SIGN		NTERSEC	TIONS				
Drill Hole #	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Azimuth (degrees, Mine Grid)	Hole Depth (m)	Downhole From (m)	Downhole To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
KDU4854	19110	50135	9403	-15	286	74.8	47.00	51.00	4.00	13.0	0.8
KDU4855	19327	50123	9570	34	217	98.0	75.44 80.45	78.90 84.10	3.46 3.65	3.6 2.6	3.5 3.6
							90.00	91.74	1.74	6.4	1.7
KDU4856 KDU4643	19327 19226	50123 50096	9570 9629	31 -33	210 187	71.5 37.1	63.40 7.00	65.00 7.45	1.60 0.45	1.5 1.7	0.0
KDU4644	19226	50096	9629	-25	174	35.0	20.00	23.00	3.00	8.3	1.2
KDU4645	19224	50097	9633	55	234	23	25.61 5.0	30.36 11.6	4.75 6.6	8.0 4.3	1.9 5.6
							13.5	19.0	5.5	2.5	3.5
KDU4646 KDU4647	19226 19225	50096 50097	9633 9631	53 24	182 166	29 33	15.0 29.6	20.9 32.0	5.9 2.4	7.9 3.4	5.0 1.4
KDU4847 KDU4767	19225	49771	9408	-31	185	281.4	248.25	255.20	6.95	1.6	2.2
KDU4768	19847	49773	9409	4	236	285.0	195.00	198.00	3.00	0.6	0.0
KDU4769	19847	49773	9408	-27	238	407.5	248.00 190.17	249.38 190.54	1.38 0.37	1.3 11.2	0.0
							260.22	264.00	3.78	1.3	3.4
KDU4770A KDU4774	19847 19887	49773 49607	9408 9113	-29 -9	249 231	521.6 234.2	262.00 133.00	264.12 134.00	2.12	2.2 0.8	0.8
KDU4775	19887	49607	9113	-9	251	297.3	192.71	194.14	1.43	0.8	0.0
KDU4776	19887	49607	9112	-26	241	371.9	281.00	283.34	2.34	1.2	0.0
KDU4777	19887	49607	9112	-23	252	413.7	349.00 378.00	352.00 387.20	3.00 9.20	23.7 12.4	2.1 6.5
KDU4778	19887	49609	9113	5	272	438.2	274.80	284.70	9.90	13.7	7.4
							337.12	340.70	3.58	4.4	2.8
KDU4629	19285	50011	9633	-25	198	189	100.0	102.0	2.0	4.0 2.8	1.6
							151.0	156.8	5.8	3.1	4.8
KDU4630	19285	50011	9636	33	218	126	76.3	79.0	2.6	2.4	2.3
KDU4658 KDU4659A	19285 19285	50014 50011	9634 9633	-1 -3	265 231	279 426	33.0 40.0	35.0 40.7	2.0 0.7	2.2 24.1	1.4 0.6
KDU4660	19286	50010	9634	1	210	172	59.6	62.6	3.0	9.3	3.0
KDU4662	19351	50077	9463	-8	219	199	67.0 119.4	70.8 120.1	3.8 0.7	8.4 4.8	3.5 0.6
KDU4662 KDU4663	19351	50077	9463	-8 6	208	227	119.4	111.4	1.1	4.8 12.7	0.8
							116.4	116.7	0.3	29.5	0.2
KDU4664 KDU4665	19352 19352	50077 50076	9463 9464	14 20	220 227	213 267	170.0 190.4	172.4 194.0	2.4 3.7	0.9 3.3	2.4 3.6
KDU4666	19352	50078	9464	20	222	267	215.9	219.0	3.1	3.3	3.6
KDU4746	19252	50007	9478	0	255	171	38.1	40.0	2.0	2.4	1.8
KDU4747	19232	50038	9478	-12	50	15	46.9 0.0	47.2 2.0	0.3 2.0	36.1 7.6	0.2
KDU4748	19216	50049	9478	-12	228	31	21.5	22.6	1.1	2.5	0.9
KDU4749	19206	50062	9478	-8	230	21	3.4	4.3	0.9	1.4	0.8
KDU4750 KDU4751	19210 19230	50065 50032	9478 9479	-9 -5	29 255	16 107	0.0 25.0	5.3 28.0	5.3 3.0	3.8 2.6	5.0 2.6
KDU4752	19229	50033	9479	33	242	84	28.0	31.0	3.0	3.4	2.8
KDU4753	19206	50062	9478	-21	264	43	31.9	34.0	2.1	1.9	1.0
KDU4754 KDU4755	19196 19194	50073 50074	9477 9479	-2 28	256 252	72 70	14.4 20.0	25.0 25.0	10.6 5.0	3.9 4.6	7.7 3.0
KDU4756	19162	50094	9477	10	226	100	0.0	0.8	0.8	30.4	0.7
KDU4757 KDU4758	19162 19240	50094 50021	9476 9481	-24 42	228 254	95 66	37.0 38.0	40.0 42.4	3.0 4.4	1.8 3.9	1.8 4.2
KDU4738	19352	50076	9461	-39	234	411	230.2	243.0	12.8	3.0	5.2
							259.9	263.0	3.1	2.6	1.3
KDU4782	19352	50075	9461	-43	194	255	381.0 251.4	390.5 252.1	9.5 0.7	2.5 0.0	4.1 0.0
KDU4783	19354	50073	9462	-44	185	390.2	374.00	376.00	2.00	4.9	0.4
KDU4828	19111	50132	9406	27	171	51	34.0	37.0	3.0	2.9	1.1
KDU4829 KDU4830	19110 19110	50133 50132	9405 9403	-15	258 217	44.0 86.4	16.00 21.45	20.00 25.00	4.00 3.55	0.0 3.2	0.0
							78.60	81.00	2.40	3.8	1.8
KDU4831	19111	50132	9402	-41	210	156.0	39.97 120.00	41.70 124.50	1.73 4.50	2.1 6.6	1.6 1.9
KDU4832	19109	50133	9403	-13	260	52.1	24.68	31.00	6.32	2.2	3.7
KDU4833	19109	50133	9403	-23	274	68.5	38.63	43.00	4.37	10.3	1.4
KDU4834	19110	50133	9403	-38	255	170.9	55.00 109.00	58.00 111.00	3.00 2.00	2.8 2.0	1.0
KDU4858	19262	49990	9442	25	215	128.9	34.00	39.00	5.00	2.0	3.9
							72.54	82.00	9.46	2.0	7.6
KDU4627	19286	50011	9633	-43	209	195	87.00 94.0	89.00 95.0	2.00	3.5 2.0	1.6 0.4
							116.4	120.1	3.7	1.9	1.7
KDU4637 KDU4638	19269 19257	50050 50061	9632 9632	0	219 207	20 25	0.0	1.3	1.3	2.4 4.8	1.2
KDU4638	19257	50061	9632 9631	-21	207	16	1.2	7.8	6.7	4.8 2.9	4.9
KDU4641	19236	50074	9632	10	206	20	0.0	6.3	6.3	2.0	3.8
KDU4860 KDU4861	19353 19353	50073 50073	9464 9462	23 -8	209 209	152.3 197.7	87.51 118.00	87.90 125.24	0.39 7.24	0.4 8.3	0.0 5.6
							181.02	182.77	1.75	1.8	1.4
KDU4862	19354	50073	9462	-17	200	194.9	133.00	138.00	5.00	0.7	0.7
KDU4863 KDU4864	19353 19354	50073 50073	9463 9462	7 -8	198 191	171.1 291.4	159.90 127.17	161.60 128.16	1.70 0.99	2.0	1.2
							127.17	128.16	0.99	1.0	1.0
KDU4446	19843	49567	9072	17	278	366	172.2 253.4	175.7 258.8	3.5 5.4	11.9 5.0	3.5 5.0
							263.7	265.1	1.4	3.1	1.2
KDU4575	19890	49771	9413	7	267	193			NSI		<u> </u>
KDU4576 KDU4533	19890 19895	49770 49804	9416 9684	21	260 188	276 84	33.4	48.0	NSI 14.6	2.9	2.2
2.2.000			, co r			<u>.</u> .	52.0	54.0	2.0	2.4	1.9
							57.0	58.5	1.4	2.8	1.4
KDU4639	19251	50065	9634	37	213	17	62.3 8.5	63.4 9.5	1.1 1.0	3.2 25.0	1.1 0.8
KDU4876	19105	50226	9497	-10	260	180.1	46.40	93.00	46.60	0.9	26.2
KDU4877	19105	50226	9497	0	255	120.0	39.00	91.00	52.00	0.7	36.4

Table 2 - Moonbeam Significant Intersections

MOONBEAM SIGNIFICANT INTERSECTIONS												
Drill Hole #	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Azimuth (degrees, Mine Grid)	Hole depth (m)	Downhole From (m)	Downhole To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)	
MBCD18015	9395	19098	6344	-71	60	470	460.1	461.8	1.7	4.3	1.3	
MBCD18016	9397	19099	6344	-64	60	404	388.6	389.9	1.4	2.7	1.1	
MBCD18016						404	389.9	390.7	0.8	18.8	0.6	
MBCD18017	9396	19054	6344	-74	61	630	605.4	606.9	1.5	8.9	1.2	
MBCD18018	9396	19054	6344	-67	66	514			NSI			
MBDD18019	9527	18943	6345	-77	51	395	372.3	373.2	0.8	10.8	0.7	
MBDD18020	9538	18921	6345	-84	24	526	517.5	518.6	1.1	3.7	0.9	
MBDD18021	9439	18696	6345	-63	15	599	559.6	560.6	1.0	2.8	0.8	
MBDD18021							564.4	565.3	0.9	11.9	0.8	
MBDD18022	9562	18729	6345	-73	7	481			NSI			
MBDD18025	9355	19286	6344	-65	83	483	455.4	458.7	3.3	16.7	2.7	
MBDD18030	9466	19067	344	-67	55	501	348.4	349.0	0.6	9.8	0.5	

Table 3 – EKJV Significant Intersections

Drill Hole	Easting	Northing	Collar RL	Dip	Azimuth (degrees,	Hole depth	Downhole From	Downhole To	Downhole Intersection	Au (gpt)	Est True Thickness
#	(Mine Grid)	(Mine Grid)	(Mine Grid)	(degrees)	Mine Grid)	(m)	(m)	(m)	(m)	uncut	(m)
PEGGC18294	9792	17152	6206	-18.0	PODE 83	17.5	0.0	1.6	1.6	3.9	1.4
PEGGC18274 PEGGC18301	9792	17132	6208	22.4	291	26.9	0.0	1.0	1.0	23.8	0.9
PEGGC18302	9787	17229	6207	22.4	291	30.0	1.5	3.4	1.9	7.8	1.4
							4.3	4.6	0.3	2.0	0.2
							11.0	11.5	0.5	3.6	0.3
PEGGC18304	9785	17251	6208	-21.0	67	26.8	0.0	1.0	1.0	37.5	0.8
PEGGC18305 PEGGC18306	9793 9788	17260	6206 6209	-51.0 32.6	81 287	24.2 24.1	5.1	5.9 1.0	0.8	4.5 2.9	0.8
1100010000	7700	17207	0207	52.0	20/	24.1	3.9	4.2	0.4	3.4	0.7
PEGGC18307	9792	17272	6208	-45.0	74	26.9	1.0	1.7	0.7	2.4	0.6
							3.6	3.9	0.3	4.3	0.2
							6.7	7.0	0.3	5.3	0.2
							8.7	10.3	1.7	7.0	1.6
PEGGC18308	9788	17278	6207	-8.0	277	24.1	15.0	15.4 0.4	0.3	2.9	0.3
FEGGC10300	7/00	1/2/0	6207	-0.0	2//	24.1	0.0	3.6	0.4	4.4	0.2
							6.0	7.0	1.0	3.0	0.4
							15.6	16.7	1.1	10.9	0.6
PEGGC18309	9791	17286	6207	-20.6	67	30.1			NSI		
PEGGC18310	9783	17304	6209	-20.6	67	24.1	0.4	1.0	0.6	4.2	0.5
					1		2.0	2.3	0.3	4.2	0.2
DECCC10211	0707	17215	(000	E1 0	(0)	22.0	9.8	11.1	1.3	21.2	1.0
PEGGC18311 PEGGC18313	9786 9775	17315 17151	6208 6191	-51.0 2.0	60 312	33.2 15.2	1.2	3.0	NSI 1.9	2.8	1.9
PEGGC18313 PEGGC18314	9775	17151	6191	-6.0	85	18.3	0.0	2.3	2.3	3.4	2.3
PEGGC18316	9783	17192	6193	13.0	267	17.9	0.5	2.4	1.9	2.2	1.9
PEGGC18318	9776	17203	6192	-2.0	264	18.3	0.0	0.5	0.5	5.4	0.3
							2.8	4.3	1.4	9.8	1.0
							6.4	6.7	0.3	7.8	0.2
							8.0	9.0	1.0	10.5	0.7
PEGGC18319	9771	17212	6192	3.0	286	21.2	0.0	1.0	1.0	2.2	0.7
PEGGC18320	9770	17222	6192	3.0	300	21.2	2.6 4.6	5.3 4.9	2.7 0.3	34.6 2.2	0.3
PEGGC18320	9770	17222	6192	3.0	300	21.2	8.0	8.5	0.5	6.6	0.5
PEGGC18321	9775	17224	6191	-29.0	72	18.1	0.0	0.3	0.3	15.2	0.3
PEGGC18323	9777	17238	6191	-43.0	60	21.2	6.0	8.4	2.4	6.5	2.4
							10.4	10.7	0.3	14.5	0.3
PEGGC18325	9770	17256	6191	-52.0	55	20.9	0.0	2.6	2.6	13.1	2.6
PEGGC18328	9772	17276	6194	15.0	287	20.9	0.9	1.3	0.4	2.6	0.4
							4.8	5.1 6.7	0.3	4.3	0.3
							8.7	10.2	1.5	5.8	1.5
PEGGC18329	9774	17293	6192	-35.0	63	23.5	0.8	1.5	0.7	2.1	0.7
							1.8	2.1	0.3	3.2	0.3
PEGGC18331	9770	17314	6194	17.0	320	21.0	0.3	0.7	0.4	2.7	0.3
							6.9	9.6	2.7	7.8	1.7
PEGGC18332	9774	17312	6193	-38.0	108	21.1	0.8	1.1	0.3	3.3	0.3
RECCC10245	0704	17005	(011	21.2	207	177	5.1	5.6	0.4	6.2	0.4
PEGGC18345 PEGGC18350	9784 9792	17335 17361	6211 6208	31.3 -32.0	307 59	17.7	1.2 12.2	2.3 12.5	1.1 0.3	15.3 6.6	0.9
PEGGC18350 PEGGC18365	9792 9784	17343	6194	-32.0	78	18.4	0.0	0.9	0.3	4.0	0.2
00010000			5.77	7.0			8.0	12.4	4.4	3.7	4.4
PEGGC18367	9785	17362	6194	-38.0	98	15.2	1.0	3.0	2.0	2.3	2.0
PEGGC18369	9785	17376	6195	-28.0	77	12.1	2.8	3.1	0.3	3.8	0.3
							4.0	4.6	0.6	2.2	0.6
PEGGC18370	9781	17388	6196	21.0	311	11.5	0.8	1.2	0.4	8.5	0.4
PEGGC18373	9790	17405	6194	-45.0	97	15.0	5.5	6.0	0.5	2.9	0.5
PEGGC18375	9793	17415	6196	-11.0	71	17.7	0.3 5.3	1.0 7.5	0.7 2.2	6.9 8.4	0.6
PEGRSD18096	9626	16971	5819	-12.0	278	267.3	149.8	150.4	0.6	4.6	0.4
0.0210070	, 520		0017	. 2.0	2/0	207.0	155.9	156.4	0.5	2.5	0.4
							242.0	243.0	1.0	5.0	0.9
PEGRSD18351	9801	17338	5938	20.0	287	282.0	1.0	1.5	0.5	6.5	0.4
							9.0	10.0	1.0	4.9	0.9
							20.8	21.1	0.3	41.5	0.2
					1		21.7	22.7	1.0	4.3	0.7
							257.9	261.6	3.7	3.7	3.2
PEC PCD 10250	9802	17338	5939	21.0	295	202 /	264.5	265.5	1.0	7.5	0.9
PEGRSD18352	70UZ	17338	3737	31.0	273	293.6	6.0	7.0	1.0	7.4	0.9
							15.4 128.3	15.8 131.0	0.4 2.8	4.7	2.3

			EK		FICANT IN	TERSECTI	ONS					
Drill Hole	Easting	Northing	Collar RL	Dip	Azimuth (degrees,	Hole depth	Downhole From	Downhole To	Downhole Intersection		Au gpt)	Est True Thickness
#	(Mine Grid)	(Mine Grid)	(Mine Grid)	(degrees)	Mine Grid)	(m)	(m)	(m)	(m)	U	ncut	(m)
							147.0 253.6	148.0 254.6	1.0		2.4 3.5	0.9
							255.7	256.0	0.4		7.9	0.3
PEGRSD18353	9802	17338	5940	41.0	285	245.4	258.5 0.0	259.0 0.6	0.5		4.0 5.4	0.5
TEORSD 10000	7002	17330	3740	41.0	205	240.4	4.0	4.7	0.7		4.8	0.6
DEC DED 10254	0707	17074	5020	00.0	000	000 5	216.0	217.0	1.0		5.0	1.0
PEGRSD18354	9796	17364	5939	20.0	298	299.5	22.5 24.9	23.1 25.4	0.6		5.8 8.2	0.5 0.4
							26.9	27.2	0.3	3	5.8	0.3
PEGRSD18355	9797	17363	5940	44.0	305	378.5	243.9 0.0	245.0 0.5	1.2 0.5		4.0 0.2	1.0 0.4
TEORSD 10000	////	17303	3740	44.0	505	576.5	18.7	19.3	0.6		9.0	0.4
							144.8	145.4	0.6		2.4	0.4
PEGRSD18360	9797	17395	5939	16.0	301	293.8	252.0 18.6	253.4 19.0	1.4 0.4		7.0 7.9	1.3 0.3
PEGRT18094	9626	16969	5819	-14.0	241	318.4	138.7	139.2	0.5		5.6	0.4
					RALEIGH SOUTH	I						
RRCD18014	9019	17381	6344	-70	94 99	240		223.5	224.1	0.6	9.1	0.5
RRCD18016 RRDD18001	9056 8819	17391 17281	6344 6342	-66 -75	88	204 282		171.9 247.6	172.2 249.1	0.3	6.1 22.6	0.2
RRDD18002	9030	17437	6344	-72	88	267	.0	240.4	242.1	1.7	20.5	1.3
RRDD18003 RRDD18004	9051 8819	17461 17281	6344 6342	-71 -66	107 106	233		208.0 183.0	208.9 184.0	0.9	56.5 26.4	0.8 0.8
RRDD18004	8959	17201	6344	-61	84	321		290.3	291.0	0.6	19.8	0.8
								292.3	293.0	0.8	1.2	0.6
RRDD18006	8959	17498	6344	-56	87	287	.0	296.2 266.3	297.0 267.0	0.8	2.0 44.3	0.7 0.5
								283.6	284.0	0.4	2.4	0.3
RRDD18007	9010	17585	6345	-56	93	261	.4	234.9	235.2	0.3	1.4	0.2
								238.3 239.4	238.8 239.7	0.5	2.0 5.2	0.4 0.2
RRDD18008	8813	17161	6344	-65	80	21		194.0	194.7	0.7	1.2	0.6
RRDD18009 RRDD18013	9102 9102	17642 17730	6345 6345	-72 -70	87 90	21		186.0 189.4	186.3 189.8	0.3	5.5 1.2	0.2
KKDD10013	7102	17730	0040	-70	70	21	0	193.2	194.0	0.8	2.5	0.3
RRDD18023	8976	17521	6344	-66	83	309		299.1	300.5	1.4	38.8	1.1
RRDD18024 RRDD18026	8976 8965	17519 17493	6344 6344	-63 -64	87 101	291 306		280.4 298.1	281.0 298.7	0.6	13.1 9.8	0.5
RRDD18028	8997	17453	6344	-71	104	285		264.7	265.7	0.9	4.7	0.8
RALRSD18068	8984	17701	6005	-68.0	74	167		146.1	147.3	1.2	136.2	0.7
RALRSD18078 RALRSD18162	8983 8948	17698 17529	6005 5980	-70.0 -61.0	153 112	185		22.0 123.4	23.0 123.7	1.0 0.3	2.6	0.1
RALRSD18183	8948	17529	5980	22.0	117	155	.8	133.6	133.9	0.4	5.6	0.3
RALRSD18185 RALRSD18187	8998 8998	17693 17693	6008 6008	22.0	139 88	195		165.4 108.5	167.2 109.6	1.9 1.1	54.7 5.1	1.1 1.0
RALRSD18187	8998	17694	6007	-7.0	81	116		95.1	95.4	0.3	15.3	0.3
RALRSD18190	8948	17529	5980	-21.0	119	110		91.9	92.1	0.2	21.4	0.2
RALRSD18191 RALRSD18193	8948 8948	17529 17529	5980 5980	-18.0 -9.0	138 159	131		108.6	108.9 171.8	0.3	11.4 5.2	0.2
RALRSD18194	8996	17692	6006	-60.0	143	146		129.6	130.9	1.3	4.6	0.8
RALRSD18202	8931	17844	5719	35.0	151	231		212.2	212.5	0.3	2.2	0.1
RALRSD18204 RALRSD18204	8931 8931	17845 17845	5720 5720	35.0 35.0	92 92	125		9.8 112.0	10.1	0.3	3.5 3.5	0.0
RALRSD18211	8928	17843	5718	4.0	152	146	.4	7.5	7.8	0.3	26.6	0.2
RALRSD18308 RALRSD18314	8980 8979	17536 17534	5988 5984	34.0 -39.0	107 176	151 226		135.4 192.0	135.7 193.0	0.3	9.0 7.3	0.1
RALRSD18316	8979	17534	5984	-52.0	179	213		186.0	187.0	1.0	0.3	0.1
RALRSD18316	8979	17534	5984	-52.0	179	213		186.0	187.0	1.0	0.3	0.1
RALRSD18318 RALRSD18319	8977 8979	17534 17534	5985 5984	-64.0 -59.0	179 164	198		185.1 139.4	185.8 139.7	0.7	0.1	0.1
RALRSD18320	8977	17534	5985	-71.0	168	174	.1	162.8	163.3	0.5	3.0	0.1
RALRT18070 RALRT18086	8983 8983	17696 17698	6005 6005	-66.0 -69.0	134 166	170		151.3 205.8	151.7 206.5	0.3	11.2 6.7	0.2
RALR118086	8983	17534	5988	24.0	151	230		205.8 189.4	206.5 190.9	1.6	6./ 20.4	0.3
RALRT18302	8979	17534	5987	18.0	158	263	.8	207.3	207.7	0.4	4.7	0.1
RALRT18303 RALRT18304	8978 8979	17534 17534	5986 5984	2.0	163 172	228		174.0 186.6	176.0 187.0	2.0 0.5	13.6 2.2	0.8 0.2
RALRT18305	8979	17534	5984	-29.0	172	194	.5	165.9	166.8	0.9	22.6	0.7
SADRSD18001 SADRSD18002	8892 8891	17450 17450	5981 5982	2.0 -8.0	133 135	192		177.4 165.8	177.7 167.0	0.3	20.2	0.1
SADRSD18003	8891	17450	5982	-1.0	139	218	.9	183.0	184.3	1.4	8.6	0.4
SADRSD18004	8891	17450	5982	-4.0	147	236		204.2	205.2	1.0	9.9	0.2
					+ +			208.0 211.4	209.0 212.0	1.0 0.6	3.5 2.3	0.2
SADRSD18006	8891	17450	5982	-6.9	152	260		232.0	232.7	0.7	0.4	0.1
SADRSD18007	8891	17450 17450	5982	-1.0 -9.7	154	269		262.5	263.1 252.1	0.6	2.1	0.3
SADRSD18008	8891	17430	5982	-7./	156	284		251.8 11.0	12.0	0.3	16.7 7.7	0.0
								102.6	104.8	2.2	42.1	1.3
					+ +			139.4 178.8	139.7 179.1	0.3	0.1 4.1	0.1
								192.0	193.0	1.0	7.3	0.4
					<u> </u>			194.0	194.6	0.6	3.2	0.2
					+ +			211.5 222.8	214.1 223.4	2.6 0.6	4.5 35.9	0.9
					SIR WALTER							
SWCD18001	8819	17281	6342	-60	88	447		385.6	385.9	0.3	1.6	0.2
SWCD18002 SWCD18003	8823 8755	17161 17041	6344 6343	-60 -60	89 86	411 465				NSI NSI		
SWCD18003	8755	17041	6343	-60	88	465		392.4	392.7	0.3	0.9	0.2
SWCD18005	8936	17305	6342	-62	99	306	.4	279.3	280.1	0.8	171.9	0.6
SWCD18006A SWCD18007	8959 8813	17118 17280	6341 6342	-65 -66	65 87	291 459		259.7 434.6	260.1 435.9	0.4	1.2 89.9	0.3
		17161	6344	-66	89	448		409.9	410.2	0.3	1.6	0.2

			EK	JV SIGNIF		ITERSECTI	ONS					
Drill Hole #	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Azimuth (degrees, Mine Grid)	Hole depth (m)	Downhole From (m)	Downhole To (m)	Downhole Intersection (m)	A (gi und	pt)	Est True Thickness (m)
SWCD18009	8748	17041	6343	-66	87	537	.4	507.6	508.3	0.6	2.8	0.5
SWCD18010	8930	17304	6342	-68	101	335	.7	316.1	317.1	1.0	26.2	0.8
SWCD18017	8900	16924	6341	-60	98	291	.1			NSI		
SWCD18018	8913	16853	6341	-60	97	276	.1	248.0	253.3	5.3	21.5	4.2

Table 4 – South Kalgoorlie Significant Intersections

			НВ	J SIGNIFIC	ANT INTE	RSECTION	NS				
Drill Hole	Easting (MGA)	Northing (MGA)	Collar RL (MGA)	Dip (degrees)	Azimuth (degrees, MGA)	Hole depth (m)	Downhole From (m)	Downhole To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
HBJUG0483	20173	50300	28	-]]	149	127.2	71.00	76.00	5.00	2.1	2.5
HBJUG0484	20173	50300	2023	-36	147	143.1	98.00	105.64	7.64	1.6	6.3
HBJUG0485	20173	50300	28	-48	144	164.0	151.00	154.00	3.00	3.7	0.9
HBJUG0486	20173	50300	28	-17	140	119.0	62.00	68.00	6.00	7.1	3.7
HBJUG0486	20173	50300	28	-17	140	119.0	110.66	119.03	8.37	3.1	5.2
HBJUG0497	20179	50446	2085	18	116	86.4	59.32	71.32	12.00	8.1	11.2
HBJUG0549	20123	5071	1780	-1	135	293.0	227.00	229.00	2.00	4.0	1.5
HBJUG0550	20123	50071	1780	-1	131	291.0	266.95	269.57	2.62	1.5	2.2
HBJUG0552	20123	50071	1780	-34	118	251.0	185.43	189.00	3.57	4.5	2.3
							194.00	197.97	3.97	7.7	3.5
HBJUG0553B	20123	50071	1780	-28	121	206.6	179.25	182.37	3.12	9.7	2.7
HBJUG0565B	20123	50071	1780	-40	115	252.0	182.74	192.00	9.26	5.2	6.1
HBJUG0566A	20123	50071	-220	-37	104	216.8	192.09	198.09	6.00	4.6	4.2
HBJUG0568	20123	50071	-220	-48	120	303.0	254.42	255.00	0.58	12.4	0.4
HBJUG0551	20123	50071	1780	-12	127	272.6	217.00	221.60	4.60	2.8	3.7
HBJUG0508	20137	50728	2023	37	112	159.1	138.50	143.50	5.00	5.5	3.9
HBJUG0510a	20137	50728	2023	33	104	149.2	125.30	134.66	9.36	3.9	8.2
HBJUG0511	20137	50728	2023	18	100	158.6	97.20	108.76	11.56	6.1	10.5
HBJUG0513	20137	50728	2023	18	89	131.7	100.64	103.81	3.17	2.6	3.1
HBJUG0514	20137	50728	2023	7	94	128.6	95.00	97.36	2.36	7.8	2.3
HBJUG0515	20137	50728	2023	9	81	143.0	94.00	100.80	6.80	5.1	6.5
HBJUG0516	20137	50728	2023	-31	150	225.3	206.84	211.41	4.57	2.2	2.0
HBJUG0517	20137	50728	2023	-38	137	243.4	217.00	227.00	10.00	3.7	5.4
	20138	50728	22		105	243.4	233.00	237.00	4.00	6.0	2.1
HBJUG0519				-5		240.7	164.16	167.06	2.90	4.2	2.1
HBJUG0525	20146	50816	2035		84	104.9	72.44	84.44	12.00	10.0	11.6
HBJUG0526 HBJUG0527	20146 20146	50816 50816	2035 2035	30 -6	112 88	117.8 93.0	100.86 70.28	104.04 79.00	3.18 8.72	5.0 13.1	2.5 8.5
HBJUG0527 HBJUG0528	20146	50816	2035	10	88	132.0	71.27	80.15	8.88	2.5	8.7
HBJUG0528 HBJUG0529	20146	50816	2035	25	81	132.0	83.59	89.42	5.83	5.2	6./ 4.7
HBJUG0529 HBJUG0530	20146	50816	2035	0	75	136.0	72.16	80.00	7.84	7.5	7.3
HBJUG0531	20146	50816	2035	31	70	141.4	96.54	98.54	2.00	9.2	1.8
HBJUG0533	20146	50816	2035	31	68	126.2	101.41	104.57	3.16	3.2	2.5
HBJUG0534	20146	50816	2035	11	64	99.3	82.29	85.97	3.68	8.7	3.3
HBJUG0538	20146	50816	2035	9	46	113.1	95.56	104.74	9.18	7.1	6.9
HBJUG0539	20146	50816	2035	-3	46	110.9	88.59	96.59	8.00	7.6	5.7
HBJUG0540	20146	50816	2035	31	44	151.3	121.97	128.60	6.63	5.1	4.2
HBJUG0541	20146	50816	2035	1	38	123.3	98.06	109.22	11.16	3.8	7.7
HBJUG0542	20146	50816	2035	23	37	142.0			NSI		
HBJUG0543	20146	50816	2035	1	31	140.0	111.00	117.00	6.00	7.5	3.3
HBJUG0544	20146	50816	2035	20	31	163.0	-	-	0.00	-	-
HBJUG0545	20146	50816	2035	13	31	148.6	136.67	139.16	2.49	6.1	1.2
HBJUG0546	20146	50816	2035	21	27	182.4	170.00	173.42	3.42	3.6	2.1
HBJUG0547	20146	50816	2035	12	25	121.0	164.51	167.24	2.73	4.1	1.4
HBJUG0548	20146	50816	2035	2	24	176.0	163.62	169.73	6.11	2.3	3.1
HBJUG0554A	20137	50728	2023	-60	111	195.0	109.00	111.80	2.80	6.2	1.5
							180.37	183.00	2.63	5.1	1.5
HBJUG0557	20146	50816	2035	-70	84	321.9	-	-	0.00	-	-
HBJUG0567	20123	50071	-220	-48	120	303.0	195.23	198.00	2.77	7.2	2.8
HBJUG0573	20153	50982	19	-42	39	176.1	88.68	90.00	1.32	1.6	4.4
HBJUG0576	20153	50982	19	-52	85	138.8	74.00	81.00	7.00	4.6	4.3
HBJUG0594	20151	50982	17	-54	23	219.4	118.00	134.00	16.00	10.4	3.8

Table 5 – South Kalgoorlie Exploration Significant Intersections

Drill Hole #	Easting (MGA)	Northing (MGA)	Collar RL (MGA)	Dip (degrees)	Azimuth (degrees, MGA)	Hole depth (m)	Downhole From (m)	Downhole To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thicknes (m)
XGRC18005	363545	6569420	377	-61	270	84.0	58.0	79.0	21.0	2.3	21.0
	including						75.0	78.0	3.0	7.6	3.0
SPDD18001	360070	6562019	336	-55	280	369.1	144.0	145.0	1.0	3.7	1.0
							222.9	224.3	1.4	8.9	1.4
	including						223.3	223.6	0.3	35.1	0.3
							233.6	235.7	2.0	43.8	2.0
							242.8	243.2	0.4	24.9	0.4
							302.6	304.1	1.6	3.3	1.6
							305.3	308.7	3.3	4.5	3.3
SPDD18002	360075	6562218	336	-52	283	296.7	151.3	153.2	1.9	5.3	1.9
	including						152.9	153.2	0.3	30.7	0.3
							155.4	158.9	3.5	1.7	3.5
							163.2	163.6	0.4	17.6	0.4
TODD18162	341738	6575807	342	-60	40	383.8	91.8	95.2	3.4	0.7	3.4
							97.0	112.0	15.0	1.0	15.0
							152.5	178.7	26.2	1.6	26.2
	including						152.5	152.8	0.3	17.6	0.3
							226.9	238.2	11.3	0.8	11.3
							248.5	250.4	1.9	1.8	1.9

Table 6 - Jundee Significant Intersections

Drill Hole # BDXP0664 BDXP0665 BDXP0666 BDXP0666 BDXP0667 BDXP0679 BDXP0680 BDXP0680 BDXP0680 BDXP0680 BDXP0680 BDXP0681 BDXP0682 BDXP0668 BDXP0673 BDXP0671 BDXP0673 BDXP0674 BDXP0675 BDXP0675 BDXP0676 WDXP0137 VDXP0134 VDXP0139 VDXP0141 VDXP0142	Edsting (Mine Grid) 50833 50833 50833 50833 50833 50433 50433 50433 50433 50437 50433 50437 50433 50433 50413 50413 50413 50413 50412 50422 50423 50422 50423 50425 50425 50425	Northing (Mine Grid) 97456 97455 97456 97456 97456 97382 97377 97377 97377 97377 97377 97375 97375 97375 97375 97375 97375 97375 97378 97383 97383 97383 97383	Collar RL (Mine Grid) 2420 2421 2420 2420 2420 2420 2420 2420	Dip (degrees) BAR 5 	294 298 299 305 47 166 170 183 185 223	depth (m) 458.9 319.9 467.9 467.6 145.0 89.8 79.1 80.1 250.0	From (m) 309.0 397.0 432.4 130.2 256.6 255.5 284.3 307.0 456.1 163.0	To (m) 310.4 399.0 433.0 130.6 257.0 255.8 285.5 309.0 456.4 164.0	Intersection (m) 1.4 2.0 0.6 0.4 0.3 1.2 2.0 0.3 1.2 2.0 NSI NSI NSI NSI NSI	(gpt) uncut 1.7 2.9 58.7 3.0 2.3 4.8 17.5 2.8 54.7 51.0	Thickness (m) 1.4 0.9 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.0 0.7 0.3 1.0
BDXP0665 BDXP0666 BDXP0667 BDXP0676 BDXP0670 BDXP0680 BDXP0680 BDXP0680 BDXP0682 BDXP0668 BDXP0668 BDXP0668 BDXP0668 BDXP0670 BDXP0672 BDXP0672 BDXP0673 BDXP0673 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0677 BDXP0678 WDXP0137 VDXP0139 VDXP0139 VDXP0141	50833 50833 50833 50431 50438 50438 50437 50437 50437 50413 50413 50413 50413 50413 50412 50422 50422 50422 50423 50422 50423 50425 50425 50425	97455 97456 97456 97382 97377 97377 97377 97375 97375 97375 97375 97375 97375 97378 97378 97378 97383 97383 97383	2421 2420 2191 2189 2189 2189 2189 2189 2189 2191 2191	5 11 1 1 1 1 18 -12 -19 -26 -10 -8 -8 -8 -8 -21	294 298 299 305 47 166 170 183 185 223	319.9 467.9 467.6 145.0 89.8 79.1 80.1	397.0 432.4 130.2 256.6 255.5 284.3 307.0 456.1	399.0 433.0 130.6 257.0 255.8 285.5 309.0 456.4	2.0 0.4 0.4 0.3 1.2 2.0 0.3 1.0 NSI NSI	2.9 58.7 3.0 2.3 4.8 17.5 2.8 54.7	0.9 0.5 0.3 0.3 0.3 1.0 0.7 0.3
BDXP0665 BDXP0666 BDXP0676 BDXP0677 BDXP0677 BDXP0680 BDXP0680 BDXP0688 BDXP0688 BDXP0668 BDXP0668 BDXP0678 BDXP0670 BDXP0677 BDXP0673 BDXP0673 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0677 BDXP0678 VDXP0137 VDXP0134 VDXP0139 VDXP0141	50833 50833 50833 50431 50438 50438 50437 50437 50437 50413 50413 50413 50413 50413 50412 50422 50422 50422 50423 50422 50423 50425 50425 50425	97455 97456 97456 97382 97377 97377 97377 97375 97375 97375 97375 97375 97375 97378 97378 97378 97383 97383 97383	2421 2420 2191 2189 2189 2189 2189 2189 2189 2191 2191	11 1 1 18 -12 -19 -26 -10 8 8 8 8 21	298 299 305 47 166 170 183 185 223	319.9 467.9 467.6 145.0 89.8 79.1 80.1	397.0 432.4 130.2 256.6 255.5 284.3 307.0 456.1	399.0 433.0 130.6 257.0 255.8 285.5 309.0 456.4	2.0 0.4 0.4 0.3 1.2 2.0 0.3 1.0 NSI NSI	2.9 58.7 3.0 2.3 4.8 17.5 2.8 54.7	0.9 0.5 0.3 0.3 0.3 1.0 0.7 0.3
BDXP0666 BDXP0677 BDXP0677 BDXP0680 BDXP0680 BDXP0681 BDXP0688 BDXP0688 BDXP0668 BDXP0678 BDXP0679 BDXP0679 BDXP0677 BDXP0673 BDXP0673 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0677 BDXP0678 VDXP0137 VDXP0134 VDXP0139 VDXP0141	50833 50833 50431 50438 50438 50437 50413 50413 50413 50413 50413 50413 50412 50422 50422 50422 50423 50422 50423 50425 50425 50425 50432	97456 97456 97382 97377 97377 97377 97375 97375 97375 97375 97375 97375 97378 97378 97383 97383 97383 97383	2420 2191 2189 2189 2189 2189 2189 2189 2191 2191	1 1 18 -12 -19 -26 -10 8 8 8 21	299 305 47 166 170 183 185 223	467.9 467.6 145.0 89.8 79.1 80.1	432.4 130.2 256.6 255.5 284.3 307.0 456.1	433.0 130.6 257.0 255.8 285.5 309.0 456.4	0.6 0.4 0.3 1.2 2.0 0.3 1.0 NSI NSI NSI	58.7 3.0 2.3 4.8 17.5 2.8 54.7	0.5 0.3 0.3 1.0 0.7 0.3
BDXP0666 BDXP0667 BDXP0676 BDXP0670 BDXP0680 BDXP0680 BDXP0682 BDXP0688 BDXP0668 BDXP0668 BDXP0668 BDXP0676 BDXP0677 BDXP0672 BDXP0673 BDXP0673 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0677 BDXP0677 BDXP0678 VDXP0137 VDXP0134 VDXP0136 VDXP0139 VDXP0141	50833 50833 50431 50438 50438 50437 50413 50413 50413 50413 50413 50413 50412 50422 50422 50422 50423 50422 50423 50425 50425 50425 50432	97456 97456 97382 97377 97377 97377 97375 97375 97375 97375 97375 97375 97378 97378 97383 97383 97383 97383	2420 2191 2189 2189 2189 2189 2189 2189 2191 2191	1 1 18 -12 -19 -26 -10 8 8 8 21	299 305 47 166 170 183 185 223	467.9 467.6 145.0 89.8 79.1 80.1	130.2 256.6 255.5 284.3 307.0 456.1	130.6 257.0 255.8 285.5 309.0 456.4	0.4 0.3 1.2 2.0 0.3 1.0 NSI NSI NSI	3.0 2.3 4.8 17.5 2.8 54.7	0.3 0.3 0.3 1.0 0.7 0.3
BDXP0666 BDXP0667 BDXP0676 BDXP0670 BDXP0680 BDXP0680 BDXP0682 BDXP0688 BDXP0668 BDXP0668 BDXP0668 BDXP0676 BDXP0677 BDXP0672 BDXP0673 BDXP0673 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0677 BDXP0677 BDXP0678 VDXP0137 VDXP0134 VDXP0136 VDXP0139 VDXP0141	50833 50431 50438 50438 50437 50437 50413 50413 50413 50413 50412 50422 50422 50422 50422 50422 50423 50425 50425 50425 50432	97456 97382 97377 97377 97377 97375 97375 97375 97375 97375 97378 97383 97383 97383 97383	2420 2191 2189 2189 2189 2189 2191 2191 2191 2191 2191 2190 2190 2189	1 18 -12 -19 -26 -10 8 8 8 21	305 47 166 170 183 185 223	467.6 145.0 89.8 79.1 80.1	256.6 255.5 284.3 307.0 456.1	257.0 255.8 285.5 309.0 456.4	0.4 0.3 1.2 2.0 0.3 1.0 NSI NSI NSI	2.3 4.8 17.5 2.8 54.7	0.3 0.3 1.0 0.7 0.3
BDXP0667 BDXP0676 BDXP0679 BDXP0680 BDXP0681 BDXP0682 BDXP0668 BDXP0668 BDXP0668 BDXP0668 BDXP0669 BDXP0670 BDXP0670 BDXP0671 BDXP0673 BDXP0673 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0677 BDXP0677 BDXP0677 BDXP0677 BDXP0677 BDXP0677 BDXP0677 BDXP0677 BDXP0677 BDXP0137 VDXP0134 VDXP0134 VDXP0139 VDXP0141	50833 50431 50438 50438 50437 50437 50413 50413 50413 50413 50412 50422 50422 50422 50422 50422 50423 50425 50425 50425 50432	97456 97382 97377 97377 97377 97375 97375 97375 97375 97375 97378 97383 97383 97383 97383	2420 2191 2189 2189 2189 2189 2191 2191 2191 2191 2191 2190 2190 2189	1 18 -12 -19 -26 -10 8 8 8 21	305 47 166 170 183 185 223	467.6 145.0 89.8 79.1 80.1	284.3 307.0 456.1	285.5 309.0 456.4	1.2 2.0 0.3 1.0 NSI NSI NSI	17.5 2.8 54.7	1.0 0.7 0.3
BDXP0676 BDXP0680 BDXP0680 BDXP0680 BDXP0681 BDXP0682 BDXP0668 BDXP0668 BDXP0668 BDXP0668 BDXP0668 BDXP0669 BDXP0670 BDXP0670 BDXP0672 BDXP0672 BDXP0673 BDXP0673 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0678 WDXP0137 VDXP0134 VDXP0136 VDXP0139 VDXP0141	50431 50438 50438 50437 50437 50413 50413 50413 50413 50412 50412 50422 50423 50422 50423 50423 50425 50425 50425 50432	97382 97377 97377 97377 97375 97375 97375 97375 97375 97378 97383 97383 97383 97383	2191 2189 2189 2189 2189 2191 2191 2191	18 -12 -26 -10 8 8 8 8 21	47 166 170 183 185 223	145.0 89.8 79.1 80.1	307.0 456.1	309.0 456.4	2.0 0.3 1.0 NSI NSI NSI	2.8 54.7	0.7 0.3
BDXP0676 BDXP0680 BDXP0680 BDXP0680 BDXP0681 BDXP0682 BDXP0668 BDXP0668 BDXP0668 BDXP0668 BDXP0668 BDXP0669 BDXP0670 BDXP0670 BDXP0672 BDXP0672 BDXP0673 BDXP0673 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0678 WDXP0137 VDXP0134 VDXP0136 VDXP0139 VDXP0141	50431 50438 50438 50437 50437 50413 50413 50413 50413 50412 50412 50422 50423 50422 50423 50423 50425 50425 50425 50432	97382 97377 97377 97377 97375 97375 97375 97375 97375 97378 97383 97383 97383 97383	2191 2189 2189 2189 2189 2191 2191 2191	18 -12 -26 -10 8 8 8 8 21	47 166 170 183 185 223	145.0 89.8 79.1 80.1	456.1	456.4	0.3 1.0 NSI NSI NSI	54.7	0.3
BDXP0676 BDXP0680 BDXP0680 BDXP0680 BDXP0681 BDXP0682 BDXP0668 BDXP0668 BDXP0668 BDXP0668 BDXP0668 BDXP0669 BDXP0670 BDXP0670 BDXP0672 BDXP0672 BDXP0673 BDXP0673 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0678 WDXP0137 VDXP0134 VDXP0136 VDXP0139 VDXP0141	50431 50438 50438 50437 50437 50413 50413 50413 50413 50412 50412 50422 50423 50422 50423 50423 50425 50425 50425 50432	97382 97377 97377 97377 97375 97375 97375 97375 97375 97378 97383 97383 97383 97383	2191 2189 2189 2189 2189 2191 2191 2191	18 -12 -26 -10 8 8 8 8 21	47 166 170 183 185 223	145.0 89.8 79.1 80.1			1.0 NSI NSI NSI		
BDXP0676 BDXP0680 BDXP0680 BDXP0680 BDXP0681 BDXP0682 BDXP0668 BDXP0668 BDXP0668 BDXP0668 BDXP0668 BDXP0669 BDXP0670 BDXP0670 BDXP0672 BDXP0672 BDXP0673 BDXP0673 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0678 WDXP0137 VDXP0134 VDXP0136 VDXP0139 VDXP0141	50431 50438 50438 50437 50437 50413 50413 50413 50413 50412 50412 50422 50423 50422 50423 50423 50425 50425 50425 50432	97382 97377 97377 97377 97375 97375 97375 97375 97375 97378 97383 97383 97383 97383	2191 2189 2189 2189 2189 2191 2191 2191	18 -12 -26 -10 8 8 8 8 21	47 166 170 183 185 223	145.0 89.8 79.1 80.1			NSI NSI NSI		
BDXP0680 BDXP0681 BDXP0682 BDXP0682 BDXP0682 BDXP0668 BDXP0668 BDXP0670 BDXP0670 BDXP0671 BDXP0673 BDXP0673 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0677 BDXP0677 BDXP0677 BDXP0137 VDXP0134 VDXP0134 VDXP0134 VDXP0139 VDXP0141	50438 50437 50437 50413 50413 50413 50412 50412 50422 50422 50422 50423 50425 50425 50425 50425 50425	97377 97377 97375 97375 97375 97375 97378 97377 97383 97383 97383 97383 97383	2189 2189 2189 2191 2191 2191 2191 2190 2190 2190 2189	-19 -26 -10 8 8 8 8 21	170 183 185 223	79.1 80.1			NSI		
BDXP0681 BDXP0682 BDXP0668 BDXP0668 BDXP0668 BDXP0669 BDXP0670 BDXP0677 BDXP0672 BDXP0673 BDXP0673 BDXP0674 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0677 BDXP0678 WDXP0137 VDXP0134 VDXP0136 VDXP0139 VDXP0141	50437 50437 50413 50413 50413 50413 50412 50412 50422 50423 50423 50423 50423 50425 50425 50425 50425	97377 97377 97375 97375 97375 97375 97378 97377 97383 97383 97383 97383	2189 2189 2191 2191 2191 2191 2191 2190 2190 2189	-26 -10 8 8 8 21	183 185 223	80.1					
BDXP0682 BDXP0668 BDXP0668 BDXP0668 BDXP0668 BDXP0670 BDXP0671 BDXP0671 BDXP0672 BDXP0673 BDXP0673 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0675 BDXP0677 BDXP0678 VDXP0137 VDXP0134 VDXP0134 VDXP0134 VDXP0139 VDXP0140	50437 50413 50413 50413 50412 50412 50422 50423 50422 50423 50423 50423 50425 50425 50425 50425	97377 97375 97375 97375 97378 97377 97383 97383 97383 97383 97383	2189 2191 2191 2191 2191 2190 2190 2189	-10 8 8 8 21	185 223				NICI		
BDXP0668 BDXP0668 BDXP0668 BDXP0669 BDXP0670 BDXP0671 BDXP0672 BDXP0673 BDXP0673 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0677 BDXP0677 VDXP0137 VDXP0134 VDXP0134 VDXP0134 VDXP0134 VDXP0139 VDXP0141	50413 50413 50413 50412 50412 50422 50422 50423 50423 50423 50425 50425 50425 50425	97375 97375 97375 97378 97378 97383 97383 97383 97383 97383	2191 2191 2191 2191 2190 2190 2190 2189	8 8 8 21	223		215.6	217.4		0.1	1.5
BDXP0668 BDXP0669 BDXP0670 BDXP0670 BDXP0671 BDXP0672 BDXP0673 BDXP0673 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0678 VDXP0137 VDXP0134 VDXP0134 VDXP0139 VDXP0139	50413 50413 50412 50412 50422 50423 50422 50423 50425 50425 50425 50425 50425	97375 97375 97378 97377 97383 97383 97383 97383 97383	2191 2191 2191 2190 2190 2189	8 8 21		230.0	164.1	164.5	1.8 0.4	8.1 9.6	1.5 0.4
BDXP0668 BDXP0667 BDXP0670 BDXP0670 BDXP0671 BDXP0672 BDXP0673 BDXP0673 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0677 BDXP0678 WDXP0137 WDXP0134 WDXP0134 WDXP0136 WDXP0139 WDXP0141	50413 50412 50412 50422 50423 50423 50423 50425 50425 50425 50425 50425	97375 97378 97377 97383 97383 97383 97383 97383	2191 2191 2190 2190 2190 2189	8 21	223	229.0	173.0	174.0	1.0	2.6	0.2
BDXP0670 BDXP0671 BDXP0672 BDXP0673 BDXP0674 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0677 BDXP0677 BDXP0677 VDXP0137 VDXP0134 VDXP0134 VDXP0136 VDXP0139 VDXP0141	50412 50422 50423 50422 50423 50425 50425 50425 50425 50425 50432	97377 97383 97383 97383 97383 97383	2190 2190 2189		223	229.0	214.5	217.5	3.0	4.6	2.6
BDXP0671 BDXP0672 BDXP0673 BDXP0673 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0677 BDXP0677 BDXP0137 VDXP0137 VDXP0134 VDXP0134 VDXP0136 VDXP0139 VDXP0141	50422 50423 50422 50423 50423 50425 50425 50425 50425 50425 50432	97383 97383 97383 97383 97383	2190 2189		264	299.1			NSI		
BDXP0672 BDXP0673 BDXP0674 BDXP0675 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0677 BDXP0678 VDXP0137 VDXP0137 VDXP0134 VDXP0134 VDXP0136 VDXP0139 VDXP0141	50423 50422 50423 50425 50425 50425 50425 50432	97383 97383 97383	2189	-1	264	299.7			NSI		
BDXP0673 BDXP0673 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0677 BDXP0678 VDXP0137 VDXP0134 VDXP0134 VDXP0134 VDXP0139 VDXP0139 VDXP0141	50422 50423 50425 50425 50425 50425 50432	97383 97383		9	13	90.1			NSI		
BDXP0674 BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0678 VDXP0137 VDXP0134 VDXP0134 VDXP0139 VDXP0139	50423 50425 50425 50425 50425 50432	97383	2189	-10 -45	21	60.0 69.0			NSI NSI		
BDXP0675 BDXP0675 BDXP0675 BDXP0677 BDXP0677 BDXP0677 BDXP017 VDXP0137 VDXP0134 VDXP0134 VDXP0136 VDXP0139 VDXP0139	50425 50425 50425 50425 50432		2189	-43	311	79.1	33.4	36.8	3.5	3.9	2.4
BDXP0675 BDXP0675 BDXP0677 BDXP0677 BDXP0177 VDXP0137 VDXP0140 VDXP0134 VDXP0134 VDXP0136 VDXP0139 VDXP0141	50425 50425 50432	97381	2188	-80	220	48.0	27.6	28.0	0.3	2.0	0.3
BDXP0677 BDXP0678 VDXP0137 VDXP0134 VDXP0134 VDXP0136 VDXP0139 VDXP0139	50425 50432	97381	2188	-80	220	48.0	28.4	29.0	0.6	7.6	0.4
BDXP0678 VDXP0137 VDXP0140 VDXP0134 VDXP0136 VDXP0139 VDXP0141		97381	2188	-80	220	48.0	29.7	30.0	0.3	14.0	0.3
VDXP0137 VDXP0140 VDXP0134 VDXP0136 VDXP0139 VDXP0139 VDXP0141	50432	97382	2191	19	33	135.0			NSI		
VDXP0140 VDXP0134 VDXP0136 VDXP0139 VDXP0141		97382	2190	11 INVI	27	86.2			NSI		
VDXP0140 VDXP0134 VDXP0136 VDXP0139 VDXP0141	50317	97770	2350	-5	254	399.6	373.0	377.2	4.2	2.0	2.8
VDXP0136 VDXP0139 VDXP0141	50317	97770	2350	-5	278	359.9	245.5	246.6	1.1	5.7	0.6
VDXP0136 VDXP0139 VDXP0141							340.0	340.9	0.9	6.3	0.7
VDXP0139 VDXP0141	50318	97770	2352	0	266	360.0	317.7	319.0	1.3	2.5	0.6
VDXP0141	50317	97770	2350	-2	269	360.0	211.7 214.1	213.5 214.4	1.8 0.3	11.3 2.8	0.9
VDXP0141							214.1	214.4	2.4	2.8 9.5	0.3
VDXP0141							231.0	232.4	1.4	1.2	0.3
VDXP0141							333.0	333.4	0.4	2.0	0.3
	50317	97770	2351	0	273	349.9	212.7	213.7	1.1	3.1	0.9
							319.3	320.4	1.1	4.2	0.9
VDXP0142	50326	97772	2352	16	90	190.0	1510	155.0	NSI	10.5	
	50326	97773	2352	23	60	321.7	154.0	155.0	1.0	10.5	0.3
							180.0 231.3	184.0 231.7	4.0	1.9 12.1	4.0
							245.0	247.0	2.0	39.9	0.4
				CARDA	ASSIAN						
CDXP0447A	50203	98262	2441	-5	276	402.8	118.4 174.3	119.9 175.0	1.5 0.7	34.3 10.1	1.2 0.3
CDXP0448	50203	98262	2440	-14	276	396.5	17 1.0	17010	NSI		0.0
CDXP0449	50203	98262	2441	4	276	361.0	191.7	192.0	0.3	19.0	0.3
							252.3	252.6	0.3	15.2	0.3
CDXP0452	50203	98263	2441	-9	282	270.7			NSI		
CDXP0457	50203	98262	2441	2	294	154.0	147.0	148.0	1.0	35.0	0.3
CDXP0446	50203	98262	2441	-9	272	380.7	121.0 217.0	123.6 217.9	2.6 0.9	2.6	2.2
							217.0	217.9	0.9	6.6 5.2	0.3
							330.9	331.2	0.3	7.1	0.3
CDXP0451	50203	98262	2441	3	282	273.0	117.0	118.1	1.1	4.8	0.8
							173.0	173.4	0.4	2.6	0.3
							178.1	178.4	0.3	2.9	0.3
							193.1 270.0	193.4 270.3	0.3	34.2 33.7	0.3
CDXP0453	50203	98262	2440	-16	284	196.0	130.2	132.6	2.4	2.6	1.5
	30200	70202	2770	10	207	. / 0.0	158.2	158.5	0.3	2.5	0.3
							188.1	188.4	0.3	3.6	0.3
CDXP0456	50203	98262	2441	-9	291	269.9	186.0	188.0	2.0	1.2	0.4
						0.5.5	224.7	225.0	0.3	0.3	0.3
CDGC0683	50132	98261	2397	7	263	354.8	107.0	108.0	1.0	2.1	0.3
							148.0 148.0	149.3	1.3	4.7 4.7	0.8
							148.0	149.3	1.3	4./	0.3
							151.0	152.0	1.0	19.0	0.5
							260.0	260.5	0.4	2.4	0.3
CDGC0685	50132	98261	2397	9	267	336.9	161.0	162.0	1.0	2.1	0.3
CDGC0686	50132	98261	2396	2	268	252.0	193.9 140.0	194.8 141.0	0.9 1.0	177.8 2.8	0.8 0.2
							227.4	227.8	0.4	48.1	0.3
CDGC0688 CDGC0692	50132 50132	98261 98261	2396 2397	4	272 248	225.0 223.0	92.0	93.0	1.0 NSI	3.0	0.8
CDGC0692 CDGC0693	50132	98261	2397	5	248	242.0	125.4	126.0	0.5	11.5	0.4
				-			177.0	178.0	1.0	7.0	0.3
							201.5	202.0	0.5	22.8	0.3
							215.0	215.5	0.5	35.5	0.3
CDGC0694	50132	98261	2396	3	252	243.1	171.0	172.0	1.0	3.4	0.4
							205.0	206.0	1.0	13.3	0.3
CDGC0697	50132	98261	2396	-1	256	470.1	226.0 64.9	227.3 65.4	1.3	3.6 10.4	1.0 0.5
CDGC007/	30132	10201	2370	-1	200	4/U.I	64.9	65.4	0.5	2.7	0.5
	1				1		67.3	68.3	0.0	L-1	

			JUNDEE	SIGNIFICA	NT INTER	SECTIC	NS				
Drill Hole #	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Azimuth (degrees, Mine Grid)	Hole depth (m)	Downhole From (m)	Downhole To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
CDGC0698	50132	98261	2396	3	258	408.1	168.5 63.5	168.9 65.1	0.4	13.7 2.4	0.4
							195.7 212.0	196.1 213.0	0.4	10.4	0.3
CDGC0681	50132	98261	2397	19	261	218.1	58.3	60.1	1.8	6.3	1.6
						218.1 218.1	130.0 136.9	131.0 137.6	1.0 0.8	7.7 16.3	0.3
						218.1 218.1	187.9 206.1	188.5 206.6	0.5	9.4 32.0	0.4
CDGC0684	50132	98261	2397	14	264	354.9	123.3 173.3	124.0 174.0	0.7 0.7	98.2 11.3	0.7 0.6
00.000/00	50100	000 (1	0007		070		205.2	205.8	0.6	290.8	0.6
CDGC0689	50132	98261	2397	9	272	230.0	57.5 140.7	58.0 141.0	0.5	2.7 5.3	0.5
							206.0 207.9	206.3 208.2	0.3	20.7 8.3	0.3
CDGC0691	50132	98261	2397	8	276	234.0	58.4	59.3	0.9	2.3	0.9
							140.7 208.9	141.5 209.3	0.8 0.4	12.9 95.9	0.7 0.3
							210.8 213.4	212.0 215.7	1.2 2.3	3.0 45.7	0.8
CDGC0696	50132	98261	2396	1	256	367.2	65.4	67.6	2.2	5.1	1.9
CDGC0668	49853	98532	2299	-38	350	104.4	169.5 64.5	170.0 65.0	0.5	30.4 8.6	0.3
CDGC0669	49853	98532	2299	-38	350	91.0	50.9 61.3	51.6 67.9	0.7	149.0 11.3	0.3 2.3
CDGC0670	49852	98532	2302	24	354	222.2	23.5	23.8	0.3	2.2	0.3
							23.5 50.0	23.8 50.8	0.3	2.2	0.3
							50.0	50.8	0.8	2.3	0.4
							111.4 111.8	112.1 112.1	0.8	8.1 16.0	0.6
CDGC0671	49853	98532	2301	10	358	189.0	14.5 94.6	15.3 101.7	0.8 7.1	28.5 16.9	0.5 5.0
CDGC0672	49853	98532	2300	-33	5	92.0	25.0	27.0	2.0	7.4	0.3
							49.4 61.8	49.7 65.6	0.3 3.8	11.7 0.6	0.3
CDGC0673	49853	98532	2300	-15	15	91.1	13.6 61.5	14.3 63.5	0.8	7.7 4.8	0.3
CDGC0674	49853	98532	2300	-55	28	99.0	23.3	24.1	0.8	16.4	0.5
							26.5 29.3	27.0 30.0	0.5	3.5 3.7	0.3
CDGC0675	49853	98532	2299	-29	36	92.0	8.9 62.0	9.2 62.3	0.3	6.7	0.3
CDGC0676	49853	98532	2300	-14	40	100.9	7.0	7.3	0.3	3.4 9.4	0.3
CDGC0677	49853	98532	2301	6	48	143.0	71.9 6.7	82.2 7.0	10.3 0.3	1.5 8.2	7.0
							76.8	77.1	0.3	2.9	0.3
CDGC0678	49854	98532	2299	-48	51	99.0	12.5 30.2	14.5 30.5	2.0 0.3	50.9 2.3	0.9 0.3
CDGC0679 CDGC0680	49854 49854	98532 98532	2300 2300	-24 -12	51 54	96.0 126.0	7.6	8.0 6.8	0.3	23.2 14.6	0.3
CDGC0686	50132	98261	2396	2	268	252.0	140.0	141.0	1.0	2.8	0.3
				DEA	KIN		227.4	227.8	0.4	48.1	0.4
DKXP0011	50035	97834	2389	-28	292	250.0	178.0 218.2	179.2 218.7	1.3 0.5	29.0 102.0	0.8 0.4
DKXP0012	50035	97834	2389	-23	293	244.0	145.4	146.1	0.6	2.4	0.3
DKXP0013	50035	97834	2389	-30	296	250.0	207.4 178.2	207.9 179.5	0.6	6.1 22.9	0.5
DKXP0016	50036	97831	2390	-27	282	487.1	212.4 397.0	213.9 397.3	1.5 0.3	5.0 7.8	1.2 0.3
							398.9	399.3	0.4	13.1	0.3
DKXP0017 DKXP0018	50036 50036	97831 97831	2390 2390	-35 -34	277 273	252.0 250.0	34.0	34.6	NSI 0.6	5.6	0.6
DKXP0019	50036	97831	2390	-32	267	251.0			NSI		
DKXP0020	50036	97831	2390	-28	267	242.0	31.0 221.7	31.3 223.2	0.3	3.3 1.4	0.3 6.7
DKXP0007 DKXP0008	50036 50035	97831 97834	2390 2389	-25 -28	284 286	251.9 257.8	212.7	213.4	0.7 NSI	3.0	0.5
DKXP0009	50035	97834	2389	-24	288	238.0			NSI		
DKXP0010 DKXP0014	50035 50035	97834 97834	2389 2389	-32 -26	290 297	250.0 244.0	214.0	215.0	NSI 1.0	34.8	0.3
1000001 (2	10.117	0.0005	0057	NEX		105.0	00.0	00.1			
NXXP0160 NXXP0164	49467 49468	96285 96282	2357 2358	-3 1	87	135.0 175.0	32.2	32.6	0.4 NSI	4.5	0.4
NXXP0159 NXXP0161	49467 49468	96285	2356	-19	83 97	400.1	227.0	227.3	0.3	11.2	0.3
NXXP0162	49468	96282 96282	2358 2357	6 -13	98	89.9	67.5 32.0	68.0 32.3	0.5	7.3 2.2	0.3
NXXP0163	49468	96282	2356	-22	108	210.0	26.0 130.0	27.0 131.0	1.0	12.5 4.8	0.3
NXXP0165	49468	96282	2357	-8	120	155.0			NSI		
NXXP0166 NXXP0167	49468 49468	96282 96282	2357 2356	6 -22	123 131	149.9 149.9	48.0	48.3	NSI 0.3	9.1	0.3
NXGC0162 NXGC0163	49272 49272	96368	2338 2338	2 -2	48 51	188.9			NSI		
NXGC0165	49272	96368 96368	2338	-7	65	166.0 125.0			NSI NSI		
NXGC0166 NXGC0167	49272 49272	96368 96368	2338 2338	-14 -8	72 85	110.0 118.0			NSI NSI		
NXGC0168	49272	96368	2337	-38	93	88.1	81.8	83.2	1.4	1.9	1.3
NXGC0169 NXGC0170	49272 49272	96368 96368	2337 2337	-15 -50	95 100	120.0 113.8	89.0	90.5	NSI 1.5	3.4	1.5
NXGC0171 NXGC0172	49272	96368	2337 2337	-12 -35	108	121.1			NSI		
NXGC0172 NXGC0182	49272 49267	96368 96379	2337	-35 -53	114	286.9	157.2	158.8	1.6	4.2	0.8

		1	JUNDEE			1		1			
Drill Hole #	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Azimuth (degrees, Mine Grid)	Hole depth (m)	Downhole From (m)	Downhole To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thicknes (m)
							178.1 180.7	178.9 181.0	0.8	2.5 3.8	0.5
							192.2	192.6	0.4	4.2	0.3
NXGC0183	49267	96379	2337	-57	11	280.0	215.3	215.6	0.3 NSI	2.2	0.3
NXGC0184	49267	96379	2337	-51	12	242.0	150.4	153.0	2.6	3.0	0.5
							154.5 174.3	156.7 174.6	2.2 0.3	3.3 7.1	1.5
							174.3	174.6	0.8	5.2	0.5
NXGC0185	49267	96379	2337	-48	17	241.0	137.0	137.5	0.5	2.6	0.5
NXGC0186 NXGC0187	49267 49267	96379 96379	2337 2337	-55 -51	17	275.1 231.0	187.1 136.3	187.4 136.8	0.3	3.9 5.0	0.3
NXGC0188	49267	96379	2338	-32	18	256.0	110.0	110.5	0.5	4.7	0.5
NXGC0193	49267	96379	2337	-43	24	226.0	144.0	145.4 158.0	1.4 0.5	2.2 4.4	0.5
NXGC0195	49267	96378	2337	-45	27	215.0	139.5	141.0	1.5	3.9	1.0
NXGC0178	49267	96379	2337	-58	1	290.2	56.0	57.0	1.0	2.4	0.3
							228.8 230.5	229.1 230.8	0.3 0.3	80.2 8.6	0.3 0.3
							244.0	245.0	1.0	2.7	0.5
							252.6 264.3	254.3 265.0	1.7 0.7	7.3 4.5	1.0
NXGC0179	49267	96379	2337	-55	3	292.0	264.5	265.0	0.4	4.5	0.3
NXGC0180	49267	96379	2337	-62	3	295.0	290.7	291.0	0.3	3.4	0.2
NXGC0189 NXGC0190	49267 49267	96379 96379	2337 2338	-43 -25	19 20	236.1 266.0	186.0 18.0	189.2 24.0	3.2 6.0	3.9 4.1	3.0 4.5
	77207		2000	20	20	200.0	25.7	26.5	0.8	8.7	0.6
	400/7	0/070	0000	24	01	0.45.0	235.3	235.6	0.3	2.8	0.3
NXGC0191	49267	96379	2338	-34	21	245.0	133.8 186.2	134.1 189.1	0.3 2.9	2.1 2.9	0.3
NXGC0192	49267	96379	2338	-26	24	252.0	114.1	116.0	1.9	7.9	1.5
							173.0	174.0 190.3	1.0 0.3	3.9 3.2	0.4
							225.0	226.0	1.0	3.2 5.1	1.0
NXGC0194	49267	96379	2338	-31	24	241.1	21.2	24.0	2.8	1.9	1.4
NXGC0196	49268	96378	2337	-41	28	218.5	108.0 193.7	108.6 194.3	0.6	5.5 2.0	0.3
NXGC0197	49268	96378	2338	-37	33	207.0	175.7	174.5	NSI	2.0	0.5
NXGC0198	49303	96284	2330	-45	87	183.0	63.5	66.7	3.2	2.1	3.0
							68.4 108.0	68.9 110.2	0.5	9.5 3.4	0.4
							167.4	168.4	1.0	6.5	0.9
NXGC0207	49303	96284	2330	-26	73	195.1	53.8 58.7	54.4 59.5	0.6	4.0 2.8	0.5
							63.0	63.5	0.8	2.0	0.8
							114.8	115.1	0.3	72.1	0.3
							115.4 185.0	116.0 186.2	0.6	2.4	0.6
							189.0	190.3	1.3	2.4	1.2
NXGC0210	49303	96284	2330	-32	64	184.1	53.6	54.3	0.7	3.2	0.5
NXGC0213	49303	96284	2330	-42	64	178.9	163.4 47.5	164.0 49.1	0.6	22.9 2.6	0.5
10000210		70201	2000		0.		51.1	51.4	0.3	5.0	0.3
							62.8 163.8	64.1 165.0	1.3	2.1 4.1	1.2
NXGC0197	49268	96378	2338	-37	33	207.0	90.8	91.1	0.3	2.5	0.3
							129.2	130.4	1.2	4.5	0.8
							132.1 135.2	132.5 136.2	0.3	4.2 4.8	0.3
							176.4	176.7	0.3	3.3	0.3
	40202	0.00.1	0000	45	07	102.0	194.3	194.6	0.3	2.8	0.3
NXGC0198	49303	96284	2330	-45	87	183.0	63.5 68.4	66.7 68.9	3.2 0.5	2.1 9.5	3.0 0.4
							69.4	69.7	0.3	6.3	0.3
							109.0	110.2	1.2	5.3	1.0 0.9
NXGC0199	49303	96284	2330	-49	94	191.0	167.4	168.4 177.4	1.0 5.4	6.5 2.0	2.5
NXGC0200	49303	96284	2330	-55	93	189.1	71.1	71.7	0.6	5.1	0.3
							72.1 74.2	72.4 75.5	0.3	7.1 5.0	0.3
NXGC0200	49303	96284	2330	-55	93	189.1	74.2	80.7	1.3	8.2	0.5
							69.8	82.2	12.4	3.0	6.5
NXGC0206	49303	96284	2330	-22	69	196.0	170.2 52.9	172.3 53.2	2.0	2.0	1.2 0.3
			2000				55.0	55.5	0.5	3.2	0.4
							57.0 59.7	57.4	0.4 0.7	4.5 2.2	0.3
			<u> </u>				62.2	60.4 67.5	5.3	2.2 4.8	0.7 4.0
							118.6	118.9	0.3	27.7	0.3
							190.2	192.7	2.5	2.5	2.1
RVGC0099	49367	95287	2223	-23	ATION 36	135.1			NSI		
RVGC0099 RVGC0120	49367	95287	2223	-23	109	198.0			NSI		
RVGC0125	49367	95287	2224	-2	122	229.0			NSI		
RVGC0125 RVGC0126	49367 49367	95287 95287	2224 2224	-2 -14	122	229.0 234.0	167.6	168.0	NSI 0.4	8.4	0.4
	47007	, 020/		17	122	207.0	177.6	183.6	6.0	2.2	1.0
							203.3	203.7	0.3	5.8	0.3
RVGC0128	49354	95387	2238	-4	20	460.2	205.7 249.0	207.3 251.0	1.5 2.0	4.1 2.4	1.5
							316.0	319.7	3.7	3.2	2.5
RVGC0129	49355	95386	2239	11	34	347.0	227.0	228.0	1.0	16.4	0.7
	49356	95385	2238	-14	70	262.0	273.3	273.6	0.3 NSI	36.2	0.3
RVGC0138	47556					202.0			1431		

				SIGNIFICA							
Drill Hole #	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Azimuth (degrees, Mine Grid)	Hole depth (m)	Downhole From (m)	Downhole To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
RVGC0142	49356	95385	2238	-4	77	264.3	57.8 57.8	58.1 59.7	0.3	2.2	0.3
RVGC0145	49356	95384	2238	-10	81	260.0	249.4 74.2	249.9 75.5	0.6	4.4 4.0	0.3 0.8
				-			240.3	247.2	6.9	1.8	6.0
RVGC0174	49356	95385	2239	19	80	299.8	53.0 72.8	53.5 73.1	0.5	3.3 5.9	0.3
							128.7	129.0	0.3	2.7	0.3
RVGC0183	49356	95385	2239	17	92	305.1	264.0 163.0	264.3 164.0	0.3	12.5 2.0	0.3
RVGC0185 RVGC0135	49356 49367	95384 95287	2241 2224	39 5	99 81	77.1 268.0	82.3	86.4	NSI 4.1	5.3	3.8
KTO COTOS	47007	/020/		Ŭ		200.0	113.0	113.4	0.4	2.7	0.3
RVGC0137	49367	95287	2223	-19	99	244.9	217.0 165.0	217.4 167.0	0.4 2.0	5.7 10.2	0.3
RVGC0143	49356	95384	2239	-22	80	215.0	177.6 87.2	177.9 87.5	0.3 0.3	10.1 13.8	0.3 0.3
							158.7	159.1	0.3	3.8	0.3
RVGC0144 RVGC0147	49356 49356	95384 95383	2237 2237	-42 -55	81 96	219.0 150.0	144.0	153.0	9.0 NSI	2.4	5.1
RVGC0168	49355	95385	2239	3	67	231.1	31.0	32.0	1.0	4.1	0.3
							42.3 61.3	42.7 61.7	0.4 0.5	2.0 11.0	0.3
RVGC0169	49355	95385	2239	9	73	234.9	74.7 119.8	75.0	0.3 0.3	4.6 2.9	0.3
RVGC0172	49355	95385	2239	8	75	274.0	42.4	120.1 44.0	1.6	3.7	1.4
							56.9 260.7	59.2 261.0	2.3 0.3	1.7 7.4	1.0 0.3
RVGC0173	49355	95385	2239	15	79	288.9	62.8	63.1	0.3	6.4	0.3
RVGC0177	49356	95385	2239	18	86	288.9 300.0	266.2	266.5	0.3 NSI	2.4	0.3
RVGC0178	49355	95385	2237	8	87	273.0	59.6	60.0	0.4	4.8	0.3
RVGC0179	49355	95385	2239	-2	88	261.0	78.8 48.5	81.0 51.8	2.2 3.3	2.1	1.8 3.0
	17000	/0000	2207			20110	64.0	65.7	1.7	2.6	1.2
							226.1 242.2	226.4 242.9	0.3	4.7 3.5	0.3
RVGC0180	49355	95385	2239	6	90	272.0	67.4	67.7	0.3	3.9	0.3
							116.0 230.1	118.0 230.6	2.0 0.5	6.4 7.5	1.6 0.3
RVGC0170	49356	95385	2239	18	73	302.0			NSI		
RVGC0175	49355	95385	2239	10	81	275.9 275.9	68.7 257.2	69.0 258.2	0.3	4.2	0.3
RVGC0181	49355	95385	2239	1	92	266.1	62.9 107.9	63.2 109.0	0.3	9.4 2.9	0.2
							235.0	236.0	1.0	2.7	0.3
RVGC0182	49355	95385	2239	13	92	288.0	256.9 58.5	257.5 58.8	0.6	4.5 2.8	0.5
							71.6	71.9	0.3	4.7	0.3
RVGC0186 RVGC0187	49308 49308	95510 95510	2258 2258	-9 -4	14 26	169.0 164.0	25.0	25.8	0.8 NSI	2.3	0.3
RVGC0188	49308	95510	2257	-41	20	183.0	89.0	95.5	6.6	2.8	1.4
RVGC0189	49308	95510	2258	-17	40	183.0 274.3	153.0 31.8	154.0 32.6	1.0 0.8	2.5 3.9	0.3
RVGC0190	49308	95510	2258	4	50	267.0	107.8	108.3	0.5	2.8	0.4
							173.9 176.9	174.5 177.3	0.6	7.1 47.1	0.5
							196.0 224.0	197.0 231.2	1.0 7.2	19.0 1.1	1.0 6.0
RVGC0191	49308	95510	2257	-24	48	241.0	224.0	30.0	2.0	3.3	0.5
							32.0 85.8	32.9 86.1	0.9	7.3 2.5	0.8
RVGC0192	49308	95510	2258	-1	55	241.0	200.5	208.1	7.7	2.1	6.0
							215.0 230.1	216.9 231.0	1.8 0.9	3.3 2.1	1.7 0.8
RVGC0193	49308	95510	2258	-7	47	248.0	184.6	185.0	0.4	2.3	0.3
RVGC0194	49308	95510	2259	8	79	145.0	231.1 80.4	231.4 81.0	0.3 0.7	2.5 2.0	0.3
						-	80.4	81.0	0.7	2.0	0.5
							135.7 135.7	141.9 141.9	6.2 6.2	3.0 3.0	3.5 5.0
RVGC0196 RVGC0197	49308 49308	95510 95510	2258 2258	-20 -24	85 76	148.9 139.4	25.2 33.4	26.0 33.7	0.8	3.2 2.0	0.4
RVGC0199	49308	95510	2258	-10	39	133.1			NSI		
RVGC0201 RVGC0202	49308 49308	95510 95510	2257 2257	-36 -45	35 32	155.6 172.0	85.7	87.7	2.0 NSI	3.3	1.0
RVGC0203	49308	95510	2257	-45	53	158.9			NSI		
RVGC0207	49308	95510	2258	-1	45	271.0	202.8 205.8	203.3 206.1	0.5	24.2 7.8	0.3
RVGC0208	49308	95510	2258	-1	51	248.9	18.2	18.6	0.4	2.6	0.3
							201.9 220.4	202.3 221.0	0.4	3.8 3.3	0.3
DVCC0000	40200	05510	0050	2	17	050.0	233.0	234.0	1.0	2.6	0.3
RVGC0209	49308	95510	2258	-3	47	259.0	17.6 37.5	18.0 38.0	0.4 0.5	2.8 2.0	0.3
							196.0	197.0	1.0	386.0	0.3
							204.2 221.8	205.1 226.7	0.9 4.9	2.8 4.6	0.8 4.0
RVGC0210	49308	95510	2258	-7	43	269.0	232.0 68.0	232.6 69.0	0.6	2.5 4.3	0.5
							191.2	192.4	1.2	1.8	0.3
RVGC0211	49308	95510	2258	-12	46	244.0	204.9 229.0	205.3 229.6	0.3 0.6	266.0 2.9	0.3 0.4
RVGC0212	49308	95510	2258	-16	44	263.0	43.7	44.0	0.4	4.7	0.3
	1	1		1	1		184.7	185.1	0.4	5.4	0.3

			JUNDEE	SIGNIFICA		SECTIC	ONS				
Drill Hole	Easting	Northing			Azimuth (degrees,	Hole depth	Downhole From	Downhole To	Downhole Intersection	Au (gpt)	Est True Thickness
#	(Mine Grid)	(Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Mine Grid)	(m)	(m) 236.2	(m) 236.5	(m) 0.3	17.9	(m) 0.3
							239.4	239.9	0.5	10.8	0.4
							239.4 256.0	239.9 260.0	0.5 4.0	10.8 1.5	0.5
RVGC0214	49308	95510	2258	-20	44	247.0	238.0	241.9	0.8	4.5	0.5
RVGC0216	49199	95675	2283	-9	51	221.9			NSI		
RVGC0218 RVGC0220	49199 49198	95675 95676	2283 2283	-5 -5	43 36	255.1 284.8			NSI NSI		
RVGC0221	49198	95675	2282	-16	34	295.0	268.2	268.5	0.3	2.9	0.3
RVGC0142 RVGC0200	49356 49308	95385 95511	2238 2256	-4 -22	77 37	264.3 141.0	248.6 29.8	249.9 30.2	1.3 0.4	2.3 2.9	1.0 0.3
RVGC0200 RVGC0213	49308	95511	2257	-17	48	238.0	27.0	50.2	NSI	2.7	0.5
RVGC0215	49199	95675	2282	-17	57	210.0	160.7	161.1	0.4	2.1	0.3
RVGC0219	49199	95675	2283	-13	40 EWAY	262.0	234.3	234.6	0.3	4.4	0.3
GWXP0419	48897	96400	2290	-9	268	242.2	165.0	174.4	9.3	4.4	7.0
0110/00/110	10007	0.(.100	0000		0.40	0.40.0	178.2	180.1	1.9	2.9	1.8
GWXP0419 GWXP0420	48897 48897	96400 96400	2290 2290	-9 7	268 272	242.2 152.8	207.9 132.3	209.8 134.6	1.8	3.0 3.3	1.3 2.0
GWXP0420	48897	96400	2290	-1	274	169.9	129.6	131.4	1.8	2.9	0.9
							151.7	154.2	2.5	4.2	2.0
GWXP0419	48897	96399	2290	-9	268	242.2	159.2 165.0	160.0 174.4	0.8 9.3	4.8 4.4	0.5 8.0
•	10077						178.2	180.1	1.9	2.9	1.9
CWW D0 100	100027	0.1.100	0000	~7	07/	170.0	207.9	210.2	2.3	2.5	2.0
GWXP0422	48897	96400	2292	27	276	179.9	81.5 88.9	82.4 92.4	0.9 3.5	9.6 3.3	0.7
							101.0	102.0	1.0	5.0	0.3
							159.0	159.5	0.5	3.1	0.3
GWXP0423	48897	96400	2290	-5	280	235.0	177.0	177.9	0.9 NSI	6.4	0.5
GWXP0426A	48906	96403	2270	29	322	197.0	60.5	61.0	0.5	2.3	0.3
							153.0	154.8	1.8	5.1	0.8
							175.2 191.0	176.9 192.0	1.7 1.0	4.6 14.8	1.5 0.5
GWXP0427	48907	96404	2291	19	340	111.7	57.1	57.4	0.4	2.3	0.3
GWXP0427A	48906	96403	2291	19 20	340	212.0			NSI		
GWXP0430 GWXP0433	48906 48897	96404 96398	2292 2291	10	7 259	209.0 150.0	71.9	76.7	NSI 4.8	7.9	4.0
GWXP0434	48897	96399	2290	15	266	250.0			NSI		
GWXP0435	48897	96399	2290	-17	258	219.6			NSI		
GWXP0436 GWGC0980	48897 48897	96399 96399	2290 2294	-25 57	256 242	289.8 119.0	4.1	5.0	NSI 0.9	2.5	0.6
GWGC0980	48897	96399	2294	57	242	119.0		0.0	NSI	2.0	0.0
GWGC0981	48897	96399	2292	43	248	117.0			NSI		
GWGC0982 GWGC0983	48897 48897	96397 96397	2292 2293	34 50	257 257	117.1 120.0	109.0	110.0	NSI 1.0	3.8	0.4
GWGC0984	48897	96398	2294	61	267	115.7	0.0	3.0	3.0	2.2	2.5
GWGC0985	48897	96397	2293	41	266	114.1			NSI		
GWGC0986 GWGC0987	48897 48898	96398 96400	2293 2294	50 59	275 288	113.8 118.0			NSI NSI		
GWGC0988	48897	96398	2293	56	300	120.1	67.0	71.9	4.9	1.6	3.5
GWGC0989	48897	96399	2293	47	291	118.0	90.0 23.7	90.7 25.0	0.7	5.0 1.9	0.3
GWGC0787	4007/	76377	2273	4/	271	110.0	106.6	107.0	0.4	2.0	0.3
GWGC0990	48897	96399	2292	38	281	134.0	30.6	31.0	0.3	2.5	0.3
							87.0 116.7	88.0 117.1	1.0	8.1	0.6
GWGC0991	48897	96399	2293	29	285	120.0	96.3	99.4	3.1	14.5	2.5
GWGC0992	48897	96399	2291	6	264	142.0	126.9	129.0	2.1	5.9	1.8
GWGC0993	48897	96399	2290	-4	262	171.1	150.8 153.0	151.3 154.0	0.5	2.1 2.2	0.3
GWGC0994	48897	96399	2290	-9	263	186.0	164.0	170.9	6.9	2.8	3.4
0.000	100027	0.4000	0000		0.11	150.0	175.0	175.7	0.7	2.5	0.3
GWGC0995 GWGC0996	48897 48897	96399 96399	2290 2290	-12	266 266	158.3 198.1	144.8	145.7 192.5	0.9	17.8	0.7 7.0
GWGC0997	48897	96399	2290	-15	270	216.0			NSI		
GWGC0999	48897	96399	2290	-7	276	213.2	137.6 179.6	137.9 180.0	0.3	5.4 2.5	0.3
							179.6	191.0	0.4	0.9	0.3
							194.3	195.0	0.7	3.2	0.4
GWGC1000 GWGC1001	48897 48897	96399 96399	2290 2291	-15	276 286	245.0 191.0	154.3	155.7	NSI 1.3	12.0	1.1
GWGC1001	48897	96399 96399	2291	6	200	177.0	134.3	149.8	3.0	15.3	2.6
							153.7	154.0	0.3	20.5	0.2
GWGC1003 GWGC1003	48897 48897	96399 96399	2291 2291	3 3	286 286	199.5 199.5	69.4 154.3	69.8 156.0	0.5	4.8 28.5	0.3
GWGC1003	48849	95789	1897	34	285	93.9	93.6	93.9	0.3	14.6	0.3
GWGC1014	48849	95789	1897	43	280	107.8	72.0	74.8	2.8	4.9	0.5
GWGC1015	48849	95789	1897	34	274	137.9 137.9	84.0 109.7	85.0 110.8	1.0	3.4 14.4	0.5
GWGC1016	48849	95789	1897	45	265	128.0	66.9	69.0	2.1	22.1	0.3
						128.0	104.0	106.1	2.1	27.0	1.0
GWGC1017	48849	95789	1897	32	261	128.0 92.9	107.3 57.0	107.7 59.0	0.4 2.0	16.3 4.2	0.4
GWGC1018	48849	95789	1895	17	263	87.0	67.8	69.8	2.0	25.7	1.3
GWGC1020	48849	95789	1895	4	260	78.0	66.6	67.4	0.8	26.0	0.4
GWGC1021	48849	95789	1895	3	275	144.0 144.0	97.2 106.3	97.6 106.6	0.4	13.9 3.9	0.3
GWGC1022	48849	95789	1894	-7	273	145.0	88.3	90.0	1.7	7.3	1.4
							112.8	113.4	0.5	33.2	0.3
GWGC1023	48849	95789	1894	-8	261	73.0	135.4	136.1	0.7 NSI	3.2	0.6
GWXP0447	48849	95789	1895	-6	254	95.0			NSI		
GWXP0448A	48849	95789	1894	-10	254	172.0	92.7	93.0	0.3	2.5	0.3
				1	I	1	96.1	97.2	1.1	4.3	0.5

			JUNDEE	SIGNIFICA		SECTIC	ONS				
Drill Hole #	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Azimuth (degrees, Mine Grid)	Hole depth (m)	Downhole From (m)	Downhole To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
GWXP0440	48849	95789	1894	-6	242	88.1	73.6	73.9	0.3	20.8	0.3
							84.0	84.3	0.4	13.4	0.3
GWXP0448	48849	95789	1894	-10	254	16.7			NSI		
GWXP0443	48849	95789	1894	-10	248	177.1	90.4	91.0	0.6	11.2	0.4
				WEST	ISIDE						
WSGC4968	49732	96410	1952	-6	265	150.8	31.1	31.5	0.4	7.1	0.3
		70110		Ŭ	200	100.0	38.5	38.9	0.4	3.0	0.3
							88.8	90.6	1.8	1.4	1.4
							143.0	146.4	3.4	9.7	3.2
WSGC4969	49732	96410	1952	-17	264	165.0	30.7	31.0	0.3	4.1	0.3
							51.0	53.7	2.7	3.0	0.9
WSGC4970	49732	96409	1952	-7	254	155.1	37.2	37.6	0.4	4.7	0.3
							78.4	79.2	0.8	6.6	0.6
							137.2	141.1	3.9	8.0	3.4
WSGC4971	49732	96409	1952	-19	253	170.0			NSI		
WSGC4972	49733	96408	1952	5	236	155.0	33.9	34.3	0.4	37.3	0.3
				-			144.0	144.5	0.5	25.3	0.5
WSGC4973	49732	96409	1952	-9	240	131.8	32.6	32.9	0.3	5.1	0.3
							35.8	36.6	0.8	15.2	0.5
							66.2	67.0	0.8	4.1	0.6
WSGC4974	49733	96409	1952	-19	241	139.0	45.3	47.3	2.0	2.6	0.5
WSGC4975	49733	96409	1952	-8	227	108.0	37.0	37.4	0.4	2.5	0.3
							40.7	41.3	0.6	4.2	0.4
							61.2	61.8	0.5	5.0	0.4
WSGC4976	49733	96409	1951	-19	229	150.0	37.8	38.1	0.3	4.7	0.3
							58.8	59.8	1.0	18.0	0.7
							128.3	129.0	0.7	3.8	0.5
WSGC4977	49733	96408	1952	3	211	110.0	33.3	34.4	1.1	6.5	0.8
							35.3	35.6	0.3	4.8	0.3
							59.5	60.3	0.8	3.6	0.5
							70.0	70.7	0.8	5.2	0.7
WSGC4978	49733	96409	1952	-8	214	110.0	39.7	40.7	1.0	15.7	0.8
					DIAC						
NSRJRD10447W4	49282	95392	2571	-60	102.3	2165.00	1632.38	1632.76	0.38	2.3	0.3
							1706.80	1707.10	0.30	3.5	0.3
							1715.72	1716.35	0.63	3.5	0.5
							1763.47	1763.83	0.36	4.8	0.3
							1775.30	1775.60	0.30	2.9	0.3
							1808.00	1809.00	1.00	3.0	0.6
							1813.84	1814.36	0.52	4.8	0.4
							1836.00	1836.30	0.30	4.8	0.3
							1837.13	1839.76	2.63	4.5	2.1
							1840.86	1843.36	2.50	3.8	1.7
							1865.33	1865.63	0.30	4.5	0.3
							1869.44	1869.75	0.31	4.5	0.3

Table 7 - Ramone Significant Intersections

						Hole	Downhole	Downhole	Downhole	Αu	Est True
Drill Hole	Eastina	Northing	Collar RL	Dip	Azimuth	depth	From	То	Intersection	(gpt)	Thickness
#	(MGA)	(MGA)	(MGA)	(degrees)	(MGA)	(m)	(m)	(m)	(m)	uncut	(m)
NSRJRC11488	285667	7060640	554	-60	40	23.0	8.00	11.00	3.0	1.2	1.5
							13.00	15.00	2.0	1.3	1.0
							18.00	19.00	1.0	1.4	0.5
							22.00	23.00	1.0	1.2	0.5
NSRJRC11489	285664	7060645	554	-60	150	40.0	28.00	30.00	2.0	1.7	1.0
NSRJRC11490	285662	7060649	554	-60	150	40.0	23.00	24.00	1.0	6.4	0.5
NSRJRC11491	285658	7060635	554	-60	150	30.0	21.00	23.00	2.0	1.2	1.0
NSRJRC11492	285653	7060644	554	-60	150	40.0	34.00	36.00	2.0	10.9	1.0
NSRJRC11493	285652	7060626	554	-60	150	10.0	7.00	8.00	1.0	1.2	0.5
NSRJRC11494	285649	7060630	554	-60	150	20.0	16.00	17.00	1.0	1.2	0.5
NSRJRC11495	285647	7060635	554	-60	150	30.0	16.00	17.00	1.0	2.5	0.5
							24.00	30.00	6.0	3.6	3.0
NSRJRC11496	285644	7060639	554	-60	150	35.0	19.00	22.00	3.0	2.4	1.5
							31.00	35.00	4.0	1.2	2.0
NSRJRC11497	285643	7060621	554	-60	150	10.0			NSI		
NSRJRC11498	285641	7060625	554	-60	150	20.0			NSI		
NSRJRC11499	285638	7060630	554	-60	150	30.0	16.00	26.00	10.0	6.5	5.0
NSRJRC11500	285636	7060634	554	-60	150	35.0	30.00	35.00	5.0	2.6	2.5
NSRJRC11501	285635	7060616	554	-60	150	10.0			NSI		
NSRJRC11502	285632	7060620	554	-60	150	20.0	0.00	5.00	5.0	1.9	2.5
NSRJRC11503	285630	7060625	554	-60	150	30.0	3.00	17.00	14.0	2.3	7.0
							26.00	30.00	4.0	1.1	2.0
NSRJRC11504	285627	7060629	554	-60	150	40.0	13.00	14.00	1.0	1.0	0.5
							18.00	26.00	8.0	1.6	4.0
							28.00	30.00	2.0	1.3	1.0
NSRJRC11505	285625	7060633	554	-60	150	50.0	23.00	26.00	3.0	1.6	1.5
							33.00	34.00	1.0	1.1	0.5
							36.00	40.00	4.0	2.5	2.0
							43.00	44.00	1.0	1.2	0.5
NSRJRC11506	285622	7060638	554	-60	150	64.0	41.00	42.00	1.0	1.8	0.5
							44.00	49.00	5.0	1.1	2.5
							55.00	57.00	2.0	1.5	1.0
NSRJRC11507	285626	7060611	554	-60	150	10.0			NSI		
NSRJRC11508	285623	7060615	554	-60	150	20.0			NSI		
NSRJRC11509	285621	7060620	554	-60	150	30.0	1.00	8.00	7.0	3.5	3.5
NSRJRC11510	285618	7060624	554	-60	150	40.0	8.00	21.00	13.0	1.2	6.5
							23.00	26.00	3.0	1.4	1.5
NSRJRC11511	285616	7060628	554	-60	150	50.0	22.00	23.00	1.0	1.7	0.5
							26.00	50.00	24.0	2.0	12.0
NSRJRC11512	285613	7060633	554	-60	150	60.0	27.00 39.00	30.00	3.0	1.9	1.5

			RAMON	E INFILL SIG	NIFICANT	INTERSE	CTIONS				
Drill Hole	Easting	Northing	Collar RL	Dip	Azimuth	Hole depth	Downhole From	Downhole To	Downhole Intersection	Au (gpt)	Est True Thickness
#	(MGA)	(MGA)	(MGA)	(degrees)	(MGA)	(m)	(m)	(m)	(m)	uncut	(m)
							46.00 53.00	47.00 54.00	1.0	2.2	0.5
	005(11	70/0/27	554	(0	150	(10	59.00	60.00	1.0	1.7	0.5
NSRJRC11513	285611	7060637	554	-60	150	64.0	5.00 62.00	6.00 64.00	1.0 2.0	7.5 1.8	0.5
NSRJRC11514	285617	7060606	554	-60	150	10.0	6.00	7.00	1.0	2.7	0.5
NSRJRC11515 NSRJRC11516	285615 285612	7060610 7060615	554 554	-60 -60	150 150	20.0 30.0	0.00	8.00	NSI 8.0	4.5	4.0
NSRJRC11517	285607	7060623	554	-60	150	50.0	14.00	17.00	3.0	1.4	1.5
							19.00 26.00	24.00 34.00	5.0 8.0	1.6 1.7	2.5 4.0
NSRJRC11518	285605	7060628	554	-60	150	60.0	14.00	17.00	3.0	1.0 10.8	1.5 0.5
							24.00 28.00	25.00 41.00	13.0	1.3	6.5
NSRJRC11519	285602	7060632	554	-60	150	64.0	43.00 35.00	56.00 37.00	13.0 2.0	1.6 2.3	6.5 1.0
NSRJRC11520	285600	7060632	554	-60	150	64.0	11.00	12.00	1.0	2.3	0.5
NSRJRC11521	285595	7060645	554	-60	150	64.0	20.00	21.00	1.0 NSI	1.3	0.5
NSRJRC11522	285592	7060649	554	-60	150	64.0	28.00	29.00	1.0	1.0	0.5
NSRJRC11523	285590	7060654	554	-60	150	64.0	51.00 56.00	52.00 57.00	1.0	1.1 1.0	0.5
NSRJRC11524	285587	7060658	554	-60	150	64.0	58.00	59.00	1.0	1.5	0.5
NSRJRC11525	285582	7060667	554	-60	150	64.0	62.00	64.00	2.0 NSI	2.4	1.0
NSRJRC11526	285608	7060601	554	-60	150	10.0			NSI		
NSRJRC11527	285606	7060605	554	-60	150	20.0	2.00 6.00	4.00	2.0	4.4 1.3	1.0 2.5
NSRJRC11528	285603	7060610	554	-60	150	30.0	7.00	9.00	5.0 2.0	1.3	2.5
NSP IPC11500	285601	7060614		-60		40.0	13.00	15.00	2.0 21.0	1.3	1.0 10.5
NSRJRC11529			554		150		5.00 30.00	26.00 32.00	2.0	3.0 1.1	1.0
NSRJRC11530	285598	7060618	554	-60	150	50.0	2.00	5.00	3.0	2.0	1.5
NSRJRC11531	285596	7060623	554	-60	150	60.0	11.00 16.00	34.00 22.00	23.0 6.0	4.9 3.6	11.5 3.0
							24.00	41.00	17.0	5.5	8.5
NSRJRC11532	285593	7060627	554	-60	150	64.0	48.00 0.00	53.00 2.00	5.0 2.0	1.4 1.4	2.5
							33.00	35.00	2.0	2.4	1.0
							37.00 45.00	43.00 59.00	6.0 14.0	1.3 1.3	3.0 7.0
	005501	70/0/21	554	(0	150	(10	62.00	64.00	2.0	1.7	1.0
NSRJRC11533	285591	7060631	554	-60	150	64.0	28.00 43.00	29.00 48.00	1.0 5.0	1.4 1.8	0.5
NSRJRC11534	285588	7060636	554	-60	150	64.0	51.00	53.00	2.0	6.7	1.0
NSRJRC11535	285586	7060640	554	-60	150	64.0	37.00 43.00	38.00 44.00	1.0	1.7 1.4	0.5
NSRJRC11536	285583	7060644	554	-60	150	64.0	28.00	29.00	1.0	1.5	0.5
NSRJRC11537	285581	7060649	554	-60	150	64.0	46.00 34.00	47.00 35.00	1.0	6.2 2.3	0.5
NSRJRC11538	285578	7060653	554	-60	150	64.0	63.00	64.00	1.0	1.7	0.5
NSRJRC11539 NSRJRC11540	285576 285600	7060657 7060596	554 554	-60 -60	150 150	64.0 15.0	45.00 3.00	46.00	1.0	1.0 2.6	0.5
NSRJRC11541	285597	7060600	554	-60	150	25.0	8.00	13.00	5.0	1.6	2.5
NSRJRC11542 NSRJRC11543	285595 285592	7060605 7060609	554 554	-60 -60	150 150	35.0 45.0	11.00 10.00	22.00 31.00	11.0 21.0	2.9 4.5	5.5 10.5
	005500	70/0/10			150		42.00	43.00	1.0	2.1	0.5
NSRJRC11544 NSRJRC11545	285590 285587	7060613 7060618	557 554	-60 -60	150 150	55.0 64.0	13.00 18.00	41.00 24.00	28.0 6.0	1.6 3.4	14.0 3.0
							26.00	49.00	23.0	2.3	11.5
NSRJRC11546	285585	7060622	554	-60	150	64.0	54.00 30.00	58.00 31.00	4.0	1.1	2.0 0.5
							33.00	42.00	9.0	2.2	4.5
NSRJRC11547	285582	7060626	554	-60	150	64.0	44.00 15.00	61.00 18.00	17.0 3.0	3.1 3.4	8.5 1.5
							21.00	26.00	5.0	1.1	2.5
							50.00 54.00	51.00 56.00	1.0 2.0	1.4 10.2	0.5 1.0
	005500	70/0/01			150	(10	59.00	64.00	5.0	30.8	2.5
NSRJRC11548 NSRJRC11548	285580 285580	7060631 7060631	554 554	-60 -60	150 150	64.0 64.0	0.00 23.00	1.00 24.00	1.0	2.5 2.0	0.5
						64.0	41.00	47.00	6.0	1.0	3.0
NSRJRC11549	285577	7060635	554	-60	150	64.0	51.00 62.00	55.00 63.00	4.0	2.8 2.7	2.0 0.5
NSRJRC11550	285575	7060639	554	-60	150	64.0	60.00	61.00	1.0	1.2	0.5
NSRJRC11551 NSRJRC11552	285572 285570	7060644 7060648	554 554	-60 -60	150 150	64.0 64.0			NSI NSI		
NSRJRC11553	285567	7060652	554	-60	150	64.0	0.00	10.00	NSI	2.5	0.5
NSRJRC11554 NSRJRC11555	285589 285586	7060595 7060600	554 554	-60 -60	150 150	25.0 64.0	8.00 12.00	13.00 22.00	5.0 10.0	3.5 10.6	2.5 5.0
NSRJRC11556	285584	7060604	554	-60	150	45.0	1.00	19.00	18.0	4.6	9.0
NSRJRC11561	285571	7060626	554	-60	150	64.0	24.00 21.00	33.00 23.00	9.0 2.0	3.4 2.2	4.5
							25.00	27.00	2.0	1.2	1.0
							34.00 46.00	38.00 50.00	4.0	2.3 1.3	2.0
	005515	70 (0)					55.00	58.00	3.0	4.5	1.5
NSRJRC11562	285569	7060630	554	-60	150	64.0	11.00 35.00	12.00 41.00	1.0 6.0	1.2 2.6	0.5
							55.00	59.00	4.0	2.4	2.0
NSRJRC11563	285566	7060634	554	-60	150	64.0	33.00 50.00	38.00 51.00	5.0	1.1 10.4	2.5 0.5
		_					53.00	56.00	3.0	1.0	1.5
NSRJRC11564	285564	7060639	554	-60	150	64.0	42.00 59.00	51.00 61.00	9.0 2.0	1.6 2.3	4.5

				E INFILL SIG				De 1			
Drill Hole #	Easting (MGA)	Northing (MGA)	Collar RL (MGA)	Dip (degrees)	Azimuth (MGA)	Hole depth (m)	Downhole From (m)	Downhole To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
							52.00 60.00	55.00 61.00	3.0	2.7	1.5 0.5
NSRJRC11566	285559	7060647	554	-60	150	64.0	3.00	4.00 12.00	1.0	1.2 1.7	0.5 0.5
							11.00 28.00	29.00	1.0	1.0	0.5
NSRJRC11567	285556	7060652	554	-60	150	64.0	36.00 63.00	37.00 64.00	1.0	1.2	0.5
NSRJRC11568	285580	7060590	554	-60	150	35.0			NSI		
NSRJRC11569	285577	7060595	554	-60	150	45.0	1.00 28.00	17.00 29.00	16.0 1.0	2.0 13.0	8.0 0.5
NSRJRC11570	285575	7060599	554	-60	150	55.0	11.00	21.00	10.0	1.3	5.0
NSRJRC11571	285572	7060603	554	-60	150	64.0	23.00 8.00	28.00	5.0 4.0	1.2 1.6	2.5
							14.00 47.00	36.00 50.00	22.0 3.0	2.0 1.3	11.0 1.5
							52.00	54.00	2.0	2.5	1.0
NSRJRC11572	285570	7060608	554	-60	150	64.0	9.00 43.00	39.00 46.00	30.0 3.0	5.5 1.2	15.0 1.5
							57.00	60.00	3.0	1.4	1.5
NSRJRC11573	285567	7060612	554	-60	150	64.0	62.00 13.00	64.00 21.00	2.0 8.0	3.2 5.7	1.0 4.0
							23.00	28.00	5.0	4.1	2.5
							31.00 45.00	41.00 54.00	10.0 9.0	6.0 3.5	5.0 4.5
	285565	7060616	554	-60	150	64.0	62.00 16.00	64.00 25.00	2.0 9.0	9.2 2.9	1.0 4.5
NSRJRC11574	200000	7000010	504	-00	i JU	04.0	44.00	46.00	2.0	1.2	1.0
							50.00 56.00	53.00 59.00	3.0 3.0	2.6 3.6	1.5 1.5
							61.00	64.00	3.0	1.6	1.5
NSRJRC11575	285562	7060621	554	-60	150	64.0	18.00 33.00	27.00 34.00	9.0	3.3 2.3	4.5 0.5
							44.00	45.00	1.0	1.4	0.5
							51.00 59.00	54.00 64.00	3.0 5.0	8.3 3.3	1.5
NSRJRC11576	285560	7060625	554	-60	150	64.0	23.00	28.00	5.0 1.0	1.5 1.0	2.5 0.5
							35.00 39.00	36.00 40.00	1.0	5.5	0.5
NSRJRC11577	285557	7060629	554	-60	150	64.0	48.00 35.00	49.00 39.00	1.0 4.0	9.5 1.6	0.5
							51.00	54.00	3.0	7.1	1.5
NSRJRC11578 NSRJRC11582	285555 285569	7060634 7060590	554 554	-60 -60	150 150	64.0 50.0	45.00 5.00	53.00 10.00	8.0 5.0	3.8 2.8	4.0 2.5
							13.00	14.00	1.0	2.9	0.5
NSRJRC11583	285567	7060594	554	-60	150	60.0	29.00 4.00	30.00 7.00	1.0 3.0	1.4	0.5
							9.00 33.00	13.00	4.0 2.0	6.0 1.8	2.0
NSRJRC11583	285567	7060594	554	-60	150	60.0	42.00	35.00 44.00	2.0	4.6	1.0
NSRJRC11584	285564	7060598	554	-60	150	64.0	1.00 31.00	17.00 48.00	16.0 17.0	1.5 3.1	8.0 8.5
NSRJRC11585	285562	7060603	554	-60	150	64.0	9.00	32.00	23.0	2.6	11.5
NSRJRC11586	285559	7060606	554	-60	150	64.0	46.00 1.00	57.00 2.00	11.0 1.0	2.6 1.3	5.5 0.5
							12.00	19.00	7.0	4.3	3.5
							26.00 54.00	44.00 63.00	18.0 9.0	2.5 5.8	9.0 4.5
NSRJRC11587	285557	7060610	554	-60	150	64.0	30.00 59.00	53.00 64.00	23.0 5.0	3.3 2.0	11.5 2.5
NSRJRC11579	285554	7060637	554	-60	150	64.0	53.00	64.00	11.0	2.5	5.5
NSRJRC11580 NSRJRC11581	285551 285571	7060641 7060586	554 554	-60 -60	150 150	64.0 40.0	62.00 3.00	64.00 6.00	2.0 3.0	7.4 6.3	1.0
							10.00	11.00	1.0	1.1	0.5
NSRJRC11588	285554	7060616	554	-60	150	54.0	19.00 19.00	20.00 23.00	1.0 4.0	2.0 4.2	0.5
NSRJRC11592	285544	7060633	554	-60	150	64.0	30.00 50.00	54.00 64.00	24.0 14.0	1.1 1.8	12.0 7.0
NSRJRC11593	285563	7060580	554	-60	150	40.0	4.00	6.00	2.0	1.1	1.0
NSRJRC11594	285560	7060585	554	-60	150	50.0	18.00 7.00	21.00 16.00	3.0 9.0	2.4 3.2	1.5 4.5
							19.00	31.00	12.0	4.9	6.0
NSRJRC11595	285558	7060589	554	-60	150	60.0	0.00 4.00	2.00 7.00	2.0 3.0	1.1 2.3	1.0
							10.00	13.00	3.0	1.2	1.5
NSRJRC11596	285556	7060592	554	-60	150	64.0	19.00 1.00	42.00 10.00	23.0 9.0	2.1 2.3	11.5 4.5
							12.00 24.00	18.00 25.00	6.0 1.0	2.5 7.8	3.0 0.5
		_					36.00	47.00	11.0	3.2	5.5
NSRJRC11597	285552	7060598	554	-60	150	64.0	6.00 29.00	20.00 52.00	14.0 23.0	2.7 1.2	7.0
	005552	70/0/00			150		54.00	63.00	9.0	3.1	4.5
NSRJRC11598	285550	7060602	554	-60	150	64.0	7.00 42.00	30.00 64.00	23.0 22.0	3.8 2.3	11.5 11.0
NSRJRC11599	285547	7060607	554	-64	150	64.0	8.00	9.00	1.0	1.7	0.5
							25.00 43.00	40.00 45.00	15.0 2.0	2.1 1.0	7.5 1.0
NSRJRC11600	285545	7060611	554	-60	150	64.0	59.00 31.00	64.00 45.00	5.0 14.0	2.2 1.1	2.5 7.0
							47.00	49.00	2.0	2.0	1.0
NSRJRC11601	285542	7060615	554	-64	150	64.0	20.00 34.00	24.00 38.00	4.0 4.0	1.8 5.5	2.0 2.0
	005515	70/0/					49.00	50.00	1.0	1.2	0.5
NSRJRC11602 NSRJRC11603	285540 285538	7060620 7060624	554 554	-60 -60	150 150	64.0 64.0	48.00 11.00	51.00 12.00	3.0	1.2 2.9	1.5 0.5
							45.00	51.00	6.0	1.6	3.0

			RAMON	E INFILL SIG	NIFICANT	INTERSE	CTIONS				
Drill Hole # NSRJRC11604	Easting (MGA) 285535	Northing (MGA) 7060628	Collar RL (MGA) 554	Dip (degrees) -60	Azimuth (MGA) 150	Hole depth (m) 64.0	Downhole From (m) 45.00	Downhole To (m) 47.00	Downhole Intersection (m) 2.0	Au (gpt) uncut	Est True Thickness (m) 1.0
N3K3KC11004	205555	7000020	504	-00	100	04.0	53.00	55.00	2.0	3.1	1.0
NSRJRC11625	285524	7060605	554	-60	150	64.0	61.00 55.00	63.00 59.00	2.0 4.0	1.7 1.2	1.0 2.0
NSRJRC11642	285529	7060561	554	-60	150	40.0	61.00 24.00	64.00 26.00	3.0	2.2 2.0	1.5
NSRJRC11643	285524	7060570	554	-60	150	60.0	3.00	7.00	4.0	1.0	2.0
NSRJRC11644	285522	7060574	554	-60	150	64.0	9.00 0.00	31.00 4.00	22.0 4.0	1.9 2.7	11.0 2.0
							12.00 18.00	16.00 31.00	4.0 13.0	2.2 2.0	2.0 6.5
NSRJRC11645	285519	7060577	554	-60	150	64.0	34.00 8.00	35.00 12.00	1.0 4.0	1.4 2.3	0.5
NSKJKC11645	200017	/0803//	554	-80	130	64.0	18.00	19.00	1.0	2.4	0.5
NSRJRC11646	285517	7060582	554	-60	150	64.0	21.00 9.00	36.00 10.00	15.0 1.0	2.2 1.1	7.5 0.5
							12.00 19.00	17.00 43.00	5.0 24.0	4.2 2.7	2.5 12.0
NSRJRC11646	285517	7060582	554	-60	150	64.0	52.00	56.00	4.0	1.3	2.0
NSRJRC11647	285514	7060586	554	-60	150	64.0	16.00 24.00	18.00 40.00	2.0 16.0	2.5 2.5	1.0 8.0
							42.00 63.00	59.00 64.00	17.0 1.0	2.0 1.7	8.5 0.5
NSRJRC11648	285511	7060591	554	-60	150	64.0	30.00	43.00	13.0	2.4	6.5
							49.00 61.00	59.00 64.00	10.0 3.0	1.4 1.1	5.0 1.5
NSRJRC11649	285508	7060595	554	-60	150	64.0	35.00 50.00	47.00 51.00	12.0	1.6 1.5	6.0 0.5
							53.00 62.00	60.00 64.00	7.0 2.0	11.7 1.8	3.5 1.0
NSRJRC11650	285505	7060600	554	-60	150	64.0	40.00	50.00	10.0	1.3	5.0
NSRJRC11651	285502	7060604	554	-60	150	64.0	60.00 50.00	64.00 51.00	4.0	2.6 1.7	2.0 0.5
NSRJRC11652	285522	7060551	554	-60	150	30.0	62.00 18.00	64.00 19.00	2.0	1.5	1.0
NSKJKC11652	200022	7080331	554	-80	130	30.0	0.00	1.00	1.0	2.1	0.5
NSRJRC11654	285517	7060560	554	-60	150	50.0	4.00 0.00	9.00 18.00	5.0 18.0	15.0 1.6	2.5 9.0
							21.00 40.00	24.00 41.00	3.0	1.1 2.9	1.5 0.5
NSRJRC11655	285514	7060564	554	-60	150	60.0	0.00	27.00	27.0	4.4	13.5
NSRJRC11656	285511	7060569	554	-60	150	64.0	30.00 1.00	32.00 2.00	2.0	1.5 2.0	1.0 0.5
							4.00 8.00	6.00 40.00	2.0 32.0	1.2 2.9	1.0 16.0
NSRJRC11657	285509	7060573	554	-60	150	64.0	56.00 12.00	57.00 44.00	1.0 32.0	8.7 1.8	0.5
							63.00	64.00	1.0	1.1	0.5
NSRJRC11658	285506	7060577	554	-60	150	64.0	13.00 61.00	49.00 64.00	36.0 3.0	2.3 1.2	18.0 1.5
NSRJRC11659	285504	7060581	554	-60	150	64.0	13.00 23.00	15.00 55.00	2.0 32.0	1.3 2.6	1.0 16.0
NSRJRC11660	285501	7060586	554	-60	150	64.0	59.00 35.00	64.00 64.00	5.0 29.0	2.2 3.3	2.5 14.5
NSRJRC11661	285498	7060590	554	-60	150	64.0	11.00	13.00	2.0	1.3	1.0
							36.00 43.00	37.00 44.00	1.0	1.9 2.9	0.5
NSRJRC11662	285496	7060594	554	-60	150	64.0	48.00 15.00	64.00 18.00	16.0 3.0	2.4	8.0 1.5
							54.00	64.00	10.0	1.4	5.0
NSRJRC11664 NSRJRC11665	285511 285508	7060551 7060555	554 554	-60 -60	150 150	40.0 50.0	34.00 0.00	36.00 3.00	2.0 3.0	1.2 5.4	1.0
NSRJRC11666	285506	7060559	554	-60	150	60.0	17.00 0.00	20.00 7.00	3.0 7.0	3.1 12.5	1.5 3.5
NSRJRC11667	285503	7060564	554	-60	150	64.0	9.00 2.00	30.00 36.00	21.0 34.0	4.4	10.5 17.0
NSKJKC1100/	265505	7080584	554	-80	150	84.0	39.00	47.00	8.0	2.4	4.0
NSRJRC11668	285501	7060568	554	-60	150	64.0	49.00 12.00	52.00 29.00	3.0 17.0	1.4 3.5	1.5 8.5
							31.00 49.00	47.00 50.00	16.0 1.0	1.2 1.1	8.0 0.5
	005400	70/0570			150		52.00	58.00	6.0	1.6	3.0
NSRJRC11669	285498	7060572	554	-60	150	64.0	25.00 51.00	49.00 53.00	24.0 2.0	4.2 1.0	12.0 1.0
NSRJRC11670	285496	7060576	554	-60	150	64.0	57.00 14.00	62.00 15.00	5.0	2.1 3.0	2.5 0.5
							23.00 35.00	33.00	10.0	4.3 1.3	5.0
							45.00	43.00 56.00	8.0 11.0	4.1	4.0 5.5
							58.00 62.00	60.00 64.00	2.0	1.4 1.1	1.0
NSRJRC11671	285493	7060581	554	-60	150	64.0	30.00 38.00	36.00 46.00	6.0 8.0	1.6 1.5	3.0 4.0
	005401	70/0505	FF 4	10	150	110	48.00	64.00	16.0	2.1	8.0
NSRJRC11672	285491	7060585	554	-60	150	64.0	42.00 45.00	43.00 63.00	1.0 18.0	1.4 2.2	0.5 9.0
NSRJRC11673	285488	7060589	554	-60	150	64.0	41.00 49.00	42.00 51.00	1.0 2.0	6.1 2.0	0.5
							55.00	58.00	3.0	1.1	1.5
NSRJRC11674	285502	7060546	554	-60	150	40.0	60.00 7.00	61.00 8.00	1.0	1.2 1.5	0.5
NSRJRC11675	285497	7060554	554	-60	150	60.0	25.00 4.00	26.00 28.00	1.0 24.0	1.0 3.1	0.5 12.0
NSRJRC11676	285494	7060559	554	-60	150	64.0	35.00 3.00	36.00 26.00	1.0 23.0	1.6 11.4	0.5
M3NJKU110/0	∠0 34 74	/060559	554	-00	150	04.U	28.00	34.00	6.0	11.4	3.0

			RAMON	INFILL SIG	SNIFICANT	INTERSE					
Drill Hole #	Easting (MGA)	Northing (MGA)	Collar RL (MGA)	Dip (degrees)	Azimuth (MGA)	Hole depth (m)	Downhole From (m)	Downhole To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
NSRJRC11684	285491	7060545	554	-60	150	55.0	41.00 0.00	42.00	1.0 1.0	4.3 3.1	0.5
							3.00 12.00	6.00 22.00	3.0 10.0	2.3 1.5	1.5 5.0
NSRJRC11685	285488	7060549	554	-60	150	64.0	0.00	5.00	5.0	3.1	2.5
							7.00 20.00	16.00 27.00	9.0 7.0	2.6 2.1	4.5 3.5
NSRJRC11686	285486	7060554	554	-60	150	64.0	34.00 4.00	36.00 25.00	2.0 21.0	3.6 2.9	1.0 10.5
NSRJRC11687	285483	7060558	554	-60	150	64.0	27.00 10.00	37.00 40.00	10.0 30.0	2.2 3.4	5.0 15.0
NSRJRC11688	285481	7060562	554	-60	150	64.0	2.00	5.00	3.0	1.4	1.5
							7.00 16.00	10.00 56.00	3.0 40.0	1.2 2.6	1.5 20.0
NSRJRC11689	285478	7060567	554	-60	150	64.0	15.00 20.00	17.00 26.00	2.0 6.0	1.1 1.3	1.0 3.0
							29.00	35.00	6.0	1.0	3.0
							38.00 49.00	47.00 64.00	9.0 15.0	1.5 3.2	4.5 7.5
NSRJRC11690	285476	7060571	554	-60	150	64.0	26.00 30.00	28.00 33.00	2.0 3.0	5.8 1.6	1.0
							35.00	38.00	3.0 1.0	1.1	1.5
							40.00 43.00	41.00 64.00	21.0	1.6 3.7	0.5 10.5
NSRJRC11691	287433	286525	554	-60	150	64.0	8.00 59.00	9.00 64.00	1.0 5.0	1.7 1.0	0.5 2.5
NSRJRC11692	285471	7060580	554	-60	150	64.0	29.00 47.00	30.00 51.00	1.0	1.0	0.5
							54.00	58.00	4.0	1.9	2.0
NSRJRC11693	285487	7060531	554	-60	150	35.0	63.00 2.00	64.00 4.00	1.0 2.0	4.5 1.3	0.5
NSRJRC11694 NSRJRC11699	285485 285472	7060536 7060557	554 554	-60 60	150	45.0 64.0	15.00 12.00	16.00 24.00	1.0	12.1	0.5
	20071 Z	, 000007	554	00	100	04.0	32.00	53.00	21.0	2.7	10.5
NSRJRC11700	285470	7060562	554	-60	150	64.0	56.00 4.00	58.00 7.00	2.0 3.0	6.1 1.5	1.0
							18.00 41.00	30.00 64.00	12.0 23.0	1.3 5.4	6.0 11.5
NSRJRC11701	285467	7060566	554	-60	150	64.0	7.00	9.00	2.0	1.3	1.0
							12.00 27.00	14.00 31.00	2.0 4.0	5.3 1.6	1.0 2.0
							36.00 40.00	37.00 42.00	1.0 2.0	1.7	0.5
							47.00	64.00	17.0	2.1	8.5
NSRJRC11702	285465	7060570	554	-60	150	64.0	1.00 34.00	2.00 37.00	1.0 3.0	1.3 1.4	0.5
							51.00 54.00	52.00 56.00	1.0	7.1	0.5
NSRJRC11703	285462	7060575	554	-60	150	64.0			NSI		
NSRJRC11704 NSRJRC11705	285481 285478	7060522 7060526	554 554	-60 -60	150 150	25.0 35.0	6.00 5.00	10.00 6.00	4.0	1.2 1.4	2.0 0.5
NSRJRC11706	285476	7060531	554	-60	150	45.0	11.00 0.00	18.00 3.00	7.0 3.0	1.2 1.5	3.5 1.5
N3KJKC11700	203470	7080551		-60	150	45.0	5.00	9.00	4.0	6.1	2.0
							19.00 26.00	20.00 27.00	1.0	3.2 1.8	0.5
NSRJRC11707	285473	7060535	554	-60	150	55.0	1.00 20.00	11.00 27.00	10.0 7.0	1.2 4.6	5.0 3.5
							41.00	43.00	2.0	1.1	1.0
NSRJRC11708	285471	7060539	554	-60	150	64.0	0.00 18.00	16.00 30.00	16.0 12.0	1.6 1.1	8.0 6.0
							33.00 44.00	34.00 47.00	1.0 3.0	1.2 1.9	0.5
NSRJRC11709	285468	7060544	554	-60	150	64.0	7.00	36.00	29.0	1.9	14.5
							41.00 46.00	42.00 47.00	1.0	2.8	0.5
NSRJRC11710	285466	7060548	554	-60	150	64.0	53.00 7.00	54.00 15.00	1.0 8.0	1.3 2.5	0.5 4.0
NSKSKCTT/TO	203400	7000040		-00	130	04.0	18.00	41.00	23.0	4.4	11.5
							43.00 59.00	51.00 60.00	8.0 1.0	1.6 1.9	4.0 0.5
NSRJRC11711	285463	7060552	554	-60	150	64.0	62.00 15.00	63.00 17.00	1.0 2.0	1.4 1.8	0.5
	200400	7000002		-00	i JU	04.0	21.00	23.00	2.0	4.3	1.0
							27.00 60.00	56.00 61.00	29.0 1.0	4.0 2.0	14.5 0.5
NSRJRC11712	285461	7060557	554	-60	150	64.0	63.00 13.00	64.00 16.00	1.0 3.0	1.4 1.6	0.5
	200401	, 000007	554	-00	100	04.0	20.00	26.00	6.0	1.0	3.0
NSRJRC11713	285458	7060561	554	-60	150	64.0	41.00 24.00	64.00 25.00	23.0 1.0	4.5 2.1	11.5 0.5
							34.00 38.00	35.00 44.00	1.0 6.0	9.7 1.2	0.5 3.0
	005.150	70/05/1			150	4:0	54.00	56.00	2.0	1.0	1.0
NSRJRC11713 NSRJRC11714	285458 285456	7060561 7060565	554 554	-60 -60	150 150	64.0 64.0	58.00 18.00	64.00 20.00	6.0 2.0	1.2 1.9	3.0 1.0
NSRJRC11715 NSRJRC11716	285477 285475	7060508 7060513	554 554	-60 -60	150 150	10.0 15.0	10.00	14.00	NSI 4.0	1.0	2.0
NSRJRC11717	285472	7060517	554	-60	150	25.0	6.00	9.00	3.0	1.5	1.5
NSRJRC11718 NSRJRC11719	285470 285467	7060521 7060526	554 554	-60 -60	150 150	35.0 55.0	8.00 2.00	19.00 5.00	11.0 3.0	2.2 1.7	5.5 1.5
NSRJRC11719							11.00	25.00	14.0	1.1	7.0
NSRJRC11719 NSRJRC11720	285467 285465	7060526 7060530	554 554	-60 -60	150 150	55.0 64.0	45.00 1.00	47.00 12.00	11.0	1.2	5.5
							14.00 20.00	18.00 28.00	4.0 8.0	1.6 2.1	2.0 4.0

						Hole	Downhole	Downhole	Downhole	Αυ	Est True
Drill Hole #	Easting (MGA)	Northing (MGA)	Collar RL (MGA)	Dip (degrees)	Azimuth (MGA)	depth (m)	From (m)	To (m)	Intersection (m)	(gpt) uncut	Thickness (m)
							34.00	35.00	1.0	1.1	0.5
NSRJRC11721	285462	7060534	554	-60	150	64.0	14.00	23.00	9.0	1.4	4.5
	005110	70 (0500	55.	(0	1.50		25.00	34.00	9.0	2.3	4.5
NSRJRC11722	285460	7060539	554	-60	150	64.0	0.00	7.00	7.0	1.8	3.5
							20.00 61.00	36.00 64.00	16.0 3.0	2.5 4.1	8.0 1.5
NSRJRC11723	285457	7060543	554	-60	150	64.0	7.00	13.00	6.0	3.6	3.0
	200107					00	16.00	17.00	1.0	1.0	0.5
							20.00	48.00	28.0	1.8	14.0
							56.00	57.00	1.0	1.9	0.5
NSRJRC11724	285455	7060547	554	-60	150	64.0	11.00	13.00	2.0	1.4	1.0
							22.00	24.00	2.0	1.5 2.4	1.0
							27.00 35.00	33.00 60.00	6.0 25.0	2.4	3.0 12.5
							62.00	64.00	25.0	1.7	12.5
NSRJRC11725	285452	7060552	554	-60	150	64.0	32.00	33.00	1.0	1.3	0.5
							35.00	36.00	1.0	1.4	0.5
							38.00	48.00	10.0	1.3	5.0
							51.00	56.00	5.0	4.6	2.5
							59.00	62.00	3.0	1.8	1.5
NSRJRC11726	285450	7060556	554	-60	150	64.0	22.00	24.00	2.0	1.4	1.0
							31.00	32.00	1.0	1.1	0.5
	285447	7060560	554	(0	150	(4.0	55.00	64.00	9.0	2.1	4.5
NSRJRC11727	285447	/060560	554	-60	150	64.0	28.00 48.00	35.00 53.00	7.0	3.1 1.2	3.5 2.5
							61.00	64.00	5.0 3.0	1.2	2.5
NSRJRC11729	285466	7060508	554	-60	150	15.0	6.00	9.00	3.0	1.4	1.5
NSRJRC11730	285464	7060512	554	-60	150	25.0	10.00	12.00	2.0	1.6	1.0
NSRJRC11731	285461	7060516	554	-60	150	35.0	2.00	17.00	15.0	2.7	7.5
NSRJRC11731	285461	7060516	554	-60	150	35.0	25.00	26.00	1.0	4.6	0.5
NSRJRC11732	285459	7060521	554	-60	150	60.0	9.00	26.00	17.0	2.7	8.5
NSRJRC11733	285451	7060534	554	-60	150	64.0	20.00	45.00	25.0	2.4	12.5
							49.00	52.00	3.0	1.4	1.5
	005110	70/0500		(0	1.50		63.00	64.00	1.0	1.0	0.5
NSRJRC11734	285449	7060538	554	-60	150	64.0	23.00 29.00	24.00	1.0 32.0	2.5 2.1	0.5
							63.00	61.00 64.00	1.0	1.6	16.0 0.5
NSRJRC11735	285446	7060542	554	-60	150	64.0	34.00	36.00	2.0	1.8	1.0
Notes the first of the second s	200440	7000042	004	00	100	04.0	41.00	64.00	23.0	2.5	11.5
NSRJRC11736	285441	7060551	554	-60	150	64.0	21.00	24.00	3.0	2.5	1.5
							38.00	39.00	1.0	4.9	0.5
							45.00	47.00	2.0	2.9	1.0
							50.00	55.00	5.0	1.1	2.5
NSRJRC11736	285441	7060551	554	-60	150	64.0	61.00	64.00	3.0	1.2	1.5
NSRJRC11737	285462	7060494	554	-60	150	10.0	4.00	5.00	NSI	1.1	0.5
NSRJRC11738 NSRJRC11739	285460 285457	7060498 7060503	554 554	-60 -60	150 150	20.0 30.0	4.00	5.00 15.00	1.0	1.1 1.3	0.5
NSRJRC11739	285457	7060503	554	-60	150	40.0	0.00	2.00	2.0	1.3	1.0
	200400	,00000/	554	00	130	-0.0	5.00	9.00	4.0	1.2	2.0
						1	21.00	22.00	1.0	1.0	0.5
NSRJRC11741	285452	7060511	554	-60	150	50.0	2.00	15.00	13.0	7.1	6.5
NSRJRC11742	285450	7060516	554	-60	150	60.0	8.00	10.00	2.0	4.0	1.0
					-		12.00	25.00	13.0	2.4	6.5
							30.00	31.00	1.0	1.2	0.5
			554	10	150	64.0	6.00	8.00	2.0	2.0	1.0
NSRJRC11743	285447	7060520	554	-60	150	64.0					
NSRJRC11743	285447	7060520	554	-60	150	04.0	11.00	27.00	16.0	1.7	8.0
NSRJRC11743	285447	7060520	554	-60	130	84.0					

Table 8 – Ramone Exploration Significant Intersections

			RAMONE E	XPLORATIO	N SIGNIF		INTERSEC				
Drill Hole #	Easting (MGA)	Northing (MGA)	Collar RL (MGA)	Dip (degrees)	Azimuth (degrees, MGA	Hole depth (m)	Downhole From (m)	Downhole To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
				REGI	ONAL EXPLORAT	ION					
NSRJRC11380	285201	7060443	551	-60	10	80.0	22.00	23.00	1.0	2.0	unknown
NSRJRC11381	285198	7060420	551	-60	10	110.0	55.00	60.00	5.0	1.0	unknown
NSRJRC11382	285250	7060434	551	-60	10	80.0	28.00	34.00	6.0	4.2	unknown
					(incl.)		29.00	30.00	1.0	9.7	unknown
							73.00	74.00	1.0	1.2	unknown
NSRJRC11383	285246	7060410	551	-60	10	110.0	65.00	70.00	5.0	14.2	unknown
					(incl.)		67.00	68.00	1.0	65.6	unknown
NSRJRC11385	285471	7060602	551	-60	10	120.0	47.00	49.00	2.0	1.2	unknown
NSRJRC11386	285430	7060632	551	-60	10	90.0	13.00	14.00	1.0	1.2	unknown
NSRJRC11390	285891	7060977	551	-60	330	200.0	43.00	45.00	2.0	1.2	unknown
							50.00	54.00	4.0	2.0	unknown
NSRJRC11391	285904	7060956	551	-60	330	132.0	78.00	85.00	7.0	1.7	unknown
NSRJRC11392	285912	7060940	551	-60	330	150.0	87.00	88.00	1.0	1.0	unknown
NSRJRC11393	285923	7060914	551	-60	330	200.0	159.00	160.00	1.0	1.4	unknown
							194.00	196.00	2.0	2.2	unknown
NSRJRC11394	285905	7061043	551	-60	330	120.0	25.00	26.00	1.0	1.3	unknown
							34.00	36.00	2.0	1.2	unknown
							60.00	61.00	1.0	1.0	unknown
NSRJRC11395	285916	7061015	151	-60	330	150.0	10.00	12.00	2.0	6.6	unknown
							45.00	47.00	2.0	1.4	unknown
							49.00	50.00	1.0	1.4	unknown
							65.00	67.00	2.0	1.3	unknown
							100.00	101.00	1.0	2.2	unknown
NSRJRC11396	285936	7061000	551	-60	330	200.0	34.00	42.00	8.0	1.5	unknown
NSRJRC11397	285961	7060955	551	-60	330	150.0	116.00	127.00	11.0	4.7	unknown
					(incl.)		117.00	118.00	1.0	13.8	unknown
NSRJRC11398	285968	7060930	551	-60	330	192.0	97.00	101.00	4.0	1.0	unknown

							131.00	132.00	1.0	1.3	unknown
							136.00	151.00	15.0	2.2	unknown
							155.00	156.00	1.0	1.2	unknown
							162.00	163.00	1.0	1.5	unknown
							180.00	182.00	2.0	1.0	unknown
NSRJRC11399	285941	7060977	551	-60	330	120.0	64.00	72.00	8.0	1.4	unknown
							82.00	83.00	1.0	1.6	unknown
							97.00	99.00	2.0	1.3	unknown
NSRJRC11400	285955	7061071	551	-60	330	135.0	30.00	33.00	3.0	1.7	unknown
							45.00	46.00	1.0	1.0	unknown
							78.00	79.00	1.0	2.4	unknown
NSRJRC11401	285963	7061049	151	-60	330	150.0	138.00	140.00	2.0	1.8	unknown
NSRJRC11402	285976	7061026	551	-60	330	200.0	104.00	105.00	1.0	2.8	unknown
NSRJRC11403	286990	7061004	551	-60	330	120.0	79.00	89.00	10.0	1.7	unknown
NSRJRC11404	285998	7060986	551	-60	330	150.0	91.00	95.00	4.0	1.2	unknown
NSRJRC11405	286014	7060961	551	-60	330	200.0	115.00	116.00	1.0	1.4	unknown
NSRJRC11406	285185	7061402	551	-60	10	120.0	70.00	72.00	2.0	3.8	unknown
							77.00	78.00	1.0	1.4	unknown
							80.00	81.00	1.0	1.1	unknown
							83.00	84.00	1.0	1.1	unknown
NSRJRC11407	285182	7061383	551	-60	10	150.0	38.00	39.00	1.0	2.0	unknown
							69.00	72.00	3.0	2.2	unknown
							93.00	94.00	1.0	1.4	unknown
							113.00	119.00	6.0	1.3	unknown
NSRJRC11408	285178	7061358	551	-60	10	200.0	53.00	54.00	1.0	3.3	unknown
							101.00	102.00	1.0	1.7	unknown
							104.00	106.00	2.0	3.2	unknown
							144.00	145.00	1.0	1.0	unknown
NSRJRC11409	285169	7061332	551	-60	10	150.0	16.00	19.00	3.0	1.1	unknown
					-		26.00	27.00	1.0	1.6	unknown
10010011410	0051/7	70/1010	<i>cc</i>)	10	10	150.0	128.00	130.00	2.0	1.6	unknown
NSRJRC11410	285167	7061312	551	-60	10	150.0	44.00	47.00	3.0	1.4	unknown
							62.00	64.00	2.0	2.6	unknown
				DAMO			84.00	85.00	1.0	2.4	unknown
NSRJRD10486	285469	7060752	554	-45	148	396.2	177.34	178.85	1.5	2.5	1.1
NSKJKD 10400	200407	7060732	554	-40	140	370.2	177.34	196.00	3.0	3.0	2.1
					-	-	206.30	212.25	6.0	2.7	4.2
							213.50	212.23	5.5	2.4	3.9
						-	235.70	237.70	2.0	5.2	1.4
						-	239.40	250.00	10.6	1.5	7.4
	+						293.60	294.00	0.4	13.5	0.3
	+						295.40	297.00	1.6	22.4	1.1
							306.00	306.50	0.5	27.9	0.4
							363.00	365.00	2.0	20.4	1.4
							372.41	377.60	5.2	1.1	3.6
NSRJRD10487	285469	7060752	554	-56	148	500.3	244.90	255.40	10.5	2.8	6.3
							273.00	275.30	2.3	10.2	1.4
							283.00	284.37	1.4	1.3	0.8
							287.00	288.00	1.0	2.7	0.6
							291.00	292.00	1.0	1.9	0.6
NSRJRD10488	285400	7060712	554	-45	149	308.7	246.00	272.15	26.2	2.3	18.3
NSRJRD10489	285400	7060712	554	-56	147	490.0	334.00	351.60	17.6	4.8	10.6

Table 9 - Tanami Significant Intersections

Drill Hole	Easting	Northing	Collar RL	Dip	Azimuth (degrees,	Hole Depth	Downhole From	Downhole To	Downhole Intersection	Au (gpt)	Est True Thickness
#	(MGA grid)	(MGA grid)	(MGA)	(degrees)	MGA grid)	(m)	(m)	(m)	(m)	uncut	(m)
					HURRICANE						
NHRC00001	574868	7792186	438	-60	320	120.0	0.0	1.0	1.0	1.3	0.7
NHRC00002	574857	7792198	439	-60	320	120.0	49.0	54.0	5.0	0.7	3.3
NHRC00003	574780	7792216	438	-60	320	168.0	17.0	34.0	17.0	6.0	11.1
							73.0	79.0	6.0	1.2	3.9
							82.0	86.0	4.0	2.1	2.6
							140.0	143.0	3.0	20.5	2.0
							147.0	159.0	12.0	4.6	7.8
NULP CO00004	57.4707	77001/0	(00	(0)	017	000.0	162.0	163.0	1.0	1.3	0.7
NHRC00004	574797	7792168	438	-60	317	200.0	121.0 175.0	123.0 182.0	2.0	1.0	1.3 4.6
NHRC00005	574752	7792209	439	-60	310	130.0	0.0	182.0	1.0	0.6	4.6
INFIRCOUDUS	5/4/52	7792209	437	-00	310	130.0	7.0	8.0	1.0	0.6	0.7
							76.0	77.0	1.0	0.8	0.7
							86.0	87.0	1.0	0.9	0.7
							0.0	1.0	1.0	0.6	0.7
NHRC00006	574733	7792230	438	-60	312	90.0	0.0	1.0	1.0	1.0	0.7
NHRC00007	574766	7792172	438	-60	312	156.0	0.0	1.0	1.0	0.7	0.7
							53.0	58.0	5.0	1.0	3.3
							81.0	82.0	1.0	2.6	0.7
							136.0	155.0	19.0	4.6	12.4
NHRC00008	574745	7792188	439	-60	320	132.0	92.0	94.0	2.0	2.1	1.3
NHRC00009	574761	7792136	438	-60	320	174.0	1.0	2.0	1.0	0.9	0.7
							81.0	90.0	9.0	2.6	5.9
							98.0	99.0	1.0	1.0	0.7
							102.0	106.0	4.0	1.3	2.6
							140.0	146.0	6.0	1.2	3.9
							150.0	164.0	14.0	3.2	9.1
							168.0	169.0	1.0	2.8	0.7
NHRC00010	574741	7792146	438	-60	315	132.0	10.0	23.0	13.0	1.6	8.5
NUDC00011	57,4702	7700150	420	(0	210	100.0	68.0	71.0	3.0	2.1	2.0
NHRC00011	574723	7792158	439	-60	310	120.0	0.0	1.0	1.0	0.9	0.7
							53.0 96.0	54.0 97.0	1.0	1.0 0.8	0.7
NHRC00012	574788	7792094	436	-60	317	120.0	96.0	97.0	1.0	2.8	0.7
NINCOUUTZ	3/4/00	//72074	400	-00	317	120.0	75.0	83.0	8.0	0.8	5.2
NHRC00013	574754	7792082	437	-60	317	160.0	0.0	2.0	2.0	8.5	1.3
1411/200013	3/4/34	1112002	407	-00	517	100.0	43.0	47.0	4.0	0.7	2.6
							52.0	57.0	5.0	1.8	3.3

Drill Hole # NHRC00014	Easting (MGA grid)	Northing (MGA grid)	Collar RL		Azimuth	Hole	Downhole	Downhole	Downhole	Au	Est True
NHRC00014		(MGA gliu)	(MGA)	Dip (degrees)	(degrees, MGA grid)	Depth (m)	From (m)	To (m)	Intersection (m)	(gpt) uncut	Thickness (m)
NHRC00014					HURRICANE		151.0	154.0	3.0	0.4	2.0
INHKC00014	574735	7792113	437	10	310	132.0	157.0	159.0	2.0	1.6	1.3
	5/4/35	//92113	437	-60	310	132.0	0.0 6.0	1.0 7.0	1.0	3.5 0.7	0.7
							39.0	40.0	1.0	1.0	0.7
							73.0 103.0	75.0 109.0	2.0 6.0	4.2	1.3 3.9
							0.0	118.0 1.0	4.0	0.6 3.5	2.6 0.7
							39.0	40.0	1.0	1.0	0.7
							73.0	75.0 109.0	2.0 6.0	4.2	1.3 3.9
							114.0	118.0	4.0	0.6	2.6
NHRC00015	574776	7792044	434	-60	312	120.0	0.0 51.0	1.0 52.0	1.0	8.2	0.7
							60.0	64.0	4.0	0.5	2.6
NHRC00016	574738	7792051	437	-60	317	162.0	92.0 0.0	107.0 1.0	15.0 1.0	2.9 42.1	9.8 0.7
	0/4/00		-07		017	102.0	15.0	20.0	5.0	1.3	3.3
							69.0 155.0	76.0 158.0	7.0 3.0	2.3	4.6 2.0
NHRC00017	574710	7792062	436	-60	315	126.0	0.0	1.0	1.0	0.5	0.7
							69.0 85.0	70.0 88.0	1.0 3.0	1.0 0.6	0.7 2.0
							116.0	119.0	3.0	1.4	2.0
NHRC00018	574743	7791983	4433	-60	315	210.0	0.0 149.0	1.0 152.0	1.0 3.0	0.6 2.1	0.7 2.0
NHRC00019	574716	7792000	435	-60	310	156.0	0.0	1.0	1.0	3.4	0.7
			435	-60	310 310	156.0	9.0	11.0	2.0 2.0	1.2 0.7	1.3
			435 435	-60 -60	310	156.0 156.0	34.0 90.0	36.0 93.0	3.0	1.4	1.3 2.0
			435	-60	310	156.0	100.0	103.0	3.0	3.6	2.0
			435 435	-60 -60	310 310	156.0 156.0	0.0 9.0	1.0	1.0 2.0	3.4	0.7
			435	-60	310	156.0	34.0	36.0	2.0	0.7	1.3
			435 435	-60 -60	310 310	156.0 156.0	90.0	93.0 103.0	3.0 3.0	1.4 3.6	2.0 2.0
NHRC00020 NHRC00021	574683	7792026	437	-60	310	120.0	0.0	1.0	1.0	1.0	0.7
			437 437	-60 -60	310 310	120.0	50.0 91.0	58.0 92.0	8.0	2.4 0.8	5.2 0.7
			437	-60	310	120.0	115.0	116.0	1.0	1.2	0.7
	574672	7791989	435	-60	315	120.0	0.0 42.0	1.0 47.0	1.0 5.0	1.3 0.6	0.7 3.3
							72.0	75.0	3.0	1.8	2.0
NHRC00022	574662	7791965	436	-60	317	132.0	87.0 0.0	89.0 2.0	2.0 2.0	1.4	1.3 1.3
TATIKE 00022	07 4002	/////00	400		017	102.0	87.0	88.0	1.0	1.6	0.7
NHRC00023	574600	7792005	438	-60	310	96.0	125.0 0.0	126.0	1.0	1.5 0.8	0.7
			430	-80		96.0	52.0	53.0	1.0	0.5	0.7
NHDD001	574801	7792135	436	-55	315	304.0	19.2 35.0	20.2 36.0	1.0	0.5	0.6
							68.0	69.0	1.0	0.6	0.7
							124.0 130.5	125.0 131.3	1.0 0.8	1.1 0.8	0.7 0.5
							132.0	131.3	0.8	0.6	0.5
							133.8	134.1	0.4	0.8	0.2
							140.3	141.6 163.0	1.3 0.8	2.3	0.8
							166.0	173.0	7.0	0.8	4.6
							177.9 191.0	186.4 192.0	8.5 1.0	6.6 1.4	5.5 0.7
							210.7	211.0	0.3	1.1	0.2
							214.4 218.8	215.1 219.9	0.7	2.5	0.5 0.8
							222.0	223.0	1.0	0.8	0.7
					+		225.5 283.1	226.4 283.7	0.9	0.6	0.6
							295.6	295.6	1.0	4.6	0.7
100000					JIM'S		eo -				
JDD001	564672	7770984	416	-60	124	356.1	58.0 121.0	59.0 122.0	1.0	1.1 0.7	0.7
							133.0	134.6	1.6	1.4	1.0
					-		154.0 158.0	155.0 159.0	1.0	0.6	0.7
							162.5	163.0	0.5	1.1	0.3
							170.0 184.5	171.5 191.7	1.5 7.2	0.7 2.3	1.0 4.7
							201.0	203.0	2.0	0.8	1.3
							213.0 218.0	215.0 219.0	2.0	0.7	1.3 0.7
							218.0 224.0	219.0 250.0	26.0	3.9	16.9
							285.7	289.1	3.4	0.4	2.2
							291.9 298.0	293.0 304.0	1.1 6.0	0.6	0.7
			1							1./	3.9
							307.0	308.0	1.0	1.7 0.6	3.9 0.7
JDD002	564672	7770984	416	-73	128	437.9	212.0	308.0 213.0	1.0 1.0	0.6 0.8	0.7 0.7
JDD002	564672	7770984	416	-73	128	437.9	212.0 217.7 231.0	308.0 213.0 221.0 237.0	1.0 1.0 3.3 6.0	0.6 0.8 0.6 1.9	0.7 0.7 2.1 3.9
JDD002	564672	7770984	416	-73	128	437.9	212.0 217.7 231.0 256.0	308.0 213.0 221.0 237.0 258.0	1.0 1.0 3.3 6.0 2.0	0.6 0.8 0.6 1.9 0.8	0.7 0.7 2.1 3.9 1.3
JDD002	564672	7770984	416	-73	128	437.9	212.0 217.7 231.0	308.0 213.0 221.0 237.0	1.0 1.0 3.3 6.0	0.6 0.8 0.6 1.9	0.7 0.7 2.1 3.9

			TAN	AMI SIGNI	FICANT IN	ERSECT	IONS				
Drill Hole #	Easting (MGA grid)	Northing (MGA grid)	Collar RL (MGA)	Dip (degrees)	Azimuth (degrees, MGA grid)	Hole Depth (m)	Downhole From (m)	Downhole To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
					HURRICANE						
							413.2	419.0	5.8	0.8	3.8
							423.0	424.0	1.0	1.1	0.7
							431.0	432.0	1.0	5.2	0.7
JDD003	564726	7771083	417	-59	131	363.3	50.0	51.0	1.0	0.6	0.7
							126.0	127.0	1.0	1.4	0.7
							183.0	185.0	2.0	0.8	1.3
							192.0	193.0	1.0	0.6	0.7
							204.0	206.0	2.0	1.1	1.3
							219.1	227.0	7.9	3.9	5.1
							234.0	235.0	1.0	1.8	0.7
							265.7	267.0	1.3	0.8	0.9
JDD004	564725	7771083	417	-71	131	438.1	80.0	81.0	1.0	0.6	0.7
							113.9	115.0	1.1	0.6	0.7
							121.6	122.0	0.4	0.7	0.2
							205.0	208.0	3.0	2.0	2.0
							221.8	226.0	4.2	1.2	2.7
							229.0	230.0	1.0	1.4	0.7
							233.0	253.5	20.5	2.2	13.3
							253.7	254.1	0.4	0.6	0.2
							258.6	268.8	10.3	1.1	6.7
							272.0	276.0	4.0	1.7	2.6
							280.0	283.1	3.1	0.4	2.0
							285.3	286.8	1.5	1.2	1.0
							386.0	389.0	3.0	1.3	2.0
							429.4	429.8	0.4	1.0	0.3

APPENDIX B – JORC CODE 2012 – TABLE 1 REPORTS

Kanowna Belle (including Velvet) - Exploration Drill Results - December 2018 JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	The sampling database for the Kanowna Belle and Velvet area has been compiled from information collected by several different companies since initial discovery in 1989. All information collected prior to involvement by Northern Star Resources in 2014 is hereafter referred to as historical data. Only historical data that is deemed as having acceptable and traceable location and assay information has been included in the Mineral Resource estimation datasets for both Kanowna Belle and Velvet.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	For DD samples metre delineation is recorded by the drillers on core blocks. This is checked and compared to the measurements of the core by the geologist during core mark-up prior to logging to prevent incorrect logging and sampling errors. Sample intervals are then marked on the core by a geologist, to honour geological boundaries. Sample interval lengths vary from 0.3m and 1.3m (NQ). DD core was orientated, measured and then sampled by cutting the core in half longitudinally using an "Almonte" diamond saw. Cutting was along orientation lines. The same half of the core is always selected for each sample interval, placed in numbered calico bags and submitted to the laboratory for analysis. The other half of the core is left in the core tray which was stamped for identification, stored and catalogued. Routine 'field duplicates' to assess sample representivity are not performed on diamond core as these are not considered to be true field duplicates.
	Aspects of the determination of mineralization that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralization types (e.g. submarine nodules) may warrant disclosure of detailed information.	Current sample preparation and assay procedures employed by Northern Star Resources are considered as following industry standard practice. All assay determinations are conducted by internationally recognised laboratories. The primary laboratory, Bureau Veritas, meets ISO 9001:2000. For preparation samples are oven dried until a constant mass is achieved. All samples are then processed through an Essa Jaw Crusher or a Boyd Crusher to 90% < 3 mm. The crushed sample is then pulverised for 4 minutes in an LM5 pulveriser for a product of 90% passing < 75 µm. Approximately 250 - 300g of the pulp is retained and a 40g catch weight for fire assay is extracted from the pulp packet. Samples are tested for sulphides and flux adjusted, flux is added at a ratio of 1:4. Samples are fired, hammered and cupelled. Prills placed in tubes, dissolved on hotplates and analysed using AA finish with over range dilutions. Sample preparation for Sulphur determination follows the same process as for Gold, with assaying taking place using the LECO method.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	DD core is mostly NQ diameter diameter core. Where possible diamond core was orientated using a spear, Ballmark™, Ezimark™, or ACE multi electronic tool.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	For DD, all recovery is recorded by the drillers on core blocks. This is checked and compared to the measurements of the core by the geologist. Any issues are communicated back to the drilling contractor. Recovery is generally very high, in excess of 95%, and there have been no significant sample recovery problems. Historic DD core stored on site shows excellent recovery.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	For DD, drilling contractors adjust the rate of drilling and method if recovery issues arise. Minor loss occurs when drilling through fault zones such as the Fitzroy Fault. Areas of potential lower recovery are generally known before hand and controlled drilling techniques employed to maximise recovery.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No specific study has been carried out on recovery and grade. As recoveries are generally very high (95%+) it is assumed that the potential for bias due to variable sample recovery is low.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All DD core was logged by geologists with lithology, mineralisation, structure, alteration, veining and specific gravity were recorded. Quantitative measures such as structural measurements, intensity of alteration, percentage of mineralisation, thickness of veins and veins per metre were also recorded. Geotechnical measurements on DD

Criteria	JORC Code explanation	Commentary
		core include RQD, Recovery, and Fracture Frequency. For selected holes joint sets, infill, infill thickness and roughness were also geotechnically measured. All mineralised intersections are logged and sampled.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Geology logging is qualitative in nature with visual estimates made of mineralization percentages for core. Structural and geotechnical logging is quantitative in nature. All core is photographed wet as standard practice. Historically some core may have also been photographed dry.
	The total length and percentage of the relevant intersections logged.	100% of the drill core is logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	DD core is sampled by sawn half-core on intervals controlled by geological domaining represented by mineralisation, alteration and lithology. A selected number of grade control holes were full cored. Mineralised intersections are sampled with a maximum and minimum length of 1.3m and 0.3m, respecting lithological or alteration contacts. The down hole depth of all sample interval extents are recorded.
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	No non-core results reported.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation follows industry standard practice. Samples are oven dried until a constant mass is achieved. All samples are then processed through an Essa Jaw Crusher or a Boyd Crusher to $90\% < 3$ mm. The crushed sample is then pulverised for 4 minutes in an LM5 pulveriser for a product of 90% passing $< 75 \mu$ m. Approximately 250 - 300 g of the pulp is retained and a 40g charge prepared.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Coarse grind checks at the crushing stage (3mm) are carried out at a ratio of 1:25 samples with 90% passing required. Pulp grind checks at the pulverising stage (75 µm) are carried out at a ratio of 1:25 samples with 90% passing required. Laboratory duplicate samples are taken for coarse crush (3mm) and pulverising (75 µm) stages at a ratio of 1:25 samples. Repeat assays are carried out at a ratio of 1:10 on prepared pulp samples.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate / second-half sampling.	Quarter core sampling of diamond core is occasionally undertaken for check assays, however routine field duplicates are not performed on diamond core as these are not considered to be true field duplicates.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Grind checks are performed at both the crushing stage (3mm) and pulverising stage (75µm) requiring 90% of material to pass through the relevant size. No specific study has been carried out to determine optimum sub- sample size fractions. These material sizes are assumed to be acceptable for the mineralization style and material grain size present.
Quality of assay data	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Fire assay analysis is undertaken and this is considered to be a total assay method.
and laboratory tests		Monthly QAQC reports are prepared to check for any bias or trends with conclusions discussed with the laboratory management. Holes that do not pass QAQC are not used for Mineral Resource estimation.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any element concentrations.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Sampling and assaying QAQC procedures include: Periodical resubmission of samples to primary and secondary laboratories Submittal of independent certified reference material Sieve testing to check grind size Sample recovery checks. Unannounced laboratory inspections Standard control samples and blanks purchased from certified commercial suppliers are inserted at a ratio of 1:20. The standard control samples are changed on a 3-month rotation. The results are reviewed on a per batch basis and batches of samples are re-analysed if the result is greater than three standard deviations from the expected result. Any result outside of two standard deviations is flagged for investigation by a geologist and may also be reassaved.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	All significant and anomalous intersections are verified by a Senior Geologist during the drill hole validation process.
	The use of twinned holes.	No twinned holes were drilled for this data set.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All data are stored and validated within the site Acquire database. Data import into the database is controlled by documented standard operating procedures, and by a set of validation tools included in Acquire import routines. Hard copies and electronic copies of all primary location, logging and sample results data are filed for each hole.
	Discuss any adjustment to assay data.	Assay results are received in csv format and loaded directly into the database by the supervising geologist who then checks that the results have inserted correctly. Holes that cannot be accurately validated or do not meet the requirements of Kanowna QAQC are excluded prior to Mineral Resource estimation.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	All drill hole collar positions were surveyed. All recent DD holes were surveyed down hole by various methods including single shot down hole camera, EMS (Electronic Multi Shot) method or in-rod gyroscopic survey tools. Holes are typically surveyed at 15m and 30m intervals down hole thereafter. Since the 1st of June 2015, a true north seeking gyroscopic tool has been used to line up the rig and record a zero-meter survey.
		Any poor surveys are re-surveyed, and, in some cases, holes have been gyroscope surveyed by ABIMS for non- magnetic affected survey. If survey data was missing or quality was suspect and not replaced by more recent drilling, affected data was not used in estimation.
	Specification of the grid system used.	A local grid system (KBMINE grid) is used. It is rotated anticlockwise 28.43 degrees to the MGA94 grid.
	Quality and adequacy of topographic control.	Drill hole collars are located by the underground mine surveyors using a Laser system respective to the local mine grid and to the overall property in UTM or Australian grid coordinates.
		Topographic control is not relevant to the underground mine.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill hole spacing is nominally 60m x 60m down to 20m x 20m in the main zones of mineralization at the Kanowna Belle and Velvet deposits. Secondary mineralised structures in the hanging wall and footwall of Kanowna Belle are typically narrower and less consistent so have a nominal drill spacing of 15m x 15m.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacings in the Mineralised domains at Kanowna Belle and Velvet are considered sufficient to support the definition of Mineral Resources and Reserves.
	Whether sample compositing has been applied.	The datasets were composited to 1 m intervals prior to grade estimation. This aligns with the most common sample length taken.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Most data is drilled perpendicular to the interpreted strike of the Kanowna Belle and Velvet Mineralised zones. Due to the complex overlapping nature of the mineralised zones actual intersections may be slightly oblique to the intended right-angle intersections intended.
	If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Holes with orientations that are considered likely to introduce sampling bias are flagged during drill hole validation and are excluded from the Mineral Resource estimation datasets.
Sample security	The measures taken to ensure sample security.	All core is kept within the site perimeter fence on the Mining Lease M27/103. Samples are dispatched and/or collected by an offsite delivery service on a regular basis. Each sample batch is accompanied with a: Job number Number of Samples Sample Numbers (including standards and duplicates) Required analytical methods A job priority rating A Chain of Custody is demonstrated by both Company and Bureau Veritas in the delivery and receipt of sample materials. Any damage to or loss of samples within each batch (e.g. total loss, spillage or obvious contamination), is reported to the Company in the form of a list of samples affected and detailing the nature of the problem(s).

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The last external audit was conducted in 2009 with the conclusion that industry best practice was being followed. Standards and procedures have remained largely unchanged since this time.
		A review of sampling techniques, assay results and data usage was conducted internally by the Companies' Principal Resource Geologist during 2015 with no material issues found.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Kanowna Belle mine and associated infrastructure is located on Mining Leases M27/92 and M27/103. Mining lease M27/92 (972.65 ha) was granted on March 14, 1988 and M27/103 (944.25 ha) was granted on January 12, 1989. Both leases were granted for periods of 21 years after which they can be renewed for a further 21 years. The Mining Leases and most of the surrounding tenement holdings are 100% owned by Northern Star (Kanowna) Pty Limited, a wholly owned subsidiary of Northern Star Resources Limited. The mining tenements are either located on vacant crown land or on pastoral leases. The leases containing the deposit are pre-1994 leases so are not subject to Native Title claims.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	No known impediments exist and the tenements are in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Kanowna was discovered in 1989 by Delta Gold, open pit mining commenced between 1993 and 1998 resulting in a 220m deep pit. Underground operation began in 1998. In 2002, Delta Gold Limited and Goldfields Limited merged to form Aurion Gold Limited. Placer Dome Inc. (Placer Dome) subsequently acquired Aurion Gold Limited. In 2006 Barrick Gold Corporation acquired Placer Dome and in 2014 Northern Star acquired the operation from Barrick.
		Exploration drilling is ongoing from underground to extend the known mineral resources.
Geology	Deposit type, geological setting and style of mineralisation.	Kanowna Belle is located within the Kalgoorlie Terrane, one of several elongate, broadly NNW-SSE striking structural- stratigraphic late Archaean greenstone terranes of the Eastern Goldfields of Western Australia. The Kanowna Belle gold mine is located close to the centre of the NNW-SSE trending, greenstone-dominated Boorara Domain, the eastern most subdivision of the Kalgoorlie Terrane.
		The Kanowna Belle deposit can be categorised as a refractory, Archean lode-gold type deposit. The orebody is comprised of several ore shoots, including the large Lowes Shoot, and several smaller lodes including Troy, Hilder, Hangingwall and Footwall shoots controlled by sets of structures of various orientations oblique to Lowes.
		Lowes contains some 80% of known gold mineralization and strikes ENE, dips steeply SSW and plunges steeply SW. Lowes shoot has a strike length of 500m, width of 5m to 50m and down-plunge extent greater than 1,250m. The overall steep SE plunge is interpreted to reflect the intersection of D1 (ENE) and D2 (NW) structures.
		Kanowna Belle is one of the only known refractory pyritic orebodies in the Yilgarn Craton. Gold in the Kanowna Belle deposit occurs mostly as fine-grained (<10 µm) inclusions in pyrite or as very fine-grained gold located in arsenic-rich growth zones in pyrite. Typical ore assemblages contain 0.5% S to 1.5% S and 40 ppm As.
		The Kanowna Belle deposit is hosted by sedimentary volcanoclastic and conglomeratic rocks which are separated into hangingwall and footwall sequences by a major, steeply SSE dipping zone of structural disruption. This structure represents the product of at least three distinct stages of deformation, comprising the Fitzroy Mylonite, the Fitzroy Shear Zone and the Fitzroy Fault, which have produced clear structural overprinting relations. Importantly, this structure has localised emplacement of the Kanowna Belle porphyry which hosts at least 70% of known mineralisation. Localisation of high grade mineralization and most intense alteration around the composite structure emphasises its importance for acting as the major plumbing system for fluids.
		Formation of the Fitzroy Mylonite and Fitzroy Shear Zone are interpreted to have occurred during regional south-to- north D1 thrusting. A switch in far-field stress axes to the approximately ENE-WSW D2 orientation caused reactivation of the Fitzroy Shear Zone, resulting in sigmoidal folding of pre-existing structures and formation of a shallow lineation associated with sinistral transcurrent shearing. The Kanowna Belle porphyry cross-cuts fabrics associated with the D1 Fitzroy Mylonite and Fitzroy Shear Zone and is in turn overprinted by S2.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Summary information is presented in the accompanying table.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	All results for the period/area are reported.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	All reported assay results have been length weighted to provide an intersection width. A maximum of 2m of barren material between mineralised samples has been permitted in the calculation of these widths.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No assay results have been top-cut for the purpose of this report. A lower cut-off of 1gpt has been used to identify significant results, although lower results are included where a known ore zone has been intercepted and the entire intercept is low grade.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values have been used for the reporting of these exploration results.
Relationship between mineralization widths and	These relationships are particularly important in the reporting of Exploration Results.	True widths have been calculated for intersections of the known ore zones, based on existing knowledge of the nature of these structures.
intercept lengths	If the geometry of the mineralization with respect to the drill hole angle is known, its nature should be reported.	Both the downhole width and true width have been clearly specified when used.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Where mineralization orientations are unknown, downhole lengths are reported.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate plans and section have been included in this report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Both high and low grades have been reported accurately, clearly identified with the drill hole attributes and 'From' and 'To' depths.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Nil.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	The down dip and hanging wall extensions of the Kanowna Belle and Velvet will be drill tested from various underground drilling platforms.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Included in the release.

K2 Drake – Moonbeam Deposit - December 2018 JORC Code, 2012 Edition – Table 1 Report Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Sampling was completed using Diamond Drilling (DD). RC drilling was used to drill pre-collars for many of the holes with diamond tails.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Diamond core was transferred to core trays for logging and sampling. Half core samples were nominated by the geologist from both NQ2 and HQ diamond core with a minimum sample width of either 20cm (HQ) or 30cm (NQ2).
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Samples were taken to Genalysis Kalgoorlie for preparation by drying, crushing to <3mm, and pulverising the entire sample to <75µm. 300g Pulps splits were then dispatched to Genalysis Perth for 50g fire assay charge and AAS analysis.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Diamond Drilling techniques were used at the K2 deposits. DD holes completed pre-2011 were predominantly NQ2 (50.5mm). All Resource definition holes completed post-2011 were drilled using HQ (63.5mm) diameter core. Core was orientated using the Reflex ACT Core orientation system.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Core recovery is recorded but is generally very good.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	For diamond drilling, the contractors adjust their rate of drilling and method if recovery issues arise. All recovery is recorded by the drillers on core blocks. This is checked and compared to the measurements of the core by the geological team. Any issues are communicated back to the drilling contractor.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Recovery is excellent for diamond core and no relationship between grade and recovery was observed.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All diamond core is logged to industry best standards for regolith, lithology, veining, alteration, mineralisation and structure. Structural measurements of specific features are also taken through oriented zones.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	All logging is quantitative where possible and qualitative elsewhere. A photograph is taken of every core tray.
	The total length and percentage of the relevant intersections logged.	100% of the core is logged.
Sub-sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	Drill core is cut, and half the core is taken for sampling. The remaining half is stored for later use.
and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	No non-core results reported
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sample preparation is considered appropriate.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Field duplicates were taken to industry standards at time of drilling.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate / second-half sampling.	Exploration sample preparation is conducted at Genalysis Kalgoorlie. This facility processed the samples which included sorting, checking and drying at less than 110°C to prevent sulphide breakdown. Samples were jaw crushed to a nominal -6mm particle size. If the sample is greater than 3kg a Boyd crusher with rotary splitter is used to reduce the sample size to less than 3kg (typically 1.5kg) at a nominal <3mm particle size. The entire crushed

Criteria	JORC Code explanation	Commentary
		sample (if less than 3kg) or sub-sample is then pulverised to 90% passing 75µm, using a Labtechnics LM5 bowl pulveriser. 300g pulp subsamples are then taken with an aluminium scoop and stored in labelled pulp packets.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Grind checks are performed at both the crushing stage(3mm) and pulverising stage (75µm), requiring 90% of material to pass through the relevant size.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	A 50g fire assay charge is used with a lead flux in the furnace. The prill is totally digested by HCl and HNO3 acids before Atomic Absorption Spectroscopy (AAS) determination for gold analysis.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any element concentrations.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and	CRMs are inserted into the sample sequence randomly at a rate of 1 per 20 samples to test the analysis process. Any values outside of 3 standard deviations are re-assayed with a new CRM.
	precision have been established.	Blanks are inserted into the sample sequence at a rate of 1 per 20 samples. This is random, except where high grade mineralisation is expected. Here, a Blank is inserted after the high-grade sample to test for contamination. Failures above 0.2gpt are followed up, and re-assayed. New pulps are prepared if failures remain.
		No field duplicates are submitted for diamond core. Regular audits of laboratory facilities are undertaken by Northern Star personnel.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	All significant intersections are verified by another Northern Star geologist during the drill hole validation process, and later by a Competent Person to be signed off.
	The use of twinned holes.	No twinned holes were drilled for this data set.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Geological logging was captured using excel templates. Both a hardcopy and electronic copy of these are stored, as well as being loaded in to the database using automatic acquire loaders. Assay files are received in csv format and loaded directly into the database by the Database administrator (DBA). A geologist then checks that the results have inserted correctly. Hardcopy and electronic copies of these are stored.
	Discuss any adjustment to assay data.	No adjustments are made to this assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys),	Holes were pegged using a differential GPS system.
	trenches, mine workings and other locations used in Mineral Resource estimation.	During drilling, single-shot surveys are every 30m to ensure the hole remains close to design (using different downhole surveying techniques).
		Upon hole completion, all Northern Star commissioned holes were Gyroscopic surveyed, taking survey readings every 5m for improved spatial accuracy in a true north grid. Before this, final downhole surveys were conducted to industry standards.
	Specification of the grid system used.	The final collar position for surface holes is measured after hole completion by Differential GPS in the MGA 94_51 grid.
	Quality and adequacy of topographic control.	Quality topographic control has been achieved through Avista data and survey pickups of holes over the last 15 years.
Data spacing and	Data spacing for reporting of Exploration Results.	Drill hole spacing across the area varies and ranges from 40m x 40m in the upper zones to +100m x 100m.
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing is considered appropriate to establish a degree of geological and/or statistical confidences for the application of Resource and Reserve classification.
	Whether sample compositing has been applied.	No compositing has been applied to these exploration results, although composite intersections are reported.
	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Most of the structures in the Kundana camp (including K2 and K2E) dip steeply (80°) to WSW. To target these orientations, the drill hole dips of 60-70° towards ~060° achieve high angle intersections on all structures.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sampling bias is considered to have been introduced by the drilling orientation.
Sample security	The measures taken to ensure sample security.	Prior to laboratory submission samples are stored by Northern Star Resources in a secure yard. Once submitted to the laboratories they are stored in a secure fenced compound, and tracked through their chain of custody and via audit trails.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have recently been conducted on sampling techniques.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Moonbeam Project is located on tenement M16/157 which is owned 100% by Northern Star Resources.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	No known impediments exist and the tenements are in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The first reference to the mineralisation encountered at the Kundana project was a Mines Department report produced by Dr. I. Martin (1987). He reviewed work completed in 1983 – 1984 by a company called Southern Resources who identified two geochemical anomalies, creatively named Kundana #1 and Kundana #2. The Kundana #2 prospect was subdivided into a further two prospects, dubbed K2 and K2A.
		Between 1987 and 1997, limited work was completed. Between 1997 and 2006 Tern Resources (subsequently Rand Mining and Tribune Resources) and Gilt-Edged mining focused on shallow open pit potential which was not considered viable.
Geology	Deposit type, geological setting and style of mineralisation.	The Kundana camp is situated within the Norseman-Wiluna Greenstone Belt in an area dominated by the Zuleika Shear Zone, which separates the Coolgardie Domain from the Ora Banda Domain.
		K2-style mineralisation consists of narrow vein deposits hosted by shear zones located along steeply-dipping overturned lithological contacts. The K2 structure is present along the contact between a black shale unit (Centenary shale) and intermediate volcanoclastics (Spargoville Formation). The K2E structure is present along the contact between the Victorious Basalt and Centenary shale.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	All summary data is presented in the accompanying table.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	All results for the recent Moonbeam drilling is presented. The results are not high graded.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Exploration results are length weighted and uncut.

Criteria	JORC Code explanation	Commentary
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Exploration results are length weighted and uncut, nominally above 1g/t but practically the whole structure is reported which may include low grade.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are reported.
Relationship between	These relationships are particularly important in the reporting of Exploration Results:	
mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Estimated true thickness is reported.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	K2 structure is well known, and an estimated true thickness is reported.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Part of the release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results for this drill campaign are reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration results reported.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Infill definition and extensional depth drilling is planned.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Representative plans and sections accompany this report.

EKJV, Raleigh South, Pegasus Pode, Sir Walter – December 2018 JORC Code, 2012 Edition – Table 1 Report Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Sampling was completed using underground diamond drilling. Diamond core was transferred to core trays for logging and sampling. Whole core samples were nominated by the geologist and based upon geological and ore- zone boundaries, with the remaining sampled on metre intervals.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Diamond core was transferred to core trays for logging and sampling. Half core samples were nominated by the geologist from NQ2 diamond core with a minimum sample width of 30cm. Occasionally whole core sampling is employed where core recovered is overly fractured or for grade control purposes.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g.	DD drill core was cut in half using an automated core saw the mass of material collected will depend on the hole size and sampling interval.
	'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Core samples were nominated by the geologist from the diamond core, generally being around one metre in length, but with sample widths ranging between approximately 20cm and 100cm as dictated by the geology. Sample lengths varied because drill core samples were allocated so as not to cross significant geological boundaries.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Underground drilling utilised NQ2 (50.5mm) diameter core.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	All recovery is recorded by the drillers on core blocks. This is checked and compared to the measurements of the core by the geological team. Any issues are communicated back to the drilling contractor.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	For diamond drilling the contractors adjust their rate of drilling and method if recovery issues arise.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Recovery was excellent for diamond core and no relationship between grade and recovery was observed.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All diamond core is logged for regolith, lithology, veining, alteration, mineralisation and structure. Structural measurements of specific features are also taken through oriented zones.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	All logging is quantitative where possible and qualitative elsewhere. A photograph is taken of every core tray.
	The total length and percentage of the relevant intersections logged.	
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Diamond core is cut using an automated core saw. In most cases, half the core is taken for sampling with the remaining half being stored for later reference. Whole core sampling was only utilised in areas where the Geology is well understood and there is less requirement to retain core for future reference.
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	Not relevant, drill core results only being released
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sampling types used are considered appropriate for the deposits.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Grind checks are performed at both the crushing stage(3mm) and pulverising stage (75µm), requiring 90% of material to pass through the relevant size.
		Duplicates, pulp duplicates and crush duplicates are also performed.

Criteria	JORC Code explanation	Commentary
	Measures taken to ensure that the sampling is representative of the in-situ material	Sample preparation was conducted at Bureau Veritas Kalgoorlie.
	collected, including for instance results for field duplicate / second-half sampling.	The sample preparation process commencing with sorting, checking and drying at less than 110°C to prevent sulphide breakdown. Samples are jaw crushed to a nominal -6mm particle size. If the sample is greater than 3kg a Boyd crusher with rotary splitter is used to reduce the sample size to less than 3kg (typically 1.5kg) at a nominal <3mm particle size. The entire crushed sample (if less than 3kg) or sub-sample is then pulverised to 90% passing 75µm, using a Labtechnics LM5 bowl pulveriser. 300g pulp subsamples are then taken with an aluminium or plastic scoop and stored in labelled pulp packets.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Grind checks are performed at both the crushing stage(3mm) and pulverising stage (75µm), requiring 90% of material to pass through the relevant size.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	A 40g Fire assay charge is used with a lead flux, dissolved in the furnace. The prill is totally digested by HCl and HNO3 acids before Atomic absorption spectroscopy (AAS) determination for gold analysis.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any element concentrations.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and	Certified reference materials (CRMs) are inserted into the sample sequence randomly at a rate of 1 per 20 samples to ensure correct calibration. Any values outside of 3 standard deviations are re-assayed with a new CRM.
	precision have been established.	blanks are inserted into the sample sequence at a rate of 1 per 20 samples. The insertion points are selected at random, except where high grade mineralisation is expected. In these cases, a blank is inserted after the high-grade sample to test for contamination. Results greater than 0.2gpt is received are investigated, and re-assayed if appropriate. New pulps are prepared if anomalous results cannot be resolved.
		Field Duplicates are taken for all RC samples (1 in 20 sample).
		No Field duplicates are submitted for diamond core.
		Umpire sampling programs are undertaken on an ad-hoc basis.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	All significant intersections are verified by another Northern Star geologist during the drill hole validation process, and later by a Competent person to be signed off.
	The use of twinned holes.	No Twinned holes were drilled for this data set.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Geological logging is directly entered into an Acquire database. Assay files are received in csv format and loaded directly into the database by the project's responsible geologist with an Acquire importer object. Hardcopy and electronic copies of these are stored.
	Discuss any adjustment to assay data.	No adjustments are made to this assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Underground diamond hole positions are marked before drilling by mine survey staff and the actual hole collar position located by mine survey staff once drilling is completed.
		During drilling, single-shot surveys are every 30m to ensure the hole remains close to design. This is performed using the Reflex Ez-Trac system. Upon hole completion, a Gyroscopic survey is conducted by a third-party surveying contractor, taking readings every 5m for improved accuracy. Direction measurements are collected relative to true north. For UG holes multi-shot surveys are taken every 9m when retreating out of the hole.
	Specification of the grid system used.	Data is collected using both local mine grid (Kundana 10) and MGA 94 Zone 51 as appropriate.
	Quality and adequacy of topographic control.	Quality topographic control has been achieved through Lidar data and survey pickups of holes over the last 15 years.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill hole spacing varies. Grade control drilling spacing is typically 20m x 20m to provide definition of economic ore shoots. Resource definition drilling spacing is typically 40m x 40m. This allows the Resource to be upgraded to indicated. Inferred Resources typically have a spacing of 80m x 80m. Some exploration holes are spaced up to 200m apart.

Criteria	JORC Code explanation	Commentary
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing and distribution is considered sufficient to support the Resource and Reserve estimates.
	Whether sample compositing has been applied.	Sample data is composited before grade estimation is undertaken. Average intersection grades are reported in ASX and corporate announcements.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Most of the structures in the Kundana camp dip steeply (80°) to WSW. The Pode structure has a much shallower dip in a similar direction, approximately 60°. To target these orientations the drill hole dips of 60-70° towards ~060° achieve high angle intersections on all structures.
		Drill holes with low intersection angles will be excluded from Resource estimation where more suitable data is available.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sampling bias is considered to have been introduced by the drilling orientation.
Sample security	The measures taken to ensure sample security.	Prior to laboratory submission samples are stored by Northern Star Resources in a secure yard. Once submitted to the laboratories they are stored in a secure fenced compound and tracked through their chain of custody and via audit trails.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have recently been conducted on sampling techniques.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	All holes mentioned in this report are located within the M16/309 and M16/326 Mining leases and are held by The East Kundana Joint Venture (EKJV). The EKJV is majority owned and managed by Northern Star Resources Limited (51%). The minority holding in the EKJV is held by Tribune Resources Ltd (36.75%) and Rand Mining Ltd (12.25%).
		The tenement on which the Rubicon, Hornet and Pegasus deposits are hosted (M16/309) is subject to three royalty agreements. The agreements that are on M16/309 are the Kundana- Hornet Central Royalty, the Lake Grace Royalty and the Kundana Pope John Agreement No. 2602-13.
		The southern portion of Raleigh is located on M15/993, which is held by the East Kundana joint venture entities. The northern extent of Raleigh is located on M16/157 which is 100% owned by Northern Star Resources.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	No known impediments exist, and the tenements are in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The first reference to the mineralisation style encountered at the Kundana project was the mines department report on the area produced by Dr. I. Martin (1987). He reviewed work completed in 1983 – 1984 by a company called Southern Resources, who identified two geochemical anomalies, creatively named Kundana #1 and Kundana #2. The Kundana #2 prospect was subdivided into a further two prospects, dubbed K2 and K2A.
		Between 1987 and 1997, limited work was completed.
		Between 1997 and 2006 Tern Resources (subsequently Rand Mining and Tribune Resources), and Gilt-edged mining focused on shallow open pit potential which was not considered viable for Pegasus, however the Rubicon open Pit was considered economic and production commenced in 2002.
		In 2011, Pegasus was highlighted by an operational review team and follow-up drilling was planned through 2012.
		This report is concerned solely with 2014 drilling that led on from this period.
Geology	Deposit type, geological setting and style of mineralisation.	The Kundana camp is situated within the Norseman-Wiluna Greenstone Belt, in an area dominated by the Zuleika shear zone, which separates the Coolgardie domain from the Ora Banda domain.

Criteria	JORC Code explanation	Commentary
		K2-style mineralisation (Pegasus, Rubicon, Hornet) consists of narrow vein deposits hosted by shear zones located along steeply-dipping overturned lithological contacts. The K2 structure is present along the contact between a black shale unit (Centenary shale) and intermediate volcaniclastics (Spargoville formation).
		Minor mineralisation, termed K2B, also occurs further west, on the contact between the Victorious basalt and Bent Tree Basalt (both part of the regional upper Basalt Sequence). As well as additional mineralisation including the K2E and K2A veins, Polaris/Rubicon Breccia (Silicified and mineralised Shale) and several other HW lodes adjacent to the main K2 structure.
		A 60° W dipping fault, offsets this contact and exists as a zone of vein-filled brecciated material hosting the Pode- style mineralisation at Pegasus and the Nugget lode at Rubicon.
		Ambition is interpreted similar in style to the north of Pegasus
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	All drill holes are listed in the appendix
	• easting and northing of the drill hole collar	
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	o dip and azimuth of the hole	
	 down hole length and interception depth 	
	o hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Exclusion of the drill information will not detract from the understanding of the report
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	All reported assay results have been length weighted to provide an intersection width. A maximum of 2m of barren material between mineralised samples has been permitted in the calculation of these widths.
		Typically grades over 1.0gpt are considered significant, however, where low grades are intersected in areas of known mineralisation these will be reported. No top-cutting is applied when reporting intersection results.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Where an intersection incorporates short lengths of high grade results these intersections will be reported in addition to the aggregate value. These will typically take the form of ##.#m @ ##.##gpt including ##.#m @ ##.##gpt.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values have been used for the reporting of these exploration results.
Relationship between mineralisation widths and	These relationships are particularly important in the reporting of Exploration Results:	True widths have been estimated for intersections of the known ore zones, based on existing knowledge of the nature of these structures.
intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	The target structure is very planar and its orientation well constrained, allowing very reliable calculations of true widths. True widths have been calculated for all reported intersections.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Both the downhole width and true width have been clearly specified when used.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate plans and section have been included in the body of this report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Both high and low grades have been reported accurately, clearly identified with the drill hole attributes and 'From' and 'To' depths.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk	No other recent material data has been collected.

Criteria	JORC Code explanation	Commentary
	density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Additional drilling is planned with the intention of extending known mineralisation laterally and at depth. Drilling will also be undertaken to improve confidence in previously identified mineralisation and to assist in the location of high grade shoots.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Appropriate diagrams accompany this release.

South Kalgoorlie Operations: Resources and Reserves – December 2018 JORC Code, 2012 Edition – Table 1 Report

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Samples have been collected from RC drilling face-sampling hammer, and surface/underground diamond drilling.
	Include reference to measures taken to ensure sample retrospectivity and the appropriate calibration of any measurement tools or systems used.	Diamond drill-core is geologically logged and then sampled according to geology (minimum sample length of 0.4 m to maximum sample length of 1.5 m) – where consistent geology is sampled, a 1m length is used for sampling the core. The core is sawn half-core with one half sent off for analysis.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	RC Drilling: Sampling from a standard 5½" RC, three tier riffle splitter (approximately 5kg sample), split to a 12.5% fraction (approximately 3kg) or to a 12% fraction via a rig-mounted cone splitter. All residual material is retained on the ground in rows of 10 or 20 samples. Four-meter composites are obtained via representative scoop / spear sampling of the one-meter residual piles, until required for re-split analysis (samples returning Au >0.2ppm) or eventual disposal. Historical RC drilling is assumed to employ similar practices. An assumed 90% chip recovery (losses to fines) from RC drilling.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Diamond drilling is used for either testing / targeting deeper mineralised systems or to define the orientation of the host geology. Most of these holes have been drilled at NQ2 size with minor HQ sized core. All diamond holes were surveyed during drilling with downhole cameras, and then at end of hole using a Gyro Inclinometer at 5 or 10 m intervals. Drill hole collars were surveyed by onsite mine surveyors.
		RC drilling is used predominantly for defining and testing for near-surface mineralisation and utilises a face sampling hammer with the sample being collected on the inside of the drill-tube. RC drill holes utilise downhole single or multi shot cameras. Drill hole collars were surveyed by onsite mine surveyors.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC drilling contractors adjust their drilling approach to specific conditions to maximize sample recovery. Moisture content and sample recovery is recorded for each RC sample. No recovery issues were identified during RC drilling programs. Recovery was poor at the very beginning of each hole, as is normal for this type of drilling in overburden.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Representation is assured through qualified geologists identifying intervals for sampling which are related directly to observed geology.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No defined relationship exists between sample recovery and grade. Nor has sample bias due to preferential loss or gain of fine or coarse material been noted.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Northern Star surface diamond drill-holes are all orientated and have been logged in detail for geology, veining, alteration, mineralisation and orientated structure. Northern Star underground drill-holes are logged in detail for

Criteria	JORC Code explanation	Commentary
		geology, veining, alteration, mineralisation and structure. Core has been logged in enough detail to allow for the relevant mineral resource estimation techniques to be employed.
		Surface core is photographed both wet and dry and underground core is photographed wet. All photos are stored on the companies' servers, with the photographs from each hole contained within separate folders.
		RC chips are geologically logged.
		All holes are logged completely.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	All logging is quantitative where possible and qualitative elsewhere. A photograph is taken of every core tray.
	The total length and percentage of the relevant intersections logged.	Chip samples have been logged by qualified geologists to a level of detail to support a Mineral Resource estimate.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	NQ2 and HQ diameter core is sawn half core using a diamond-blade saw, with one half of the core consistently taken for analysis. Smaller sized core (LTK48 and BQ) are whole core sampled. The un-sampled half of diamond core is retained for check sampling if required.
		SKO staff collect the sample in pre-numbered calico sample bags which are then submitted to the laboratory for analysis. Delivery of the sample is by a SKO staff member.
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	RC samples are collected at 1m intervals with the samples being riffle split through a three-tier splitter. The samples are collected by the RC drill crews in pre-numbered calico sample bags which are then collected by SKO staff for submission. Delivery of the sample to the laboratory is by a SKO staff member.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Upon delivery to the laboratory, the sample numbers are checked against the sample submission sheet. Sample numbers are recorded and tracked by the laboratory using electronic coding.
		Sample preparation techniques are considered appropriate for the style of mineralisation being tested for – this technique is industry standard across the Eastern Goldfields.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Procedures are available to guide the selection of sample material in the field. Standard procedures are used for all process within the laboratory.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate / second-half sampling.	Field duplicates are taken for diamond drill core samples at a rate of 1 in 30.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered appropriate for the material being sampled.
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures	Only nationally accredited laboratories are used for the analysis of the samples collected at SKO.
laboratory tests	used and whether the technique is considered partial or total.	The laboratory oven dries, and if necessary (if the sample is >3kg) riffle split the sample, which is then jaw crushed and pulverised (the entire 3kg sample) in a ring mill to a nominal 90% passing 75 microns. All recent RC and Diamond core samples are analysed via Fire Assay, which involves a 30g charge (sub-sampled after the pulverisation) of the analytical pulp being fused at 1050°C for 45 minutes with litharge. The resultant metal prill is digested in Aqua regia and the gold content determined by atomic adsorption spectrometry – detection limit is 0.01 ppm Au.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any element concentrations.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Quality Assurance and Quality Control (QA/QC) samples are routinely submitted by SKO staff and comprise standards, blanks, assay pills, field duplicates, lab duplicates and repeat analyses. The results for these QA/QC samples are routinely analysed by Senior Geologists with any discrepancies dealt with in conjunction with the laboratory prior to the analytical data being imported into the database.
		There is limited information available on historic QA/QC procedures. SKO has generally accepted the available data at face value and carry out data validation procedures as each deposit is re-evaluated.
		The analytical techniques used are considered appropriate for the style of mineralisation being tested for – this technique is industry standard across the Eastern Goldfields.

Criteria	JORC Code explanation	Commentary
		Ongoing production data generally confirms the validity of prior sampling and assaying of the mined deposits to within acceptable limits of accuracy.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections are validated by senior geologists.
	The use of twinned holes.	Virtual twinned holes have been drilled in several instances across all sites with no significant issues highlighted. Drill hole data is also routinely confirmed by development assay data in the operating environment.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data is collected utilising LogChief. The information is imported into a SQL database server and verified.
	Discuss any adjustment to assay data.	All data is compiled in databases (underground and open pit) which are overseen and validated by senior geologists. No adjustments have been made to any assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collar coordinates for surface RC and diamond drill-holes were generally determined by either RTK-GPS or a total station survey instrument. Underground drill-hole locations (Mount Marion and HBJ) were all surveyed using a Leica reflectorless total station.
		Recent surface diamond holes were surveyed during drilling with down-hole single shot cameras and then at the end of the hole by Gyro-Inclinometer at 5 or 10mm intervals. Holes not gyro-surveyed were surveyed using Eastman single shot cameras at 20m intervals. RC drill-holes utilised down-hole single shot camera surveys spaced every 15 to 30m down- hole.
		Down-hole surveys for underground diamond drill-holes were taken at 15 – 30m intervals by Reflex single-shot cameras.
	Specification of the grid system used.	MGA grid is used for HBJ and the regional exploration results.
	Quality and adequacy of topographic control.	Topographic control is generated from RTK GPS.
Data spacing and	Data spacing for reporting of Exploration Results.	Drill spacing ranges from 10m x 5m grade control drilling to 100m x 100m at deeper levels of the resource.
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	No resources or reserves are reported in the release.
	Whether sample compositing has been applied.	Composting is not applied to these results.
Orientation of data in relation to geological	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling intersections are nominally designed to be as perpendicular to the orebody as far as underground infrastructure constraints / topography allows.
structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	It is not considered that drilling orientation has introduced an appreciable sampling bias.
Sample security	The measures taken to ensure sample security.	For samples assayed at the on-site laboratory facilities, samples are delivered to the facility by Company staff. Upon delivery the responsibility for sample security and storage falls to the independent third-party operators of these facilities.
		For samples assayed off-site, samples are delivered to a third-party transport service, who in turn relay them to the independent laboratory contractor. Samples are stored securely until they leave site.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Site generated exploration results are routinely reviewed by the Northern Star Corporate technical team.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	State Royalty of 2.5% of revenue applies to all tenements, although does not apply to the 16 freehold titles (which host the majority of SKO's Resource inventory). There are several minor agreements attached to a select number of tenements and locations with many of these royalty agreements associated with tenements with no current Resources and/or Reserves.
		Private royalty agreements are in place that relate to production from HBJ open-pit at \$10/ oz. In addition, a royalty is payable in the form of 1.75% of the total gold ounces produced from the following resources: Shirl Underground Golden Hope, Bellevue, HBJ Open-pit, Mount Martin open-pit, Mount Martin Stockpiles and any reclaimed tailings
		The South Kalgoorlie Operations consists of 35 Mining Leases and 19 Exploration and Prospecting Licences. The Project also includes 9 Miscellaneous Licences, 2 groundwater Licences and 16 Freehold Lots known as the Hampton "Exempted East Locations". The Area of the leases covers approximately 35,638 Hectares with a further 71,861 Hectares of Freehold Land.
	The security of the tenure held at the time of reporting along with any known	All leases and licences to operate are granted and in the order of 2 and 21 years.
	impediments to obtaining a licence to operate in the area.	There are no known impediments to continued operation.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The HBJ 'line of lode' is a 6 km zone of mineralisation that extends from Golden Hope in the south to Celebration in the north. The existing HBJ pit was mined for over 25 years producing approximately 1.6 Moz Au and was owned by separate companies across the Location 48 and Location 50 tenement boundary.
		Gold was first discovered in the New Celebration area in 1919 and a short-lived gold rush ensued. Intermitten exploration for gold and nickel was undertaken by a variety of companies in the 1960s and 1970s. The rising gold price further rekindled interest in the area in the 1980s, and open-pit mining at New Celebration started in 1986 by a joint venture comprising Newmont Holdings Limited (subsequently Newcrest; 60%), Hampton Areas Australia Ltd (25%) and Mt Martin Gold Mines (15%), which merged with Titan Resources in 1993. The New Celebration project includes the Hampton Boulder deposit. In June 2001 Hill 50 Gold agreed to purchase the New Celebration project from Newcrest Mining. In December 2001 Harmony Gold Mining acquired Hill 50 Gold, the transaction giving Harmony Gold Mining a 100% interest in the New Celebration project.
		The Jubilee deposit located south of the Hampton Boulder deposit was evaluated and mined by Hampton Areas Australia Ltd from 1984 to 1996 with open pit mining starting in 1987. New Hampton Goldfields (New Hampton) acquired the Jubilee deposit in 1996. In May 2001, Harmony Gold Mining acquired New Hampton, and combined the operations of New Hampton's Jubilee operations and associated small open pits with the New Celebration project into the South Kalgoorlie Operations (SKO).
		In 2007, Dioro Exploration NL (Dioro) acquired the SKO from Harmony Gold (Australia) Pty Ltd (Harmony) via its wholly-owned subsidiaries, South Kal Mines Pty Ltd, New Hampton Goldfields Ltd and Aurora Gold (WA) Pty Ltd.
		The tenement package at SKO was then purchased by Avoca Resources in April 2010, which was subsequently acquired by Alacer Gold Corp. Pty Ltd in early 2011.
		Westgold Resources Limited acquired the SKO tenement holdings in October 2013 via the acquisition of Alacer Gold's Australian assets.
		In April 2018 Northern Star Resources acquired the SKO tenement holdings with the purchase of HBJ Minerals Pty Ltc from Westgold.
Geology	Deposit type, geological setting and style of mineralisation.	Stratigraphy for the Ora Banda and Kalgoorlie Domains is relatively well-known and comprise (from stratigraphically lowest) a lower basalt unit, komatiitic to high-magnesian basaltic rocks, an upper basalt unit and overlying felsic volcanic-sedimentary units. Conglomeratic and sandstone units unconformably overlie the upper felsic unit adjacent to major shear zones. Layered mafic sills occur within various stratigraphic units and cross-cutting Proterozoic dykes also occur throughout the region. Metamorphic grade ranges from upper greenschist to upper amphibolite facies.
		The deformation history of the area is generally divided into four main phases, comprising north-directed thrusting with recumbent folding and stratigraphic repetition in D1. The second deformation (D2) resulted in north-northwest trending folds which are reflected in the dominant north-northwest trending fabric of the greenstone belts. Shortening continued during D3 with strike slip movement along northwest to north northwest trending shear zone and D4 brittle faulting.

Criteria	JORC Code explanation	Commentary
		The HBJ orebodies form part of a gold mineralised system along the Boulder-Lefroy shear zone that is over 4 km long and includes the Celebration, Mutooroo, HBJ and Golden Hope open pit and underground mines.
		The HBJ orebodies are hosted within a steeply-dipping, north-northwest-striking package of mafic, ultramafic and sedimentary rocks and schists that have been intruded by felsic to intermediate porphyries. The area is extensively deformed with numerous north-striking shear zones and dilation of the porphyry intrusions. The main host rock for the Jubilee deposit is the Jubilee Dolerite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	All data is presented in the accompanying tables.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	No data is excluded.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Reported exploration results are uncut.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Short intervals are length weighted to create the final intersections.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are reported.
Relationship between	These relationships are particularly important in the reporting of Exploration Results:	
mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Due to complex mineralisation geometry and varying intercept angles the true thickness is manually estimated on a hole by hole basis.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Downhole length in addition to estimated true width is shown in the report tables if intersection structure is known. The drill hole intercept true thickness is notes as "Unknown" otherwise.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Selected diagrams form part of this release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All holes for selected periods or areas are presented, including NSI (no significant intersection) Results are not high graded.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data associated with this release.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Ongoing surface and underground exploration activities will be undertaken to support continuing mining activities at Northern Star Gold Operations.

Criteria	JORC Code explanation	Commentary
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	

Jundee - December 2018 JORC Code, 2012 Edition – Table 1 Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	This deposit is sampled by diamond drilling (DD) DD - Sampled sections are generally NQ2 or BQ. Core sample intervals are defined by the geologist to honou geological boundaries ranging from 0.3 to 1.2m in length.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Core is aligned and measured by tape, comparing back to downhole core blocks consistent with industry practice
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Diamond drilling completed to industry standard using varying sample lengths (0.3 to 1.2m) based on geologica intervals, which are then crushed and pulverised to produce a ~200g pulp sub sample to use in the assay process. Diamond core samples are fire assayed (30g charge). Visible gold is occasionally encountered in core.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Surface diamond drilling carried out by using both HQ2 or HQ3 or PQ2 (triple tube) and NQ2 (standard tube) techniques. Sampled sections are generally NQ2. Core is routinely orientated using the ORI-shot device.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	DD – Recoveries are recorded as a percentage calculated from measured core verses drilled intervals.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Diamond drilling practice results in high core recovery due to the competent nature of the ground.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade, diamond drill sample recovery is very high.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Core samples have been logged by qualified Geologist to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Logging is Qualitative and Quantitative, and all core is photographed wet (some older core is pre-digital, photos not all reviewed). Visual estimates of sulphide, quartz and alteration as percentages.
	The total length and percentage of the relevant intersections logged.	100% of the drill core is logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Core is half cut with an Almonté diamond core saw. Sample intervals are defined by a qualified geologist to honour geological boundaries. The left half is archived
		Core is sampled on the width of the geological/mineralized structure in recognized ore zones. The minimum sample length is 0.3m while the maximum is 1.2m. Total weight of each sample generally does not exceed 5kg.
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or drv.	No no-core results are being reported

Criteria	JORC Code explanation	Commentary
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Following drying at 100°C to constant mass, all samples below approximately 4kg are totally pulverised in LM5's to nominally 90% passing a 75µm screen. The very few samples generated above 4kg are crushed to <6mm and riffie split first prior to pulverisation. In 2012, Francois-Bongarcon (Agoratek International) conducted a heterogeneity studies, audit of site laboratory, and audit of plant samplers. Confirmed that the sampling protocol currently in use are appropriate to the mineralisation encountered and should provide representative results.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Repeat analysis of pulp samples (for all sample types – diamond, RC, rock and soil) occurs at an incidence of 1 in 20 samples.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate / second-half sampling.	Field duplicates, i.e. other half of cut core, have not been routinely assayed.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered appropriate.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	For all drill core samples, gold concentration is determined by fire assay using the lead collection technique with a 30-gram sample charge weight. An AAS finish is used to be considered as total gold.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable to this report.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 The QAQC protocols used include the following for all drill samples: The field QAQC protocols used include the following for all drill samples: Commercially prepared certified reference materials (CRM) are inserted at an incidence of 1 in 30 samples. The CRM used is not identifiable to the laboratory, QAQC data is assessed on import to the database and reported monthly, quarterly and yearly. The laboratory QAQC protocols used include the following for all drill samples: Repeat analysis of pulp samples occurs at an incidence of 1 in 20 samples, Screen tests (percentage of pulverised sample passing a 75µm mesh) are undertaken on 1 in 50 samples, The laboratory reports its own QAQC data on a monthly basis. In addition to the above, ~ 3% of samples are sent to a check laboratory. Samples for check -assay are selected automatically from holes, based on the following criteria: grade above 1gpt or logged as a mineralized zone or is followed up by re-assaying a second 30g pulp sample of samples between the failed standard and the next sequenced standard by the same method at the primary laboratory. Re-assays are dependent on grade above 0.1ppm Both the accuracy component (CRM's and third-party checks) and the precision component (duplicates and repeats) of the QAQC protocols are thought to demonstrate acceptable levels of accuracy and precision.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections verified by senior site geological staff
	The use of twinned holes.	There is no purpose drilled twinned holes.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary Data imported into SQL database using semi-automated or automated data entry. Hard copies of NSR and previous operators, core assays and surveys are stored at site. Visual checks are part of daily use of the data in Vulcan. Data from previous operators thoroughly vetted and imported to SQL database.
	Discuss any adjustment to assay data.	The first gold assay is almost always used. Exceptions occur when evidence from re-assaying and/or check- assaying dictates. A systematic procedure utilizing several re-assays and/or check assays is in place to determine

Criteria	JORC Code explanation	Commentary
		when the final assay is changed from the first gold assay. Some minor adjustments have been made to overlapping data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collar positions are recorded using conventional survey methods based on Leica TS15 3" total stations and Trimble R10 GNSS instruments. The location of each station is referenced to state-wide network of Standard Survey Marks (SSM) established and coordinated by the Department of Land Administration (WA Government). Where regional drill hole positions are distant from the SSM network the world wide Global Navigational Satellite System (GNSS) network is used. Positional checks are carried out using a combination of existing known positions (usually based on prominent landmarks) and grid referenced information such as ortholinear rectified photogrammetry based on the Australian Map Grid 1994 (MGA94_51).
		Collar coordinates are recorded in MGA94 or Local Jundee Grid (JUNL2) dependant on the location and orientation of ore-bodies. Cross checks were made on the survey control points and data in June 2005. Collar information is stored in both local coordinates and MGA94 coordinate in the drilling database. In-mine drill-hole collars are normally accurate to 10 cm.
		Multi shot cameras and gyro units were used for down-hole survey.
		Previous drilling has been set-out and picked up in both national and local grids using a combination of GPS and Survey instruments and are assumed to be to industry standards.
	Specification of the grid system used.	Collar coordinates are recorded in MGA94 Zone 51 and Local Jundee Grid (JUNL2) dependant on the location and orientation of ore-bodies. The difference between Jundee mine grid (GN) and magnetic north (MN) as at 30 July 2018 is 39° 00' 07" and the difference between magnetic north (MN) and true north (TN) is 1° 02' 00". The difference between true north (TN) and MGA94 Zone 51 is 1° 06' 26". The difference between true north and GDA is zero.
	Quality and adequacy of topographic control.	Topographic control is from Digital Elevation Contours (DEM) 2010, 1m contour data and site surveyed pit pickups.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill spacing of the released holes is quite variable, from a nominal 20 by 20 in grade control areas to greater than 100 by 100 in Zodiac exploration
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	No resource or reserve is being released.
	Whether sample compositing has been applied.	Core is sampled to geology; sample compositing is not applied until the estimation stage.
Orientation of data in	Whether the orientation of sampling achieves unbiased sampling of possible structures	The orientation of sampling is generally perpendicular to the main mineralisation trends.
relation to geological structure	and the extent to which this is known, considering the deposit type.	The orientation achieves unbiased sampling of all possible mineralisation and the extent to which this is known.
31001016	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The drill orientation to mineralised structures biases the number of samples per drill hole. It is not thought to make a material difference. As the opportunity arises, better angled holes are infill drilled.
Sample security	The measures taken to ensure sample security.	All samples are selected, cut and bagged in tied numbered calico bags, grouped in larger tied plastic bags, and placed in large sample cages with a sample submission sheet. The cages are either sent to the site laboratory or are transported via freight truck to Perth, with consignment note and receipted by external and independent laboratory.
		All sample submissions are documented and all assays are returned via email.
		Sample pulp splits from the site lab are stored at the Jundee mine site and those from the Newburn Lab in Perth are stored at the Newburn Lab.
		Pre NSR operator sample security assumed to be similar and adequate.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	In 2006, Maxwell conducted an audit of all Jundee data. In 2012, Francois-Bongarcon (Agoratek International) conducted a heterogeneity studies, audit of site laboratory, and audit of plant samplers. Both audits found the sampling techniques and data to be adequate.
		All recent NSR sample data has been extensively QAQC reviewed both internally and externally.

Criteria	JORC Code explanation	Commentary
		Pre-NSR data audits found to be minimal regarding QAQC though in line with industry standards of the time.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Jundee project consists of tenements comprising 62 mining leases and 1 general purpose lease, covering a total area of approximately 57,422.2 Ha. All are registered in the name of Northern Star Resources Limited.
		The project also includes 23 miscellaneous licences, 3 groundwater licenses, a pipeline license, and the Jundee Pastoral Lease. These cover the bore fields, roads, airstrip, and gas pipeline. There are numerous access agreements in place including access rights over part of Mark Creasy's mining lease 53/193 which lies contiguous to and beneath the general purpose lease on which the Jundee gold mine processing plant is located.
		There are no heritage issues with the current operation. The majority of the Jundee leases are granted Mining Leases prior to 1994 (pre-Mabo) and as such Native Title negotiations are not required. During 2004, two agreements where struck between Ngaanyatjarra Council (now Central Desert native Title Services (CDNTS)) and NYO, these agreements being the Wiluna Land Access Agreement 2004 and the Wiluna Claim Heritage Agreement 2004.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All leases and licences to operate are granted and in the order for between 3 and 20 years.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Data relevant to this Resource was predominantly NSR (Northern Star Resources), who have operated the mine since July 1, 2014.
		The Jundee/Nimary Deposits were discovered in the late 1980's/early 1990's after LAG and soil sampling by Mark Creasy (Jundee) and Hunter Resources (Nimary) identified large surface gold anomalies. The deposits were drilled out over the following years by Eagle Mining (which took over Hunter Resources), and Great Central Mines (which formed a joint venture with Creasy and later purchased his share). Open pit operations commenced in mid-1995, with the first gold poured in December 1995. Great Central Mines assumed full control of the field with its successful takeover of Eagle Mining in mid-1997. Great Central Mines was later taken over by Normandy in mid-2000, which in turn was taken over by Newmont in early-2002.
		All previous work is accepted and assumed to industry standard at that time.
Geology	Deposit type, geological setting and style of mineralisation.	Jundee is an Archean lode-gold mineralized deposit that is part of the Northern Yandal Greenstone belt. Gold mineralisation is controlled by a brittle fracture-system, is commonly fracture-centred, and is predominantly hosted in dolerite and basalt. Mineralisation can be disseminated or vein style host.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Too many holes to practically summarise all drill information used. (See diagram).
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Exclusion of the drill information will not detract from the understanding of the report. Holes are close spaced and tightly constrained to an active mine area.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Reported exploration results are uncut.

Criteria	JORC Code explanation	Commentary
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Short intervals are length weighted to create the final intersections.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are reported.
Relationship between	These relationships are particularly important in the reporting of Exploration Results:	
mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Due to complex mineralisation geometry and varying intercept angles the true thickness is manually estimated on a hole by hole basis.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Downhole length in addition to estimated true width is shown in the report tables if intersection structure is known. The drill hole intercept true thickness is notes as "Unknown" otherwise.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Plan view and long section view of Jundee showing drill traces is attached.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All intercepts for a period and area are included in this release, including NSI (no significant intersection).
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other meaningful data to report.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further extensional and definition drilling is planned for FY2019 from both underground and surface positions.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Representative diagrams form part of the release.

Jundee (Ramone) – December 2018 JORC Code, 2012 Edition – Table 1 Report Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria JORC Code explanation Commentary Sampling techniques Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised Sampling is by both diamond drilling (DD) and Reverse Circulation (RC) drilling completed by NSR. industry standard measurement tools appropriate to the minerals under investigation, DD samples are HQ and NQ core with sample intervals defined by the geologist to honour geological boundaries such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples ranging from 0.3 to 1.2m in length. should not be taken as limiting the broad meaning of sampling. RC samples are collected via ria-mounted static cone splitter with sample falling though inverted cone splitter. splitting the sample in 88%/9%/3% ratio. 9% split retained for 1m composites and 3% split retained for 4m composites. 1m samples are sent for further analysis if any 4m composites return a gold value > 0.1ppm or intervals containing alteration/mineralisation failed to return a significant composite assay result. NSR Resource definition drilling routinely collects 1m composites. Include reference to measures taken to ensure sample representativity and the DD core is aligned and measured by tape, comparing back to down hole core blocks consistent with industry appropriate calibration of any measurement tools or systems used. practice. RC metre intervals are delineated with spray paint to determine metres drilled. Sample rejects are left on the sample pad to indicate metres drilled for the hole. Aspects of the determination of mineralisation that are Material to the Public Report. In Diamond drilling is completed to industry standard using varying sample lengths (0.3 to 1.2m) based on geological cases where 'industry standard' work has been done this would be relatively simple (e.g. intervals, which are then crushed and pulverised to produce a ~200g pulp sub sample to use in the assay process. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised Diamond core samples are fire assayed (50g charge) and screen fire assayed for visible gold. to produce a 30g charge for fire assay'). In other cases, more explanation may be Visible aold is occasionally encountered in core. required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of RC sampling to industry standard at the time of drilling where ~3-4kg samples are pulverised to produce a ~200g detailed information pulp sample to utilise in the assay process. RC samples are fire assayed (50g charge). Drilling techniques RC drilling is carried out using a face sampling hammer and a 130mm diameter bit. Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of Diamond drilling carried used HQ3 (triple tube) and NQ2 techniques. diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what Core is routinely orientated using the ORI-shot device. method, etc.). RC - Approximate recoveries are sometimes recorded as percentage ranges based on a visual and weight Drill sample recovery Method of recording and assessing core and chip sample recoveries and results assessed estimate of the sample. DD – Recoveries are recorded as a percentage calculated from measured core versus drilled intervals. Measures taken to maximise sample recovery and ensure representative nature of the Diamond drilling practice results in high core recovery due to the competent nature of the ground. samples. RC drilling recovery is supervised on the rig and any recovery issues are recorded and rectified. Whether a relationship exists between sample recovery and grade and whether sample There is no known relationship between sample recovery and grade, diamond drill sample recovery is very high. bias may have occurred due to preferential loss/gain of fine/coarse material. Logging Whether core and chip samples have been geologically and geotechnically logged to DD core and RC chip samples have been logged by qualified geologists to a level of detail to support appropriate a level of detail to support appropriate Mineral Resource estimation, mining studies and Mineral Resource estimation, mining studies and metallurgical studies metallurgical studies. Percussion holes logaing were carried out on a metre by metre basis and at the time of drilling. Whether logging is gualitative or guantitative in nature. Core (or costean, channel, etc.) Logging is Qualitative and Quantitative; all core is photographed wet. Visual estimates are made of sulphide, photography. quartz and alteration as percentages. The total length and percentage of the relevant intersections logged. 100% of all DD and RC drilling is logged. Sub-sampling techniques If core, whether cut or sawn and whether guarter, half or all core taken. DD core is halved with an Almonté diamond core saw. The core is quarter cut when metallurgical samples are and sample preparation required. Sample intervals are defined by a qualified geologist to honour geological boundaries. The left half is archived.

Criteria	JORC Code explanation	Commentary
		All mineralised zones are sampled plus associated visibly barren material in contact with mineralised zones.
		Core is sampled on the width of the geological/mineralized structure with a minimum sample length of 0.3m and a maximum sample length of 1.2m. Total weight of each sample generally does not exceed 5kg.
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	RC drilling uses a cyclone mounted inverted cone splitter.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	DD core is dried at 100°C to constant mass, all samples below approximately 4kg are totally pulverised in LM5's to nominally 90% passing a 75µm screen. The few samples generated above 4kg are crushed to <6mm and riffle split first prior to pulverisation.
		RC samples are dried at 100°C to constant mass, all samples below approximately 3kg are totally pulverised in LM5's to nominally 85% passing a 75µm screen. Samples generated above 4kg are crushed to <6mm and cone split to nominal mass prior to pulverisation.
		For RC samples, no formal heterogeneity study has been carried out or monographed. An informal analysis suggests that the sampling protocol currently in use are appropriate to the mineralisation encountered and should provide representative results.
	Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples.	Repeat analysis of pulp samples (all sample types) occurs at an incidence of 1 in 20 samples. Analysis of 2mm coarse crush and split has been completed for three RC bulk cone splitter rejects each of them divided into 32 equal splits.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate / second-half sampling.	Field duplicates, (i.e. other half of cut core) are routinely assayed. NSR routinely collects field duplicates during RC drilling.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered appropriate.
		No formal nomograph study has been conducted on the RC primary sub sample split. Industry standard practice supports splitting of primary sub samples at particle sizes of <6mm and P_{∞} 75µm.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	For all drill samples, gold concentration was determined by fire assay using the lead collection technique with a 50- gram sample charge weight. MP-AES instrument finish was used to be considered as total gold.
		Various multi-element suites are analysed using a four-acid digest with an AT/OES finish.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable to this report.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external	The QAQC protocols used include the following for all drill samples:
	laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Field QAQC protocols used for all drill samples include commercially prepared certified reference materials (CRM) inserted at an incidence of 1 in 30 samples. The CRM used is not identifiable to the laboratory with QAQC data is assessed on import to the database and reported monthly, quarterly and yearly.
		- NSR RC Resource definition drilling routinely inserts field blanks and monitor their performance.
		 Laboratory QAQC protocols used for all drill samples include repeat analysis of pulp samples occurs at an incidence of 1 in 20 samples and screen tests (percentage of pulverised sample passing a 75µm mesh) are undertaken on 1 in 40 samples.
		- The laboratories' own standards are loaded into the database and the laboratory reports its own QAQC data monthly.
		 In addition to the above, about 3% of diamond drill samples are sent to a check laboratory. Samples for check -assay are selected automatically from holes based on the following criteria: grade above 1gpt or logged as a mineralized zone or is followed by feldspar flush or blank.
		 Failed standards are generally followed up by re-assaying a second 50g pulp sample of all samples in the fire above 0.1 ppm by the same method at the primary laboratory.
		Both the accuracy component (CRM's and third-party checks) and the precision component (duplicates and repeats) of the QAQC protocols are thought to demonstrate acceptable levels of accuracy and precision.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections not verified.
	The use of twinned holes.	There are no purpose drilled twin holes.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Sampling and logging data is digitally entered into a tablet using Logchief software imported into SQL database using semi-automated or automated data entry. Digital assay files are loaded directly into the database. Visual checks are part of daily use of the data in Vulcan.
	Discuss any adjustment to assay data.	The first gold assay is almost always utilised for any Resource estimation except where evidence from re-assaying and/or check-assaying dictates. A systematic procedure utilizing several re-assays and/or check assays is in place to determine when the final assay is changed from the first gold assay.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collar positions are recorded using conventional survey methods based on Leica TS15 3" total stations and Trimble R10 GNSS instruments. The location of each station is referenced to state-wide network of Standard Survey Marks (SSM) established and coordinated by the Department of Land Administration (WA Government). Where regional drill hole positions are distant from the SSM network, the world wide Global Navigational Satellite System (GNSS) network is used.
		Positional checks are carried out using a combination of existing known positions (usually based on prominent landmarks) and grid referenced information such as ortho-linear rectified photogrammetry based on the Map Gird of Australia MGA94.
		Collar coordinates are recorded in MGA94.
		Surface collar RL's have been validated utilizing an airborne elevation survey by Arvista in October 2017.
		Multi shot cameras and gyro units were used for down-hole survey.
	Specification of the grid system used.	Collar coordinates are recorded in MGA94 Zone 51. The difference between magnetic north (MN) and true north (TN) is 1° 34' 30". The difference between true north (TN) and AMG84 Zone 51 (AMG GN) is 1° 02' 47". The difference between true north and GDA is zero.
	Quality and adequacy of topographic control.	Topographic control is from Digital Elevation Contours (DEM) 2017, 1m contour data and site surveyed pickups.
Data spacing and	Data spacing for reporting of Exploration Results.	Tight spacing infill 5m by 10m.
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Resources and Reserves are not being reported in this release.
	Whether sample compositing has been applied.	Core is sampled to geology; sample compositing is not applied until the estimation stage.
		RC samples are taken as 1 m samples and 4 m composites during first pass exploration,1m samples are sent for further analysis if any 4m composites return a gold value > 0.1ppm or intervals containing alteration/mineralisation failed to return a significant composite assay result.
		For RC Resource definition drilling 1 m samples are routinely collected. No RC samples greater than 1m were used in estimation.
Orientation of data in relation to geological	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The orientation of sampling is generally on a high angle to the main mineralisation trends as these are vertical to sub-vertical. Drill holes are drilled on a 60 degrees angle perpendicular to the strike of the mineralisation.
structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The drill orientation to mineralised structures biases the number of samples per drill hole. It is not thought to make a material difference in the Resource estimation.
Sample security	The measures taken to ensure sample security.	All samples are selected, cut and bagged in tied numbered calico bags, grouped in larger tied plastic bags, and placed in large sample cages with a sample submission sheet. The cages are either sent to the site laboratory or are transported via freight truck to Perth, with consignment note and receipted by external and independent laboratory
		All sample submissions are documented and all assays are returned via email and hard copy.

Criteria	JORC Code explanation	Commentary
		Sample pulp splits from the site lab are stored at the Jundee mine site and those from the Newburn Lab in Perth are stored at the Newburn Lab.
		RC samples processed at SGS have had the bulk residue discarded and pulp packets sent to Jundee mine site for long term storage.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Historical audits of all Jundee data were carried out by previous operators. In 2012, Francois-Bongarcon (Agoratek International) conducted a heterogeneity studies, audit of site laboratory, and audit of plant samplers. Both audits found the sampling techniques and data to be adequate.
		All recent NSR sample data has been extensively QAQC reviewed both internally and externally.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Jundee Project consists of 7 Exploration Licences, 62 Mining Leases and 1 General Purpose Lease covering a total area of approximately 86,341 Ha. All are currently registered in the name of Newmont Yandal Operations Pty Ltd but Northern Star Resources Limited are the beneficial owners and transfers will be registered once the Office of State Revenue have completed their assessment to duty.
		The Project also includes 23 Miscellaneous Licenses, 3 Groundwater Licenses, a Pipeline License and the Jundee Pastoral Lease covering the bore fields, roads, airstrip, and gas pipeline. There are numerous access agreements in place including access rights over part of M53/193 which lies contiguous to, and beneath, the General Purpose Lease on which the Jundee processing plant is located.
		There are no heritage issues with the current operation. The majority of the Jundee leases are granted Mining Leases prior to 1994 (pre-Mabo) and as such Native Title negotiations are not required. During 2004, two agreements where struck between Ngaanyatjarra Council (now Central Desert Native Title Services (CDNTS)) and Newmont Yandal Operations, these agreements being the Wiluna Land Access Agreement 2004 and the Wiluna Claim Heritage Agreement 2004, both agreements were transferred to Northern Star on purchase of the Jundee Operations in 2014.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All leases and licences to operate are granted and in the order for between 3 and 21 years.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Not Applicable, all the exploration work has been completed by NSR.
Geology	Deposit type, geological setting and style of mineralisation.	Ramone is Archean gold mineralized deposit that is part of the Northern Yandal Greenstone belt. Gold mineralisation is hosted by a granite and controlled by a brittle stockwork fracture-system within a north-easterly trending shear zone. The mineralisation formed by a stockwork of veins with smoky quartz, sulphides minor carbonate, chlorite and sericite hosted by a monzonitic granite. The mineralisation is intruded by an East-West striking (about 96 degrees) vertical dolerite dyke that cross cuts the mineralisation and is part of a suite of magnetic dolerite dykes that intrudes the Yandal belt in an East-West direction.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Summary drill data for all Ramone holes related to this release are presented.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	No results excluded, both high and low grade intercepts are presented.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Reported intercepts are length weighted and uncut, generally > 1g/t and no more than 1m of internal waste included.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Reported intercepts are length weighted.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are reported.
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	
mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Estimated true thickness is reported along with the downhole length.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Estimated true thickness is reported along with the downhole length.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	A plan view of collar locations from part of this release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results are reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other meaningful data to report.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further extensional and resource definition drilling is continuing in FY2019.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Plans and sections of the Ramone deposit are included in this report.

Tanami (Hurricane-Repulse and Regional Exploration) – December 2018 JORC Code, 2012 Edition – Table 1 Report Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Sampling is by Reverse Circulation (RC), Diamond (DD drilling, completed by NSR.
		RC samples are collected via rig-mounted static cone splitter, splitting the sample in 88%/12% ratio. 12% split retained for 1m composites and 88% split retained as a bulk reject. All 1m samples are sent for analysis. NSR Resource definition drilling routinely collects 1m composites.
		DD samples are HQ core with sample intervals defined by the geologist to honour geological boundaries ranging from 0.3m to 1.2m in length.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	RC metre intervals are delineated with spray paint to determine metres drilled. Sample rejects are left on the sample pad to indicate metres drilled for the hole.
		DD core is aligned and measured by tape, comparing back to down hole core blocks consistent with industry practice.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised	RC sampling to industry standard at the time of drilling where ~4kg samples are pulverised to produce a ~200g pulp sample to utilise in the assay process.
	to produce a 30g charge for fire assay'). In other cases, more explanation may be	RC samples were fire assayed (30g charge). Diamond drilling is completed to industry standard using varying sample lengths (0.3m to 1.2m) based on geological
	required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of	intervals, which are then crushed and pulverised to produce a ~200g pulp sub sample to use in the assay process.
	detailed information.	Diamond core samples are fire assayed (50g charge).
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger,	RC drilling is carried out using a face sampling hammer with a 130mm diameter bit respectively.
	Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Diamond drilling used HQ3 (triple tube) techniques in their entirety to delivery good quality-oriented core for metallurgical/geotechnical/geology work. Sampled sections were HQ3.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC - Approximate recoveries are sometimes recorded as percentage ranges based on a visual and weight estimate of the sample.
		DD recoveries are recorded as a percentage calculated from measured core verses drilled intervals.
	Measures taken to maximise sample recovery and ensure representative nature of the	RC drilling recovery is supervised on the rig and any recovery issues are recorded and rectified.
	samples.	Diamond drilling practice results in high core recovery due to the competent nature of the ground.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade. Diamond drill sample recovery is very high.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and	RC chip samples and DD core have been logged by qualified geologists to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
	metallurgical studies.	RC hole logging was carried out on a metre by metre basis and at the time of drilling.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Logging is Qualitative and Quantitative. Visual estimates are made of sulphide, quartz and alteration as percentages.
	The total length and percentage of the relevant intersections logged.	100% of all DD and RC drilling is logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	DD core is halved with an Almonte core saw. Sample intervals are defined by a qualified geologist to honour geological boundaries.
		All mineralised zones are samples plus associated visibly barren material in contact with mineralised zones.
		DD core is sampled on the width of the geological/mineralised structure with a minimum sample length of 0.3m and maximum sample length of 1.2m. Total weight of each sample generally does not exceed 5kg.

Criteria	JORC Code explanation	Commentary
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	RC drilling uses a cyclone mounted inverted cone splitter.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	RC samples are dried at 100°C to constant mass, all samples below approximately 3kg are totally pulverised in LM5's to nominally 85% passing a 75µm screen. Samples generated above 4kg are crushed to <6mm and cone split to nominal mass prior to pulverisation.
		For RC samples, no formal heterogeneity study has been carried out or monographed. An informal analysis suggests that the sampling protocol currently in use are appropriate to the mineralisation encountered and should provide representative results.
		DD core is dried at 100°C to constant mass, all samples below approximately 4kg are totally pulverised in LM5's to nominally 85% passing a 75µm screen. The few samples generated above 4kg are crushed to <6mm and riffle split first prior to pulverisation.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Repeat analysis of pulp samples (all sample types) occurs at an incidence of 1 in 20 samples.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate / second-half sampling.	Field duplicates, (i.e. other half of cut core) are routinely assayed. NSR routinely collects field duplicates during RC drilling.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered appropriate.
		No formal monograph study has been conducted on the RC primary sub sample split. Industry standard practice supports splitting of primary sub samples at particle sizes of <6mm and $P_{\rm 100}$ 75 μ m.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	For all drill samples, gold concentration was determined by fire assay using the lead collection technique with a 30- gram sample charge weight. MP-AES instrument finish was used to be considered as total gold.
		Various multi-element suites are analysed using a four-acid digest with an AT/OES finish.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable to this report.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	The QAQC protocols used include the following for all drill samples:
		Field QAQC protocols used for all drill samples include commercially prepared certified reference materials (CRM) inserted at an incidence of 1 in 20 samples. The CRM used is not identifiable to the laboratory with QAQC data is assessed on import to the database and reported monthly, quarterly and yearly.
		NSR RC Resource definition drilling routinely inserts field blanks and monitor their performance.
		Laboratory QAQC protocols used for all drill samples include repeat analysis of pulp samples occurs at an incidence of 1 in 20 samples and screen tests (percentage of pulverised sample passing a 75µm mesh) are undertaken on 1 in 40 samples.
		The laboratories' own standards are loaded into the database and the laboratory reports its own QAQC data monthly.
		In addition to the above, approximately 2% of RC drill samples are sent to a check laboratory. Samples for check -assay are selected automatically from holes based on the following criteria: grade above 1gpt or logged as c mineralized zone or is followed by feldspar flush or blank.
		Failed standards are generally followed up by re-assaying a second 30g pulp sample of all samples in the fire above 0.1ppm by the same method at the primary laboratory.
		Both the accuracy component (CRM's and third-party checks) and the precision component (duplicates and repeats) of the QAQC protocols are thought to demonstrate acceptable levels of accuracy and precision.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections verified by corporate NSR personnel.
	The use of twinned holes.	There were purpose-drilled RC twinned holes to check selected legacy RC holes, with strong correlation of geological and assay results.

Criteria	JORC Code explanation	Commentary
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data is imported into an SQL database using semi-automated or automated data entry with hard copies of core assays and surveys are stored at site.
		Visual checks are part of daily use of the data in geological modelling software including Vulcan, Leapfrog and MICROMINE.
	Discuss any adjustment to assay data.	The first gold assay is almost always utilised for any Resource estimation except where evidence from re-assaying and/or check-assaying dictates. A systematic procedure utilizing several re-assays and/or check assays is in place to determine when the final assay is changed from the first gold assay.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	RC collar positions are recorded using conventional survey methods based on Trimble R10 GNSS instruments. The location of each station is referenced to state-wide network of Standard Survey Marks (SSM) established and coordinated by the Department of Land Administration (WA Government). Where regional drill hole positions are distant from the SSM network, the world wide Global Navigational Satellite System (GNSS) network is used, this includes Air Core collars.
		Positional checks are carried out using a combination of existing known positions (usually based on prominent landmarks) and grid referenced information such as ortho-linear rectified photogrammetry based on the Map Gird of Australia MGA94.
		Surface collar RL's have been validated utilizing airborne elevation survey by Arvista in 2016.
		Multi shot cameras and gyro units were used for down-hole survey.
	Specification of the grid system used.	Collar coordinates are recorded in MGA94 Zone 52. The difference between magnetic north (MN) and true north (TN) is 0° 14' 38". The difference between true north and GDA is zero.
	Quality and adequacy of topographic control.	Topographic control is from Digital Elevation Contours (DEM) 2017, 1m contour data.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Exploration results in this report range from 25m x 25m drill hole spacing to 50m x 50m.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing and distribution is sufficient to establish geological and/or grade continuity appropriate for the Mineral Resource and classifications to be applied.
	Whether sample compositing has been applied.	RC samples are taken as 1 m samples. For RC Resource definition drilling 1 m samples are routinely collected.
		DD core is sampled to geology; sample compositing is not applied until the estimation stage.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The orientation of sampling is generally on a high angle to the main mineralisation trends as these are vertical to sub-vertical. RC Drill holes are drilled on a 60-degree angle.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The drill orientation to mineralised structures biases the number of samples per drill hole. It is not thought to make a material difference in the Resource estimation.
Sample security	The measures taken to ensure sample security.	All samples are selected and bagged in tied numbered calico bags, grouped in larger tied plastic bags, and placed in large bulka bags with a sample submission sheet. The bulka bags are sent via freight truck to Perth, with consignment note and receipted by external and independent laboratory.
		All sample submissions are documented and all assays are returned via email and secure FTP.
		Sample pulp splits from Perth are stored at the Malaga lab.
		RC samples processed at ALS have had the bulk residue retained and pulp packets sent to Central Tanami Mine for storage.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	All recent NSR sample data has been extensively QAQC reviewed both internally and externally.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Central Tanami Project consists of 20 Mining Leases, 1 Access Agreement Lease and 12 Exploration Leases covering a total area of approximately 149,942 Ha. All are registered jointly in the name of Northern Star (Tanami) Proprietary Limited and Tanami Gold NL.
		The Project also includes 1Bore Field License.
		There are no heritage issues with the current operation.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All leases and licences to operate are granted and in the order for between 2 and 20 years.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Not Applicable, all the exploration work has been completed by NSR.
Geology	Deposit type, geological setting and style of mineralisation.	Hurricane-Repulse is a Palaeo-Proterozoic, sediment hosted vein-mineralized deposit that is part of the Granites- Tanami Inlier. Gold mineralisation is controlled by a brittle fracture-system associated with larger regional scale structures both parallel and discordant to bedding orientations and is predominantly hosted in sediment and basalt. Mineralisation can be disseminated or vein style host.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar	All relevant information is part of this release.
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	 dip and azimuth of the hole 	
	 down hole length and interception depth 	
	 hole length. 	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Not applicable to this report.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Results are reported using a nominal 0.5 g/t Au cut-off and up to 2-meter internal waste.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All the RC samples are 1m in length.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are reported.
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	All RC drill holes have been drilled on 60-degree angle.
mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Mineralisation structures are vertical to sub-vertical.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	It is interpreted that true width is approximately 50-70% of down hole intersections.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Diagrams from part of the main release.

Criteria	JORC Code explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results for this period are listed, including those labelled NSI (no significant intersection.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other meaningful data available.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Review of drilling completed is required before further work is planned.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Plans and sections of the Hurricane deposit drill hole locations are included in this report.