European Metals Holdings Limited

ARBN 154 618 989

Suite 12, Level 1 11 Ventnor Avenue West Perth WA 6005 PO Box 52 West Perth WA 6872 Phone + 61 8 6245 2050 Fax + 61 6245 2050 Website: www.europeanmet.com

Directors & Management

David Reeves Non-Executive Chairman

Keith Coughlan Managing Director

Richard Pavlik Executive Director

Kiran Morzaria Non-Executive Director

Neil Meadows Chief Operating Officer

Julia Beckett Company Secretary

Corporate Information

ASX: EMH

AIM: EMH

Frankfurt: E861.F

CDIs on Issue: 146.6M

29 January 2019

DRILL PROGRAMME UPDATE

European Metals Holdings Limited (**"European Metals"** or **"the Company"**) is pleased to announce initial results from its current eight core-hole resource drilling programme at the Cinovec Project as detailed. The current programme of work was announced by the Company 5 November 2018 (**Resource Drilling Commenced – Geotechnical Studies Continue**). Drilling of five of the eight holes has been completed. Drilling activities have been suspended and will resume after the end of the snow season. Analytical results for four of the drill holes from the Cinovec South deposit are reported.

Key points:

- Resource drill holes CIS-10, CIS-11, CIS-12 and CIS-13 have been completed including analytical reports.
- Resource drill hole CIS-14 has been drilled with analytical results pending.
 - Hole CIS-11 returned 129.3m averaging 0.51% Li₂O, incl. 2m @ 0.93% Li₂O, 2m @0.93% Li₂O; 5m @ 0.56% Sn and 0.11% W, 5m @ 0.21% Sn, and 7m @ 0.11% Sn.
 - Hole CIS-13 returned 108m averaging 0.45% Li₂O and 0.11% Sn, incl. 4m @ 0.99% Li₂O; 6m @ 0.29% Sn, 5m @ 0.34% Sn, 3m @ 0.77% Sn and 0.12% W, and 2m @ 1.03% Sn, incl. 1m @ 1.92% Sn.
 - $\circ~$ Hole CIS-10 returned 89m averaging 0.47% Li_2O, incl. 6m @ 1.02% Li_2O and 6m @ 0.91% Li_2O; 5m @ 0.26% Sn, 5m @ 0.14% Sn, and 7m @ 0.077% W.
 - Hole CIS-12 returned 93m averaging 0.48% Li₂O, incl. 2m @ 1.32% Li₂O, 2.4m @ 1.17% Li₂O and 3m @ 1.08% Li₂O; 8m @ 0.83% Li₂O and 0.18% Sn, 4m @ 0.13% Sn, and 5m @ 0.16% W.

European Metals Managing Director Keith Coughlan commented "We are very pleased to present these results. The current drill programme has been planned to define blocks of resource for the first 2 years of mining within the Cinovec-South area, with a goal to convert the resource from indicated to measured category to allow the delineation of initial proven reserves for the deposit. The results confirm our confidence in the robustness of the ore body and we are particularly encouraged by the higher than expected tin grades in hole CIS-13.

These holes form part of the feasibility study that is now underway. The study includes the production of lithium hydroxide from bench scale work that is in process and due for completion next month. At that point the Company expects to be able to release the updated PFS results."

Mineralized Intercepts and Lithology

Holes CIS-10, 11, 12 and 13 were all collared in rhyolite. Rhyolite / granite contact was achieved at a depth of 211.7m in CIS-10, 182.7m in CIS-11, 190.9m in CIS-12 and 192.6m in CIS-13. Below the contact variably altered Li-granite was intersected, whilst the dominant alteration style is medium to intensive greisenisation with several greisen zones observed.

Mineralization starts immediately below the rhyolite/granite contact with several minor Li and Sn intervals. The major mineralised intercepts are 89m @ 0.47% Li₂O (CIS-10), 129.3m @ 0.51% Li₂O (CIS-11), 93m @ 0.48% Li₂O (CIS-12) and 108m @ 0.45% Li₂O (CIS-13). The intervals were calculated at a 0.2% Li₂O cut-off, with a maximum internal waste of 4m.

The upper portion of the altered granite is also characterized by elevated Sn values. If no Sn cut-off is considered, the Sn interval is 72.3m @ 0.082% Sn in CIS-10, 95m @ 0.090% Sn in CIS-11, 89.7m @ 0.069% Sn in CIS-12 and 84m @ 0.136% Sn. Below these intervals the Sn grades decrease. Nevertheless, another 7m thick interval with higher W and elevated Sn grades was intersected in a deeper part of hole CIS-10 (see more details in 2 and 3).

Total drilled depth of hole CIS-10 was 340m, hole CIS-11 was ended at 329.3m, hole CIS-12 at 325m and hole CIS-13 at 315m. All holes have been terminated in Li ore and not in the underlaying low-mica granite which is considered to be the footwall of the Li-granite.

The drill hole results are very similar to predictions from the current geological model demonstrating the quality and robustness of the company's geological and resource model. Lithological intervals, incl. rhyolite / granite contact and zones of alteration, were intersected where predicted with a high level of accuracy. Also, the Li, Sn and W grades measured correspond to the block model.

Hole ID	Easting	Northing	Elevation (m)	Azimuth (°)	Dip (°)	Total Depth (m)
CIS-10	-778695	-966629	856.16	246.6	-78.38	340
CIS-11	-778787	-966611	852.09	79.5	-80.59	329.3
CIS-12	-778732	-966494	862.68	327.6	-89.48	325
CIS-13	-778732	-966494	862.68	282.6	-76.85	331
CIS-14	-778751	-966450	862.92	309.8	-88.83	315
CIS-15	-778800	-966400	860.0	0.0 *	-90.0 *	310 *
CIS-16	-778840	-966510	858.8	0.0 *	-90.0 *	320 *
CIS-17	-778854	-966549	855.0	270.0 *	-80.0 *	305 *

Table 1: Completed and planned drill hole data

*planned

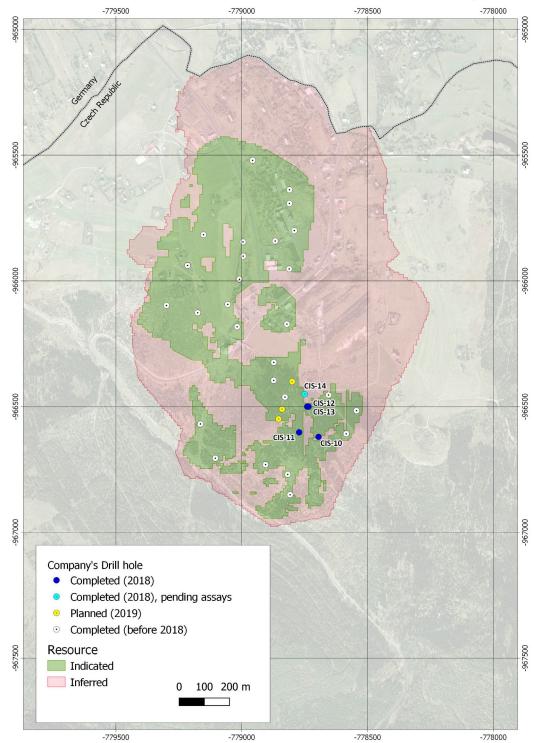


Figure 1: Plan view with Company's holes and resource blocks.

These assays have been tested externally by independent ALS Global.

	CIS-10						
From	То	Interval (m)	Determining element	Li ₂ O (%)	Sn (%)	W (%)	Note
211.7	220	8.3	Li ₂ O	0.24	0.05	0.004	
217	218	1	Sn	0.18	0.18	0.002	
225	236	11	Li ₂ O	0.32	0.18	0.008	
227	230	3	Sn	0.50	0.39	0.022	incl. 1m @ 0.59% Sn, 0.70% Li ₂ O, 0.06% W (227-228m)
234	235	1	Sn	0.61	0.66	0.006	
241	340	89	Li ₂ O	0.47	0.02	0.016	incl. 6.0m @ 1.02% Li ₂ O (286-292m), 6.0m @ 0.91% Li ₂ O (308-314m)
243	248	5	Sn	0.49	0.26	0.024	incl. 1m @ 0.65% Sn (246-248m)
275	280	5	Sn	0.39	0.14	0.044	
331	338	7	W	0.43	0.02	0.077	incl. 1m @ 0.24% W (331-332m)

Table 2: Mineralized intercepts in hole CIS-10.

Cut-off: 0.2%Li2O, 0.1%Sn, 0.05%W

	CIS-11						
From	То	Interval (m)	Determining element	Li₂O (%)	Sn (%)	W (%)	Note
182.5	190	7.5	Li ₂ O	0.24	0.02	0.002	
200	329.3	129.3	Li ₂ O	0.51	0.07	0.018	incl. 2m @ 0.93% Li ₂ O (259-261m), 2m @ 0.93% Li ₂ O (281-283m)
201	208	7	Sn	0.32	0.11	0.01	
213	218	5	Sn	0.47	0.21	0.005	
224	225	1	Sn	0.51	0.15	0.02	
228	230	2	Sn	0.51	0.15	0.02	
234	239	5	W	0.64	0.06	0.06	
243	244	1	Sn	1.01	0.32	0.01	
257	258	1	w	0.59	0.02	0.07	
268	273	5	Sn	0.60	0.56	0.11	
276	277	1	Sn	0.48	0.17	0.04	
278	279	1	W	0.51	0.01	0.10	
282	283	1	W	1.15	0.04	0.08	
285	288	3	Sn	0.48	0.15	0.03	
293	295	2	Sn	0.49	0.15	0.01	
325	326	1	W	0.64	0.01	0.05	

Table 3: Mineralized intercepts in hole CIS-11.

Cut-off: 0.2%Li2O, 0.1%Sn, 0.05%W

	CIS-12						
From	То	Interval (m)	Determining element	Li₂O (%)	Sn (%)	W (%)	Note
222.3	225	2.7	Li ₂ O	0.71	0.07	0.006	
232	325	93	Li2O	0.48	0.06	0.020	incl. 0.9m@1.0% Li ₂ O, 0.43%Sn (236.7-237.6m); 2m@1.32Li ₂ O (251- 253m); 2.4m@1.17%Li ₂ O (284.6- 287m); 1m@1.52%Li ₂ O (285-286m); 3.0m@1.08%Li ₂ O (291-294m); 1m@1.52%Li ₂ O (293-294m)
246	254	8	W	0.83	0.18	0.066	
265	266	1	Sn	0.44	0.93	0.005	
273	277	4	Sn	0.41	0.13	0.006	
307	312	5	W	0.65	0.10	0.161	incl. 1m@1.21%Li ₂ O, 0.36%W (311- 312m)

Table 4: Mineralized intercepts in hole CIS-12.

Cut-off: 0.2%Li₂O, 0.1%Sn, 0.05%W

Table 5: Mineralized intercepts in hole CIS-13.

CIS-13							
From	То	Interval (m)	Determining element	Li₂O (%)	Sn (%)	W (%)	Note
223	331	108	Li ₂ O	0.45	0.11	0.012	incl. 4m@0.99%Li ₂ O (273-277m)
225	226	1	Sn	0.84	0.16	0.002	
236	239	3	Sn	0.36	0.18	0.003	
249	255	6	Sn	0.69	0.29	0.040	incl. 1m@0.11%W (251-252m)
259	260	1	Sn	0.28	0.11	0.005	
269	271	2	Sn	0.80	1.03	0.013	incl. 1m@1.92%Sn (270-271m)
276	281	5	Sn	0.70	0.34	0.017	
286	289	3	Sn	0.43	0.77	0.121	
295	296	1	Sn	0.60	0.17	0.009	
302	303	1	Sn	0.36	0.12	0.022	
307	309	2	Sn	0.37	0.16	0.014	

Cut-off: 0.2%Li₂O, 0.1%Sn, 0.05%W

BACKGROUND INFORMATION ON CINOVEC

PROJECT OVERVIEW

Cinovec Lithium/Tin Project

European Metals, through its wholly owned subsidiary, Geomet s.r.o., controls the mineral exploration licenses awarded by the Czech State over the Cinovec Lithium/Tin Project. Cinovec hosts a globally significant hard rock lithium deposit with a total Indicated Mineral Resource of 372.4Mt @ 0.45% Li₂O and 0.04% Sn and an Inferred Mineral Resource of 323.5Mt @ 0.39% Li₂O and 0.04% Sn containing a combined 7.18 million tonnes Lithium Carbonate Equivalent and 263kt of tin reported 28 November 2017 (**Further Increase in Indicated Resource at Cinovec South**). An initial Probable Ore Reserve of 34.5Mt @ 0.65% Li₂O and 0.09% Sn reported 4 July 2017 (**Cinovec Maiden Ore Reserve – Further Information**) has been declared to cover the first 20 years mining at an output of 22,500tpa of Lithium carbonate reported 11 July 2018 (**Cinovec Production Modelled to Increase to 22,500tpa of Lithium Carbonate**).

This makes Cinovec the largest lithium deposit in Europe, the fourth largest non-brine deposit in the world and a globally significant tin resource.

The deposit has previously had over 400,000 tonnes of ore mined as a trial sub-level open stope underground mining operation.

EMH has completed a Preliminary Feasibility Study, conducted by specialist independent consultants, which indicated a return post tax NPV of USD540m and an IRR of 21% reported 19 April 2017 (**PFS Confirms Potential Low Cost Lithium Carbonate Producer**). It confirmed the deposit is amenable to bulk underground mining. Metallurgical test work has produced both battery grade lithium carbonate and high-grade tin concentrate at excellent recoveries. Cinovec is centrally located for European end-users and is well serviced by infrastructure, with a sealed road adjacent to the deposit, rail lines located 5 km north and 8 km south of the deposit and an active 22 kV transmission line running to the historic mine. As the deposit lies in an active mining region, it has strong community support.

The economic viability of Cinovec has been enhanced by the recent strong increase in demand for lithium globally, and within Europe specifically.

There are no other material changes to the original information and all the material assumptions continue to apply to the forecasts.

CONTACT

For further information on this update or the Company generally, please visit our website at www. http://europeanmet.com or contact:

Mr. Keith Coughlan Managing Director

COMPETENT PERSON

Information in this release that relates to exploration results is based on information compiled by Dr Pavel Reichl. Dr Reichl is a Certified Professional Geologist (certified by the American Institute of Professional Geologists), a member of the American Institute of Professional Geologists, a Fellow of the Society of Economic Geologists and is a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves and a Qualified Person for the purposes of the AIM Guidance Note on Mining and Oil & Gas Companies dated June 2009. Dr Reichl consents to the inclusion in the release of the matters based on his information in the form and context in which it appears. Dr Reichl holds CDIs in European Metals.

The information in this release that relates to Mineral Resources and Exploration Targets has been compiled by Mr Lynn Widenbar. Mr Widenbar, who is a Member of the Australasian Institute of Mining and Metallurgy, is a full time employee of Widenbar and Associates and produced the estimate based on data and geological information supplied by European Metals. Mr Widenbar has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the JORC Code 2012 Edition of the Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Widenbar consents to the inclusion in this report of the matters based on his information in the form and context that the information appears.

CAUTION REGARDING FORWARD LOOKING STATEMENTS

Information included in this release constitutes forward-looking statements. Often, but not always, forward looking statements can generally be identified by the use of forward looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "continue", and "guidance", or other similar words and may include, without limitation, statements regarding plans, strategies and

objectives of management, anticipated production or construction commencement dates and expected costs or production outputs.

Forward looking statements inherently involve known and unknown risks, uncertainties and other factors that may cause the company's actual results, performance and achievements to differ materially from any future results, performance or achievements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licences and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which the company operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation.

Forward looking statements are based on the company and its management's good faith assumptions relating to the financial, market, regulatory and other relevant environments that will exist and affect the company's business and operations in the future. The company does not give any assurance that the assumptions on which forward looking statements are based will prove to be correct, or that the company's business or operations will not be affected in any material manner by these or other factors not foreseen or foreseeable by the company or management or beyond the company's control.

Although the company attempts and has attempted to identify factors that would cause actual actions, events or results to differ materially from those disclosed in forward looking statements, there may be other factors that could cause actual results, performance, achievements or events not to be as anticipated, estimated or intended, and many events are beyond the reasonable control of the company. Accordingly, readers are cautioned not to place undue reliance on forward looking statements. Forward looking statements in these materials speak only at the date of issue. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, in providing this information the company does not undertake any obligation to publicly update or revise any of the forward looking statements or to advise of any change in events, conditions or circumstances on which any such statement is based.

LITHIUM CLASSIFICATION AND CONVERSION FACTORS

Lithium grades are normally presented in percentages or parts per million (ppm). Grades of deposits are also expressed as lithium compounds in percentages, for example as a percent lithium oxide (Li₂O) content or percent lithium carbonate (Li₂CO₃) content.

Lithium carbonate equivalent ("LCE") is the industry standard terminology for, and is equivalent to, Li_2CO_3 . Use of LCE is to provide data comparable with industry reports and is the total equivalent amount of lithium carbonate, assuming the lithium content in the deposit is converted to lithium carbonate, using the conversion rates in the table included below to get an equivalent Li_2CO_3 value in percent. Use of LCE assumes 100% recovery and no process losses in the extraction of Li_2CO_3 from the deposit.

Lithium resources and reserves are usually presented in tonnes of LCE or Li.

The standard conversion factors are set out in the table below:

Table: Conversion Factors for Lithium Compounds and Minerals

Convert from		Convert to Li	Convert to Li ₂ O	Convert to Li ₂ CO ₃
Lithium	Li	1.000	2.153	5.324
Lithium Oxide	Li ₂ O	0.464	1.000	2.473
Lithium Carbonate	Li ₂ CO3	0.188	0.404	1.000

WEBSITE

A copy of this announcement is available from the Company's website at <u>www.europeanmet.com</u>.

TECHNICAL GLOSSARY

The following is a summary of technical terms:

"ball and rod indices"	Indicies that provide an assessment of the energy required to grind one tonne of material in a ball or rod mill
"carbonate"	refers to a carbonate mineral such as calcite, CaCO ₃
"comminution" "cut-off grade"	The crushing and/or grinding of material to a smaller scale lowest grade of mineralised material considered economic, used in the calculation of Mineral Resources
"deposit"	coherent geological body such as a mineralised body
"exploration" "flotation"	method by which ore deposits are evaluated selectively separating hydrophobic materials from hydrophilic materials to upgrade the concentration of valuable minerals
"g/t"	gram per metric tonne
"grade"	relative quantity or the percentage of ore mineral or metal content in an ore body
"heavy liquid separation"	is based on the fact that different minerals have different densities. Thus, if a mixture of minerals with different densities can be placed in a liquid with an intermediate density, the grains with densities less than that of the liquid will float and grains with densities greater than the liquid will sink
"Indicated" or "Indicated Mineral Resource"	as defined in the JORC and SAMREC Codes, is that part of a Mineral Resource which has been sampled by drill holes, underground openings or other sampling procedures at locations that are too widely spaced to ensure continuity but close enough to give a reasonable indication of continuity and where geoscientific data are known with a reasonable degree of reliability. An Indicated Mineral Resource will be based on more data and therefore will be more reliable than an Inferred Mineral Resource estimate
"Inferred" or "Inferred Mineral Resource"	as defined in the JORC and SAMREC Codes, is that part of a Mineral Resource for which the tonnage and grade and mineral content can be estimated with a low level of confidence. It is inferred from the geological evidence and has assumed but not verified geological and/or grade continuity. It is based on information gathered through the appropriate techniques from locations such as outcrops, trenches, pits, working and drill holes which may be limited or of uncertain quality and reliability
"JORC Code"	Joint Ore Reserve Committee Code; the Committee is convened under the auspices of the Australasian Institute of Mining and Metallurgy
"kt"	thousand tonnes
"LCE"	the total equivalent amount of lithium carbonate (see explanation above entitled Explanation of Lithium Classification and Conversion Factors)
"lithium"	a soft, silvery-white metallic element of the alkali group, the lightest of all metals
"lithium carbonate"	the lithium salt of carbonate with the formula Li ₂ CO ₃
"magnetic separation"	is a process in which magnetically susceptible material is extracted from a
"metallurgical"	mixture using a magnetic force describing the science concerned with the production, purification and
"Mineral Resource"	properties of metals and their applications a concentration or occurrence of material of intrinsic economic interest in or on the Earth's crust in such a form that there are reasonable prospects

	for the eventual economic extraction; the location, quantity, grade geological characteristics and continuity of a mineral resource are known estimated or interpreted from specific geological evidence and knowledge mineral resources are sub-divided into Inferred, Indicated and Measured categories
"mineralisation"	process of formation and concentration of elements and their chemica compounds within a mass or body of rock
"Mt"	million tonnes
"optical microscopy"	the determination of minerals by observation through an optica microscope
"ppm"	parts per million
"recovery"	proportion of valuable material obtained in the processing of an ore, state as a percentage of the material recovered compared with the total materia present
"resources"	Measured: a mineral resource intersected and tested by drill holes underground openings or other sampling procedures at locations which ar spaced closely enough to confirm continuity and where geoscientific dat are reliably known; a measured mineral resource estimate will be based o a substantial amount of reliable data, interpretation and evaluation whice allows a clear determination to be made of shapes, sizes, densities an grades. Indicated: a mineral resource sampled by drill holes, undergroun openings or other sampling procedures at locations too widely spaced t ensure continuity but close enough to give a reasonable indication of continuity and where geoscientific data are known with a reasonable degree of reliability; an indicated resource will be based on more data, an therefore will be more reliable than an inferred resource estimate Inferred: a mineral resource inferred from geoscientific evidence underground openings or other sampling procedures where the lack of data is such that continuity cannot be predicted with confidence and wher geoscientific data may not be known with a reasonable level of reliability
"SAGability"	testing material to investigate its performance in a semi-autonomou grinding mill
"spiral concentration"	a process that utilises the differential density of materials to concentrat valuable minerals
"stope"	underground excavation within the orebody where the main productio takes place
"t"	a metric tonne
"tin"	A tetragonal mineral, rare; soft; malleable: bluish white, found chiefly i cassiterite, SnO_2
"treatment"	Physical or chemical treatment to extract the valuable metals/minerals
"tungsten"	hard, brittle, white or grey metallic element. Chemical symbol, W; als known as wolfram

ADDITIONAL GEOLOGICAL TERMS

"apical"	relating to, or denoting an apex
"cassiterite"	A mineral, tin dioxide, SnO2. Ore of tin with specific gravity 7
"cupola"	A dome-shaped projection at the top of an igneous intrusion
"dip"	the true dip of a plane is the angle it makes with the horizontal plane
"granite"	coarse-grained intrusive igneous rock dominated by light-coloured minerals, consisting of about 50% orthoclase, 25% quartz and balance of plagioclase feldspars and ferromagnesian silicates
"greisen"	A pneumatolitically altered granitic rock composed largely of quartz, mica, and topaz. The mica is usually muscovite or lepidolite. Tourmaline, fluorite, rutile, cassiterite, and wolframite are common accessory minerals
"igneous"	said of a rock or mineral that solidified from molten or partly molten material, i.e., from a magma

"muscovite"	also known as potash mica; formula: $KAI_2(AISi_3O_{10})(F,OH)_2$.
"quartz"	a mineral composed of silicon dioxide, SiO2
"rhyolite"	An igneous, volcanic rock of felsic (silica rich) composition. Typically >69%
	SiO ₂
"vein"	a tabular deposit of minerals occupying a fracture, in which particles may
	grow away from the walls towards the middle
"wolframite"	A mineral, (Fe,Mn)WO4; within the huebnerite-ferberite series
"zinnwaldite"	A mineral, KLiFeAl(AlSi ₃)O ₁₀ (F,OH) ₂ ; mica group; basal cleavage; pale violet,
	yellowish or greyish brown; in granites, pegmatites, and greisens

ENQUIRIES:

Shard Capital

European Metals Holdings Limited Keith Coughlan, Managing Director	Tel: +61 (0) 419 996 333 Email: keith@europeanmet.com
Kiran Morzaria, Non-Executive Director	Tel: +44 (0) 20 7440 0647
Julia Beckett, Company Secretary	Tel: +61 (0) 8 6245 2050 Email: julia@europeanmet.com
Beaumont Cornish (Nomad & Broker) Michael Cornish Roland Cornish	Tel: +44 (0) 20 7628 3396 Email: corpfin@b-cornish.co.uk
Joint Broker Damon Health Erik Woolgar	Tel: +44 (0) 20 7186 9950

The information contained within this announcement is considered to be inside information, for the purposes of Article 7 of EU Regulation 596/2014, prior to its release. The person who arranged for the release of this announcement on behalf of the Company was Keith Coughlan, Managing Director.

JORC Code, 2012 Edition - Table 1

	mpling Techniques and Data	
	mpling Techniques and Data	Commonton
Criteria Sampling techniques	 JORC Code explanation Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Commentary Between 2014 and 2018, the Company commenced a core drilling programme and collected samples from core splits in line with JORC Code guidelines. Sample intervals honour geological or visible mineralization boundaries and vary between 50 cm and 2 m. Majority of samples is 1 m in length The samples are half or quarter of core; the latter applied for large diameter core. Between 1952 and 1989, the Cinovec deposit was sampled in two ways: in drill core and underground channel samples. Channel samples, from drift ribs and faces, were collected during detailed exploration between 1952 and 1989 by Geoindustria n.p. and Rudne Doly n.p., both Czechoslovak State companies. Sample length was 1 m, channel 10x5 cm, sample mass about 15 kg. Up to 1966, samples were collected using hammer and chisel; from 1966 a small drill (Holman Hammer) was used. 14179 samples were collected and transported to a crushing facility. Core and channel samples were outed to a detailed and pulverized to -0.045mm for analysis.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 In 2014, three core holes were drilled for a total of 940.1m. In 2015, six core

		4
Criteria	JORC Code explanation	 Commentary employed, either from surface or from underground. Surface drilling: 80 holes, total 30,340 meters; vertical and inclined, maximum depth 1596 m (structural hole). Core diameters from 220 mm near surface to 110 mm at depth. Average core recovery 89.3%. Underground drilling: 766 holes for 53,126 m; horizontal and inclined. Core diameter 46mm; drilled by Craelius XC42 or DIAMEC drills.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery for historical surface drill holes was recorded on drill logs and entered into the database. No correlation between grade and core recovery was established.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 In 2014-2018, core descriptions were recorded into paper logging forms by hand and later entered into an Excel database. Core was logged in detail historically in a facility 6 km from the mine site. The following features were logged and recorded in paper logs: lithology, alteration (including intensity divided into weak, medium and strong/pervasive), and occurrence of ore minerals expressed in %, macroscopic description of congruous intervals and structures and core recovery.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 In 2014-18, core was washed, geologically logged, sample intervals determined and marked then the core was cut in half. In 2016 and 2017 larger core was cut in half and one half was cut again to obtain a quarter core sample. One half or one quarter samples was delivered to ALS Global for assaying after duplicates, blanks and standards were inserted in the sample stream. The remaining drill core is stored on site for reference. Sample preparation was carried out by ALS Global in Romania, using industry standard techniques appropriate for the style of mineralisation represented at Cinovec.

		4
Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory		 Historically, core was either split of consumed entirely for analyses. Samples are considered to be representative. Sample size and grains size are deemed appropriate for the analyticatechniques used. In 2014-18, core samples were assayed by ALS Global. The most appropriate analytical methods were appropriate analytical methods were appropriate analytical methods were appropriated appropriat
laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 determined by results of tests for various analytical techniques. The following analytical methods wer chosen: ME-MS81 (lithium borat fusion or 4 acid digest, ICP-MS finish for a suite of elements including S and W and ME-4ACD81 (4 acid digest ICP-AES finish) additional element including lithium. About 40% of samples were analyse by ME-MS81d (ME-MS81 plus whol rock package). Samples with over 19 tin are analysed by XRF. Samples over 1% lithium were analysed by Li-OG6 (four acid and ICP finish). Standards, blanks and duplicates wer inserted into the sample stream Initial tin standard results indicate
		 possible downgrading bias; the laboratory repeated the analysis with satisfactory results. Historically, tin content was measured by XRF and using wet chemicated methods. W and Li were analysed be spectral methods. Analytical QA was internal and external. The former subjected 5% of the sample to repeat analysis in the sample to repeat
		 same facility. 10% of samples wer analysed in another laboratory, als located in Czechoslovakia. The QA/Q procedures were set to the Stat norms and are considered adequate. I is unknown whether externa standards or sample duplicates wer used. Overall accuracy of sampling an assaying was proved later by tes mining and reconciliation of mine
Verification of sampling and assaying	• The verification of significant intersections by either independent or alternative company personnel.	 and analysed grades. During the 2014-18 drill campaigns th Company indirectly verified grades of

		4
Criteria	JORC Code explanation	Commentary
	 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	tin and lithium by comparing the length and grade of mineral intercepts with the current block model.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 In 2014-18, drill collar locations were surveyed by a registered surveyor. Down hole surveys were recorded by a contractor. Historically, drill hole collars were surveyed with a great degree of precision by the mine survey crew. Hole locations are recorded in the local S-JTSK Krovak grid. Topographic control is excellent.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Historical data density is very high. Spacing is sufficient to establish an inferred resource that was initially estimated using MICROMINE software in Perth, 2012. Areas with lower coverage of Li% assays have been identified as exploration targets. Sample compositing to 1m intervals has been applied mathematically prior to estimation but not physically.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 In 2014-18, drill hole azimuth and dip was planned to intercept the mineralized zones at near-true thickness. As the mineralized zones dip shallowly to the south, drill holes were vertical or near vertical and directed to the north. Due to land access restrictions, certain holes could not be positioned in sites with ideal drill angle. The Company has not directly collected any samples underground because the workings are inaccessible at this time. Based on historic reports, level plan maps, sections and core logs, the samples were collected in an unbiased fashion, systematically on two underground levels from drift ribs and faces, as well as from underground holes drilled perpendicular to the drift directions. The sample density is adequate for the style of deposit. Multiple samples were taken and analysed by the Company from the historic tailing repository. Only lithium was analysed (Sn and W too low). The results matched the historic grades.

		Y
	ORC Code explanation	Commentary
Sample • security	The measures taken to ensure sample security.	 In the 2014-18 programmes, only the Company's employees and contractors handled drill core and conducted sampling. The core was collected from the drill rig each day and transported in a company vehicle to the secure Company premises where it was logged and cut. Company geologists supervised the process and logged/sampled the core. The samples were transported by Company personnel in a Company vehicle to the ALS Global laboratory pick-up station. The remaining core is stored under lock and key. Historically, sample security was ensured by State norms applied to exploration. The State norms were similar to currently accepted best practice and JORC guidelines for sample security.
Audits or • reviews	The results of any audits or reviews of sampling techniques and data.	· · ·
Criteria listed in secti	rting of Exploration Results ion 1 also apply to this section.)	
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 three licenses Cinovec (expires 30/07/2019), Cinovec 2 (expires 31/12/2020) and Cinovec 3 (expires 31/10/2021). 100% owned, no native interests or environmental concerns. A State royalty applies metals production and is set as a fee in Czech crowns per unit of metal produced. There are no known impediments to obtaining an Exploitation Permit for the defined resource.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 There has been no acknowledgment or appraisal of exploration by other parties.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Cinovec is a granite-hosted tin- tungsten-lithium deposit. Late Variscan age, post-orogenic granite intrusionTin and tungsten

Criteria	JORC Code explanation	Commentary
Criteria Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly 	• Reported previously.
Data aggregation methods	 explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Reporting of exploration results has not and will not include aggregate intercepts. Metal equivalent not used in reporting. No grade truncations applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Intercept widths are approximate true widths. The mineralization is mostly or disseminated nature and relatively homogeneous; the orientation or samples is of limited impact. For higher grade veins care was taken to drill at angles ensuring closeness of intercept length and true widths The block model accounts for variations between apparent and true dip.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate maps and sections have been generated by the Company, and independent consultants. Available in customary vector and raste outputs, and partially in consultant's reports.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Balanced reporting in historic report guaranteed by norms and standards verified in 1997, and 2012 by independent consultants. The historic reporting was completed

		3
Criteria	JORC Code explanation	Commentary
		by several State institutions and cross validated.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Data available: bulk density for all representative rock and ore types; (historic data + 92 measurements in 2016-17 from current core holes); petrographic and mineralogical studies, hydrological information, hardness, moisture content, fragmentation etc.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Grade verification sampling from underground or drilling from surface. Historically-reported grades require modern validation in order to improve the resource classification. The number and location of sampling sites will be determined from a 3D wireframe model and geostatistical considerations reflecting grade continuity. The geologic model will be used to determine if any infill drilling is required. The deposit is open down-dip on the southern extension, and locally poorly constrained at its western and eastern extensions, where limited additional drilling might be required. No large scale drilling campaigns are required.

Section 3 Estimation and Reporting of Mineral Resources (Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria J	ORC Code explanation	Commentary
Database • integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used.	 Assay and geologic data were compiled by the Company staff from primary historic records, such as copies of drill logs and large scale sample location maps. Sample data were entered in to Excel spreadsheets by Company staff in Prague. The database entry process was supervised by a Professional Geologist who works for the Company. The database was checked by independent competent persons (Lynn Widenbar of Widenbar & Associates, Phil Newell of Wardell Armstrong International).
Site visits •	Comment on any site visits undertaken by	• The site was visited by Mr Pave

Criteria	 JORC Code explanation the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Commentary Reichl who has identified the previous shaft sites, tails dams and observed the mineralisation underground through an adjacent mine working. The site was visited in June 2016 by Mr Lynn Widenbar, the Competent Person for Mineral Resource Estimation. Diamond drill rigs were viewed, as was core; a visit was carried out to the adjacent underground mine in Germany which is a continuation of the Cinover Deposit.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The overall geology of the deposit is relatively simple and well understood due to excellent data control from surface and underground. Nature of data: underground mapping, structural measurements detailed core logging, 3D data synthesis on plans and maps. Geological continuity is good. The grade is highest and shows mos variability in quartz veins. Grade correlates with degree o silicification and greisenisation of the host granite. The primary control is the granite country rock contact. Al mineralization is in the uppermos 200m of the granite and is truncated by the contact.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The Cinovec South deposit strike north-south, is elongated, and dip gently south parallel to the uppe granite contact. The surfac projection of mineralization is abou 1 km long and 900 m wide. Mineralization extends from abou 200m to 500m below surface.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery 	 Block estimation was carried out in Micromine using Ordinary Krigin interpolation. A geological domain model was constructed using Leapfrog software with solid wireframes representing greisen, granite, greisenised granita and the overlying barren rhyolite. This was used to both controc interpolation and to assign density to the model (2.57 for granite, 2.70 for greisen and 2.60 for all other ended).

		4
Criteria	JORC Code explanation	Commentary
	 of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 material). Analysis of sample lengths indicated that compositing to 1m was necessary. Search ellipse sizes and orientations for the estimation were based on drill hole spacing, the known orientations of mineralisation and variography. An "unfolding" search strategy was used which allowed the search ellipse orientation to vary with the locally changing dip and strike. After statistical analysis, a top cut of 5% was applied to Sn% and W%; no top cut is applied to Li%. Sn% and Li% were then estimated by Ordinary Kriging within the mineralisation solids. The primary search ellipse was 150 m along strike, 150 m down dip and 7.5 m across the mineralisation. A minimum of 4 composites and a maximum of 8 composites were required. A second interpolation with search ellipse of 30 0m x 300 m x 12.5 m was carried out to inform blocks to be used as the basis for an exploration target. Block size was 10m (E-W) by 10 m (N-S) by 5 m Validation of the final resource has been carried out in a number of ways including section comparison of data versus model, swathe plots and production reconciliation.
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	 Tonnages are estimated on a dry basis using the average bulk density for each geological domain.
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	 A series of alternative cutoffs was used to report tonnage and grade: Sn 0.1%, 0.2%, 0.3% and 0.4%. Lithium 0.1%, 0.2%, 0.3% and 0.4%.
Mining factors or assumptions	• Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should	 Mining is assumed to be by underground methods. A Scoping Study has determined the optimal mining method.

		The second secon
Criteria	JORC Code explanation be reported with an explanation of the basis of the mining assumptions made.	Commentary Reserve. Based on the geometry of the deposit, it is envisaged that a combination of drift and fill mining and longhole open stoping will be used.
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Recent testwork on 2014 drill core indicates a tin recovery of 80% can be expected. Testwork on lithium is complete, with 70% recovery of lithium to lithium carbonate product via flotation concentrate and atmospheric leach. Extensive testwork was conducted on Cinovec South ore in the past Testing culminated with a pilot plant trial in 1970, where three batches of Cinovec South ore were processed each under slightly different conditions. The best result, with a tin recovery of 76.36%, was obtained from a batch of 97.13 t grading 0.32% Sn. A more elaborate flowsheet was also investigated and with flotation produced final Sn and W recoveries of better than 96% and 84% respectively. Historical laboratory testwork demonstrated that lithium can be extracted from the ore (lithium carbonate was produced from 1958-1966 at Cinovec).
Environmental factors or assumptions	• Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 Cinovec is in an area of historic mining activity spanning the past 600 years. Extensive State exploration was conducted until 1990. The property is located in a sparsely populated area, most of the land belongs to the State. Few problems are anticipated with regards to the acquisition of surface rights for any potential underground mining operation. The envisaged mining method wil see much of the waste and tailings used as underground fill.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that 	 Historical bulk density measurements were made in a laboratory. The following densities were applied 2.57 for granite 2.70 for greisen

Criteria	JORC Code explanation adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within	Commentary • 2.60 for all other material
	 the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Following a review of a small amount of available QAQC data, and comparison of production data versus estimated tonnage/grade from the resource model, and given the close spacing of underground drilling and development, the majority of the Tin resource was originally classified in the Inferred category as defined by the 2012 edition of the JORC code. The 2014 and 2016-17 drilling has confirmed the Tin mineralisation model and a part of this area has been upgraded to the Indicated category. The Li% mineralisation has been assigned to the Inferred category where the average distance to composites used in estimation is less than 100m. Material outside this range is unclassified but has been used as the basis for an Exploration Target. The 2014 and 2016-17 drilling has confirmed the Lithium mineralisation model and a part of this area has been used as the basis for an Exploration Target. The 2014 and 2016-17 drilling has confirmed the Lithium mineralisation model and a part of this area has been upgraded to the Indicated category. The 2014 and 2016-17 drilling has confirmed the Lithium mineralisation model and a part of this area has been upgraded to the Indicated category. The Competent Person (Lynn Widenbar) endorses the final results and classification.
Audits ol reviews	 The results of any audits or reviews of Mineral Resource estimates. 	 Wardell Armstrong International, in their review of Lynn Widenbar's initial resource estimate stated "the Widenbar model appears to have been prepared in a diligent manner and given the data available provides a reasonable estimate of the drillhole assay data at the Cinovec deposit".
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within 	 In 2012, WAI carried out model validation exercises on the initial Widenbar model, which included visual comparison of drilling sample grades and the estimated block model grades, and Swath plots to assess spatial local grade variability.

	Y
CriteriaJORC Code explanationstated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.•The statement should specify whether it relates to global or local estimates, and, if local, state the relevant to neages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.•These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	 A visual comparison of Block model grades vs drillhole grades was carried out on a sectional basis for both Sn and Li mineralisation. Visually, grades in the block model correlated well with drillhole grade for both Sn and Li. Swathe plots were generated from the model by averaging composites and blocks in all 3 dimensions using 10m panels. Swath plots were generated for the Sn and Li estimated grades in the block model, these should exhibit a close relationship to the composite data upon which the estimation is based. As the original drillhole composites were not available to WAI. 1m composite samples based on 0.1% cut-offs for both Sn and Li assays were Overall Swathe plots illustrate a good correlation between the composites and the block grades. As is visible in the Swathe plots, there has been a large amount of smoothing of the block model grades when compared to the composite grades, this is typical of the estimation method.