

ABN 91 124 752 745

18 January 2019

Mount Coolon and Twin Hills Combined Resource Base Approaches 1 Million Ounces

Summary Highlights:

- New JORC 2012 Mineral Resource estimate for the two deposits at Twin Hills (309 and Lone Sister) totals 633,000 ounces. (note the cautionary statement relating to Twin Hills below.)
- The Combined Mineral Resource estimate for the Mount Coolon and Twin Hills Gold Deposits have increased 66% to 963,000 ounces at an average grade of 2.2 g/t Au. Mount Coolon is planned to be developed as a central processing hub with proposed co-development of Twin Hills to provide high grade satellite feed.
- Twin Hills mineral system interpreted as an intrusion related, low sulphidation, epithermal system containing high gold fineness deposits.
- Both 309 and Lone Sister remain open at depth with current resources limited by drilling to approximately 300 metres below surface.
- Mount Coolon Scoping Study demonstrates potential to generate strong positive cash flow from existing deposits (Koala, Glen Eva and Eugenia) prior to inclusion of Twin Hills (refer GBZ ASX release, 4 December 2017).

Cautionary Statement

GBM has upgraded the two deposits at Twin Hills (309 and Lone Sister) to JORC 2012 to demonstrate the potential economic benefit of the acquisition that may further underwrite the development of both gold projects.

The Twin Hills tenements are not owned by GBM and are subject to a binding Sale and Purchase Agreement which was signed with Minjar Gold Pty Ltd in September 2018 to acquire a 100% interest in the Twin Hills Gold Deposits. Certain conditions precedent have to be satisfied by GBM by 28 February 2019. (Refer to page 3 for a summary of these conditions).

ASX Code: GBZ

COMPANY DIRECTORS

Peter Thompson Managing Director/ Executive Chairman

Sunny Loh Non- Executive Deputy Chairman

Neil Norris Exploration Director – Executive

Hun Seng Tan Non- Executive Director

CONTACT DETAILS

Principal & Registered Office Suite 8, 7 The Esplanade, Mt Pleasant, WA 6153

Exploration Office 10 Parker Street, Castlemaine, Victoria 3450

Website www.gbmr.com.au

Email info@gbmr.com.au Phone +61 (8) 9316 9100

Fax +61 (8) 9315 5475

Phone (Exploration Office) +61 (3) 5470 5033

GBM Resources Limited (ASX: GBZ) (**GBM** or **the Company**) is pleased to announce that, as a result of inclusion of JORC 2012 Mineral Resource estimates for the Twin Hills gold deposits, the Mount Coolon Gold Project (**MCGP**) now contains, an estimated 0.96 million ounces of gold.

The upgrade to JORC 2012 status of historic gold resources at the 309 and Lone Sister deposits at Twin Hills has resulted in a significant increase relative to those prior estimates. The Twin Hills deposits are now estimated to contain 6.9 million tonnes at an average grade of 2.8 g/t Au for 633,000 ounces of contained gold.

Both the existing MCGP deposits (Koala, Glen Eva and Eugenia) and the Twin Hills deposits (309 and Lone Sister) are considered by GBM to hold significant exploration upside.

Table 1 summarises the MCGP gold resources, including Twin Hills. A further breakdown of the resources for the 309 and Lone Sister gold deposits is contained in Table 2. These resources have been estimated and reported in accordance with JORC 2012 by independent New Zealand based consultancy, Geomodelling Ltd.

Project	Location				Reso	urce Cat	egory					Total		Cut-off
			Measured			Indicate	d		Inferred					
		000' t	Au g/t	Au ozs	000' t	Au g/t	Au ozs	000' t	Au g/t	Au ozs	000' t	Au g/t	Au ozs	
Koala	Open Pit				670	2.6	55,100	440	1.9	26,700	1,120	2.3	81,800	0.4
	Underground	Extension			50	3.2	5,300	260	4	34,400	320	3.9	39,700	2.0
	Tailings	114	1.7	6,200	9	1.6	400				124	1.6	6,600	1
	Total	114	1.7	6,200	729	2.6	60,800	700	2.7	61,100	1,563	2.5	128,100	
Eugenia	Oxide				885	1.1	32,400	597	1.0	19,300	1,482	1.1	51,700	0.4
	Sulphide				905	1.2	33,500	1,042	1.2	38,900	1,947	1.2	72,400	0.4
	Total				1,790	1.1	65,900	1,639	1.1	58,200	3,430	1.1	124,100	
Glen Eva	Open Pit				1,070	1.6	55,200	580	1.2	23,100	1,660	1.5	78,300	0.4
Twin Hills 309	Open Pit	320	4.4	44,400	2,690	2.2	193,100	1,300	1.4	58,500	4,310	2.1	296,000	1
	Underground				110	4.8	16,800	510	3.7	60,100	620	3.9	76,900	2
	Total	320	4.4	44,400	2,800	2.3	209,900	1,810	2.0	118,600	4,930	2.4	372,900	
Lone Sister	Underground							2,010	4.0	260,100	2,010	4.0	260,100	2.0
Тс	otal	434	3.6	50,600	6,390	1.9	391,800	6,738	2.4	521,000	13,592	2.2	963,000	

 Table 1: Combined Mount Coolon and Twin Hills Gold Projects Mineral Resource estimates, rounded for reporting ('000 tonnes, '00 ounces, 0.0 grade) (309 and Lone Sister deposits). (Refer to ASX release dated 4 December 2017 for the Koala, Eugenia and Glen Eva Resources)

Binding Sale and Purchase Agreement (SPA) with Minjar Gold Pty Ltd

1. Conditions precedent

Completion is subject to and conditional upon:

i. GBM obtaining indicative approval for the transfer of the tenements;

GBM obtained indicative approval for the transfer of the tenements on 4 January 2019.

ii. the consents of all third parties being obtained pursuant to the primary agreements to which the Third Party Agreements relate (as required);

The major third party agreements are well advanced and the process is as per the completion schedule.

iii. GBM completing a debt or equity capital raising of at least A\$7 million (representing the estimated Stage 1 funding required for the re-development of Mt Coolon); and

GBM is investigating a number of funding options, including a strategic joint venture partner, and remains positive on the outcome. GBM is entitled to waive this condition at its sole discretion.

iv. The SPA being endorsed by the Commissioner of State Revenue in the manner prescribed in the Duties Act.

This is a process step which follows item (i) above

GBM has until 28 February 2019, or such later date as the parties may agree, to satisfy these conditions or the SPA may be terminated. (*Refer to the full ASX release on 28 September 2018*). However, GBM is entitled to waive the conditions referred to paragraphs (i), (iii) and (iv).

The Twin Hills Gold Deposits

The 309 and Lone Sister deposits are low sulphidation, epithermal gold deposits hosted within the western arm of the Drummond Basin in Queensland. The Drummond Basin is host to a number of significant gold deposits and is considered by GBM to hold potential for further discoveries.

The 309 and Lone Sister gold deposits are located 7 kilometres apart and linked by a major north-south structural lineament. Both deposits have previously been interpreted as intrusion related, high gold fineness, low sulphidation epithermal gold deposits, sometimes exhibiting bonanza gold grades (as evidenced by the **peak gold value in the 309 deposit of 2,940g/t Au (I.0 metre interval from 222 m. in TRCD728)**, with 300 individual metre samples exceeding 30g/t Au, and a **peak gold value of 939g/t Au (from 235m in drillhole LRCD015 at Lone Sister**). A table of downhole drill intersections above 20 grammetres for both the 309 and Lone Sister gold deposits is appended and demonstrates the high-grade nature of these deposits.

GBM considers that potential depth extensions and strike repetition of both the 309 and Lone Sister deposits have not been adequately tested. A number of other prospects have been located by geophysical interpretation, geological mapping, and sampling and soil geochemistry. GBM will review available data and consider what further testing of these prospects is warranted. See Figure 8 for a graphical depiction of the deposits and prospects of the Twin Hills area, highlighting the significant package of exploration tenure for review.

Figure 2: Mt Coolon Gold Project tenement group location plan

The **309 Deposit** has been estimated to comprise **4.9Mt averaging 2.4 g/t Au containing 372,900 ounces of gold and 471,000 ounces of silver** (refer Table 2) assuming open pit mining to 1050 RL, or a depth of approximately 200m. However, if GBM's planned studies demonstrate that underground mining is the preferred option for the entire deposit, then an estimated underground resource of 1.8Mt at an average grade of **4.0 g/t Au containing an estimated 241,000 ounces of gold** would be available to support underground mining of the 309 deposit.

The Lone Sister Deposit is estimated at 2.0Mt at an average grade of 4.0 g/t Au containing 260,000 ounces of gold and 604,000 ounces of silver.

Category	Cutoff	Tonnage	Grade		Containe	d Metal
	Au (g/t)	(t)	Au (g/t)	Ag (g/t)	Au (oz)	Ag (oz)
309 Deposit						
Open Pit (above 1050F	₹L)					
Measured	1.0	320,000	4.4	6.4	44,400	65,000
Indicated	1.0	2,690,000	2.2	3.4	193,100	295,400
Inferred	1.0	1,300,000	1.4	1.7	58,500	70,100
Total open pit	1.0	4,310,000	2.1	3.1	296,000	430,500
Underground (below 1	.050 RL)					
Measured	2.0					
Indicated	2.0	110,000	4.8	3.4	16,800	11,900
Inferred	2.0	510,000	3.7	1.8	60,100	28,800
Total underground	2.0	620,000	3.9	2.0	76,900	40,700
Total 309 Deposit						
Measured	1.0 / 2.0	320,000	4.4	6.4	44,400	65,000
Indicated	1.0 / 2.0	2,800,000	2.3	3.4	209,900	307,300
Inferred	1.0 / 2.0	1,810,000	2.0	1.7	118,600	98,900
TOTAL	1.0 / 2.0	4,930,000	2.4	3.0	372,900	471,200

Lone Sister Deposit						
Measured	2.0					
Indicated	2.0					
Inferred	2.0	2,010,000	4.0	9.4	260,100	604,800
Total	2.0	2,010,000	4.0	9.4	260,100	604,800

Total Twin Hills						
Measured	1.0 / 2.0	320,000	4.4	6.4	44,400	65,000
Indicated	1.0 / 2.0	2,800,000	2.3	3.4	209,900	307,300
Inferred	1.0 / 2.0	3,820,000	3.1	5.7	378,700	703,700
TOTAL	1.0 / 2.0	6,940,000	2.8	4.8	633,000	1,076,000

Table 2: Twin Hills Resource Summary for the 309 and Lone Sister Gold Deposits (rounded for reporting ('000 tonnes, '00 ounces, 0.0 grade)

Figure 3: Plan view of the Twin Hills 309 gold deposits (above) and long projection (below). These show ore blocks in various grade ranges and previous underground development.

Mineralisation at Twin Hills was discovered in 1988 by Metana Minerals and subsequently explored by Homestake, Plutonic and others. It wasn't until 2005 that mining was commenced by BMA Gold Ltd. The drilling at both deposits intersected a large number of very high to bonanza grade intersections, as often seen within intrusion-related, low sulphidation epithermal gold-silver systems. A selection of these is provided in Table 3 below. A more complete summary of all intersections above 20 gram-metres is appended to this release.

Hole ID	From	То	Interval	Grade	Gram.Metre	Gold grade intercept comment
	(m)	(m)	Length (m)	Au g/t	(g/t xm)	
Twin Hills 30	9 Deposit					
TRCD728	222.0	239.0	17.0	317.4	5396	17 m @ 317.4 g/t Au from 222 m in TRCD728 including 5 m @ 1036.6 g/t Au from 222 m, 4 m @ 49.03 g/t Au from 230 m
THRC782	56.0	73.0	17.0	79.8	1357	17 m @ 79.8g/t Au from 56 m in THRC782 including 13 m @ 104.1g/t Au from 60 m
THRCD875	177.0	184.0	7.0	93.5	654	7 m @ 93.5 g/t Au from 177 m in THRCD875 including 1 m @ 6.4 g/t Au from 177 m, 3 m @ 214 g/t Au from 180 m
TRC614	46.0	80.0	34.0	18.7	637	34 m @ 18.7 g/t Au from 46 m in TRC614 including 4 m @ 8.4 g/t Au from 71 m, 10 m @ 56.8 g/t Au from 59 m
TRC424	35.0	37.0	2.0	243.1	486	2 m @ 243.1g/t Au from 35 m in TRC424 including 1 m @ 485g/t Au from 35 m
THRCD789	88.0	100.0	12.0	38.3	460	12 m @ 38.4 g/t Au from 88 m in THRCD789 including 4 m @ 112.2 g/t Au from 96 m
THRCD826	271.0	274.0	3.0	108.8	326	3 m @ 108.8 g/t Au from 271 m in THRCD826 including 2 m @ 162.6 g/t Au from 272 m
Lone Sister D	eposit					
LRCD015	212.0	246.0	34.0	39.1	1329	34 m @ 39.1 g/t Au from 212 m in LRCD015 including 14 m @ 86.3 g/t Au from 222 m, 4 m @ 7.4 g/t Au from 212 m, 4 m @ 14.08 g/t Au from 241 m, 1 m @ 8.3 g/t Au from 237 m
LRCD057	177.0	188.0	11.0	29.5	324	11 m @ 29.5 g/t Au from 177 m in LRCD057 including 10 m @ 32.2 g/t Au from 177 m
LRCD063	247.0	265.0	18.0	15.8	284	18 m @ 15.8 g/t Au from 247 m in LRCD063 including 5 m @ 11.0 g/t Au from 259 m, 11 m @ 20.3 g/t Au from 247 m
LRCD154	218.0	229.0	11.0	23.4	258	11 m @ 23.4 g/t Au from 218 m in LRCD154 including 5 m @ 49.5 g/t Au from 220 m
LRCD143	140.0	157.0	17.0	13.1	223	17 m @ 13.1 g/t Au from 140 m in LRCD143 including 1 m @ 8.4 g/t Au from 140 m, 2 m @ 49.3 g/t Au from 150 m, 1 m @ 11.2 g/t Au from 147 m, 1 m @ 77.7 g/t Au from 155 m
LRCD157	222.0	233.0	11.0	15.5	170	11 m @ 15.5 g/t Au from 222 m in LRCD157 including 7 m @ 22.2 g/t Au from 222 m, 1 m @ 8.1 g/t Au from 232 m
LRCD148	177.0	191.0	14.0	12.1	169.6	14 m @ 12.1 g/t Au from 177 m in LRCD148 including 6 m @ 19.0 g/t Au from 180 m, 1 m @ 8.5 g/t Au from 177 m, 1 m @ 37.4 g/t Au from 187 m
LRCD157	209.0	220.0	11.0	11.1	122.4	11 m @ 11.1 g/t Au from 209 m in LRCD157 including 8 m @ 14.3 g/t Au from 210 m

Table 3: Selected high-grade drill intersections from previous exploration at the Twin Hills 309 and Lone Sister GoldDeposits

BMA established an underground mine at the 309 deposit and completed a decline to approximately 160m below surface, plus the development of two ore lenses. Ore produced was trucked to the Rishton Mill east of Charters Towers, some 280 kilometres away. With gold trading at A\$572/oz in June 2005 and prices for consumable and labour rising with the mining boom, the operation was forced to model and selectively mine ore zones at a high cut-off grade (considered to be around 6 g/t). The result appears to be that mineralisation was not continuous at these high cut-off grades yielding disappointing head grades for the second ore zone and resulting in closure of operations around January 2006. Current economics suggest the potential for GBM to operate at much lower cut-off grades, resulting in more coherent ore zones delivering more predictable head grades for treatment at a proximal processing plant. Recent inspection by GBM indicates that the portal, ventilation shafts and decline appear to be in sound condition with service lines intact.

The current reported 309 resource is based on data from 429 drill holes and assumes a combination of open pit and underground mining with cut-off grades of 1.0 and 2.0 g/t Au respectively. This resource contains 372,900 ounces and represents approximately 60% of the total 633,000 ounces of gold contained within the current resource model which only extends to around 300 metres below surface. While much of this modelled resource lies within a broadly mineralised breccia zone that may be too low grade to be extracted, it does serve to demonstrate the overall scale of this deposit. It is also only part of the Twin Hills mineralising system, much of which remains to be thoroughly tested along strike and at depth.

Figure 4: Grade Tonnage Curve for the Twin Hills 309 Deposit. This graph clearly shows that there is a large volume of lower grade material that may become extractable should deeper open pit mining with a lower cut-off grade prove feasible.

Figure 5: Contained gold for the Twin Hills 309 deposit versus cut-off grade.

The Lone Sister deposit is located approximately seven kilometres south of 309 and is considered part of the same auriferous Twin Hills mineralising system. Lone Sister appears as a more tightly constrained deposit, more closely related to a vein system, and was described in part as this by previous workers. This deposit has been modelled based on data from a total of 50 drillholes and on a 2.0 g/t Au cut-off grade assuming that underground mining is the likely mining method. This model also extends to approximately 300 metres below surface and, as for the 309 deposit, there is no drill testing below this depth.

Photograph: Decline portal at the Twin Hills 309 Gold Mine.

Figure 6: Grade tonnage curve for the Lone Sister Gold Deposit.

Figure 7: Contained gold versus cut-off grade for the Lone Sister Gold Deposit.

Figure 8: Twin Hills gold deposits and prospects. ML (red boundary) and EPM's (blue). For more detail of drillhole locations please see appended tables for the 309 Deposit and Lone Sister deposit.

2018 Twin Hills Gold Project – 309 and Lone Sister Resource Estimates Commentary

Geology, Mineralisation and Exploration Potential

The Twin Hills 309 and Lone Sister deposits are contained within Mining Licence 70316 which is located within a broader tenement package being purchased by GBM within the western arm of the Drummond Basin (see figure 1). Mineralisation in the Drummond Basin is characterised as high-grade epithermal style precious metal deposits. Examples include Pajingo (3.0 Moz), Wirralie (1.1 Moz), Yandan (0.6 Moz) and Koala. Mineralisation is typified by fine grained electrum in quartz veins and or breccias. These deposits are interpreted to have formed locally in extensional jogs or bends of transform fault systems.

309 Deposit

The northern and primary resource of the two advanced-stage prospects at Twin Hills and the only one with any mine development. 309 is an eruption breccia, intrusion-related low sulphidation epithermal gold-silver system with input from polyphase intrusions at depth. Sinters at surface indicate full system preservation. Local bonanza grades are present (e.g. **17 m @ 317.4 g/t Au from 222 m in TRCD728 including, 5 m @ 1,036.6 g/t Au from 222 m, 4 m @ 49.03 g/t Au from 230** m) and the deposit is zoned from silver-dominated near surface to gold-dominated with depth.

Three high grade mineralised zones were previously defined with Area 1 subjected to mining between 2005 and 2007 by BMA; Area 1 consists of chalcedonic silica-flooded breccia with fine disseminated electrum, Area 2 is a broad EW zone of narrow steeply south-dipping quartz-calcite veins carrying free gold, and Area 3 is a well-defined steeply north-dipping zone of more intense stockwork quartz-calcite veins. In general, 309 does not conform to a Pajingo-style "fat-vein" dilational epithermal model, more closely resembling an anastomosing or stockwork vein type. Current resource modelling has identified additional zones, some of which require further testing to lift the resource classification level.

Exploration potential at the 309 Deposit includes:

- Down-plunge depth extensions to identified ore shoots, including Area 2 (beyond 350m below surface).
- Persistance of low-sulphidation Ginguro-style veins to 450m concentrated in dilational shoots on the WNW-trending bounding Great Southern Fault epithermal pressure-temp conditions may persist in fault dilational zones to significant depth.

Lone Sister Deposit

The deposit is located 7 km south of 309 and has seen no significant exploration activity since 2008. Mineralisation is interpreted as low-sulphide epithermal Au restricted to a porphyritic rhyolite dome host and an adjacent related hydrothermal breccia. Mineralisation extends to at least 350m below surface and is open at depth. The deposit location on flexures in through-going structures suggests mineralisation may continue to depth. Gold is present in two main styles; as sooty sulphide veinlets and as open-space banded mineralisation in the breccia.

Further exploration potential at Lone Sister:

- Intrusive source at depth for the mineralizing fluids in the brecciabody
- Moderate to steep north-plunging shoots within the rhyolite unit remain open.

Drilling Techniques.

This Resource estimate is based on diamond (DD) and reverse circulation (RC) drilling data compiled from previous exploration and mining activity.

Whilst the drilling was carried out under the supervision of several companies, the drilling, sampling and assaying methods varied little throughout the history of the project.

RC drilling used a face sample hammer to reduce downhole contamination. RC holes were rarely downhole surveyed. Surface diamond core drilling (HQ and NQ) was mostly tails off RC pre-collars. The diamond holes were surveyed at an average of 35m downhole.

Underground diamond drilling (BQ) was used for very closely spaced infill drilling prior to mining.

The 309 mineral resource estimate is based on 429 drill holes for 22947.63 m. Of these 16 were diamond core holes drilled from surface totalling 2459.1 m; 196 diamond core holes drilled from underground totalling 12608.3 m; 111 diamond core tails of RC pre-collars totalling 29528.31 m; 106 RC holes drilled from surface totalling 11351.82 m.

The Lone Sister mineral resource estimate is based on 50 drill holes for 14067.72 m. Of these 42 were diamond core tails of RC pre-collars totalling 13260.72 m; 8 were RC holes drilled from surface totalling 807.0 m.

Diamond core recovery was very high, averaging 99.7% at 309 and 100% at Lone Sister.

Sampling Methods.

RC drilling drill cuttings were sampled from the cyclone at 1.0 m intervals and sub-sampled using Jones riffle splitters to a 2kg – 3kg sample.

Diamond drill core was sub-sampled by cutting the core in half longitudinally using a diamond saw. The core was cut at the highest angle possible to geological features to ensure that half of each geological feature was sampled. Diamond core samples were generally to 1.0 m

Sample Analysis Method.

All samples were assayed for Au by fire assay with aqua regia / AAS finish. Approximately 65% of samples were also assayed for Ag using the same method.

Assay quality control procedures varied through time with different operators. In general blanks and standards were inserted at a rate of 1 in 10 - 20 and pulp duplicates at 1 in 15 samples. 50% of samples > 0.5 g/t were sent to an umpire laboratory. The results of these data indicate that the quality of the data is suitable for use in resource estimation.

Estimation Methodology.

The raw gold assay results were composited to 2.0 m prior to statistical analysis and variography.

For the 309 deposit gold grades were interpolated in a block model with parent blocks 5 m by 5 m by 5 m sub-blocked to 1.25 m x 1.25 m x 1.25 m Interpolation was by ordinary kriging within 2 variably oriented gold grade domains interpreted at a nominal 0.2 g/t Au. The gold grade domains were used as hard boundaries.

At the Lone Sister deposit gold grades were interpolated in a block model with parent blocks $4 \text{ m} \times 16 \text{ m} \times 10 \text{ m}$ and sub-blocks of $1 \text{ m} \times 4 \text{ m} \times 12.5 \text{ m}$. Interpolation was by ordinary kriging within a gold grade domain interpreted at a nominal 1.0 g/t Au. The gold grade domain was used as a hard boundary. Grades above 60 g/t were restricted to within 16 m.

Oxidation domains were interpreted from logged oxidation and used to code the block model for determination of mineralisation types and assignment of bulk density.

Limited density is available so assumed densities (based on typical values for lithology and oxidation level) were assigned to blocks. All oxide material was assigned a density of 2.4 t/m3 and 2.6 t/m3 in fresh material.

Resource Classification Criteria.

The 309 block model was classified in accordance with the JORC 2012 code. Resource classification took into account:

- geological continuity
- the plausibility of alternative geological interpretations,
- data (drilling) density and configuration (distance to nearest samples, number holes used)
- kriging slope of regression

Resource classification was based on largely on measures of grade estimation quality. The low grade and simple shape of the gold grade domain meant that geological continuity was not considered for resource classification because the level of confidence in geological continuity is uniform throughout the model.

Measured resources have been classified from continuous zones where the average distance of composite samples used to interpolate a block was less than 15 m, the kriging slope of regression was greater than 0.7 and data from at least three drillholes was used.

Indicated resources were classified from continuous zones where the average distance of composite samples used to interpolate a block was 15 m - 25 m, the kriging slope of regression was 0.1 - 0.7 and data from at least two drillholes was used.

All remaining material inside the gold grade domains was classified as inferred.

All of the Lone Sister block model was classified as inferred as the geological interpretation is not unequivocal.

Validation of the block models was by;

- comparison to reported production of the 309 deposit to 31/12/06 which totalled 56,370t @ 11.1 g/t. This resource estimate reports 58,900t at 8.38 g/t from the mined voids.
- visually, by comparison of block model grades to de-clustered composite grades,
- by comparison of histograms of block and composite grades and in swathplots.

Cut-off Grades

The resource has been estimated at a range of cut-off grades which are presented as grade and tonnage curves in figure summarised in figures 4, 5, 6 & 7. Potentially open pittable resources at 309 were reported from above 1050 RL at a cut-off of 1.0 g/t. The cut-off grade used may be conservative but reflects the lack of metallurgical testwork from low grade samples and the presence of sulphide minerals which may indicate a refractory component in low grade mineralisation. A previous pit optimisation at a gold price of AUD\$1,500/oz extended to 1050RL

Underground resources at 309 and Lone Sister are reported from below 1050RL at a 2.0 g/t cut-off. The cutoff grade reflects previous underground mining studies with an allowance for reasonably foreseeable gold price increases.

Mining and Metallurgical Methods.

This Resource estimate is based on the following assumptions, that:

• Open pit mining is technically feasible at the 309 deposit. This is supported by previous mining studies and preliminary pit optimisations. The cut-off grade of potentially open pittable resources reflects the lack of metallurgical testwork from low grade samples and the presence of sulphide minerals which may indicate a refractory component in low grade mineralisation. A previous pit optimisation at a gold price of AUD\$1,500/oz extended to 1050RL. Open pit mining was not considered an option at the Lone Sister Deposit, however future studies may demonstrate that this is possible.

- Underground mining is supported by previous mining at the 309 orebody and later feasibility studies demonstrating that this is possible and feasible.
- An economic processing route will be found. Previous mining was conducted using conventional CIL treatment methodologies. Significant amount of metallurgical testwork has been completed by previous operators and reviewed by GBM and supports this view.
- Gold prices remain at, or around current prices (AUD\$1600/oz).

For Further information please contact:

	Media enquiries:
Peter Thompson	Michael Vaughan
Managing Director	Fivemark Partners
GBM Resources Limited	+61 422 602 720
+61 8 9316 9100	michael.vaughan@fivemark.com.au

About GBM Resources

GBM Resources Ltd (ASX: GBZ) is an Australian resource company that listed on the ASX in 2007, headquartered in Perth WA, with exploration operations in Victoria and Queensland.

The Company's primary focus is in key commodities of gold and copper-gold, assets in Australia. GBM tenements cover an area greater than 2,500 square kilometres in eight major projects areas in Queensland and Victoria.

GBM is prioritising the exploration and development of the Mount Coolon Gold Project and Mount Morgan Gold Copper Project.

Notes

The information in this report that relates to The Twin Hills Mineral Resources is based on information compiled by Kerrin Allwood, who is a Member of The Australasian Institute of Mining and Metallurgy and The Australasian Institute of Geoscientists. Mr Allwood is a full time employee of Geomodelling Limited. Mr Allwood has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Allwood consents to the inclusion in the report of the matters based on his information in the form and context in which itappears.

The information in this report that relates Exploration Results and Mineral Resources is based on information compiled by Neil Norris, who is a Member of The Australasian Institute of Mining and Metallurgy and The Australasian Institute of Geoscientists. Mr Norris is a full-time employee of the company, and is a holder of shares and options in the company. Mr Norris has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Norris consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The Company confirms that the form and context in which the Competent Persons findings are presented have not been materially modified from the original market announcements.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the respective announcements and all material assumptions and technical parameters underpinning the resource estimate with those announcements continue to apply and have not materially changed.

Appended

309 Deposit and Lone Sister Deposit - JORC Table 1.
309 Deposit Surface Drillhole Location Plan.
Lone Sister Deposit Surface Drillhole Location Plan.
309 Deposit Surface Drillhole Collar Table.
Lone Sister Deposit Surface Drillhole Collar Table.
309 Deposit Surface Drilling Downhole Intersection Summary Table.
Lone Sister Surface Drilling Downhole Intersection Summary Table.

JORC CODE, 2012 EDITION – TABLE 1 REPORT TEMPLATE

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 These mineral resource estimates are based on samples from reverse circulation (RC) and diamond core (DD) drilling. RC drill cuttings were sampled from the cyclone at 1.0 m intervals and subsampled using Jones riffle splitters which are designed to allow the collection of unbiased sub-samples. DD core was sub-sampled by cutting the core in half longitudinally using a diamond saw. The core was cut at the highest angle possible to geological features to ensure that half of each geological feature was sampled. Diamond core samples were generally to 1.0 m intervals but honoured geological contacts where appropriate. All sub-samples were then bagged and dispatched to external commercial laboratories for assay. All samples were analysed for gold by fire assay followed by aqua regia digestion and AAS analysis. Silver was similarly assayed by fire assay / AAS for 68% of the samples. Selected samples were analysed for a multi-element suite.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 309 mineral resource estimate: The 309 mineral resource estimate is based on 429 drill holes for 22947.63 m. Of these 16 were diamond core holes drilled from surface totaling 2459.1 m; 196 diamond core holes drilled from underground totaling 12608.3 m; 111 diamond core tails of RC pre-collars totaling 29528.31 m; 106 RC holes drilled from surface totaling 11351.82 m. All RC drilling utilized a face sample hammer. DD core was HQ and NQ in size for surface drilling and BQ for underground drilling. Lone Sister mineral resource estimate:

Criteria	JORC Code explanation	Commentary
		 The Lone Sister mineral resource estimate is based on 50 drill holes for 14067.72 m. Of these 42 were diamond core tails of RC pre-collars totaling 13260.72 m; 8 were RC holes drilled from surface totaling 807.0m. All RC drilling utilized a 5.25 inch face sample hammer. DD core was HQ and NQ in size.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC drilling recovery was not recorded Diamond drilling recovery was measured run by run as recovered length compared to drilled length. For the 309 mineral resource estimate diamond drilling recovery is available for 44 holes and averages 99.7% For the Lone Sister mineral resource estimate diamond drilling recovery is available for 9 holes and averages 100.0% Any potential relationship between drilling recovery and gold grade was not investigated because the drilling recovery is so high.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill core and chips were logged for lithology, colour, weathering and alteration using standardized codes. Selected diamond core was also logged for geotechnical data (RQD, strength, fracture frequency, joint type and roughness) All intersections were logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC drill cuttings were sub-sampled using 3 tier (12.5%) Jones riffle splitters to yield a 2 kg – 3 kg sub-sample. RC sample moisture was not recorded and any measures taken sample wet or moist RC samples have not been recorded. DD core was sub-sampled by cutting the core in half longitudinally using a diamond saw. The core was cut at the highest angle possible to geological features to ensure that half of each geological feature was sampled. Diamond core samples were generally to 1.0 m intervals but honoured geological contacts where appropriate. Very rare visible gold (<1.0 mm) is present at both deposits. Whilst no analysis of the optimal sample size for such material was undertaken it is likely that the sample size is insufficient for a reliable result. The impact of

Criteria	JORC Code explanation	Commentary
		these samples on the resource estimates was managed by the restriction of outliers during interpolation (see below).
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and theirderivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The assay methods used are total and appropriate to the style of mineralization. No geophysical methods were used Assay quality control procedures varied through time with different operators. In general blanks and standards were inserted at a rate of 1 in 10 – 20 and pulp duplicates at 1 in 15 samples. 50% of samples > 0.5 g/t were sent to an umpire laboratory. The results of these data indicate that the quality of the data is suitable for use in resource estimation.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 GBM have not carried out any check assays Twinned holes were not drilled, however the underground drilling at the 309 deposit resulted in very closely spaced (< 1.0 m) drilling. These holes showed that both gold grade and veining is highly variable at less than 10 m scale but form continuous zones at 10 m – 100 m scale. The raw assay data (laboratory certificates) was available for approximately 80% of the data. Negative values in the database less than -0.1 g/t were treated as null values (not sampled), negative values between 0 and -0.1 g/t were halved and converted to positive values on the assumption that these were below detection values.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Surface drill collar locations were determined by differential GPS (DGPS) to +/- 0.1 m. Underground drill collar locations were determined by the mine surveyor (total station instrument). Downhole surveys were taken at an average of 35 m downhole in DD and RC DD holes. Most RC holes were not surveyed down hole Topographic control in the block models are from triangulated 2.0 m contours created from surface survey traverses. The topographic surfaces are suitable for resource estimation. Underground voids at the 309 deposit are from wireframes created from

Criteria	JORC Code explanation	Commentary
		 underground survey data (development) and laser scans (stopes). These are suitable for resource estimation. All locational data was originally acquired local grids. GBM used MapInfo software to convert all locational data (including historical wireframes) to MGA grid.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill data spacing varies significantly from less than 1.0 metre near underground drill sites at the 309 deposit to 40 m in areas defined by widely spaced surface drilling. Underground drilling at 309 is on varying azimuths and dips. Surface drilling at 309 is on 25m spaced east-west and 25m spaced north – south sections Surface drilling at Lone Sister is on 40m spaced east-west sections and largely drilled towards the east at dips of -60° to -80°. All work has been completed in MGA zone 55 using the GDA94 datum but with 1000m added to elevation to prevent negative elevations.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The gross geometry of mineralisation at 309 is largely isotropic. The varying drilling orientations used at 309 has allowed definition of this geometry and does not introduce any known bias The Lone Sister mineralization is more tabular in nature, striking north – south and dipping steeply to the west. The drilling towards the east is appropriate to define the geology of the mineralization and does not introduce any known bias
Sample security	• The measures taken to ensure sample security.	 Any measures taken to ensure sample security have not been recorded. Most assays were carried out at
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 The competent person is not aware of any audits having been carried out on the data used in this resource estimate. The data used in this resource estimate have been reviewed several times during BMA mining and for various due diligence studies carried out when the project has changed hands.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Twin Hills 309 and Lone Sister deposits are contained within current Mining Licence ML70316, expiry 31/12/2019. The license is jointly owned by Minjar Gold Pty Ltd through subsidiary companies NQM Gold 2 Pty Ltd (60%) and CQT Gold Australia Pty Ltd (40%) and is subject to a Sale and Purchase agreement with Mount Coolon Gold Mines Pty Ltd, a wholly owned subsidiary of GBM Resources Ltd. On completion of the purchase, royalties on gold production will be to the Queensland Government (currently 5% on all ML's in the state of QLD) and a 2.5% to Franco –Nevada Australia Pty Ltd. Consent has been obtained for the transfer Conquest Mining Ltd. From its parent company, Evolution Mining Ltd. Environmental Authority EPML00772013 is current and the Financial Assurance held by the Queensland Department of Environment and Science is currently \$981,000 and will be subject to review on transfer or changes to the Plan of Operations. GBM's liability for any increases prior to transfer of the licence is restricted to a \$1M cap. Underground mining has been conducted on the Licence and the current Plan of Operations is due for renewal by 1st of September 2020. The licence falls within a Strategic Cropping Zone and the licence is contained within a Forest Management Area. There are no known impediments to future mining on thisLicence.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Exploration has been carried out by several companies over a long period of time at Twin Hills. Gold mineralisation was first recognized at Twin Hills by Metana Minerals NL in 1987. Since that time the project area has been held under either an exploration of mining licence by a variety of companies and joint ventures. BMA Gold commenced underground mining at 309 in January 2006 and ceased mining in February 2007. Of the drilling data used to inform the 309 mineral resource estimate Metana drilled 1 DD hole (120m) and 1 RC hole (89m) in 1988. Plutonic drill

Criteria	JORC Code explanation	Commentary
		 31 RCDD holes (8555.41m) and 53 RC holes (5197.4m) from 1994 to 1999 and BMA Gold drilled 15 surface DD holes (2339.1m), 80 RCDD holes (20973m), 52 RC holes (6065.42m) and 196 underground DD holes (12608.3m) from 2002 until 2007. At the Lone Sister deposit Metana drilled 1 RCDD hole (435.5m) and 2 RC holes (200m) in 1988, Plutonic drilled 15 RCDD holes (5134.99m) and 1 RC hole (93m) from 1988 to 1997 and in 2006, Homestake Gold drilled 4 RCDD holes (1379.33m) from 1998-1999) and BMA Gold 22 RCDD holes (6310.9m) and 5 RC holes (514m) from 2004 to 2007. The Twin Hills project area has also been subject to aerial magnetic and radiometrtic surveys, soil geochemistry, RAB geochemistry and IP surveys. The mineral resource estimates reported on here are based on the appropriately validated results of work completed by the above companies. GBM have not completed any significant work at Twin Hills other than site inspections to review stored drill core, site geology, site infrastructure and access.
Geology	Deposit type, geological setting and style of mineralisation.	 The Twin Hills deposits are situated within the western domain of the Upper Devonian to Lower Carboniferous Drummond Basin, host to a number of epithermal gold deposits including the Pajingo deposit (2.7 Moz production to date). The 309 deposit comprises a stockwork of very high grade, narrow (0.2 m) low sulphidation epithermal quartz-sulphide veins hosted in variably altered and mineralized breccias. The breccias comprise dominantly shale clasts in a very fine grained matrix. The overall geometry of gold mineralization at 309 is a steeply plunging body and is open at depth. The epithermal quartz veins form sheeted vein sets that strike north and locally vary in dip from subvertical to gently east dipping. Minor fluorite occurrences in associated with open space comb quartz suggest a significant magmatic component to the vein forming fluids. The Lone Sister deposit is a more typical low sulphidation epithermal gold deposit. Gold mineralization is host by low grade quartz veins and very high grade quartz-sulphide veins. The gold mineralisation occurs in altered rhyolite. The quartz veins strike north south and dip 50° to 80° to the west.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Drill hole collar and intercept tables are appended to this release.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All drilling intercepts from past exploration above 20 gram.metres (grade x length) have been reported. Intervals are down hole length weighted average grades above 1 g/t Au incorporating up to 2 metres of lower grade material or internal dilution. Grades have not been cut as cutting of high grades in this style of mineralisation with a significant high grade component. No metal equivalents are reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Drilling is generally oriented perpendicular to the strike of the mineralisation at angles varying from acute to perpendicular. However only downhole intersections have been reported due to the variety of drill orientations and volume of drilling, the mature nature of the deposit with a range of drilling orientations.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate images are included within the text of the release
Balanced	• Where comprehensive reporting of all Exploration Results is not practicable,	See appended tables of intercepts

Criteria	JORC Code explanation	Commentary
reporting	representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	No exploration results are reported.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work will focus on metallurgical testwork to determine possible processing options, step out drilling to extend both the 309 and Lone Sister deposits at depth and infill drilling at the Lone Sister deposit to allow higher confidence resource estimation.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 The data was provided as three separate databases none of which contained all the data. These 3 databases were compiled into a single database and then validated. Validation checks included checks for duplicate samples, duplicate holes, interval overlaps, extreme high grades. Where errors were found these were checked against the original assay certificates and fixed. The data provided included many types of drilling. All RAB, open hole percussion, auger and air core drilling was omitted from the database prior to use in resource estimation as these drilling methods are not considered suitable for resource estimation.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	• The competent person visited the site for a period of two days in December 2018. During this visit archived drill core was reviewed and compared to assays and the site layout and infrastructure assessed.
Geological	• Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	• The confidence in geological interpretation at the 309 deposit varies with scale. The broad mineralization envelope has been well defined by drilling

Criteria	JORC Code explanation	Commentary
interpretation	 Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 and has a gradation boundary and so presents little risk at the low grade interpreted. The confidence in the geological interpretation of high grade veins within this envelope is low as the controls on these veins are not understood and drilling shows that the spatial continuity of these veins is low (less than 20m and usually less than 10m). The 309 mineral resource estimate was controlled by a gold grade domain interpreted at a nominal 0.2 g/t Au. A gold grade domain was used because gold mineralization does not honour any geological or alteration features. The grade of 0.2 g/t is somewhat arbitrary, being approximately 50% of the lowest reasonably foreseeable mining cutoff (assuming open pit mining and heap leach processing). A cumulative probability plot of gold grades showed no natural lower cutoff to gold mineralization is simpler and more continuous, although in places alternative, reasonable interpretations are possible. The country rock is monotonous and so has no impact on the geological variability of gold mineralization. The Lone Sister mineral resource estimate was controlled by a gold grade domain interpreted at a nominal 1.0 g/t Au. A gold grade domain was used because gold mineralization does not honour any geological or alteration features.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The 309 deposit extends about 350 m in strike (north) length and 150 m wide (east-west). The mineralized breccia has been shown by drilling to extend to at least 400m below surface and is open at depth. The Lone Sister deposit has been defined by drilling over a strike length of 250 m and to a depth of 400 m. The width varies from 2 m to a maximum of 60m but is typically 15 m – 30 m wide. The main mineralized zone plunges about xx° to the north.
Estimation and modelling	• The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining,	The 309 deposit:Gold and silver grades were interpolated into a block model with parent

Criteria	JORC Code explanation	Commentary					
techniques	 interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. 	blocks 5 m x 5 m x 5 m and sub-blocks of 1.25 m x 1.25 m x 1.25 m by ordinary kriging. The raw assay data were composited to 2.0 m prior to geostatistical analysis and interpolation. The interpolation was carried out within a gold grade domain interpreted from 2.0 m long composites at a nominal 0.2 g/t as hard boundary and two orientation domains separating zones of shallowly east dipping and sub-vertical high grade veins. High grade samples were not restricted because these showed geological continuity where there is sufficiently dense data and because the block model reconciled to past production better when these data were used. The ordinary kriging used separate variogram models in each orientation domain. The variogram models are shown below. The search neighbourhood used an appropriately oriented ellipsoid with axes 50 m by 50 m 25m in the flat domain and 80 m x 40 m x 20 m in the steep domain. A minimum of 5 and a maximum of 30 composites (maximum 10 per guadrant) were used for interpolation in bath domains					
	 Discussion of basis for using or not using grade cutting or capping. 			Mineralisati	on Domain		
	• The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.			1 (shallow east dip)	2 (steep)		
			Exp VG Type	correlogram	correlogram		
		Nugget Variance	C0	0.44	0.57		
		Sills (Spharical)	C1	0.27	0.2		
		Silis (Spherical)	C2	0.29	0.2		
			Maj	4.5	5		

Ranges_1 (m)

Ranges_2 (m)

Variogram Rot (MEDS, ZXY) Sem

Min

Maj

Sem

Min

Maj

Sem

5

3

16

20

6

170

0

3

3

30

14

8

130

-70

Criteria	JORC Code explanation	Commentary			
			Min	10	90
			Maj	00/170	-70/130
		Actual Direction	Sem	-10/080	-20/302
		(pluige/tiellu)	Min	80/080	02/213
		 Only gold and silver w estimate any other val Variants using no high weighting were used t The block model was w statistically against de swath plots. The block model was w compared to past provide to past provide Gold and silver grades blocks 4 m x 16 m x 10 kriging. The raw assay analysis and interpola gold grade domain int grade samples greater was selected as the out a visual assessment of model used is shown b search ellipsoid with a composites (maximun domains. 	ere estimated a riable grade restrictic o assess the int validated visuall -clustered avera- reconciled to pa duction of 56.4k were interpola 0 m and sub-blo data were com tion. The interp erpreted at a no than 60 g/t we utlier restriction the continuity below. The sear xes of 60 m. A r n 12 per quadra	s there are insut on and inverse d erpolation paran y against the ray age composite g ast production (5 ct at 11.1g/t). ted into a block cks of 1 m x 4 m posited to 2.0 m olation was carr ominal 1.0 g/t as re restricted to from cumulativ of grades above ch neighbourho minimum of 4 ar nt) were used for Mineralisation Domain 11 correlogram	ficient data to stance squared neters used. <i>w</i> assay data, rade and by the use of 8.9kt at 8.4 g/t model with parent x 12.5 m by ordinary prior to geostatistical ied out within a single shard boundary. High within 16 m. 60 g/t e probability plots anc 60 g/t. The variogram od used a spherical id a maximum of 30 or interpolation in both

Criteria	JORC Code explanation	Commentary			
		Nugget Variance	C0	0.60	
			C1	0.05	
		Sills (Spherical)	C2	0.35	
			Maj	6	
		Ranges_1 (m)	Sem	6	
			Min	6	
			Maj	18	
		Ranges_2 (m)	Sem	18	
			Min	18	
			Maj	0	
		Variogram Rot (MEDS,	Sem	0	
		271)	Min	10	
			Maj	00/000	
		Actual Direction	Sem	00/000	
		(pronge/ trend)	Min	00/000	
		 Only gold and silver we estimate any other vari A variant using inverse interpolation parameter The block model was vastatistically against de-swath plots. 	ere estimated a iable distance squar ers used. alidated visuall clustered avera	s there are insuf ed weighting wa y against the ray age composite g	fficient data to as used to assess the w assay data, rade and by the use of
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	• All tonnages are report determined.	ed on a dry ba	sis. No moisture	content was
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	• For the 309 resource es 1050RL, and 2.0 g/t be pit mining is feasible to that a CIL processing pl close to the site.	timate a cutof low 1050RL. Th o 1050 RL and lant could be e	f grade of 1.0 g/t nese cutoff grad underground mi conomically buil	t was applied above es assume that open ining below that and t and operated at, or

Criteria	JORC Code explanation	Commentary			
		• For the Lone Sister resource estimate a cutoff grade of 2.0 g/t was applied, assuming that underground mining and a CIL processing plant could be economically built and operated at, or close to the site.			
Mining factors or assumptions	• Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 For the 309 deposit open pit mining is assumed possible to 1050RL based on a pit optimization of a previous model at AUD1600/oz. Mining selectivity to a minimum of 2 metres is assumed. For the 309 and Lone Sister deposits underground mining is assumed possible to a minimum width of 3.0m 			
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 CIL recoveries greater than 85% have been demonstrated for ore above 4 g/t by past production at 309. There is limited testwork suggesting that CIL recoveries above 80% are possible for low grade 309 mineralisation. Heap leach recovery may also be possible for low grade ore at 309 but there is no test work to support this. No metallurgical testwork has been carried out on Lone Sister mineralization. Economically viable CIL recovery is assumed on the basis that the mineralization is similar to 309 mineralisation. 			
Environmen-tal factors or assumptions	• Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 It is assumed that the placement of mining waste would be permitted within the current mining lease as there are existing waste dumps. The presence of sulphide minerals in the 309 waste material suggests that it may be potentially acid forming, although there has been no test work to confirm this. The Lone Sister fresh waste also contains sulphide minerals but at a lower level and so some may be acid forming. There is currently no tailings storage facility at site. 			
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods 	• Bulk density at the both deposits was assigned by weathering domain. There are only 62 density samples from the two deposits combined and all of these are from fresh material. A density of 2.6 t/m3 was applied to fresh material and 2.4 t/m3 to oxide material. 2.6 t/m3 approximates the average			

Criteria	JORC Code explanation	Commentary			
	 that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 of the 62 fresh samples (2.61 t/m3) and the oxide density of 2.4 t/m3 was assumed from comparable projects. Voids created by previous mining at the 309 deposit were assigned a density of 0.0 t/m3. 			
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The 309 mineral resources were classified into continuous zones of like confidence using the distance to the nearest composite, the average distance of all composites used to estimate a block, the kriging slope of regression (a function of the grade continuity in the variogram model and the spatial configuration of the data used to estimate a block) and the number of drill holes used to estimate a block. The geological continuity of the gold domain was not used for resource classification because the shape is rather simple and the resource cutoff grade is well above the domain nominal cutoff grade so that the resource limits are defined by the cutoff grade rather than the domain shape. Data quality was also considered but not used because the data quality is good and not spatiallyvariable. The Lone Sister deposit was all classified as inferred due to the limited 			
Audits or reviews	• The results of any audits or reviews of MineralResource estimates.	• This mineral resource estimate has not been audited or reviewed as the project is at a preliminary stage of development.			
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The relative accuracy and confidence level in the Mineral Resource estimates are considered to be in line with the generally accepted accuracy and confidence of the nominated Mineral Resource categories. This has been determined on a semi- quantitative basis, and is based on the Competent Person's experience with similar deposits. The resource classification relates to both global and local estimates. For the 309 deposit the block model was reconciled to past production (58.9kt at 8.4 g/t compared to past production of 56.4kt at 11.1g/t). 			

Figure 9; 309 Deposit Drillhole Location Plan

Figure 10; Lone Sister Deposit Drillhole Location Plan

TWIN HILL COLLARS

Drill Collars used in 309 Resource Model

All holes are reported in MGA94 Zone S 55 Adjusted DTM RL Mine Local can be converted to AHD by subtracting 1000 m Total 309 Collars: 431

			Adjusted		Final				
	Fast	North	DTM RL	Drilling	Denth	Company	Din	NAT	Prospect
Hole ID	East	North	Mine	Туре	(m)	company	Dip	Azimuth	Prospect
			Local (m)		()				
00THRC101	505683	7575308	1256.63	REVC	196	HOM	-60	99	309
00THRC102	505560	7575091	1256.63	REVC	196	HOM	-60	90	309
00THRC103	505440	7575181	1256.63	REVC	190	HOM	-60	90	309
00THRC112	504765	7575181	1260.8	REVC	136	HOM	-60	90	309
00THRC113	504565	7575181	1262.3	REVC	220	HOM	-60	90	309
00THRC114	503915	7575181	1253	REVC	136	HOM	-60	270	309
00THRC120	506565	7575181	1256.63	REVC	112	HOM	-60	90	309
98THRC022	506015	7575781	1256.63	REVC	198	UNK	-60	82	309
99THRC063	505915	7574181	1238	REVC	198	UNK	-60	90	309
99THRC064	505814	7574184	1239.4	REVC	196	UNK	-60	99	309
99THRC065	505717	7574185	1241.6	REVC	186	UNK	-60	99	309
99THRC066	506063	7576272	1256.63	REVC	114	UNK	-60	99	309
99THRC067	505115	7576536	1256.63	REVC	198	UNK	-60	99	309
99THRC068	504916	7576380	1256.63	REVC	198	UNK	-60	99	309
99THRC069	506026	7576978	1256.63	REVC	128	UNK	-60	99	309
99THRC070	505510	7574179	1242	REVC	198	UNK	-60	99	309
99THRC071	506021	7573477	1234.7	REVC	198	UNK	-60	99	309
99THRC072	505915	7573584	1233.9	REVC	198	UNK	-60	99	309
99THRC073	505317	7573532	1234.2	REVC	198	UNK	-60	99	309
99THRC074	505219	7573532	1235.7	REVC	198	UNK	-60	99	309
99THRC085	506355	7575981	1235.1	REVC	150	UNK	-60	97	309
99THRC086	506255	7575981	1236.8	REVC	150	UNK	-60	90	309
99THRC087	505681	7574802	1247.7	REVC	198	UNK	-60	98	309
99THRC088	505763	7574687	1246	REVC	200	UNK	-60	98	309
99THRC089	505665	7574703	1247.4	REVC	203	LINK	-60	98	309
99THRC090	505589	7574615	1248.4	REVC	198	LINK	-90	8	309
99THRC091	505780	7574482	1243.4	REVC	198	LINK	-60	98	309
99THRC092	505632	7574506	1244 7	REVC	198	LINK	-60	98	309
99THRC093	505813	7574375	1242.5	REVC	192	LINK	-60	98	309
99THRC095	504766	757/831	1242.5	REVC	150	LINK	-60	90	309
99THRC096	504700	757/881	1264.0	REVC	150	LINK	-60	90	309
99THRC097	504646	757/981	1264.5	REVC	150	LINK	-60	90	309
	504040	7575194	1204	REVC	150		-00	279	200
	505266	7575052	1255 2	PEVC	150		-00	00	200
991HRC099	505200	7575055	1255.2	REVC	100	UNK	-00	39	309
391HKC100	505024	7575579	1255.0		70 5		-00	279	209
TD414	505519	7575002	1250.55		100 0		-90	518	209
TD427	505447	7575076	1257.25		00		-69	08	209
TD455	505476	7575047	1257.55		90 107 7		-60	90 102	209
10430	505430	7575609	1257.43		107.7	UINK	-01	102	309
10457	505405	7575096	1250.05	DD	120		-00	94	309
TD52	505955	7574336	1256.63		33.3	UINK	-90	9	309
TD723	505379	7575581	1256.83	DD	119.7	UNK	-60	98	309
TD724	505395	/5/55/6	1256.93	DD	94	UNK	-60	98	309
THDD850	505407	7575247	1252.25	DD	36	BIMAG	-90	8	309
THD0851	505389	7575354	1253.87	DD	48	BIMAG	-90	8	309
THDD852	505371	7575484	1255.4	DD	65.2	BMAG	-90	8	309
THDD885	505491	7575674	1256.82	DD	142	THO	-90	9	309
THDD886	505471	7575678	1257.13	DD	150	THO	-90	9	309
THDD887	505468	7575658	1257.28	DD	144.5	THO	-90	9	309
THDD888	505488	7575655	1257.21	DD	150	THO	-90	9	309
THDD889	505485	7575636	1257.29	DD	150	ТНО	-90	9	309
THDD890	505464	7575641	1257.45	DD	146.5	THO	-90	9	309
THDD908	505399	7575796	1254.297	DD	418.7	BMAG	-56	192	309

			Adiusted						
	F		DTM RL	Drilling	Final	0		NAT	Descent
Hole ID	East	North	Mine	Туре	Depth (m)	Company	Dip	Azimuth	Prospect
			Local (m)		(m)				
THDD925	505446	7575448	1254.5	DD	180.3	BMAG	-60	4	309
THDH656	505317	7575650	1257.03	DD	300	UNK	-60	97	309
THDH657	505284	7575578	1256.73	DD	227.5	UNK	-60	98	309
THDH658	505271	7575620	1256.93	DD	215.7	UNK	-60	98	309
THRC100	505624	7575378	1245	REVC	198	BMAG	-60	280	309
THRC101	505683	7575308	1256.63	REVC	196	BMAG	-60	100	309
THRC102	505560	7575091	1256.63	REVC	196	BMAG	-60	91	309
THRC103	505440	7575180	1256.63	REVC	190	BMAG	-60	9	309
THRC120	506565	7575181	1256.63	REVC	112	BMAG	-60	91	309
THRC64	505813	7574184	1245	REVC	196	BMAG	-60	100	309
THRC65	505716	7574185	1245	REVC	186	BMAG	-60	100	309
THRC659	505412	7575558	1256.93	REVC	100	UNK	-60	98	309
THRC660	505598	7575688	1253.13	REVC	100	UNK	-60	98	309
THRC661	505513	7575782	1253.53	REVC	103	UNK	-60	98	309
THRC662	505340	7575565	1256.93	REVC	9	UNK	-60	98	309
THRC664	505459	7575796	1253.93	REVC	5	UNK	-60	98	309
THRC665	505271	7575531	1256.48	REVC	158	UNK	-60	98	309
THRC666	505353	7575520	1256.23	REVC	119	UNK	-60	98	309
THRC667	505412	7575512	1256.03	REVC	144	UNK	-60	98	309
THRC668	505352	7575384	1254.51	REVC	102	UNK	-60	98	309
THRC669	505391	7575377	1253.83	REVC	102	UNK	-60	98	309
THRC670	505430	7575370	1253.23	REVC	102	UNK	-60	98	309
THRC671	505469	7575364	1252.76	REVC	102	UNK	-60	98	309
THRC672	505500	7575176	1249.63	REVC	102	UNK	-60	98	309
THRC673	505539	7575170	1249.63	REVC	120	UNK	-60	98	309
THRC674	505578	7575163	1249.63	REVC	114	UNK	-60	98	309
THRC675	505618	/5/515/	1249.63	REVC	102	UNK	-60	98	309
THRC676	505592	7574999	1250	REVC	108	UNK	-60	98	309
THRC677	505631	7574993	1249.9	REVC	102	UNK	-60	98	309
	505671	7574986	1249.7	REVC	102	UNK	-60	98	309
	505710	7574980	1249.9	REVC	102		-60	98	309
	505509	7574178	1245	REVC	198	BIVIAG	-60	100	309
	505015	7573583	1245	REVC	198	BMAG	-60	100	309
THRC73	505316	7573531	1245	REVC	198	BMAG	-60	100	309
THRC74	505218	7573531	1245	REVC	198	BMAG	-60	100	309
THRC761	505466	7575648	1257.46	REVC	146	BMAG	-90	8	309
THRC770	505429	7575603	1257.64	REVC	85	BMAG	-60	188	309
THRC771	505430	7575611	1257.72	REVC	100	BMAG	-60	188	309
THRC772	505432	7575620	1257.52	REVC	110	BMAG	-60	188	309
THRC774	505448	7575660	1257.41	REVC	102	BMAG	-90	8	309
THRC775	505450	7575670	1257.34	REVC	99	BMAG	-90	8	309
THRC777	505504	7575581	1257.13	REVC	108	BMAG	-60	278	309
THRC778	505288	7575501	1256.19	REVC	153	BMAG	-60	8	309
THRC779	505446	7575591	1257.41	REVC	118	BMAG	-60	278	309
THRC780	505466	7575586	1257.38	REVC	82	BMAG	-60	278	309
THRC781	505453	7575544	1256.63	REVC	109	BMAG	-60	323	309
THRC782	505448	7575544	1256.67	REVC	73	BMAG	-60	323	309
THRC784	505440	7575532	1256.45	REVC	82	BMAG	-60	323	309
THRC786	505475	7575649	1257.36	REVC	120	BMAG	-60	278	309
THRC787	505494	7575643	1257.11	REVC	90	BMAG	-60	278	309
THRC788	505515	7575640	1256.99	REVC	108	BMAG	-60	278	309
THRC790	505554	7575635	1255.53	REVC	114	BMAG	-60	278	309
THRC791	505574	7575631	1254.62	REVC	102	BMAG	-60	278	309
THRC792	505480	7575672	1257	REVC	102	BMAG	-60	278	309
THRC793	505500	7575669	1256.77	REVC	102	BMAG	-60	278	309
THRC794	505520	7575665	1256.45	REVC	84	BMAG	-60	278	309
THRC795	505534	7575663	1256.22	REVC	20	BMAG	-60	278	309
THRC796	505579	7575655	1254.42	REVC	90	BMAG	-60	278	309
THRC797	505504	7575693	1256.25	REVC	96	BMAG	-60	278	309
THRC798	505543	7575685	1255.55	REVC	108	BMAG	-60	278	309

			Adjusted		Final				
Hole ID	East	North	DTM RL	Drilling	Depth	Company	Dip	NAT	Prospect
			Mine Local (m)	Туре	(m)			Azimuth	
THRC799	505473	7575627	1257 <i>4</i> 9	REVC	99	BMAG	-60	278	309
THRC800	505492	7575624	1257.38	REVC	90	BMAG	-60	278	309
THRC801	505513	7575619	1257.14	REVC	115	BMAG	-60	278	309
THRC802	505530	7575616	1256.62	REVC	107	BMAG	-60	278	309
THRC803	505551	7575614	1255.57	REVC	94	BMAG	-60	278	309
THRC804	505572	7575610	1254.69	REVC	82	BMAG	-60	278	309
THRC805	505469	7575609	1257.35	REVC	94	BMAG	-60	278	309
THRC806	505489	7575605	1257.32	REVC	94	BMAG	-60	278	309
THRC807	505485	7575582	1257.24	REVC	91	BMAG	-60	278	309
THRC808	505481	7575767	1254.6	REVC	70	BMAG	-60	188	309
THRC812	505435	7575540	1256.61	REVC	9	BMAG	-60	143	309
THRC813	505434	7575541	1256.63	REVC	15	BMAG	-60	143	309
THRC817	505329	7575696	1256.51	REVC	141	BMAG	-60	188	309
THRC825	505311	7575727	1256.03	REVC	129	BMAG	-60	188	309
THRC829	505493	7575624	1257.39	REVC	118	BMAG	-60	8	309
THRC832	505473	7575627	1257.6	REVC	88	BMAG	-60	8	309
THRC835	505463	7575567	1257.6	REVC	94	BMAG	-60	8	309
THRC836	505462	7575689	1257.06	REVC	118	BMAG	-60	8	309
THRC838	505450	7575610	1257.69	REVC	110	BMAG	-60	8	309
THRC841	505397	7575539	1256.61	REVC	110	BMAG	-60	8	309
THRC853	505368	7575487	1255.73	REVC	300	BMAG	-63	7	309
THRC854A	505327	7575480	1256.02	REVC	78	BMAG	-63	7	309
THRC855	505360	7575443	1255.29	REVC	164	BMAG	-60	7	309
THRC857	505279	7575436	1255.86	REVC	188	BMAG	-62	7	309
THRC858A	505269	7575498	1256.81	REVC	91	BMAG	-62	8	309
THRC860A	505341	7575506	1256.21	REVC	114	BMAG	-63	8	309
THRC861A	505293	7575525	1256.46	REVC	96	BMAG	-63	8	309
THRC862	505386	7575469	1255.38	REVC	120	BMAG	-64	8	309
THRC863	505412	7575568	1257.5	REVC	108	THO	-90	9	309
THRC864	505422	7575563	1257.53	REVC	114	THO	-90	9	309
THRC865	505431	7575561	1257.33	REVC	102	THO	-90	9	309
THRC866	505442	7575564	1257.29	REVC	104	THO	-90	9	309
THRC867	505434	7575579	1257.58	REVC	108	THO	-90	9	309
THRC868	505452	7575565	1257.33	REVC	114	THO	-90	9	309
THRC869A	505305	/5/54//	1256.5	REVC	120	THO	-60	8	309
THRC87	505680	7574802	1245	REVC	198	BMAG	-60	99	309
THRC877	505808	7574714	1243.373	REVC	200	BIVIAG	-60	9	309
THRC878	505840	7574907	1244.465	REVC	200	BIMAG	-60	189	309
THRC8/9	505668	7574845	1244.83	REVC	200	THU	-60	9	309
THRC88	505763	7574687	1245	REVC	200	BIVIAG	-60	99	309
THRC880	505696	7575022	1245.97	REVC	200	THO	-60	189	309
THRCOOL	505809	7574740	1243.57	REVC	200	THO	-60	189	309
	505801	7574004	1242.51	REVC	200		-60	189	309
THECOOL	505771	7574479	1240.01	REVC	200	THO	-60	9	200
	505664	7574017	1241.4	REVC	200	PMAG	-60	9	209
	505226	7575372	1245	REVC	11/	THO	-62	55	309
THRC89/1a	505446	7575468	1257.5	REVC	30	тно	-62	5	309
THRC90	505589	7574614	1235	REVC	198	BMAG	-90	9	309
THRC91	505779	7574481	1245	REVC	198	BMAG	-60	99	309
THRC914	505505	7575708	1256	REVC	67	BMAG	-60	97	309
THRC915	505513	7575723	1255 5	REVC	73	BMAG	-60	98	309
THRC916	505494	7575726	1255.8	REVC	103	BMAG	-60	98	309
THRC92	505631	7574506	1245	REVC	198	BMAG	-60	99	309
THRC93	505812	7574374	1245	REVC	192	BMAG	-60	99	309
THRC98	504902	7575183	1245	REVC	150	BMAG	-60	280	309
THRC99	505266	7575052	1245	REVC	150	BMAG	-60	100	309
THRCD759	505366	7575594	1257.33	PCRCDD	192.2	BMAG	-90	8	309
THRCD760	505290	7575626	1256.97	PCRCDD	277	BMAG	-90	8	309
THRCD762	505464	7575638	1257.51	PCRCDD	199	BMAG	-90	271	309
THRCD763	505417	7575538	1256.52	PCRCDD	77.5	BMAG	-60	12	309

			Adjusted						
	F		DTM RL	Drilling	Final	0	5	NAT	Descent
Hole ID	East	North	Mine	Туре	Deptn (m)	Company	Dip	Azimuth	Prospect
			Local (m)		(111)				
THRCD764	505395	7575527	1256.37	PCRCDD	123.5	BMAG	-61	8	309
THRCD765	505397	7575537	1256.55	PCRCDD	107.2	BMAG	-60	8	309
THRCD766	505382	7575528	1256.43	PCRCDD	174.4	BMAG	-60	3	309
THRCD767	505352	7575512	1256.07	PCRCDD	230.7	BMAG	-63	9	309
THRCD768	505330	7575508	1256.11	PCRCDD	250	BMAG	-60	8	309
THRCD769	505308	7575501	1256.2	PCRCDD	252.3	BMAG	-60	8	309
THRCD773	505446	7575650	1257.47	PCRCDD	162.4	BMAG	-90	8	309
THRCD776	505467	7575657	1257.32	PCRCDD	172.6	BMAG	-90	8	309
THRCD783	505448	7575533	1256.42	PCRCDD	87	BMAG	-60	323	309
THRCD785	505454	7575526	1256.23	PCRCDD	140.3	BMAG	-60	323	309
THRCD789	505534	7575637	1256.5	PCRCDD	189	BMAG	-60	278	309
THRCD809	505494	7575766	1254.41	PCRCDD	197.5	BMAG	-60	188	309
THRCD810	505497	7575695	1256.34	PCRCDD	219.9	BMAG	-60	188	309
THRCD811	505486	7575696	1256.39	PCRCDD	116.8	BMAG	-60	188	309
THRCD814	505451	7575540	1256.58	PCRCDD	111	BMAG	-60	323	309
THRCD815	505449	7575534	1256.42	PCRCDD	131.6	BMAG	-60	323	309
THRCD816	505449	7575547	1256.62	PCRCDD	194.7	BMAG	-60	323	309
THRCD818	505337	7575726	1256.19	PCRCDD	288	BMAG	-60	188	309
THRCD819	505331	7575706	1256.41	PCRCDD	240	BMAG	-55	188	309
THRCD820	505335	7575705	1256.49	PCRCDD	270	BMAG	-62	188	309
THRCD821	505381	7575688	1257.2	PCRCDD	281.7	BMAG	-60	188	309
THRCD822	505391	7575738	1256.05	PCRCDD	374.3	BMAG	-60	188	309
THRCD823	505395	7575787	1254.99	PCRCDD	330.1	BMAG	-60	188	309
THRCD824	505427	7575604	1257.67	PCRCDD	366.1	BMAG	-60	278	309
THRCD826	505315	7575751	1255.76	PCRCDD	324.3	BMAG	-60	188	309
THRCD827	505319	7575782	1255.31	PCRCDD	417	BMAG	-60	188	309
THRCD828	505486	7575698	1256.54	PCRCDD	174	BMAG	-63	188	309
THRCD830	505486	7575584	1257.37	PCRCDD	201.5	BMAG	-60	8	309
THRCD831	505476	7575643	1257.52	PCRCDD	183.3	BMAG	-60	8	309
THRCD833	505469	7575607	1257.44	PCRCDD	206.6	BMAG	-60	8	309
THRCD834	505466	7575587	1257.5	PCRCDD	204.5	BMAG	-60	8	309
THRCD837	505453	7575630	1257.57	PCRCDD	174.5	BMAG	-60	8	309
THRCD839	505446	7575590	1257.55	PCRCDD	201.5	BMAG	-60	8	309
THRCD840	505443	7575571	1257.31	PCRCDD	255.6	BMAG	-60	8	309
THRCD842	505391	7575500	1255.87	PCRCDD	230.4	THO	-60	8	309
THRCD843	505434	7575513	1255.91	PCRCDD	291.5	BMAG	-60	8	309
THRCD844	505453	7575509	1256.02	PCRCDD	300.5	BMAG	-60	8	309
THRCD845	505473	7575505	1255.68	PCRCDD	290.4	BMAG	-60	8	309
THRCD846	505396	7575538	1256.58	PCRCDD	200.7	THO	-61	9	309
THRCD847	505461	7575567	1257.24	PCRCDD	293.2	BMAG	-62	8	309
THRCD848	505448	7575610	1257.67	PCRCDD	196.5	BMAG	-62	8	309
THRCD849	505492	7575623	1257.42	PCRCDD	171.5	BMAG	-62	8	309
THRCD854	505326	7575479	1256.01	PCRCDD	296.7	BMAG	-60	7	309
THRCD856	505313	7575521	1256.37	PCRCDD	281.7	THO	-61	9	309
THRCD858	505269	7575498	1256.76	PCRCDD	395.9	BMAG	-65	8	309
THRCD859	505302	7575452	1256.2	PCRCDD	380.9	BMAG	-63	8	309
THRCD860	505340	7575505	1256	DD	50	BMAG	-63	8	309
THRCD861	505293	7575524	1256.42	PCRCDD	233.9	BMAG	-65	8	309
THRCD869	505304	7575467	1256.25	PCRCDD	330.6	THO	-61	7	309
THRCD870	505342	7575568	1257.18	PCRCDD	231	THO	-78	7	309
THRCD871	505357	7575542	1256.09	PCRCDD	275	THO	-69	11	309
THRCD872	505369	7575522	1256.29	PCRCDD	290.7	THO	-62	8	309
THRCD873	505369	7575521	1256.21	PCRCDD	264.5	THO	-67	9	309
THRCD874	505410	7575495	1255.75	PCRCDD	235.9	THO	-63	4	309
THRCD875	505280	7575577	1257.01	PCRCDD	294.6	THO	-80	5	309
THRCD876	505381	7575504	1255.51	PCRCDD	260.8	THO	-64	15	309
THRCD891	505227	7575372	1256	PCRCDD	567	THO	-63	6	309
THRCD892	505290	7575379	1254.7	PCRCDD	591	THO	-63	9	309
THRCD893	505386	7575412	1254.49	PCRCDD	573	THO	-62	4	309
THRCD894	505446	7575469	1254.9	PCRCDD	430	THO	-61	6	309
THRCD895	505529	7575476	1254.02	PCRCDD	351	THO	-61	6	309

			Adjusted	Drilling	Final			NAT	
Hole ID	East	North	Mine Local (m)	Type	Depth (m)	Company	Dip	Azimuth	Prospect
THRCD896	505521	7575431	1253.12	PCRCDD	396	ТНО	-61	3	309
THRCD897	505438	7575419	1253.92	PCRCDD	378	THO	-61	3	309
THRCD898	505488	7575477	1254.8	PCRCDD	330	THO	-60	6	309
THRCD899	505532	7575503	1254.9	PCRCDD	330	THO	-59	5	309
THRCD900	505573	7575498	1253.66	PCRCDD	300	THO	-60	5	309
THRCD901	505611	7575491	1252.49	PCRCDD	301	THO	-61	5	309
THRCD902	505537	7575546	1255.6	PCRCDD	324	THO	-59	7	309
THRCD903	505566	7575460	1251.88	PCRCDD	296.2	THO	-60	7	309
THRCD904	505547	7575584	1255.73	PCRCDD	465	THO	-60	3	309
THRCD905	505376	7575774	1255.28	PCRCDD	413.6	THO	-60	184	309
THRCD906	505415	7575733	1256.79	PCRCDD	345	THO	-62	189	309
THRCD907	505429	7575757	1255.66	PCRCDD	232.3	THO	-62	189	309
THRCD908	505407	7575795	1254.37	PCRCDD	413.8	THO	-56	191	309
THRCD909	505429	7575757	1255.06	PCRCDD	375	THO	-60	188	309
THRCD910	505491	7575745	1255.17	PCRCDD	524.5	ТНО	-60	4	309
THRCD917	505397	7575664	1257	REVC	186.1	BMAG	-60	97	309
THRCD918	505460	7575613	1257.5	REVC	115	BMAG	-58	187	309
THRCD919	505466	7575648	1257.3	REVC	177.4	BMAG	-60	189	309
THRCD920	505470	7575677	1257	REVC	186.3	BMAG	-60	187	309
THRCD921	505484	7575609	1257.3	REVC	222.52	BMAG	-60	186	309
THRCD922	505490	7575643	1257.1	REVC	183.7	BMAG	-58	18/	309
THRCD923	505460	7575527	1256.4	REVC	102	BIMAG	-58	7	309
THRCD924	505421	7575439	1254.0	REVC	102	BIVIAG	-50	347	309
THRCD926	505439	7575506	1256.4	REVC	162.4	BIVIAG	-76	0	309
TPC141	505521	7575624	1250		38.8 214 E	BIVIAG	-90	0	309
TPC473	505413	7575734	1257	סט	214.5	BIVIAG	-60	100	309
TPC474	505261	7575645	1250		261	BIVIAG	-60	08	209
TPC654	505301	7575611	1250	סס	306.5	BMAG	-57	98	309
TPC655	505280	7575577	1256	סס	138 5	BMAG	-60	98	309
TPCD141	505200	7575663	1256 53	PCOHDD	38.8	LINK	-90	8	309
TPCD473	505414	7575635	1257.53	PCOHDD	214.5	UNK	-61	100	309
TPCD474	505429	7575721	1256.33	PCOHDD	187.8	UNK	-60	101	309
TPCD653	505361	7575645	1256.63	PCOHDD	261	UNK	-60	98	309
TPCD654	505312	7575612	1257.13	PCOHDD	306.5	UNK	-57	98	309
TPCD655	505281	7575578	1256.83	PCOHDD	138.5	UNK	-60	98	309
TRC386	505455	7575719	1256.43	REVC	100	UNK	-60	98	309
TRC387	505573	7575656	1254.83	REVC	100	UNK	-90	52	309
TRC388	505597	7575648	1253.73	REVC	100	UNK	-90	94	309
TRC389	505505	7575707	1256.03	REVC	89	MET	-90	48	309
TRC390	505543	7575699	1255.23	REVC	107	UNK	-90	305	309
TRC393	505585	7575694	1253.61	REVC	100	UNK	-90	117	309
TRC395	505409	7575725	1256.48	REVC	96	UNK	-90	8	309
TRC396	505397	7575637	1257.63	REVC	107	UNK	-90	8	309
TRC397	505435	7575632	1257.73	REVC	107	UNK	-89	111	309
TRC398	505473	7575625	1257.55	REVC	98	UNK	-89	70	309
TRC399	505513	7575619	1257.21	REVC	100	UNK	-90	8	309
TRC400	505554	7575613	1255.53	REVC	100	UNK	-90	30	309
TRC402	505591	7575607	1253.84	REVC	100	UNK	-90	8	309
TRC404	505498	7575790	1253.53	REVC	100	UNK	-90	8	309
TRC405	505611	7575854	1248.88	REVC	56	UNK	-90	8	309
TRC406	505572	7575861	1249.74	REVC	62	UNK	-90	8	309
TRC407	505388	7575597	1257.43	REVC	100	UNK	-90	8	309
TRC408	505427	7575591	1257.53	REVC	100	UNK	-90	8	309
TRC409	505468	/575585	1257.41	REVC	100	UNK	-90	8	309
TRC410	505505	7575578	1257.13	REVC	100	UNK	-89	83	309
TRC412	505458	7575796	1253.93	REVC	107	UNK	-90	8	309
TRC413	505419	7575802	1254.24	REVC	100	UNK	-90	8	309
TRC415	505614	7575770	1251.21	REVC	106	UNK	-60	278	309
TRC416	505498	7575541	1256.63	REVC	95	UNK	-90	8	309
TRC417	505540	/5/553/	1255.0	REVC	100	UNK	-90	8	309

			Adjusted						
	Feet	North	DTM RL	Drilling	Final	Compony	Die	NAT	Droopot
Hole ID	East	North	Mine	Туре	Deptn (m)	Company	DIP	Azimuth	Prospect
			Local (m)		(111)				
TRC418	505531	7575494	1254.58	REVC	89	UNK	-90	8	309
TRC419	505491	7575500	1255.39	REVC	100	UNK	-90	8	309
TRC420	505573	7575489	1253.33	REVC	96	UNK	-90	8	309
TRC421	505429	7575590	1257.43	REVC	22	UNK	-90	78	309
TRC422	505527	7575575	1256.45	REVC	100	UNK	-90	8	309
TRC423	505531	7575744	1254.51	REVC	100	UNK	-90	233	309
TRC424	505484	7575747	1255.23	REVC	100	UNK	-90	20	309
TRC425	505444	7575749	1255.63	REVC	100	UNK	-90	231	309
TRC426	505407	7575752	1255.73	REVC	100	UNK	-90	8	309
TRC429	505388	7575689	1256.63	REVC	100	UNK	-61	102	309
TRC430	505496	7575642	1257.13	REVC	100	UNK	-61	102	309
TRC431	505456	7575651	1257.45	REVC	100	UNK	-61	97	309
TRC433	505521	7575685	1256.13	REVC	88	UNK	-61	103	309
TRC434	505480	7575692	1256.73	REVC	100	UNK	-60	102	309
TRC438	505520	7575688	1256.03	REVC	82	UNK	-60	278	309
TRC439	505513	7575745	1254.83	REVC	80	UNK	-70	276	309
TRC440	505454	7575880	1251.39	REVC	100	UNK	-60	98	309
TRC441	505501	7575873	1250.83	REVC	100	UNK	-60	98	309
TRC442	505493	7575259	1250.83	REVC	70	UNK	-60	280	309
TRC443	505820	7574750	1247.3	REVC	98.5	UNK	-60	278	309
TRC444	505821	7574749	1247.3	REVC	100	UNK	-60	101	309
TRC445	505741	7574763	1247.9	REVC	100	UNK	-60	98	309
TRC446	505739	7574763	1247.9	REVC	100	UNK	-60	278	309
TRC447	505796	7574593	1244.1	REVC	100	UNK	-60	280	309
TRC448	505716	7574608	1245.4	REVC	100	UNK	-60	98	309
TRC449	505466	7575329	1252.48	REVC	50	UNK	-60	9	309
TRC611	505450	7575546	1256.63	REVC	100	UNK	-60	280	309
TRC612	505412	7575558	1256.83	REVC	120	UNK	-60	278	309
TRC613	505423	7575573	1257.23	REVC	120	UNK	-60	276	309
TRC614	505463	7575568	1257.13	REVC	100	UNK	-60	277	309
TRC615	505502	7575563	1256.83	REVC	100	UNK	-59	277	309
TRC616	505541	7575556	1255.63	REVC	100	UNK	-61	279	309
TRC617	505515	7575639	1256.83	REVC	100	UNK	-61	97	309
TRC618	505353	7575604	1257.63	REVC	90	UNK	-90	9	309
TRC619	505405	7575660	1257.54	REVC	80	UNK	-64	93	309
TRC620	505444	7575701	1256.83	REVC	120	UNK	-60	98	309
TRC644	505424	7575705	1256.73	REVC	100	UNK	-60	98	309
TRC645	505464	7575750	1255.43	REVC	90	UNK	-90	8	309
TRC646	505474	7575731	1255.73	REVC	100	UNK	-61	97	309
TRC647	505467	7575763	1255.13	REVC	100	UNK	-59	99	309
TRC648	505434	7575767	1255.13	REVC	100	UNK	-60	95	309
TRC649	505435	7575737	1255.93	REVC	100	UNK	-58	96	309
TRC650	505367	7575761	1255.73	REVC	100	UNK	-55	96	309
TRC651	505592	7575730	1252.73	REVC	100	UNK	-59	274	309
TRC680	505404	7575575	1257.33	REVC	102	UNK	-60	98	309
TRC681	505423	7575572	1257.33	REVC	103	UNK	-60	98	309
TRC682	505444	7575569	1257.23	REVC	103	UNK	-60	98	309
TRC683	505385	7575578	1257.23	REVC	98.4	UNK	-60	98	309
TRC685	505362	7575563	1256.93	REVC	96	UNK	-60	98	309
TRC686	505444	7575556	1256.93	REVC	102	UNK	-60	98	309
TRC687	505423	7575557	1256.93	REVC	100	UNK	-60	98	309
TRC688	505402	7575557	1256.93	REVC	96	UNK	-60	98	309
TRC689	505382	7575560	1256.92	REVC	84	UNK	-60	98	309
TRC690	505426	7575594	1257.53	REVC	102	UNK	-60	98	309
TRC691	505406	7575597	1257.53	REVC	100	UNK	-60	98	309
TRC692	505386	7575600	1257.43	REVC	102	UNK	-60	98	309
TRC693	505347	7575607	1257.33	REVC	102	UNK	-61	98	309
TRC694	505447	7575611	1257.53	REVC	100	UNK	-60	98	309
TRC695	505427	7575614	1257.7	REVC	100	UNK	-60	98	309
TRC696	505408	7575617	1257.63	REVC	100	UNK	-60	98	309
TRC697	505388	7575620	1257.43	REVC	100	UNK	-60	98	309

			Adjusted						
	Fact	North	DTM RL	Drilling	Final	Company	Din	NAT	Prospect
Hole ID	Lasi	North	Mine	Туре	(m)	company	Dip	Azimuth	Flospect
			Local (m)		(/				
TRC699	505513	7575620	1257.23	REVC	100	UNK	-60	98	309
TRC700	505493	7575623	1257.43	REVC	100	UNK	-60	98	309
TRC701	505473	7575626	1257.53	REVC	100	UNK	-60	98	309
TRC702	505454	7575630	1257.53	REVC	100	UNK	-60	98	309
TRC703	505433	7575633	1257.63	REVC	100	UNK	-60	98	309
TRC704	505520	7575660	1256.53	REVC	100	UNK	-60	98	309
TRC705	505500	7575663	1256.93	REVC	100	UNK	-60	98	309
TRC706	505480	7575666	1257.13	REVC	100	UNK	-60	98	309
TRC707	505459	7575669	1257.43	REVC	96	UNK	-60	98	309
TRC708	505503	7575683	1256.53	REVC	96	UNK	-60	98	309
TRC/09	505463	/5/5691	1257.13	REVC	96	UNK	-60	98	309
TRC710	505491	7575704	1256.33	REVC	96	UNK	-60	98	309
TRC/11	505472	/5/5/10	1256.43	REVC	101	UNK	-60	98	309
TRC/13	505437	7575530	1256.33	REVC	96	UNK	-60	98	309
TRC/14	505417	/5/5533	1256.43	REVC	102	UNK	-60	98	309
TRC/15	505397	/5/553/	1256.57	REVC	102	UNK	-60	98	309
	505378	7575540	1256.63	REVC	100	UNK	-60	98	309
TRC717	505422	7575505	1257.13	REVC	100	UNK	-60	98	309
TRC/18	505402	7575568	1257.13	REVC	100	PLUT	-60	98	309
TRC719	505383	7575571	1257.13	REVC	100	UNK	-60	95	309
TRC720	505425	7575564	1257.45	REVC	67		-60	90	209
TRC721	505405	7575501	1257.45	REVC	07		-60	98	209
TRC722	505645	7574604	1237.3	REVC	102		-60	90	309
TRC725	505796	7574580	1247.1	REVC	204	PLUT	-60	98	309
TRC720	505750	7575662	1262.5	REVC	108	PLUT	-60	98	309
TRC733	505012	7575798	1254 38	REVC	270	PLUT	-60	99	309
TRC735	505341	7575811	1256.63	REVC	249	PLUT	-60	99	309
TRC744	505485	7575827	1252.53	REVC	180	PLUT	-60	98	309
TRC745	505486	7575341	1256.5	REVC	240	PLUT	-60	98	309
TRC746	505388	7575357	1258.1	REVC	234	PLUT	-60	98	309
TRC749	506253	7574708	1241.4	REVC	204	PLUT	-60	99	309
TRC750	506174	7574721	1242.9	REVC	197	UNK	-60	99	309
TRC753	505754	7575601	1248.36	REVC	216	UNK	-90	9	309
TRCD384	505490	7575673	1256.83	PCRCDD	379.5	UNK	-90	349	309
TRCD385	505449	7575678	1257.13	PCRCDD	150.15	UNK	-60	101	309
TRCD391	505522	7575662	1256.53	PCRCDD	186.7	UNK	-89	28	309
TRCD392	505567	7575696	1254.33	PCRCDD	194.2	UNK	-89	91	309
TRCD394	505454	7575717	1256.33	PCRCDD	201.25	UNK	-88	11	309
TRCD401	505578	7575777	1251.43	PCRCDD	181.5	UNK	-89	63	309
TRCD403	505537	7575783	1252.93	PCRCDD	151.5	UNK	-88	18	309
TRCD411	505558	7575655	1255.03	PCRCDD	202.5	UNK	-60	280	309
TRCD428	505424	7575684	1257.13	PCRCDD	199.5	UNK	-62	98	309
TRCD429	505388	7575690	1257.13	PCRCDD	201.1	UNK	-61	102	309
TRCD432	505417	7575658	1257.43	PCRCDD	175.5	UNK	-60	102	309
TRCD618	505353	7575604	1257.32	PCRCDD	241.3	UNK	-55	98	309
TRCD663	505340	7575565	1256.93	PCRCDD	217.3	UNK	-60	98	309
TRCD684	505365	7575581	1257.13	PCRCDD	172.2	UNK	-60	98	309
TRCD698	505367	7575623	1257.53	PCRCDD	222.3	UNK	-60	98	309
TRCD/12	505343	7575587	1257.13	PCRCDD	1/2.3	PLUT	-60	98	309
TRCD728	505206	7575637	1256.69	PCRCDD	366	PLUT	-60	99	309
TRCD729	505262	7575704	1256.23	PCRCDD	351	PLUT	-60	99	309
TRCD730	505210	7575627	1250.53		252.7	PLUT	-00	00	200
TRCD731	505202	7575500	1256.62	PCRCDD	355.7	DIT	-60	99	300
TRCD734	505203	7575725	1255.03	PCRCDD	300.75	PILIT	-60	99	309
TRCD736	505308	7575761	1255.65	PCRCDD	288.6	PLUT	-60	99	309
TRCD737	505243	7575644	1255.55	PCRCDD	300.6	PLUT	-60	99	309
TRCD738	505644	7575558	1252.33	PCRCDD	294.6	PLUT	-60	279	309
TRCD739	505315	7575531	1256.63	PCRCDD	261.6	PLUT	-62	89	309
TRCD740	505655	7575616	1251.61	PCRCDD	324.6	PLUT	-60	279	309

Hole ID	East	North	Adjusted DTM RL Mine Local (m)	Drilling Type	Final Depth (m)	Company	Dip	NAT Azimuth	Prospect
TRCD741	505486	7575462	1254.53	PCRCDD	306.6	PLUT	-60	279	309
TRCD742	505309	7575490	1256.1	PCRCDD	316	PLUT	-60	99	309
TRCD743	505637	7575518	1252.33	PCRCDD	354.45	PLUT	-60	279	309
TRCD747	505235	7575627	1256.63	PCRCDD	171.2	PLUT	-60	99	309
TRCD748	505225	7575629	1256.63	PCRCDD	240.11	PLUT	-60	99	309
TRCD751	505625	7575441	1250.98	PCRCDD	362	PLUT	-48	282	309
TRCD752	505784	7575493	1248.21	PCRCDD	400	PLUT	-60	286	309
TRCD754	505773	7575598	1247.96	PCRCDD	358	PLUT	-60	283	309
TRCD755	505348	7575861	1253.63	PCRCDD	411.3	UNK	-60	188	309
TRCD756	505296	7575788	1254.63	PCRCDD	383.4	UNK	-60	188	309
TRCD757	505311	7575883	1252.13	PCRCDD	540.4	UNK	-60	188	309
TRCD758	505264	7575823	1254.63	PCRCDD	432.4	UNK	-60	188	309

Table 4; 309 Deposit Surface Drillhole Collar Table.

Drill Collars used in Lone Sister Resource Model

Adjusted DTM RL Mine Local can be converted to AHD by subtracting 1051.87 m All holes are reported in MGA94 Zone S 55

Hole ID	East	North	Adjusted DTM RL Mine Local (m)	Drilling Type	Final Depth (m)	Company	Dip	NAT Azimuth	Prospect
00THRC105	507694	7568439	1280.97	REVC	195	НОМ	-60	91	Lone Sister
00THRC106	507696	7568083	1282.57	REVC	196	НОМ	-60	91	Lone Sister
00THRC107	507060	7568186	1278.87	REVC	160	HOM	-60	90	Lone Sister
00THRC108	507994	7568472	1282.97	REVC	250	НОМ	-60	91	Lone Sister
00THRC109	507540	7568181	1283.57	REVC	87	НОМ	-60	90	Lone Sister
00THRC110	507689	7568209	1281.97	REVC	178	НОМ	-60	271	Lone Sister
00THRC111	506640	7568180	1277.97	REVC	75	НОМ	-60	91	Lone Sister
00THRC115	507040	7570681	1294.67	REVC	172	НОМ	-60	90	Lone Sister
00THRC119	507989	7568472	1282.97	REVC	196	HOM	-60	270	Lone Sister
93DRC14	508916	7567230	1277.97	REVC	100	MET	-60	270	Lone Sister
93DRC15	508866	7567229	1278.17	REVC	100	MET	-60	270	Lone Sister
93DRC16	508816	7567230	1278.57	REVC	100	MET	-60	270	Lone Sister
93DRC17	508766	7567229	1278.97	REVC	100	MET	-60	270	Lone Sister
93DRC18	508717	7567229	1279.87	REVC	100	MET	-60	270	Lone Sister
93DRC19	508668	7567229	1280.17	REVC	100	MET	-60	270	Lone Sister
93DRC20	508617	7567233	1279.47	REVC	100	MET	-60	270	Lone Sister
94DRC21	508966	7567229	1277.57	REVC	100	GMA	-60	270	Lone Sister
94DRC22	509016	7567229	1276.77	REVC	100	GMA	-60	270	Lone Sister
94DRC23	509066	7567229	1276.47	REVC	100	GMA	-60	270	Lone Sister
94DRC24	509116	7567229	1276.47	REVC	100	GMA	-60	270	Lone Sister
94DRC25	509166	7567229	1277.07	REVC	100	GMA	-60	270	Lone Sister
94DRC26	509218	7567236	1277.47	REVC	100	GMA	-60	270	Lone Sister
94DRC27	509316	7567229	1276.77	REVC	100	GMA	-60	270	Lone Sister
94DRC28	509416	7567229	1276.07	REVC	100	GMA	-60	270	Lone Sister
94DRC29	509511	7567242	1275.17	REVC	100	GMA	-60	270	Lone Sister
94DRC30	509616	7567229	1274.87	REVC	100	GMA	-60	270	Lone Sister
94DRC31	509716	7567229	1273.87	REVC	100	GMA	-60	270	Lone Sister
94DRC32	509811	7567224	1275.17	REVC	100	GMA	-60	270	Lone Sister
94DRC33	509916	7567229	1273.37	REVC	100	GMA	-60	270	Lone Sister
94DRC34	509266	7567179	1276.87	REVC	100	GMA	-60	270	Lone Sister
94DRC35	509316	7567179	1276.57	REVC	100	GMA	-60	270	Lone Sister
95DRC36	509566	7567230	1274.87	REVC	100	GMA	-60	270	Lone Sister
95DRC37	509566	7567280	1275.17	REVC	50	GMA	-60	270	Lone Sister
95DRC38	509516	7567280	1275.57	REVC	50	GMA	-60	270	Lone Sister
95DRC39	509466	7567280	1276.07	REVC	50	GMA	-60	270	Lone Sister

Total Lone Sister Collars: 296

			Adjusted		Final				
Hole ID	East	North	DTM RL	Drilling	Depth	Company	Dip	NAT	Prospect
			Mine	Туре	(m)			Azimuth	
95DRC40	509566	7567180	1274.87	REVC	50	GMA	-60	270	Lone Sister
95DRC41	509516	7567180	1274.87	REVC	50	GMA	-60	270	Lone Sister
95DRC42	509466	7567180	1274.97	REVC	100	GMA	-60	270	Lone Sister
95DRC43	509266	7567230	1277.07	REVC	100	GMA	-60	270	Lone Sister
95DRC44	509266	7567280	1277.17	REVC	50	GMA	-60	270	Lone Sister
95DRC45	509216	7567280	1277.77	REVC	50	GMA	-60	270	Lone Sister
95DRC46	509166	7567280	1277.47	REVC	50	GMA	-60	270	Lone Sister
98THRC001	505447	7568124	1277.07	REVC	225	UNK	-60	83	Lone Sister
98THRC002	505346	7568125	1277.17	REVC	252	UNK	-90	0	Lone Sister
98THRC003	505429	7568223	1278.47	REVC	216	UNK	-60	82	Lone Sister
98THRC008	507628	7569831	1288.27	REVC	210	UNK	-60	82	Lone Sister
98THRC009	507757	7569753	1287.37	REVC	222	UNK	-60	82	Lone Sister
98THRC010	507659	7569731	1286.87	REVC	210	UNK	-60	82	Lone Sister
99THRC023	505425	7567786	1272.67	REVC	204	HOM	-60	330	Lone Sister
99THRC024	505295	7567716	1273.67	REVC	204	HOM	-60	330	Lone Sister
99THRC025	505130	7567801	1274.07	REVC	204	HOM	-60	150	Lone Sister
99THRC026	505270	7567853	1274.07	REVC	204	HOM	-60	150	Lone Sister
99THRC027	505712	7567481	1273.17	REVC	174	UNK	-60	90	Lone Sister
99THRC028	507867	7567631	1282.87	REVC	198	UNK	-60	90	Lone Sister
99THRC029	507763	7567631	1282.87	REVC	198	UNK	-60	90	Lone Sister
99THRC030	506215	7570676	1292.07	REVC	198	UNK	-60	270	Lone Sister
99THRC031	506092	7570581	1290.97	REVC	198	UNK	-60	90	Lone Sister
99THRC032	507364	7567680	1284.87	REVC	198	UNK	-60	90	Lone Sister
991HRC033	507270	7567682	1284.67	REVC	198	UNK	-60	90	Lone Sister
991HRC034	50/116	7567880	1283.87	REVC	198	UNK	-60	270	Lone Sister
991HKC035	506022	7570077	1292.07	REVC	192		-60	90	Lone Sister
991HRC030	500033	7570785	1292.27	REVC	198	UNK	-60	90	Lone Sister
99THRC038	507640	7568559	1285.57	REVC	190	UNK	-60	270	Lone Sister
99THRC039	505059	7570685	1281.07	REVC	166	LINK	-60	90	Lone Sister
99THRC040	504704	7570560	1274 77	REVC	60	UNK	-60	90	Lone Sister
99THRC041	507616	7568781	1281.17	REVC	198	UNK	-60	90	Lone Sister
99THRC042	507515	7568781	1279.37	REVC	96	UNK	-60	90	Lone Sister
99THRC043	507616	7569180	1281.67	REVC	198	UNK	-60	90	Lone Sister
99THRC046	508615	7567632	1283.87	REVC	198	UNK	-60	90	Lone Sister
99THRC047	508837	7567437	1279.57	REVC	198	UNK	-60	90	Lone Sister
99THRC048	506553	7568484	1275.97	REVC	204	UNK	-60	90	Lone Sister
99THRC049	506444	7568487	1274.87	REVC	198	UNK	-60	90	Lone Sister
99THRC050	508667	7567435	1279.97	REVC	198	UNK	-60	90	Lone Sister
99THRC051	509597	7568550	1284.37	REVC	198	UNK	-60	90	Lone Sister
99THRC052	506612	7569033	1282.37	REVC	198	UNK	-60	90	Lone Sister
99THRC053	508673	7568990	1286.87	REVC	198	UNK	-60	90	Lone Sister
99THRC054	508248	7568763	1288.27	REVC	198	UNK	-60	225	Lone Sister
99THRC055	508194	7568811	1286.37	REVC	198	UNK	-60	225	Lone Sister
99THRC056	508095	7568863	1285.57	REVC	198	UNK	-60	225	Lone Sister
99THRC057	507817	7569179	1282.07	REVC	162	UNK	-60	90	Lone Sister
99THRC058	507460	7570482	1288.57	REVC	207	UNK	-60	90	Lone Sister
99THRC059	507416	7570578	1288.77	REVC	198	UNK	-60	90	Lone Sister
99THRC075	505504	7567845	1275.47	REVC	180	UNK	-60	90	Lone Sister
99THRC076	505455	7567931	1276.27	REVC	198	UNK	-60	330	Lone Sister
991HRC077	505539	7567940	1276.37	REVC	198	UNK	-60	330	Lone Sister
991HRC078	505965	7569383	1282.47	REVC	84	UNK	-60	90	Lone Sister
991HRC079	505864	7569379	1283.57	REVC	180	UNK	-60	90	Lone Sister
991HKC080	505713	7569277	1281.47	REVC	102	UNK	-60	90	Lone Sister
991HKC081	505562	7509278	1281.87	REVC	194	UNK	-60	90	Lone Sister
	507002	7560/79	1207.77	REVC	190		-00	90	Lone Sister
991HKC083	507003	7560595	1200.47	REVC	150		-60	90	Lone Sister
99THRC004	504546	7554161	1269.57	REVC	150	LINK	-60	91	Lone Sister
DR001	508468	7567042	1278.87	REVC	150	MFT	-60	63	Lone Sister
DRC01	508446	7567042	1278.57	REVC	100	MFT	-60	273	Lone Sister

			Adjusted		Final				
Hole ID	Fast	North	DTM RL	Drilling	Depth	Company	Din	NAT	Prospect
	Lust	North	Mine	Туре	(m)	company	ыр	Azimuth	riospeet
DBC03	F00407	7567020	Local (m)	DEVC	60	MET	60	272	Long Sister
DRC02	508487	7567039	1279.27	REVC	09		-60	273	Lone Sister
DRC03	508520	7567037	1279.77	REVC	00 00 1		-60	273	Lone Sister
DRC04	508505	7567034	1279.57	REVC	00.Z		-60	273	Lone Sister
DRCOS	508005	7507052	1279.27	REVC	101	IVIEI	-90	0	Lone Sister
DRCOO	508686	7567030	1276.07	REVC	110		-90	0	Lone Sister
	508726	7567023	1276.87	REVC	20	MET	-90	0	Lone Sister
DRC09	508884	7567019	1270.77	REVC	76	MET	-60	273	Lone Sister
DRC10	508924	7567019	1276.77	REVC	70	MET	-60	273	Lone Sister
DRC11	508349	7567049	1270.77	REVC	107	MET	-90	0	Lone Sister
DRRC1005	507584	7566121	1285 94	REVC	46	BMAG	-90	98	Lone Sister
DRRC1006	507945	7565394	1284 14	REVC	40	BMAG	-90	98	Lone Sister
LRC001	508311	7568544	1290.62	REVC	100	UNK	-60	91	Lone Sister
LRC002	508347	7568543	1291.63	REVC	98	UNK	-60	91	Lone Sister
LRC003	508269	7568545	1288.88	REVC	100	UNK	-60	91	Lone Sister
LRC004	508396	7568544	1292.19	REVC	106	UNK	-60	91	Lone Sister
LRC005	508478	7568540	1291.47	REVC	100	UNK	-60	271	Lone Sister
LRC006	508519	7568539	1290.74	REVC	100	UNK	-60	271	Lone Sister
LRC007	508482	7568457	1296.83	REVC	94	UNK	-60	271	Lone Sister
LRC008	508521	7568459	1295.07	REVC	100	UNK	-60	271	Lone Sister
LRC010	508535	7568378	1297.96	REVC	106	UNK	-60	271	Lone Sister
LRC013	508367	7568304	1300.42	REVC	76	UNK	-60	91	Lone Sister
LRC014	508332	7568384	1297.95	REVC	98	UNK	-60	91	Lone Sister
LRC016	508367	7568227	1296.2	REVC	100	UNK	-60	91	Lone Sister
LRC017	508326	7568222	1286.05	REVC	100	UNK	-60	91	Lone Sister
LRC019	507806	7568076	1283.47	REVC	100	UNK	-60	91	Lone Sister
LRC020	507886	7568075	1285.07	REVC	100	UNK	-60	271	Lone Sister
LRC021	508476	7568064	1288.88	REVC	100	UNK	-60	91	Lone Sister
LRC022	508573	7568060	1287.56	REVC	100	UNK	-60	271	Lone Sister
LRC023	508633	7568144	1289.05	REVC	100	UNK	-60	271	Lone Sister
LRC024	508272	7567427	1283.37	REVC	104	UNK	-60	271	Lone Sister
LRC025	508791	7567415	1279.27	REVC	80	UNK	-60	271	Lone Sister
LRC026	508711	7567417	1279.97	REVC	80	UNK	-60	91	Lone Sister
LRC027	509202	7567447	1277.87	REVC	100	UNK	-60	271	Lone Sister
LRC028	508942	7567912	1283.07	REVC	100	UNK	-60	271	Lone Sister
LRC029	508182	7568146	1286.49	REVC	100	UNK	-60	91	Lone Sister
LRC030	508264	7568220	1290.93	REVC	100	UNK	-60	91	Lone Sister
LRC031	508290	7568321	1294.72	REVC	100	UNK	-60	91	Lone Sister
LRC032	508253	7568385	1292.66	REVC	100	UNK	-60	91	Lone Sister
LRC033	508114	7568470	1283.15	REVC	100	UNK	-60	91	Lone Sister
LRC034	508051	7568311	1283.56	REVC	106	UNK	-60	91	Lone Sister
LRC035	509102	7567449	1279.07	REVC	100	UNK	-60	91	Lone Sister
LRC036	509276	7567170	1276.87	REVC	100	UNK	-60	271	Lone Sister
LRC043	508389	7568223	1299.32	REVC	76	UNK	-60	269	Lone Sister
LRC044	508351	7568228	1294.92	REVC	95	UNK	-60	278	Lone Sister
LRC045	508311	7568227	1292.94	REVC	100	UNK	-60	273	Lone Sister
LRC046	508271	/56822/	1291.28	REVC	100	UNK	-60	270	Lone Sister
LRC047	508031	7568311	1283.03	REVC	100	UNK	-60	270	Lone Sister
LRC048	508111	7568310	1284.14	REVC	62	UNK	-60	270	Lone Sister
LRC049	508637	7567981	1284.81	REVC	90	UNK	-60	270	Lone Sister
LRC050	508686	7567981	1284.53	REVC	100	UNK	-60	269	Lone Sister
LKC051	508311	7568305	1295.54	REVC	100	PLUT	-60	269	Lone Sister
LRC052	508351	7568305	1298.58	REVC	73	PLUT	-60	270	Lone Sister
LRC053	508270	7568307	1292.88	REVC	61	PLUT	-60	270	Lone Sister
LKC054	508192	7568304	1288.71	REVC	100	PLUT	-60	270	Lone Sister
LRC055	508214	7560200	1289.31	REVC	100		-60	270	Lone Sister
LRCUSD	508264	7569102	1293.08	REVC	100	PLUT	-00	270	Lone Sister
LRC059	508400	7569100	1290.46	REVC	102	PLUT	-00	270	Lone Sister
	508420	7560062	1290.24	REVC	102		-00	270	Lone Sister
	508428	7508003	1200.0	REVC	102	PLUT	-00	270	Lone Sister
LKCU62	508465	7508062	1288.79	REVC	102	PLUI	-60	270	Lone Sister

			Adjusted		Final				
Hole ID	Fast	North	DTM RL	Drilling	Depth	Company	Din	NAT	Prospect
Hole ID	Lust	North	Mine	Туре	(m)	company	Dip	Azimuth	rospect
	500560	75 (0220	Local (m)		102		60	270	Long Cistor
	508508	7508220	1290.48	REVC	102	UNK	-60	270	Lone Sister
	508009	7508219	1293.54	REVC	127 C	UNK	-60	270	Lone Sister
LRC069	508387	7508184	1296.47	REVC	102	UNK	-60	270	Lone Sister
	506506	7506164	1295.42	REVC	10Z		-00	271	Lone Sister
	508267	7568144	1292.59	REVC	102		-60	271	Lone Sister
	508307	7568105	1291.55	REVC	102		-00	270	Lone Sister
LRC074	508385	7568104	1289.25	REVC	102	LINK	-60	271	Lone Sister
LRC076	508236	7568547	1287.04	REVC	8/	LINK	-60	270	Lone Sister
LRC077	508230	7568548	1287.04	REVC	102	LINK	-60	271	Lone Sister
LRC078	508385	7568164	1294.89	REVC	93	LINK	-60	270	Lone Sister
LRC080	508505	7568063	1288 51	REVC	75	LINK	-60	270	Lone Sister
LRC081	507806	7568076	1283.47	REVC	98	UNK	-60	270	Lone Sister
LRC082	507766	7568077	1282.67	REVC	105	LINK	-60	270	Lone Sister
LRC083	507726	7568078	1282.37	REVC	141	LINK	-60	270	Lone Sister
LRC084	507093	7567932	1282.17	REVC	80	UNK	-60	90	Lone Sister
LRC085	507063	7567932	1281.57	REVC	80	UNK	-60	90	Lone Sister
LRC086	507033	7567933	1281.17	REVC	76	UNK	-60	90	Lone Sister
LRC087	506898	7567696	1277.47	REVC	80	UNK	-60	90	Lone Sister
LRC088	506868	7567696	1276.77	REVC	80	UNK	-60	90	Lone Sister
LRC089	507526	7567602	1282.87	REVC	80	UNK	-60	270	Lone Sister
LRC090	507496	7567603	1283.17	REVC	80	UNK	-60	270	Lone Sister
LRC091	507686	7568079	1282.77	REVC	99	UNK	-60	90	Lone Sister
LRC092	507704	7567998	1283.97	REVC	99	UNK	-60	90	Lone Sister
LRC093	507744	7567998	1283.87	REVC	111	UNK	-60	90	Lone Sister
LRC094	507708	7568158	1281.87	REVC	99	UNK	-60	90	Lone Sister
LRC096	508387	7568258	1301.26	REVC	100	UNK	-60	270	Lone Sister
LRC097	508614	7568459	1291.17	REVC	109	UNK	-60	270	Lone Sister
LRC098	508424	7567983	1285.17	REVC	100	UNK	-60	270	Lone Sister
LRC099	508464	7567982	1285.17	REVC	100	UNK	-60	270	Lone Sister
LRC100	507784	7567997	1283.87	REVC	103	UNK	-60	90	Lone Sister
LRC101	507742	7567918	1284.77	REVC	103	UNK	-60	90	Lone Sister
LRC102	507782	7567917	1284.37	REVC	97	UNK	-60	90	Lone Sister
LRC103	507145	7568010	1280.77	REVC	100	UNK	-60	270	Lone Sister
LRC104	507819	7568236	1281.77	REVC	100	UNK	-60	270	Lone Sister
LRC105	507841	7568316	1280.77	REVC	100	UNK	-60	270	Lone Sister
LRC106	507701	7567839	1283.97	REVC	100	UNK	-60	90	Lone Sister
LRC107	507741	7567838	1283.37	REVC	100	UNK	-60	90	Lone Sister
LRC108	507699	7567759	1282.77	REVC	100	UNK	-60	90	Lone Sister
LRC109	507739	7567758	1283.47	REVC	100	UNK	-60	90	Lone Sister
LRC110	508649	7568218	1290.85	REVC	141	UNK	-60	270	Lone Sister
LRC111	508501	7568063	1288.58	REVC	162	UNK	-60	270	Lone Sister
LRC112	508329	7568384	1297.78	REVC	155	UNK	-60	270	Lone Sister
LRC113	508566	7568139	1291.15	REVC	102	UNK	-60	270	Lone Sister
LRC114	508435	7568463	1298.48	REVC	90	UNK	-60	270	Lone Sister
LRC115	508395	7568466	1298.34	REVC	111	UNK	-60	270	Lone Sister
LRC116	508340	7568467	1296.76	REVC	113	UNK	-60	270	Lone Sister
LRC117	508284	7568468	1293.45	REVC	118	UNK	-60	270	Lone Sister
LRC118	508234	7568468	1290.15	REVC	95	UNK	-60	270	Lone Sister
LRC119	508554	7568460	1293.57	REVC	138	UNK	-60	270	Lone Sister
LRC125	508545	7568062	1287.98	REVC	150	UNK	-60	270	Lone Sister
LRC126	508216	7568457	1288.14	REVC	300	UNK	-60	91	Lone Sister
LRC127	507996	7568072	1286.57	REVC	198	UNK	-60	91	Lone Sister
LRC128	507716	7568558	1282.47	REVC	198	НОМ	-60	91	Lone Sister
LRC129	507757	7567677	1283.27	REVC	204	HOM	-60	91	Lone Sister
LRC136	508151	7567869	1286.57	REVC	150	UNK	-60	91	Lone Sister
LRC137	508639	/568698	1288.27	REVC	108	PLUT	-60	91	Lone Sister
LRC138	508586	7568540	1291.57	REVC	252	UNK	-60	271	Lone Sister
LRC162	508342	7568147	1290.57	REVC	95	UNK	-60	91	Lone Sister
LRC163	508278	/568151	1289.24	REVC	129	UNK	-60	91	Lone Sister
LRC164	508394	7568184	1294.98	REVC	59	UNK	-60	91	Lone Sister

			Adjusted		Final				
Hole ID	East	North	DTM RL Mine	Drilling Type	Depth	Company	Dip	NAT Azimuth	Prospect
			Local (m)	Type	(m)			Azimuti	
LRC165	508362	7568187	1293.32	REVC	65	UNK	-60	91	Lone Sister
LRC166	508335	7568185	1294.34	REVC	79	UNK	-60	91	Lone Sister
LRC167	508506	7568221	1299.48	REVC	25	UNK	-60	91	Lone Sister
LRC170	508329	7568125	1292.37	REVC	233	THO	-90	0	Lone Sister
LRC171	508367	7568124	1293.67	REVC	170	THO	-90	0	Lone Sister
LRC172	508415	7568122	1295.97	REVC	250	THO	-90	0	Lone Sister
LRC173	508348	7568413	1300.67	REVC	214	THO	-90	0	Lone Sister
LRC174	508409	7568422	1303.37	REVC	98	THO	-90	0	Lone Sister
LRC175	508468	7568421	1302.57	REVC	76	THO	-90	0	Lone Sister
LRC176	508351	7568164	1295.07	REVC	76	THO	-90	0	Lone Sister
	500302	7568164	1290.77	REVC	22	THO	-90	0	Lone Sister
LRC170	508419	7568163	1297.07	REVC	02 117	THO	-90	0	Lone Sister
LRC180	508359	7568205	1297 77	REVC	106	THO	-90	0	Lone Sister
LRC181	508379	7568205	1299.07	REVC	88	THO	-90	0	Lone Sister
LRCD009	508493	7568380	1301.92	PCRCDD	408.3	PLUT	-57	276	Lone Sister
LRCD011	508493	7568303	1302.48	PCRCDD	379	PLUT	-57	268	Lone Sister
LRCD012	508534	7568299	1298.88	PCRCDD	435.5	MET	-60	269	Lone Sister
LRCD015	508470	7568232	1301.22	PCRCDD	326.7	PLUT	-60	275	Lone Sister
LRCD018	508531	7568226	1298.35	PCRCDD	502.16	PLUT	-61	264	Lone Sister
LRCD037	508443	7568304	1313.48	PCRCDD	333.7	PLUT	-60	272	Lone Sister
LRCD038	508430	7568229	1303.71	PCRCDD	276.4	PLUT	-58	271	Lone Sister
LRCD039	508526	7568140	1292.2	PCRCDD	466	PLUT	-59	271	Lone Sister
LRCD040	508486	7568141	1292.74	PCRCDD	390	PLUT	-59	271	Lone Sister
LRCD041	508445	7568142	1292.75	PCRCDD	232	PLUT	-59	274	Lone Sister
LRCD042	508407	7568137	1291.73	PCRCDD	250	PLUT	-57	270	Lone Sister
LRCD057	508448	7568183	1297.18	PCRCDD	237.8	PLUT	-60	270	Lone Sister
LRCD058	508490	7568262	1302.35	PCRCDD	328	PLUT	-60	2/1	Lone Sister
	508520	7568260	1299.05	PCRCDD	265	PLUT	-57	209	Lone Sister
	508403	7568183	1295.51	PCRCDD	196.03	PLUT	-60	270	Lone Sister
LRCD065	508488	7568182	1296.6	PCRCDD	409	PLUT	-60	270	Lone Sister
LRCD066	508571	7568340	1295.69	PCRCDD	499	PLUT	-60	270	Lone Sister
LRCD071	508569	7568258	1296.53	PCRCDD	499	PLUT	-60	270	Lone Sister
LRCD079	508430	7568263	1299.33	PCRCDD	234	PLUT	-60	270	Lone Sister
LRCD095	508572	7568380	1295.34	PCRCDD	394	PLUT	-60	270	Lone Sister
LRCD120	508274	7568666	1285.31	PCRCDD	265.5	PLUT	-60	204	Lone Sister
LRCD121	508416	7568388	1306.46	PCRCDD	205.9	PLUT	-59	271	Lone Sister
LRCD122	508496	7568304	1302.5	PCRCDD	351.7	PLUT	-55	270	Lone Sister
LRCD123	508488	7568222	1300.3	PCRCDD	106.3	PLUT	-60	270	Lone Sister
LRCD124	508501	7568222	1299.86	PCRCDD	351.2	PLUT	-60	270	Lone Sister
LRCD130	508525	7568101	1289.7	PCRCDD	404.55	НОМ	-58	292	Lone Sister
LRCD131	508529	7568180	1294.79	PCRCDD	430	HOM	-60	291	Lone Sister
LRCD132	508517	7568340	1299.51	PCRCDD	414.6	HOM	-59	289	Lone Sister
LRCD133	508454	7568461	1297.41	PCRCDD	396.4	HOM	-60	292	Lone Sister
LRCD134	508308	7568267	1293.75	PCRCDD	261.6	HOM	-60	90	Lone Sister
	508384	7568542	1291.03	PCRCDD	346	HOM	-60	274	Lone Sister
LRCD130	508348	7568303	1298 38	PCRCDD	549.8	ном	-85	91	Lone Sister
LRCD141	508463	7568242	1302.33	PCRCDD	204.4	BMAG	-62	272	Lone Sister
LRCD142	508494	7568242	1301.1	PCRCDD	306.4	BMAG	-63	271	Lone Sister
LRCD143	508275	7568228	1291.61	PCRCDD	240.4	BMAG	-60	91	Lone Sister
LRCD144	508260	7568228	1291.62	PCRCDD	237.2	BMAG	-60	91	Lone Sister
LRCD145	508283	7568188	1293.07	PCRCDD	192.2	BMAG	-60	91	Lone Sister
LRCD146	508265	7568188	1292.3	PCRCDD	234	BMAG	-60	91	Lone Sister
LRCD147	508423	7568143	1292.62	PCRCDD	222.2	BMAG	-60	271	Lone Sister
LRCD148	508275	7568269	1292.54	PCRCDD	301.2	BMAG	-60	92	Lone Sister
LRCD149	508255	7568269	1291.5	PCRCDD	261.1	BMAG	-60	91	Lone Sister
LRCD150	508251	7568287	1291.58	PCRCDD	342.9	BMAG	-60	91	Lone Sister
LRCD151	508228	7568287	1290.25	PCRCDD	357.5	BMAG	-60	91	Lone Sister
LRCD152	508217	7568313	1289.8	PCRCDD	369.4	BMAG	-60	91	Lone Sister

Hole ID	East	North	Adjusted DTM RL Mine Local (m)	Drilling Type	Final Depth (m)	Company	Dip	NAT Azimuth	Prospect
LRCD153	508197	7568330	1289.13	PCRCDD	411.4	BMAG	-60	91	Lone Sister
LRCD154	508265	7568249	1291.73	PCRCDD	250.2	BMAG	-60	91	Lone Sister
LRCD155	508306	7568147	1289.78	PCRCDD	255.5	BMAG	-60	95	Lone Sister
LRCD156	508243	7568149	1288.08	PCRCDD	261.3	BMAG	-60	91	Lone Sister
LRCD157	508247	7568190	1289.25	PCRCDD	291	BMAG	-60	91	Lone Sister
LRCD158	508223	7568229	1288.85	PCRCDD	318	BMAG	-60	91	Lone Sister
LRCD159	508294	7568227	1292.37	PCRCDD	229	BMAG	-60	91	Lone Sister
LRCD160	508314	7568269	1294.11	PCRCDD	208	BMAG	-60	91	Lone Sister
LRCD161	508257	7568308	1292.51	PCRCDD	316.2	BMAG	-60	91	Lone Sister
LRCD168	508296	7568168	1290.4	PCRCDD	501.4	BMAG	-63	29	Lone Sister
PRC01	505145	7567742	1271.16	REVC	60	UNK	-60	338	Lone Sister
SSRC01	507834	7567276	1282.67	REVC	166	НОМ	-60	271	Lone Sister
SSRC02	507627	7566760	1282.17	REVC	124	HOM	-60	271	Lone Sister
SSRC03	507669	7566360	1283.17	REVC	124	HOM	-60	271	Lone Sister
SSRC04	507763	7566118	1284.07	REVC	154	HOM	-60	271	Lone Sister
SSRC05	507584	7566121	1285.57	REVC	148	НОМ	-60	91	Lone Sister
SSRC06	507202	7566050	1283.67	REVC	118	HOM	-60	271	Lone Sister

Table 5; Lone Sister Deposit Surface Drillhole Collar Table.

Twin Hill Key Intersections

Gold grade intercepts clipped to "309" 0.2 g/t modelled domain

1 g/t Minimum grade cut off with up to 2 m internal dilution at an average grade of 0.2 g/t (High grade intercept - 5 g/t Minimum grade cut off with up to 2 m internal dilution at an average grade of 0.2 g/t) All intercepts are presented as intersection widths

	All intercepts are present	ed as intersection widths		
NIS - No Significant Int	ersection	* Some of denoted interva	l may have been mined	
Gram Metre > 1000	Gram Metre 100 to 1000	Gram Metre 50 to 100	Gram Metre 20 to 50	

Hole ID	From (m)	To (m)	Company	Drill Type	Prospect	Au g/t	Interval Length (m)	Gram Metre (g/t x interval length)	Gold grade intercept comment
TD435	34	47	UNK	DD	309	2.81	13	36.48	13 m @ 2.81 g/t Au from 34 m in TD435 including 4 m @ 5.3 g/t Au from 39 m
TD437	47	53	MET	DD	309	4.82	6	28.93	6 m @ 4.82 g/t Au from 47 m in TD437 including 1 m @ 22.1 g/t Au from 47 m
TD437	59	70	MET	DD	309	2.00	11	22.02	11 m @ 2 g/t Au from 59 m in TD437 including 1 m @ 6.72 g/t Au from 62 m
TD723	99	104	UNK	DD	309	6.39	5	31.96	5 m @ 6.39 g/t Au from 99 m in TD723 including 1 m @ 27.2 g/t Au from 99 m
TD723	106	108	UNK	DD	309	17.05	2	34.10	2 m @ 17.05 g/t Au from 106 m in TD723 including 1 m @ 32.5 g/t Au from 107 m
TD724	60	84	UNK	DD	309	28.43	24	682.32	24 m @ 28.43 g/t Au from 60 m in TD724 including 3 m @ 9 g/t Au from 60 m. 7.4 m @ 85.11 g/t Au from 66 m *
THDD885	27	42	THO	DD	309	3.32	15	49.78	15 m @ 3.32 g/t Au from 27 m in THDD885 including 2 m @
TUDD89E	45		тно		200	6 55	10	65.52	9./1 g/t Au from 30 m, 1 m @ /.01 g/t Au from 40 m 10 m @ 6.55 g/t Au from 45 m in THDD885 including 4 m
THUD665	45	22	THO	DD	509	0.55	10	05.55	@ 9.55 g/t Au from 46 m, 2 m @ 9.32 g/t Au from 53 m
THDD885	69	75	THO	DD	309	3.70	6	22.21	10.2 g/t Au from 59 m in THDD885 including 1 m @
THDD885	102	113	THO	DD	309	2.40	11	26.35	11 m @ 2.4 g/t Au from 102 m in THDD885 including 1 m @ 9.2 g/t Au from 105 m
THDD885	119	124	тно	DD	309	10.10	5	50.52	5 m @ 10.1 g/t Au from 119 m in THDD885 including 3 m @ 15.58 g/t Au from 119 m
THDD886	77	81	THO	DD	309	5.59	4	22.34	4 m @ 5.59 g/t Au from 77 m in THDD886 including 1 m @
THDD886	129	133	THO	DD	309	8.21	4	32.83	4 m @ 8.21 g/t Au from 129 m in THDD886 including 1 m @ 24 g/t Au from 131 m
THDD887	95	106	THO	DD	309	3.78	11	41.59	11 m @ 3.78 g/t Au from 95 m in THDD887 including 2 m @ 8.7 g/t Au from 99 m
THDD888	121	128	тно	DD	309	8.06	7	56.42	7 m @ 8.06 g/t Au from 121 m in THDD888 including 3 m @ 16.55 g/t Au from 123 m
THDD889	44	50	THO	DD	309	4.21	6	25.26	6 m @ 4.21 g/t Au from 44 m in THDD889 including 1 m @ 20.2 g/t Au from 46 m
THDH657	179	181	UNK	DD	309	18.27	2	36.54	2 m @ 18.27 g/t Au from 179 m in THDH657 including 1 m @ 35.5 g/t Au from 180 m
THDH658	186	188	UNK	DD	309	42.22	2	84.44	2 m @ 42.22 g/t Au from 186 m in THDH658 including 2 m @ 42.22 g/t Au from 186 m
THRC659	41	46	UNK	REVC	309	5.90	5	29.49	5 m @ 5.9 g/t Au from 41 m in THRC659 including 2 m @ 11.38 g/t Au from 43 m
THRC761	84	108	BMAG	REVC	309	5.43	24	130.26	24 m @ 5.43 g/t Au from 84 m in THRC761 including 8 m @ 12.34 g/t Au from 96 m
THRC761	112	124	BMAG	REVC	309	19.04	12	228.48	12 m @ 19.04 g/t Au from 112 m in THRC761 including 1 m @ 10.2 g/t Au from 122 m, 6 m @ 34.38 g/t Au from 112 m
THRC761	127	146	BMAG	REVC	309	4.25	19	80.69	19 m @ 4.25 g/t Au from 127 m in THRC761 including 1 m @ 5.7 g/t Au from 138 m, 1 m @ 20.1 g/t Au from 141 m, 1 m @ 5.2 g/t Au from 129 m
THRC770	61	78	BMAG	REVC	309	3.10	17	52.77	17 m @ 3.1 g/t Au from 61 m in THRC770 including 3 m @ 7.42 g/t Au from 70 m *
THRC771	59	72	BMAG	REVC	309	2.06	13	26.76	13 m @ 2.06 g/t Au from 59 m in THRC771 including 1 m @ 5.75 g/t Au from 63 m
THRC771	73	93	BMAG	REVC	309	11.59	20	231.72	20 m @ 11.59 g/t Au from 73 m in THRC771 including 5 m @ 38.58 g/t Au from 74 m, 1 m @ 15 g/t Au from 82 m, 1 m @ 5.05 g/t Au from 90 m *

Hole ID	From (m)	To (m)	Company	Drill Type	Prospect	Au g/t	Interval Length (m)	Gram Metre (g/t x interval length)	Gold grade intercept comment
THRC781	57	81	BMAG	REVC	309	10.27	24	246.42	24 m @ 10.27 g/t Au from 57 m in THRC781 including 7 m @ 23.28 g/t Au from 65 m, 1 m @ 5.3 g/t Au from 80 m, 2 m @ 23.83 g/t Au from 58 m *
THRC782	56	73	BMAG	REVC	309	79.83	17	1357.04	17 m @ 79.83 g/t Au from 56 m in THRC782 including 13 m @ 104.08 g/t Au from 60 m
THRC793	38	56	BMAG	REVC	309	3.01	18	54.11	18 m @ 3.01 g/t Au from 38 m in THRC793 including 1 m @ 19.7 g/t Au from 40 m
THRC794	28	40	BMAG	REVC	309	1.97	12	23.60	12 m @ 1.97 g/t Au from 28 m in THRC794
THRC794	56	63	BMAG	REVC	309	8.38	7	58.65	7 m @ 8.38 g/t Au from 56 m in THRC794 including 4 m @ 12.9 g/t Au from 56 m
THRC798	36	48	BMAG	REVC	309	2.55	12	30.56	12 m @ 2.55 g/t Au from 36 m in THRC798 including 4 m @ 5.25 g/t Au from 44 m
THRC798	99	106	BMAG	REVC	309	12.45	7	87.12	7 m @ 12.45 g/t Au from 99 m in THRC798 including 4 m @ 19.26 g/t Au from 101 m
THRC808	36	46	BMAG	REVC	309	7.25	10	72.47	10 m @ 7.25 g/t Au from 36 m in THRC808 including 2 m @ 30.15 g/t Au from 41 m
THRC832	77	82	BMAG	REVC	309	11.03	5	55.16	5 m @ 11.03 g/t Au from 77 m in THRC832 including 2 m @ 24.83 g/t Au from 77 m
THRC863	41	46	тно	REVC	309	10.46	5	52.32	5 m @ 10.46 g/t Au from 41 m in THRC863 including 1 m
THRC863	60	70	THO	REVC	309	3.43	10	34.34	10 m @ 3.43 g/t Au from 60 m in THRC863 including 1 m @ 16.7 g/t Au from 68 m *
THRC863	94	101	тно	REVC	309	8.14	7	56.98	7 m @ 8.14 g/t Au from 94 m in THRC863 including 2 m @
THRC864	53	75	THO	REVC	309	4.19	22	92.08	22 m @ 4.19 g/t Au from 53 m in THRC864 including 6 m @ 9.33 g/t Au from 59 m *
THRC864	100	105	тно	REVC	309	4.65	5	23.27	5 m @ 4.65 g/t Au from 100 m in THRC864 including 2 m @
THRC865	78	92	тно	REVC	309	12.05	14	168.75	14 m @ 12.05 g/t Au from 78 m in THRC865 including 8 m
THRC866	48	54	THO	REVC	309	7.69	6	46.11	6 m @ 7.69 g/t Au from 48 m in THRC866 including 4 m @ 10.92 g/t Au from 48 m
THRC866	96	102	тно	REVC	309	21.20	6	127.17	6 m @ 21.2 g/t Au from 96 m in THRC866 including 6 m @
THRC867	52	58	THO	REVC	309	5.42	6	32.51	6 m @ 5.42 g/t Au from 52 m in THRC867 including 1 m @ 20.8 g/t Au from 52 m
THRCD759	165.87	169	BMAG	PCRCDD	309	8.77	3.13	27.46	3.13 m @ 8.77 g/t Au from 165.87 m in THRCD759 including 0.25 m @ 103.5 g/t Au from 165.87 m
THRCD762	113.5	116	BMAG	PCRCDD	309	100.92	2.5	252.29	2.5 m @ 100.92 g/t Au from 113.5 m in THRCD762
THRCD763	59	75	BMAG	PCRCDD	309	4.10	16	65.57	16 m @ 4.1 g/t Au from 59 m in THRCD763 including 4 m
THRCD767	189	193	BMAG	PCRCDD	309	14.52	4	58.06	4 m @ 14.52 g/t Au from 65 m, 4 m @ 6.45 g/t Au from 69 m 4 4 m @ 14.52 g/t Au from 189 m in THRCD767 including 1
THRCD767	201	209	BMAG	PCRCDD	309	11.56	8	92.47	8 m @ 11.56 g/t Au from 201 m in THRCD767 including 2
THRCD768	146	148	BMAG	PCRCDD	309	25.25	2	50.50	m @ 38 g/t Au from 206 m 2 m @ 25.25 g/t Au from 146 m in THRCD768 including 2
THRCD768	204	206	BMAG	PCRCDD	309	22.00	2	44.00	2 m @ 22 g/t Au from 204 m in THRCD768 including 2 m @
THRCD769	193	197	BMAG	PCRCDD	309	10.77	4	43.07	22 g/t Au from 204 m 4 m @ 10.77 g/t Au from 193 m in THRCD769 including 2 m
THRCD769	203	207	BMAG	PCRCDD	309	6.30	4	25.19	@ 19.73 g/t Au from 195 m 4 m @ 6.3 g/t Au from 203 m in THRCD769 including 2 m @
	125	1/2	PMAG		200	5 15	•	41.22	10.13 g/t Au from 205 m 8 m @ 5.15 g/t Au from 135 m in THRCD773 including 1 m
THRCD776	40	54	BMAG	PCRCDD	300	1 44	14	20.21	@ 29.1 g/t Au from 136 m
THRCD776	113	115	BMAG	PCRCDD	309	20.50	2	41.00	2 m @ 20.5 g/t Au from 113 m in THRCD776 including 2 m
тырсолле	120	127	PNAAC	DCDCDD	200	2 5 6	0	22.04	@ 20.5 g/t Au from 113 m 9 m @ 3.56 g/t Au from 128 m in THRCD776 including 2 m
InkCD//6	128	137	DIVIAG	PCRCDD	309	3.50	9	52.04	@ 10.73 g/t Au from 132 m

Hole ID	From (m)	To (m)	Company	Drill Type	Prospect	Au g/t	Interval Length (m)	Gram Metre (g/t x interval length)	Gold grade intercept comment
THRCD783	60	72	BMAG	PCRCDD	309	5.16	12	61.91	12 m @ 5.16 g/t Au from 60 m in THRCD783 including 5 m @ 7.85 g/t Au from 60 m *
THRCD783	78.4	87	BMAG	PCRCDD	309	182.86	8.6	1572.59	8.6 m @ 182.86 g/t Au from 78.4 m in THRCD783 including 6.6 m @ 237.56 g/t Au from 78.4 m *
THRCD785	92	104	BMAG	PCRCDD	309	6.07	12	72.83	12 m @ 6.07 g/t Au from 92 m in THRCD785 including 3 m @ 9.97 g/t Au from 97 m, 1 m @ 5.7 g/t Au from 103 m, 1 m @ 21.2 g/t Au from 93 m *
THRCD785	126	134	BMAG	PCRCDD	309	2.81	8	22.45	8 m @ 2.81 g/t Au from 126 m in THRCD785 including 1 m @ 5.1 g/t Au from 128 m
THRCD789	88	100	BMAG	PCRCDD	309	38.35	12	460.17	12 m @ 38.35 g/t Au from 88 m in THRCD789 including 4 m @ 112.15 g/t Au from 96 m
THRCD789	114	118	BMAG	PCRCDD	309	58.01	4	232.03	4 m @ 58.01 g/t Au from 114 m in THRCD789 including 2 m @ 113.95 g/t Au from 115 m
THRCD789	129	137	BMAG	PCRCDD	309	10.89	8	87.14	8 m @ 10.89 g/t Au from 129 m in THRCD789 including 2 m @ 36.1 g/t Au from 131 m, 1 m @ 6.17 g/t Au from 136 m
THRCD789	143	150	BMAG	PCRCDD	309	36.09	7	252.61	7 m @ 36.09 g/t Au from 143 m in THRCD789 including 2 m @ 117.45 g/t Au from 148 m, 1 m @ 9.45 g/t Au from 143 m
THRCD789	155	166	BMAG	PCRCDD	309	4.61	11	50.76	11 m @ 4.61 g/t Au from 155 m in THRCD789 including 2
THRCD809	133	135	BMAG	PCRCDD	309	10.63	2	21.25	2 m @ 10.63 g/t Au from 133 m in THRCD809 including 2 m @ 10.63 g/t Au from 133 m
THRCD809	139	143	BMAG	PCRCDD	309	9.63	4	38.52	4 m @ 9.63 g/t Au from 139 m in THRCD809 including 2 m @ 17 3 g/t Au from 139 m
THRCD809	145	150	BMAG	PCRCDD	309	6.68	5	33.38	5 m @ 6.68 g/t Au from 145 m in THRCD809 including 1 m @ 24.4 g/t Au from 146 m
THRCD810	37	48	BMAG	PCRCDD	309	3.09	11	33.94	11 m @ 3.09 g/t Au from 37 m in THRCD810 including 1 m @ 6.55 g/t Au from 42 m, 1 m @ 12.6 g/t Au from 38 m
THRCD811	41	47	BMAG	PCRCDD	309	5.53	6	33.20	6 m @ 5.53 g/t Au from 41 m in THRCD811 including 2 m @ 11.93 g/t Au from 44 m
THRCD814	60	83	BMAG	PCRCDD	309	73.05	23	1680.22	23 m @ 73.05 g/t Au from 60 m in THRCD814 including 23 m @ 73.05 g/t Au from 60 m *
THRCD814	108	111	BMAG	PCRCDD	309	7.94	3	23.81	3 m @ 7.94 g/t Au from 108 m in THRCD814 including 2 m @ 11.35 g/t Au from 109 m
THRCD815	32	44	BMAG	PCRCDD	309	1.84	12	22.08	12 m @ 1.84 g/t Au from 32 m in THRCD815
THRCD815	65	84	BMAG	PCRCDD	309	33.60	19	638.47	19 m @ 33.6 g/t Au from 65 m in THRCD815 including 3 m @ 14.4 g/t Au from 66 m, 11 m @ 52.74 g/t Au from 72 m *
THRCD816	55	78	BMAG	PCRCDD	309	26.28	23	604.42	23 m @ 26.28 g/t Au from 55 m in THRCD816 including 9 m @ 63.64 g/t Au from 61 m, 1 m @ 7 g/t Au from 74 m *
THRCD818	232	238	BMAG	PCRCDD	309	8.82	6	52.92	6 m @ 8.82 g/t Au from 232 m in THRCD818 including 3 m @ 14.98 g/t Au from 232 m
THRCD820	169	176	BMAG	PCRCDD	309	39.14	7	274.00	7 m @ 39.14 g/t Au from 169 m in THRCD820 including 1 m @ 168 g/t Au from 175 m, 2 m @ 50.55 g/t Au from 169 m
THRCD821	184	189	BMAG	PCRCDD	309	4.39	5	21.97	5 m @ 4.39 g/t Au from 184 m in THRCD821 including 1 m @ 17 g/t Au from 186 m
THRCD822	207	216	BMAG	PCRCDD	309	4.60	9	41.37	9 m @ 4.6 g/t Au from 207 m in THRCD822 including 3 m @ 7.4 g/t Au from 208 m, 1 m @ 8.3 g/t Au from 214 m
THRCD822	300	313	BMAG	PCRCDD	309	21.94	13	285.23	13 m @ 21.94 g/t Au from 300 m in THRCD822 including 3 m @ 7.15 g/t Au from 309 m, 8 m @ 32.4 g/t Au from 300 m
THRCD823	228	237	BMAG	PCRCDD	309	2.36	9	21.27	9 m @ 2.36 g/t Au from 228 m in THRCD823 including 1 m @ 5.6 g/t Au from 229 m
THRCD824	179	182	BMAG	PCRCDD	309	7.40	3	22.20	3 m @ 7.4 g/t Au from 179 m in THRCD824 including 1 m @ 18.9 g/t Au from 181 m
THRCD824	325	335	BMAG	PCRCDD	309	3.14	10	31.37	10 m @ 3.14 g/t Au from 325 m in THRCD824 including 1 m @ 9.05 g/t Au from 325 m, 1 m @ 6.05 g/t Au from 329 m
THRCD826	271	274	BMAG	PCRCDD	309	108.80	3	326.40	3 m @ 108.8 g/t Au from 271 m in THRCD826 including 2 m @ 162.6 g/t Au from 272 m
THRCD827	320	331	BMAG	PCRCDD	309	5.46	11	60.05	11 m @ 5.46 g/t Au from 320 m in THRCD827 including 6

Hole ID	From (m)	To (m)	Company	Drill Type	Prospect	Au g/t	Interval Length (m)	Gram Metre (g/t x interval length)	Gold grade intercept comment
									m @ 8.25 g/t Au from 322 m
THRCD827	357	373	BMAG	PCRCDD	309	3.60	16	57.62	16 m @ 3.6 g/t Au from 357 m in THRCD827 including 2 m @ 12.75 g/t Au from 365 m, 1 m @ 5.8 g/t Au from 370 m
THRCD827	382	396	BMAG	PCRCDD	309	11.03	14	154.38	14 m @ 11.03 g/t Au from 382 m in THRCD827 including 5 m @ 27.56 g/t Au from 386 m
THRCD828	103	111	BMAG	PCRCDD	309	26.93	8	215.44	8 m @ 26.93 g/t Au from 103 m in THRCD828 including 2 m @ 102.75 g/t Au from 107 m
THRCD828	125	135	BMAG	PCRCDD	309	14.20	10	141.95	10 m @ 14.2 g/t Au from 125 m in THRCD828 including 7 m @ 19.39 g/t Au from 126 m
THRCD828	148	154	BMAG	PCRCDD	309	5.67	6	34.03	6 m @ 5.67 g/t Au from 148 m in THRCD828 including 3 m @ 9.53 g/t Au from 149 m
THRCD830	148	154	BMAG	PCRCDD	309	6.47	6	38.80	6 m @ 6.47 g/t Au from 148 m in THRCD830 including 1 m @ 5.75 g/t Au from 149 m, 2 m @ 13.73 g/t Au from 151 m
THRCD830	158	166	BMAG	PCRCDD	309	3.80	8	30.38	8 m @ 3.8 g/t Au from 158 m in THRCD830 including 1 m @ 10.9 g/t Au from 160 m, 1 m @ 8.45 g/t Au from 158 m
THRCD833	125	131	BMAG	PCRCDD	309	5.74	6	34.46	6 m @ 5.74 g/t Au from 125 m in THRCD833 including 2 m @ 12.58 g/t Au from 129 m, 1 m @ 5.65 g/t Au from 127 m
THRCD833	143	169	BMAG	PCRCDD	309	4.38	26	113.85	26 m @ 4.38 g/t Au from 143 m in THRCD833 including 1 m @ 6.6 g/t Au from 167 m, 3 m @ 5.25 g/t Au from 163 m 5 m @ 10.07 g/t Au from 151 m
THRCD833	170	173	BMAG	PCRCDD	309	7.68	3	23.04	3 m @ 7.68 g/t Au from 170 m in THRCD833 including 2 m @ 10.78 g/t Au from 170 m
THRCD834	132	138	BMAG	PCRCDD	309	8.44	6	50.65	6 m @ 8.44 g/t Au from 132 m in THRCD834 including 4 m @ 11.73 g/t Au from 132 m
THRCD834	143	148	BMAG	PCRCDD	309	8.08	4.5	36.35	4.5 m @ 8.08 g/t Au from 143 m in THRCD834 including 1.9 m @ 14.56 g/t Au from 145.6 m, 1 m @ 7.4 g/t Au from 144 m
THRCD834	193	200	BMAG	PCRCDD	309	3.85	7	26.93	7 m @ 3.85 g/t Au from 193 m in THRCD834 including 1 m @ 16.9 g/t Au from 199 m
THRCD837	77	83	BMAG	PCRCDD	309	4.05	6	24.29	6 m @ 4.05 g/t Au from 77 m in THRCD837 including 2 m @ 8.3 g/t Au from 77 m
THRCD837	102	105	BMAG	PCRCDD	309	8.17	3	24.50	3 m @ 8.17 g/t Au from 102 m in THRCD837 including 2 m @ 11.1 g/t Au from 102 m
THRCD839	108	109	BMAG	PCRCDD	309	30.80	1	30.80	1 m @ 30.8 g/t Au from 108 m in THRCD839 including 1 m @ 30.8 g/t Au from 108 m
THRCD839	134	136	BMAG	PCRCDD	309	11.43	2	22.85	2 m @ 11.43 g/t Au from 134 m in THRCD839 including 2 m @ 11.43 g/t Au from 134 m
THRCD839	140	146	BMAG	PCRCDD	309	10.49	6	62.94	6 m @ 10.49 g/t Au from 140 m in THRCD839 including 4 m @ 14.84 g/t Au from 142 m
THRCD840	142.5	149	BMAG	PCRCDD	309	6.42	6	38.49	6 m @ 6.42 g/t Au from 142.5 m in THRCD840 including 3 m @ 10.63 g/t Au from 145.5 m
THRCD840	159	167	BMAG	PCRCDD	309	3.07	8	24.56	8 m @ 3.07 g/t Au from 159 m in THRCD840 including 1 m @ 5.75 g/t Au from 160 m, 1 m @ 7.5 g/t Au from 164 m
THRCD840	169	181	BMAG	PCRCDD	309	2.77	12	33.28	12 m @ 2.77 g/t Au from 169 m in THRCD840 including 1 m @ 9.25 g/t Au from 178 m
THRCD842	90	99	THO	PCRCDD	309	4.47	9	40.21	9 m @ 4.47 g/t Au from 90 m in THRCD842 including 5 m @ 6.94 g/t Au from 90 m
THRCD843	108	117	BMAG	PCRCDD	309	15.78	9	142.04	9 m @ 15.78 g/t Au from 108 m in THRCD843 including 6 m @ 22.92 g/t Au from 109 m *
THRCD843	172	177	BMAG	PCRCDD	309	9.01	5	45.05	5 m @ 9.01 g/t Au from 172 m in THRCD843 including 5 m @ 9.01 g/t Au from 172 m
THRCD843	227	234	BMAG	PCRCDD	309	10.65	7	74.52	7 m @ 10.65 g/t Au from 227 m in THRCD843 including 3 m @ 22.08 g/t Au from 227 m
THRCD844	197	214	BMAG	PCRCDD	309	6.84	17	116.35	17 m @ 6.84 g/t Au from 197 m in THRCD844 including 7 m @ 9.61 g/t Au from 206 m, 6 m @ 6.33 g/t Au from 199 m
THRCD846	181	187	THO	PCRCDD	309	3.80	6	22.77	6 m @ 3.8 g/t Au from 181 m in THRCD846 including 1 m @ 8.74 g/t Au from 186 m, 1 m @ 6.15 g/t Au from 183 m
THRCD846	190	195	THO	PCRCDD	309	4.29	5	21.43	5 m @ 4.29 g/t Au from 190 m in THRCD846 including 1 m @ 13 g/t Au from 191 m
THRCD847	133	139	BMAG	PCRCDD	309	11.22	6.4	71.80	6.4 m @ 11.22 g/t Au from 133 m in THRCD847 including 5 m @ 14.16 g/t Au from 133 m

Hole ID	From (m)	To (m)	Company	Drill Type	Prospect	Au g/t	Interval Length (m)	Gram Metre (g/t x interval length)	Gold grade intercept comment
THRCD847	144.9	155	BMAG	PCRCDD	309	3.61	10.1	36.45	10.1 m @ 3.61 g/t Au from 144.9 m in THRCD847 including
THRCD847	156	161	BMAG	PCRCDD	309	6.72	5	33.62	5 m @ 6.72 g/t Au from 156 m in THRCD847 including 3 m
THRCD847	208	211	BMAG	PCRCDD	309	19.10	3	57.30	3 m @ 19.1 g/t Au from 208 m in THRCD847 including 3 m
THRCD848	113	117	BMAG	PCRCDD	309	7.89	4	31 56	@ 19.1 g/t Au from 208 m 4 m @ 7.89 g/t Au from 113 m in THRCD848 including 1 m
	120	140	BMAG		200	0.00	11	100.00	@ 27.1 g/t Au from 113 m 11 m @ 9.09 g/t Au from 138 m in THRCD848 including 1
	138	149	BIVIAG	PCRCDD	309	9.09	- 11	100.00	m @ 83.15 g/t Au from 140 m 4 m @ 5.59 g/t Au from 10 m in THRCD849 including 1 m @
THRCD849	10	14	BMAG	PCRCDD	309	5.59	4	22.34	14.7 g/t Au from 11 m
THRCD856	211	214	THO	PCRCDD	309	11.88	3	35.63	@ 17.13 g/t Au from 212 m @ 17.13 g/t Au from 212 m
THRCD858	298	303	BMAG	PCRCDD	309	6.49	5	32.47	5 m @ 6.49 g/t Au from 298 m in THRCD858 including 1.7 m @ 15.45 g/t Au from 300.3 m
THRCD858	344	358	BMAG	PCRCDD	309	2.05	14	28.69	14 m @ 2.05 g/t Au from 344 m in THRCD858
THRCD858	360	369	BMAG	PCRCDD	309	2.93	9	26.40	9 m @ 2.93 g/t Au from 360 m in THRCD858 including 1 m @ 8.25 g/t Au from 361 m, 1 m @ 6 g/t Au from 367 m
THRCD859	352	361	BMAG	PCRCDD	309	2.26	9	20.38	9 m @ 2.26 g/t Au from 352 m in THRCD859 including 1 m @ 5.05 g/t Au from 352 m
THRCD859	362	371	BMAG	PCRCDD	309	2.42	9	21.79	9 m @ 2.42 g/t Au from 362 m in THRCD859
THRCD861	184.5	189	BMAG	PCRCDD	309	35.69	4	142.75	4 m @ 35.69 g/t Au from 184.5 m in THRCD861
THRCD861	190	199	BMAG	PCRCDD	309	9.68	9	87.13	9 m @ 9.68 g/t Au from 190 m in THRCD861 including 1 m @ 8.15 g/t Au from 198 m
THRCD870	185	188	THO	PCRCDD	309	12.55	3	37.65	3 m @ 12.55 g/t Au from 185 m in THRCD870 including 3 m @ 12.55 g/t Au from 185 m
THRCD871	179	184	THO	PCRCDD	309	17.15	5	85.77	5 m @ 17.15 g/t Au from 179 m in THRCD871 including 2 m @ 40.42 g/t Au from 180 m
THRCD872	174	175	THO	PCRCDD	309	25.30	1	25.30	1 m @ 25.3 g/t Au from 174 m in THRCD872 including 1 m @ 25.3 g/t Au from 174 m
THRCD873	196	212	тно	PCRCDD	309	9.37	16	149.93	16 m @ 9.37 g/t Au from 196 m in THRCD873 including 8 m @ 12.83 g/t Au from 197 m, 1 m @ 37.4 g/t Au from 208 m
THRCD874	109	115	THO	PCRCDD	309	5.96	6	35.78	6 m @ 5.96 g/t Au from 109 m in THRCD874 including 3 m @ 11 g/t Au from 109 m
THRCD875	177	184	тно	PCRCDD	309	93.48	7	654.36	7 m @ 93.48 g/t Au from 177 m in THRCD875 including 1 m @ 6.37 g/t Au from 177 m, 3 m @ 214 g/t Au from 180 m
THRCD876	151	152	THO	PCRCDD	309	45.50	1	45.50	1 m @ 45.5 g/t Au from 151 m in THRCD876 including 1 m @ 45.5 g/t Au from 151 m
THRCD892	339	352	THO	PCRCDD	309	2.36	13	30.66	13 m @ 2.36 g/t Au from 339 m in THRCD892 including 1 m @ 5.76 g/t Au from 339 m. 1 m @ 5.63 g/t Au from 347 m
THRCD894	146	168	тно	PCRCDD	309	8.23	22	181.03	22 m @ 8.23 g/t Au from 146 m in THRCD894 including 1 m @ 8.11 g/t Au from 162 m, 2 m @ 6.66 g/t Au from 158 m, 8 m @ 17.18 g/t Au from 147 m
THRCD895	142	150	THO	PCRCDD	309	4.20	8	33.61	8 m @ 4.2 g/t Au from 142 m in THRCD895 including 3 m @ 7.33 g/t Au from 146 m
THRCD895	218	220	тно	PCRCDD	309	11.00	2	21.99	2 m @ 11 g/t Au from 218 m in THRCD895 including 2 m @ 11 g/t Au from 218 m
THRCD895	228	234	THO	PCRCDD	309	12.24	6	73.46	6 m @ 12.24 g/t Au from 228 m in THRCD895 including 5 m @ 14.32 g/t Au from 229 m
THRCD896	135	142	THO	PCRCDD	309	3.49	7	24.43	7 m @ 3.49 g/t Au from 135 m in THRCD896 including 2 m @ 8.5 g/t Au from 135 m
THRCD896	175	176	THO	PCRCDD	309	25.90	1	25.90	1 m @ 25.9 g/t Au from 175 m in THRCD896 including 1 m @ 25.9 g/t Au from 175 m in THRCD896 including 1 m
THRCD906	187	192	THO	PCRCDD	309	5.09	5	25.44	5 m @ 5.09 g/t Au from 187 m in THRCD906 including 1 m @ 6.96 g/t Au from 187 m, 1 m @ 15 4 g/t Au from 191 m
THRCD906	196	207	тно	PCRCDD	309	3.39	11	37.33	11 m @ 3.39 g/t Au from 196 m in THRCD906 including 2 m
THRCD908	377	382	THO	PCRCDD	309	4.43	5	22.17	5 m @ 4.43 g/t Au from 377 m in THRCD908 including 1 m

Hole ID	From (m)	To (m)	Company	Drill Type	Prospect	Au g/t	Interval Length (m)	Gram Metre (g/t x interval length)	Gold grade intercept comment
									@ 13.1 g/t Au from 379 m
THRCD909	274	285	тно	PCRCDD	309	2.94	11	32.35	11 m @ 2.94 g/t Au from 274 m in THRCD909 including 1 m @ 5.62 g/t Au from 277 m 1 m @ 10.8 g/t Au from 279 m
THRCD917	139	150	BMAG	REVC	309	4.57	11	50.31	11 m @ 4.57 g/t Au from 139 m in THRCD917 including 1 m @ 6.25 g/t Au from 148 m, 1 m @ 25 g/t Au from 139 m
THRCD917	151	166	BMAG	REVC	309	10.64	15	159.56	m @ 16.8 g/t Au from 159 m, 5 m @ 25.43 g/t Au from 151 m m
THRCD919	130	138	BMAG	REVC	309	3.98	8	31.81	8 m @ 3.98 g/t Au from 130 m in THRCD919 including 1 m @ 19.9 g/t Au from 130 m
THRCD920	143	148	BMAG	REVC	309	7.82	5	39.09	5 m @ 7.82 g/t Au from 143 m in THRCD920 including 1 m @ 34.7 g/t Au from 143 m
THRCD920	181	186	BMAG	REVC	309	10.32	5.3	54.69	5.3 m @ 10.32 g/t Au from 181 m in THRCD920 including 4.3 m @ 11.99 g/t Au from 182 m
THRCD926	137	143	BMAG	REVC	309	3.90	6	23.43	6 m @ 3.9 g/t Au from 137 m in THRCD926 including 1 m @ 10 g/t Au from 141 m, 1 m @ 5.79 g/t Au from 137 m
TPCD474	91	92	UNK	PCOHDD	309	23.70	1	23.70	1 m @ 23.7 g/t Au from 91 m in TPCD474 including 1 m @ 23.7 g/t Au from 91 m
TPCD474	99	104	UNK	PCOHDD	309	4.74	5	23.68	5 m @ 4.74 g/t Au from 99 m in TPCD474 including 1 m @ 15.2 g/t Au from 103 m
TPCD653	169	183	UNK	PCOHDD	309	4.02	14	56.28	14 m @ 4.02 g/t Au from 169 m in TPCD653 including 1 m @ 6.51 g/t Au from 173 m, 1 m @ 10.9 g/t Au from 182 m, 2 m @ 10.2 g/t Au from 177 m
TPCD653	184	197	UNK	PCOHDD	309	3.63	13	47.18	13 m @ 3.63 g/t Au from 184 m in TPCD653 including 1 m @ 11 g/t Au from 187 m 2 m @ 9 89 g/t Au from 190 m
TPCD653	201	212	UNK	PCOHDD	309	7.94	11	87.33	11 m @ 7.94 g/t Au from 201 m in TPCD653 including 5 m @ 14.76 g/t Au from 204 m
TPCD654	145	150	UNK	PCOHDD	309	12.99	5	64.94	5 m @ 12.99 g/t Au from 145 m in TPCD654 including 1 m @ 11.7 g/t Au from 145 m 2 m @ 26.3 g/t Au from 148 m
TPCD655	132	134	UNK	PCOHDD	309	75.75	2	151.50	2 m @ 75.75 g/t Au from 132 m in TPCD655 including 2 m @ 75.75 g/t Au from 132 m
TRC408	72	84	UNK	REVC	309	2.46	12	29.48	12 m @ 2.46 g/t Au from 72 m in TRC408 including 2 m @ 6.26 g/t Au from 74 m
TRC410	86	90	UNK	REVC	309	6.10	4	24.40	4 m @ 6.1 g/t Au from 86 m in TRC410 including 2 m @ 10 g/t Au from 88 m
TRC424	35	37	UNK	REVC	309	243.07	2	486.14	2 m @ 243.07 g/t Au from 35 m in TRC424 including 1 m @ 485 g/t Au from 35 m
TRC434	39	58	UNK	REVC	309	1.99	19	37.86	19 m @ 1.99 g/t Au from 39 m in TRC434
TRC611	28	39	UNK	REVC	309	6.72	11	73.97	11 m @ 6.72 g/t Au from 28 m in TRC611 including 2 m @ 9.81 g/t Au from 28 m, 4 m @ 11,49 g/t Au from 33 m
TRC611	72	74	UNK	REVC	309	22.17	2	44.33	2 m @ 22.17 g/t Au from 72 m in TRC611 including 1 m @ 42 8 g/t Au from 72 m
TRC614	46	80	UNK	REVC	309	18.73	34	636.81	34 m @ 18.73 g/t Au from 46 m in TRC614 including 4 m @ 8.38 g/t Au from 71 m, 10 m @ 56.79 g/t Au from 59 m
TRC620	63	70	UNK	REVC	309	2.92	7	20.43	7 m @ 2.92 g/t Au from 63 m in TRC620 including 1 m @
TRC680	57	69	UNK	REVC	309	20.54	12	246.51	12 m @ 20.54 g/t Au from 57 m in TRC680 including 5 m @ 45.79 g/t Au from 59 m
TRC683	64	98.4	UNK	REVC	309	71.24	34.4	2450.59	34.4 m @ 71.24 g/t Au from 64 m in TRC683 including 21 m @ 115.56 g/t Au from 67 m *
TRC692	84	98	UNK	REVC	309	4.80	14	67.16	14 m @ 4.8 g/t Au from 84 m in TRC692 including 1 m @ 23.6 g/t Au from 93 m, 1 m @ 5.22 g/t Au from 86 m, 1 m @ 7.42 g/t Au from 90 m
TRC703	73	83	UNK	REVC	309	3.07	10	30.70	10 m @ 3.07 g/t Au from 73 m in TRC703 including 1 m @ 6.66 g/t Au from 76 m 1 m @ 5.08 g/t Au from 73 m
TRC705	82	85	UNK	REVC	309	9.25	3	27.76	3 m @ 9.25 g/t Au from 82 m in TRC705 including 2 m @ 13.25 g/t Au from 83 m
TRC718	33	38	PLUT	REVC	309	4.25	5	21.26	5 m @ 4.25 g/t Au from 33 m in TRC718 including 1 m @ 12.1 g/t Au from 37 m
TRC719	77	91	UNK	REVC	309	6.47	14	90.61	14 m @ 6.47 g/t Au from 77 m in TRC719 including 4 m @ 6.83 g/t Au from 78 m, 2 m @ 19.95 g/t Au from 87 m, 1 m @ 6.48 g/t Au from 85 m *

Hole ID	From (m)	To (m)	Company	Drill Type	Prospect	Au g/t	Interval Length (m)	Gram Metre (g/t x interval length)	Gold grade intercept comment
TRC721	48	56	UNK	REVC	309	6.45	8	51.59	8 m @ 6.45 g/t Au from 48 m in TRC721 including 2 m @ 21 g/t Au from 49 m
TRC721	57	63	UNK	REVC	309	5.53	6	33.20	6 m @ 5.53 g/t Au from 57 m in TRC721 including 1 m @ 21
TRCD384	31	44	UNK	PCRCDD	309	4.22	13	54.81	13 m @ 4.22 g/t Au from 31 m in TRCD384 including 4 m @ 6.95 g/t Au from 37 m. 1 m @ 6.16 g/t Au from 35 m
TRCD384	81	84	UNK	PCRCDD	309	7.78	3	23.33	3 m @ 7.78 g/t Au from 81 m in TRCD384 including 2 m @ 10.57 g/t Au from 82 m
TRCD384	100	127	UNK	PCRCDD	309	7.34	27	198.05	27 m @ 7.34 g/t Au from 100 m in TRCD384 including 6 m @ 15.45 g/t Au from 103 m, 1 m @ 14.3 g/t Au from 113 m, 1 m @ 6.18 g/t Au from 118 m, 1 m @ 9.84 g/t Au from 110 m, 4 m @ 10.73 g/t Au from 123 m
TRCD384	128	135	UNK	PCRCDD	309	5.70	7	39.88	7 m @ 5.7 g/t Au from 128 m in TRCD384 including 5 m @ 6.96 g/t Au from 130 m
TRCD385	42	53	UNK	PCRCDD	309	7.12	11	78.30	11 m @ 7.12 g/t Au from 42 m in TRCD385 including 2 m @ 7.67 g/t Au from 47 m, 1 m @ 46.1 g/t Au from 42 m
TRCD411	131	137	UNK	PCRCDD	309	10.30	6	61.78	6 m @ 10.3 g/t Au from 131 m in TRCD411 including 6 m @ 10.3 g/t Au from 131 m
TRCD411	139	147	UNK	PCRCDD	309	3.97	8	31.75	8 m @ 3.97 g/t Au from 139 m in TRCD411 including 2 m @ 5.99 g/t Au from 140 m
TRCD428	95	100	UNK	PCRCDD	309	8.47	5	42.34	5 m @ 8.47 g/t Au from 95 m in TRCD428 including 1 m @ 18.5 g/t Au from 99 m, 1 m @ 16.2 g/t Au from 95 m
TRCD428	141	151	UNK	PCRCDD	309	2.26	10	22.64	10 m @ 2.26 g/t Au from 141 m in TRCD428 including 1 m @ 5.42 g/t Au from 143 m
TRCD428	153	162	UNK	PCRCDD	309	2.63	9	23.71	9 m @ 2.63 g/t Au from 153 m in TRCD428 including 3 m @ 5.29 g/t Au from 153 m
TRCD429	148	156	UNK	PCRCDD	309	2.53	8	20.26	8 m @ 2.53 g/t Au from 148 m in TRCD429 including 1 m @ 6.51 g/t Au from 152 m
TRCD432	108	110	UNK	PCRCDD	309	79.05	2	158.10	2 m @ 79.05 g/t Au from 108 m in TRCD432 including 2 m @ 79.05 g/t Au from 108 m
TRCD432	125	134	UNK	PCRCDD	309	7.47	9	67.27	9 m @ 7.47 g/t Au from 125 m in TRCD432 including 3 m @ 18.23 g/t Au from 128 m
TRCD432	137	142	UNK	PCRCDD	309	6.24	5	31.19	5 m @ 6.24 g/t Au from 137 m in TRCD432 including 2 m @ 11.8 g/t Au from 138 m
TRCD618	109	118	UNK	PCRCDD	309	14.52	9	130.71	9 m @ 14.52 g/t Au from 109 m in TRCD618 including 5 m @ 25.23 g/t Au from 113 m
TRCD684	102	111	UNK	PCRCDD	309	6.43	9	57.83	9 m @ 6.43 g/t Au from 102 m in TRCD684 including 7 m @ 7.88 g/t Au from 104 m *
TRCD684	114	118	UNK	PCRCDD	309	6.05	4	24.20	4 m @ 6.05 g/t Au from 114 m in TRCD684 including 3 m @ 7.01 g/t Au from 114 m
TRCD698	167	177	UNK	PCRCDD	309	12.01	10	120.10	10 m @ 12.01 g/t Au from 167 m in TRCD698 including 3 m @ 31.57 g/t Au from 168 m, 1 m @ 13.5 g/t Au from 175 m
TRCD728	222	239	PLUT	PCRCDD	309	317.40	17	5395.88	17 m @ 317.4 g/t Au from 222 m in TRCD728 including 5 m @ 1036.6 g/t Au from 222 m, 4 m @ 49.03 g/t Au from 230 m
TRCD729	252	259	PLUT	PCRCDD	309	6.30	7	44.08	7 m @ 6.3 g/t Au from 252 m in TRCD729 including 4 m @ 10.33 g/t Au from 252 m
TRCD730	189	195	PLUT	PCRCDD	309	4.20	6	25.18	6 m @ 4.2 g/t Au from 189 m in TRCD730 including 1 m @ 5.5 g/t Au from 189 m, 2 m @ 8.6 g/t Au from 191 m
TRCD730	338	341	PLUT	PCRCDD	309	16.60	3	49.79	3 m @ 16.6 g/t Au from 338 m in TRCD730 including 1 m @ 48 g/t Au from 338 m
TRCD732	359	360	PLUT	PCRCDD	309	108.00	1	108.00	1 m @ 108 g/t Au from 359 m in TRCD732 including 1 m @ 108 g/t Au from 359 m
TRCD737	247	249	PLUT	PCRCDD	309	71.75	2	143.50	2 m @ 71.75 g/t Au from 247 m in TRCD737 including 2 m @ 71.75 g/t Au from 247 m
TRCD740	208	210	PLUT	PCRCDD	309	12.52	2	25.03	2 m @ 12.52 g/t Au from 208 m in TRCD740 including 1 m @ 21.2 g/t Au from 208 m
TRCD743	144	159	PLUT	PCRCDD	309	1.55	15	23.30	15 m @ 1.55 g/t Au from 144 m in TRCD743
TRCD743	168	188	PLUT	PCRCDD	309	2.48	20	49.65	20 m @ 2.48 g/t Au from 168 m in TRCD743 including 1 m @ 11.6 g/t Au from 180 m
TRCD748	172	174	PLUT	PCRCDD	309	22.80	2	45.60	2 m @ 22.8 g/t Au from 172 m in TRCD748 including 2 m @

Hole ID	From (m)	To (m)	Company	Drill Type	Prospect	Au g/t	Interval Length (m)	Gram Metre (g/t x interval length)	Gold grade intercept comment
									22.8 g/t Au from 172 m
TRCD755	368	370	UNK	PCRCDD	309	18.66	2	37.31	2 m @ 18.66 g/t Au from 368 m in TRCD755 including 1 m @ 36.3 g/t Au from 369 m
TRCD756	304	317	UNK	PCRCDD	309	5.46	13	70.96	13 m @ 5.46 g/t Au from 304 m in TRCD756 including 1 m @ 9.84 g/t Au from 310 m, 2 m @ 8 g/t Au from 315 m, 4 m @ 8.86 g/t Au from 305 m
TRCD756	320	334	UNK	PCRCDD	309	10.59	14	148.26	14 m @ 10.59 g/t Au from 320 m in TRCD756 including 1 m @ 5.22 g/t Au from 326 m, 1 m @ 15.5 g/t Au from 333 m, 3 m @ 36.39 g/t Au from 321 m

Table 6; 309 Deposit Surface Drilling Downhole Intersection Summary Table.

Gold grade intercepts from Lone Sister Resource Drilling

1 g/t Minimum grade cut off with up to 2 m internal dilution at an average grade of 0.2 g/t (High grade intercept - 5 g/t Minimum grade cut off with up to 2 m internal dilution at an average grade of 0.2 g/t) All intercepts are presented as intersection widths

NIS - No Significant Int	ersection	* Some of denoted interva	l may have been mined	
Gram Metre > 1000	Gram Metre 100 to 1000	Gram Metre 50 to 100	Gram Metre 20 to 50	

Hole ID	From (m)	To (m)	Company	Drill Type	Prospect	Au g/t	Interval Length (m)	Gram Metre (g/t x interval	Gold grade intercept comment
								length)	
LRC176	102	112	THO	REVC	Lone Sister	9.22	10	92.22	10 m @ 9.22 g/t Au from 102 m in LRC176 including 8 m @ 11.19 g/t Au from 104 m
LRC180	19	23	THO	REVC	Lone Sister	12.60	4	50.38	4 m @ 12.6 g/t Au from 19 m in LRC180 including 2 m @ 24.13 g/t Au from 20 m
LRCD011	291	320	PLUT	PCRCDD	Lone Sister	3.33	29	96.53	29 m @ 3.33 g/t Au from 291 m in LRCD011 including 1 m @ 5.97 g/t Au from 318 m, 1 m @ 6.65 g/t Au from 292 m, 2 m @ 17.89 g/t Au from 299 m, 1 m @ 5.93 g/t Au from 312 m
LRCD011	321	332	PLUT	PCRCDD	Lone Sister	6.30	11	69.32	11 m @ 6.3 g/t Au from 321 m in LRCD011 including 2 m @ 25.3 g/t Au from 324 m
LRCD012	278	288	MET	PCRCDD	Lone Sister	3.85	10	38.46	10 m @ 3.85 g/t Au from 278 m in LRCD012 including 1 m @ 19.2 g/t Au from 278 m, 1 m @ 6.59 g/t Au from 285 m
LRCD012	297	306	MET	PCRCDD	Lone Sister	2.34	9	21.10	9 m @ 2.34 g/t Au from 297 m in LRCD012 including 1 m @ 5.86 g/t Au from 303 m
LRCD012	322	337	MET	PCRCDD	Lone Sister	4.27	15	64.06	15 m @ 4.27 g/t Au from 322 m in LRCD012 including 2 m @ 5.67 g/t Au from 328 m, 1 m @ 8.33 g/t Au from 336 m, 2 m @ 13.13 g/t Au from 323 m
LRCD012	344	354	MET	PCRCDD	Lone Sister	5.44	10	54.44	10 m @ 5.44 g/t Au from 344 m in LRCD012 including 3 m @ 13.28 g/t Au from 346 m, 1 m @ 5.02 g/t Au from 344 m
LRCD015	143	159	PLUT	PCRCDD	Lone Sister	3.03	16	48.42	16 m @ 3.03 g/t Au from 143 m in LRCD015 including 3 m @ 8.21 g/t Au from 146 m
LRCD015	212	246	PLUT	PCRCDD	Lone Sister	39.10	34	1329.34	34 m @ 39.1 g/t Au from 212 m in LRCD015 including 14 m @ 86.31 g/t Au from 222 m, 4 m @ 7.41 g/t Au from 212 m, 4 m @ 14.08 g/t Au from 241 m, 1 m @ 8.27 g/t Au from 237 m
LRCD039	194	200	PLUT	PCRCDD	Lone Sister	3.87	6	23.22	6 m @ 3.87 g/t Au from 194 m in LRCD039 including 1 m @ 13.4 g/t Au from 199 m
LRCD039	237	242	PLUT	PCRCDD	Lone Sister	4.25	5	21.27	5 m @ 4.25 g/t Au from 237 m in LRCD039 including 2 m @ 5.59 g/t Au from 238 m
LRCD041	215	217	PLUT	PCRCDD	Lone Sister	13.68	2	27.36	2 m @ 13.68 g/t Au from 215 m in LRCD041 including 2 m @ 13.68 g/t Au from 215 m
LRCD057	30	32	PLUT	PCRCDD	Lone Sister	15.60	2	31.20	2 m @ 15.6 g/t Au from 30 m in LRCD057 including 1 m @ 28.2 g/t Au from 30 m

Hole ID	From (m)	To (m)	Company	Drill Type	Prospect	Au g/t	Interval Length (m)	Gram Metre (g/t x interval length)	Gold grade intercept comment
LRCD057	125	155	PLUT	PCRCDD	Lone Sister	2.98	30	89.26	30 m @ 2.98 g/t Au from 125 m in LRCD057 including 1 m @ 15 g/t Au from 126 m
LRCD057	172	173	PLUT	PCRCDD	Lone Sister	53.75	1	53.75	1 m @ 53.75 g/t Au from 172 m in LRCD057 including 1 m @ 53.75 g/t Au from 172 m
LRCD057	177	188	PLUT	PCRCDD	Lone Sister	29.48	11	324.23	11 m @ 29.48 g/t Au from 177 m in LRCD057 including 10 m @ 32.21 g/t Au from 177 m
LRCD057	191	199	PLUT	PCRCDD	Lone Sister	2.75	8	22.03	8 m @ 2.75 g/t Au from 191 m in LRCD057 including 1 m @ 9.46 g/t Au from 198 m
LRCD058	189	202	PLUT	PCRCDD	Lone Sister	6.17	13	80.19	13 m @ 6.17 g/t Au from 189 m in LRCD058 including 2 m @ 24.02 g/t Au from 194 m, 1 m @ 6.8 g/t Au from 191 m
LRCD063	182	192	PLUT	PCRCDD	Lone Sister	4.78	10	47.78	10 m @ 4.78 g/t Au from 182 m in LRCD063 including 3 m @ 11.98 g/t Au from 183 m
LRCD063	247	265	PLUT	PCRCDD	Lone Sister	15.78	18	284.05	18 m @ 15.78 g/t Au from 247 m in LRCD063 including 5 m @ 11.02 g/t Au from 259 m, 11 m @ 20.32 g/t Au from 247 m
LRCD064	85	101	PLUT	PCRCDD	Lone Sister	5.60	16	89.52	16 m @ 5.6 g/t Au from 85 m in LRCD064 including 1 m @ 5.71 g/t Au from 98 m, 5 m @ 13.34 g/t Au from 91 m
LRCD064	103	107	PLUT	PCRCDD	Lone Sister	6.33	4	25.33	4 m @ 6.33 g/t Au from 103 m in LRCD064 including 1 m @ 14.3 g/t Au from 106 m, 1 m @ 10.2 g/t Au from 103 m
LRCD065	128	138	PLUT	PCRCDD	Lone Sister	5.83	10	58.29	10 m @ 5.83 g/t Au from 128 m in LRCD065 including 1 m @ 25.3 g/t Au from 137 m, 3 m @ 8.48 g/t Au from 128 m
LRCD065	225	232	PLUT	PCRCDD	Lone Sister	5.50	7	38.50	7 m @ 5.5 g/t Au from 225 m in LRCD065 including 2 m @ 15.05 g/t Au from 225 m
LRCD066	290	297	PLUT	PCRCDD	Lone Sister	3.73	7	26.13	7 m @ 3.73 g/t Au from 290 m in LRCD066 including 1 m @ 15.5 g/t Au from 291 m
LRCD066	321	338	PLUT	PCRCDD	Lone Sister	1.82	17	31.01	17 m @ 1.82 g/t Au from 321 m in LRCD066
LRCD066	401	414	PLUT	PCRCDD	Lone Sister	4.27	13	55.50	13 m @ 4.27 g/t Au from 401 m in LRCD066 including 1 m @ 7.6 g/t Au from 403 m, 2 m @ 10.3 g/t Au from 411 m, 1 m @ 11.2 g/t Au from 405 m
LRCD066	416	421	PLUT	PCRCDD	Lone Sister	5.94	5	29.68	5 m @ 5.94 g/t Au from 416 m in LRCD066 including 1 m @ 23.1 g/t Au from 419 m
LRCD071	303	306	PLUT	PCRCDD	Lone Sister	33.07	3	99.20	3 m @ 33.07 g/t Au from 303 m in LRCD071 including 3 m @ 33.07 g/t Au from 303 m
LRCD095	260	269	PLUT	PCRCDD	Lone Sister	2.65	9	23.85	9 m @ 2.65 g/t Au from 260 m in LRCD095 including 1 m @ 5 g/t Au from 263 m
LRCD121	91	94	PLUT	PCRCDD	Lone Sister	10.23	3	30.70	3 m @ 10.23 g/t Au from 91 m in LRCD121 including 2 m @ 14.85 g/t Au from 91 m
LRCD121	112	117	PLUT	PCRCDD	Lone Sister	4.93	5	24.66	5 m @ 4.93 g/t Au from 112 m in LRCD121 including 1 m @ 15.64 g/t Au from 114 m
LRCD122	215	228.7	PLUT	PCRCDD	Lone Sister	2.32	13.7	31.73	13.7 m @ 2.32 g/t Au from 215 m in LRCD122 including 1 m @ 6.15 g/t Au from 225 m
LRCD132	116	120	НОМ	PCRCDD	Lone Sister	5.15	4	20.58	4 m @ 5.15 g/t Au from 116 m in LRCD132 including 2 m @ 7.2 g/t Au from 117 m
LRCD134	70	72	НОМ	PCRCDD	Lone Sister	20.61	2	41.21	2 m @ 20.61 g/t Au from 70 m in LRCD134 including 2 m @ 20.61 g/t Au from 70 m
LRCD134	77	86	НОМ	PCRCDD	Lone Sister	4.55	9	40.99	9 m @ 4.55 g/t Au from 77 m in LRCD134 including 2 m @ 14.65 g/t Au from 78 m
LRCD134	116	136	НОМ	PCRCDD	Lone Sister	2.15	20	42.98	20 m @ 2.15 g/t Au from 116 m in LRCD134
LRCD135	247	253	НОМ	PCRCDD	Lone Sister	8.32	6	49.89	6 m @ 8.32 g/t Au from 247 m in LRCD135 including 2 m @ 19.75 g/t Au from 247 m
LRCD140	265	277	НОМ	PCRCDD	Lone Sister	4.13	12	49.51	12 m @ 4.13 g/t Au from 265 m in LRCD140 including 4 m @ 8.56 g/t Au from 273 m, 1 m @ 6.33 g/t Au from 270 m
LRCD140	284	290	НОМ	PCRCDD	Lone Sister	4.30	6	25.80	6 m @ 4.3 g/t Au from 284 m in LRCD140 including 2 m @ 7.52 g/t Au from 286 m
LRCD140	295	306	НОМ	PCRCDD	Lone Sister	1.98	11	21.81	11 m @ 1.98 g/t Au from 295 m in LRCD140
LRCD140	308	311	НОМ	PCRCDD	Lone Sister	10.29	3	30.88	3 m @ 10.29 g/t Au from 308 m in LRCD140 including 3 m @ 10.29 g/t Au from 308 m
LRCD141	181	189	BMAG	PCRCDD	Lone Sister	2.77	8	22.12	8 m @ 2.77 g/t Au from 181 m in LRCD141 including 1 m @ 7.45 g/t Au from 185 m
LRCD143	140	157	BMAG	PCRCDD	Lone	13.13	17	223.24	17 m @ 13.13 g/t Au from 140 m in LRCD143 including 1 m @

Hole ID	From (m)	To (m)	Company	Drill Type	Prospect	Au g/t	Interval Length (m)	Gram Metre (g/t x interval length)	Gold grade intercept comment
					Sister				8.35 g/t Au from 140 m, 2 m @ 49.25 g/t Au from 150 m, 1 m @ 11.2 g/t Au from 147 m, 1 m @ 77.7 g/t Au from 155 m
LRCD144	209	218	BMAG	PCRCDD	Lone Sister	7.12	9	64.09	9 m @ 7.12 g/t Au from 209 m in LRCD144 including 1 m @ 24.4 g/t Au from 216 m, 3 m @ 10.63 g/t Au from 209 m
LRCD145	129	140	BMAG	PCRCDD	Lone Sister	6.47	11	71.12	11 m @ 6.47 g/t Au from 129 m in LRCD145 including 3 m @ 16.47 g/t Au from 135 m
LRCD145	153	165	BMAG	PCRCDD	Lone Sister	4.11	12	49.36	12 m @ 4.11 g/t Au from 153 m in LRCD145 including 1 m @ 11.8 g/t Au from 163 m, 1 m @ 11.7 g/t Au from 156 m, 1 m @ 5.25 g/t Au from 160 m
LRCD146	88	92	BMAG	PCRCDD	Lone Sister	13.19	4	52.77	4 m @ 13.19 g/t Au from 88 m in LRCD146 including 2 m @ 25.3 g/t Au from 90 m
LRCD146	154	161	BMAG	PCRCDD	Lone Sister	5.10	7	35.68	7 m @ 5.1 g/t Au from 154 m in LRCD146 including 1 m @ 21.1 g/t Au from 156 m, 1 m @ 5.35 g/t Au from 154 m
LRCD146	165	173	BMAG	PCRCDD	Lone Sister	6.48	8	51.86	8 m @ 6.48 g/t Au from 165 m in LRCD146 including 4 m @ 11.71 g/t Au from 169 m
LRCD146	203	208	BMAG	PCRCDD	Lone Sister	4.32	5	21.62	5 m @ 4.32 g/t Au from 203 m in LRCD146 including 1 m @ 11.8 g/t Au from 203 m
LRCD147	101	126	BMAG	PCRCDD	Lone Sister	3.41	25	85.27	25 m @ 3.41 g/t Au from 101 m in LRCD147 including 2 m @ 10.85 g/t Au from 113 m, 4 m @ 6.9 g/t Au from 118 m
LRCD147	143	144	BMAG	PCRCDD	Lone Sister	29.10	1	29.10	1 m @ 29.1 g/t Au from 143 m in LRCD147 including 1 m @ 29.1 g/t Au from 143 m
LRCD147	149	158	BMAG	PCRCDD	Lone Sister	3.00	9	27.02	9 m @ 3 g/t Au from 149 m in LRCD147 including 1 m @ 11.8 g/t Au from 152 m
LRCD147	174	190	BMAG	PCRCDD	Lone Sister	5.19	16	83.05	16 m @ 5.19 g/t Au from 174 m in LRCD147 including 1 m @ 5.75 g/t Au from 183 m, 4 m @ 10.21 g/t Au from 176 m, 3 m @ 6.97 g/t Au from 186 m
LRCD148	177	191	BMAG	PCRCDD	Lone Sister	12.11	14	169.59	14 m @ 12.11 g/t Au from 177 m in LRCD148 including 6 m @ 19.03 g/t Au from 180 m, 1 m @ 8.45 g/t Au from 177 m, 1 m @ 37.4 g/t Au from 187 m
LRCD150	243	261	BMAG	PCRCDD	Lone Sister	5.38	18	96.92	18 m @ 5.38 g/t Au from 243 m in LRCD150 including 1 m @ 23.1 g/t Au from 257 m, 1 m @ 5.8 g/t Au from 244 m, 1 m @ 36.8 g/t Au from 246 m
LRCD150	294	303	BMAG	PCRCDD	Lone Sister	2.77	9	24.93	9 m @ 2.77 g/t Au from 294 m in LRCD150 including 1 m @ 6.55 g/t Au from 294 m
LRCD151	283	288	BMAG	PCRCDD	Lone Sister	21.14	5	105.71	5 m @ 21.14 g/t Au from 283 m in LRCD151 including 4 m @ 25.95 g/t Au from 283 m
LRCD151	298	305	BMAG	PCRCDD	Lone Sister	4.62	7	32.34	7 m @ 4.62 g/t Au from 298 m in LRCD151 including 1 m @ 5.1 g/t Au from 300 m, 1 m @ 8.4 g/t Au from 298 m, 1 m @ 12.5 g/t Au from 302 m
LRCD152	245	262	BMAG	PCRCDD	Lone Sister	6.37	17	108.25	17 m @ 6.37 g/t Au from 245 m in LRCD152 including 1 m @ 5.6 g/t Au from 259 m, 2 m @ 36.3 g/t Au from 247 m, 1 m @ 6.25 g/t Au from 254 m
LRCD152	270	283	BMAG	PCRCDD	Lone Sister	6.92	13	89.97	13 m @ 6.92 g/t Au from 270 m in LRCD152 including 5 m @ 15.39 g/t Au from 272 m
LRCD152	284	297	BMAG	PCRCDD	Lone Sister	3.00	13	39.05	13 m @ 3 g/t Au from 284 m in LRCD152 including 1 m @ 12.4 g/t Au from 292 m
LRCD152	299	320	BMAG	PCRCDD	Lone Sister	2.67	21	56.05	21 m @ 2.67 g/t Au from 299 m in LRCD152 including 2 m @ 6.8 g/t Au from 313 m
LRCD153	329	337	BMAG	PCRCDD	Lone Sister	2.56	8	20.47	8 m @ 2.56 g/t Au from 329 m in LRCD153 including 1 m @ 11.1 g/t Au from 330 m
LRCD154	218	229	BMAG	PCRCDD	Lone Sister	23.44	11	257.88	11 m @ 23.44 g/t Au from 218 m in LRCD154 including 5 m @ 49.5 g/t Au from 220 m
LRCD156	203	209	BMAG	PCRCDD	Lone Sister	6.59	6	39.56	6 m @ 6.59 g/t Au from 203 m in LRCD156 including 1 m @ 5.32 g/t Au from 208 m, 1 m @ 25.2 g/t Au from 204 m
LRCD156	215	222	BMAG	PCRCDD	Lone Sister	3.30	7	23.10	7 m @ 3.3 g/t Au from 215 m in LRCD156 including 2 m @ 6.88 g/t Au from 215 m
LRCD157	185	191	BMAG	PCRCDD	Lone Sister	6.06	6	36.36	6 m @ 6.06 g/t Au from 185 m in LRCD157 including 1 m @ 19.8 g/t Au from 185 m
LRCD157	209	220	BMAG	PCRCDD	Lone Sister	11.13	11	122.38	11 m @ 11.13 g/t Au from 209 m in LRCD157 including 8 m @ 14.34 g/t Au from 210 m
LRCD157	222	233	BMAG	PCRCDD	Lone Sister	15.49	11	170.42	11 m @ 15.49 g/t Au from 222 m in LRCD157 including 7 m @ 22.17 g/t Au from 222 m, 1 m @ 8.05 g/t Au from 232 m

Hole ID	From (m)	To (m)	Company	Drill Type	Prospect	Au g/t	Interval Length (m)	Gram Metre (g/t x interval length)	Gold grade intercept comment
LRCD158	257	261	BMAG	PCRCDD	Lone Sister	5.45	4	21.80	4 m @ 5.45 g/t Au from 257 m in LRCD158 including 4 m @ 5.45 g/t Au from 257 m
LRCD159	161	179	BMAG	PCRCDD	Lone Sister	3.93	18	70.71	18 m @ 3.93 g/t Au from 161 m in LRCD159 including 1 m @ 5.95 g/t Au from 171 m, 4 m @ 9.44 g/t Au from 174 m
LRCD160	126	131	BMAG	PCRCDD	Lone Sister	4.20	5	21.00	5 m @ 4.2 g/t Au from 126 m in LRCD160 including 1 m @ 17 g/t Au from 126 m
LRCD160	166	170	BMAG	PCRCDD	Lone Sister	5.66	4	22.62	4 m @ 5.66 g/t Au from 166 m in LRCD160 including 1 m @ 14.6 g/t Au from 167 m
LRCD161	252	263	BMAG	PCRCDD	Lone Sister	2.20	11	24.15	11 m @ 2.2 g/t Au from 252 m in LRCD161 including 1 m @ 7.25 g/t Au from 255 m
LRCD161	267	272	BMAG	PCRCDD	Lone Sister	4.04	5	20.22	5 m @ 4.04 g/t Au from 267 m in LRCD161 including 1 m @ 10.3 g/t Au from 267 m
LRCD161	279	285	BMAG	PCRCDD	Lone Sister	5.61	6	33.67	6 m @ 5.61 g/t Au from 279 m in LRCD161 including 3 m @ 9.67 g/t Au from 282 m
LRCD168	290	303	BMAG	PCRCDD	Lone Sister	3.44	13	44.75	13 m @ 3.44 g/t Au from 290 m in LRCD168 including 3 m @ 9.65 g/t Au from 290 m
LRCD168	304	311	BMAG	PCRCDD	Lone Sister	3.50	7	24.48	7 m @ 3.5 g/t Au from 304 m in LRCD168 including 1 m @ 8 g/t Au from 310 m, 1 m @ 11.1 g/t Au from 306 m
LRCD168	380	384	BMAG	PCRCDD	Lone Sister	10.53	4	42.10	4 m @ 10.53 g/t Au from 380 m in LRCD168 including 2 m @ 19.5 g/t Au from 380 m

Table 7; Lone Sister Deposit Surface Drilling Downhole Intersection Summary Table.