

ASX ANNOUNCEMENT

31 January 2019

More strong results continue to extend Bombora gold deposit in all directions

Latest intersections, which take the length of Bombora to 2.5km, will form part of a Resource update scheduled for early June quarter

Highlights

- High-grade results from a large drilling program (103 holes) continue to increase the size and growth potential of the 1.1Moz# Bombora gold deposit within the Lake Roe Project, 100km east of Kalgoorlie
- * Approximately 80% of the drilling was extensional in nature. Extensional results include:

BBRD1146 4m @ 20.3g/t gold from 84m
 BBRD1049 5m @ 8.88g/t gold from 185m

o BBRD1090 5.3m @ 6.31g/t gold and 3.3m @ 6.36g/t from 226m and 250m

o BBRD1213 15m @ 2.08g/t gold from 152m

o BBRD0084 16m @ 1.75g/t gold from 267m (incl. 7m @ 3.53g/t)

- imes The drilling extends the strike length of the Bombora deposit to 2.5km (still open)
- The latest drilling has also discovered additional shallow gold along the eastern side of the deposit which, in conjunction with ongoing strong results from deeper drilling, continues to increase the size of any potential open pit mine
- Deep diamond drilling has yielded the deepest intersection to date, increasing the high-grade depth potential of the project; the hole intersected the strong Tura lode 150m down plunge of previous drilling in the central part of the deposit (vertical depth 360m; assays pending)
- Diamond drilling also discovered a new lode with visible gold, the Morant lode, at the northern end of the deposit
- Aggressive drilling continues with four rigs looking to identify the outer limits of open pit mining and expand the Resource, which is open in all directions (a fifth rig is currently undertaking groundwater drilling)
- Pre-feasibility Study (PFS) activities targeting early open pit production are advancing; the PFS timing is linked to finalising the limits of open pit mining; Breaker then plans to define an underground resource

12 Walker Avenue West Perth WA 6005 PO Box 244 West Perth WA 6872

Telephone: +61 8 9226 3666 Facsimile: +61 8 9226 3668 Email: breaker@breakerresources.com.au

Website: www.breakerresources.com.au

ASX Code: BRB ACN: 145 011 178

Breaker Resources NL (ASX: BRB) is pleased to announce that recent drilling has continued to expand the known length, width and depth of the Bombora gold deposit at its Lake Roe Gold Project, 100km east of Kalgoorlie.

The latest results extend the known strike length of Bombora by 200m to 2.5km (Figure 1). Bombora remains open in all directions and Breaker plans to update the existing 1.1Moz Resource# early in the June 2019 quarter.

The results come from 16,429m of reverse circulation (**RC**) and diamond drilling (103 drill holes) in and along strike from the Bombora gold deposit (Figure 1). Approximately 80% of the drilling was extensional in nature.

As well as increasing the strike length to 2.5km, the drilling extends it further to the east following the discovery of additional shallow lodes in several areas along the eastern margin of the deposit, and extends it at depth in several areas immediately below the previous limit of drilling.

Collectively, the results indicate that the outer limit of potential open pit mining is likely to continue expanding along strike, at depth and to the east. They also increase the potential for long-term high-grade underground mining.

Breaker Executive Chairman Tom Sanders said Bombora continued to grow with every round of drilling.

"We are continuing to expand the known mineralisation in every direction and it remains open in every direction," Mr Sanders said.

"We are seeking to define the outer limits of an open pit, which will in turn enable us to update the Resource followed by completion of the Pre-feasibility Study. In light of the outstanding results we are achieving with deeper drilling, we will also move to assess the potential for high-grade underground mining."

Photo 1: Tura lode BBRD0950 438m - the deepest intersection to date (360m vertical depth)

Photo 2: Newly discovered Morant lode, BBDD0082 308.5m (260m vertical depth)

RC & Diamond Drill Program

The drilling is part of an ongoing program designed to extend and upgrade the 1.1Moz# Bombora gold deposit.

Seventy eight percent of the drilling was extensional or exploratory in nature. The drilling consisted of 103 drill holes comprising four diamond drill holes (1,169m), 79 RC drill holes (9,734m) and 20 RC-precollared diamond drill holes (5,526m). Seventeen of the RC drill holes at the Bombora South Prospect were exploratory, and two of the reported drill holes are precollars in preparation for deeper diamond drilling (BBRD1123 and BBRD1142).

An additional two diamond drill holes, for which assays are pending, were drilled in the central and northern parts of the Bombora deposit to assess the depth potential (BBRD0950 and BBDD0082; BBDD0082 still in progress). The drill holes are shown in plan on Figure 1. A long-section of the Bombora drilling is shown in Figure 2. Further details of the drilling are provided in Appendix 1 and Annexure 1.

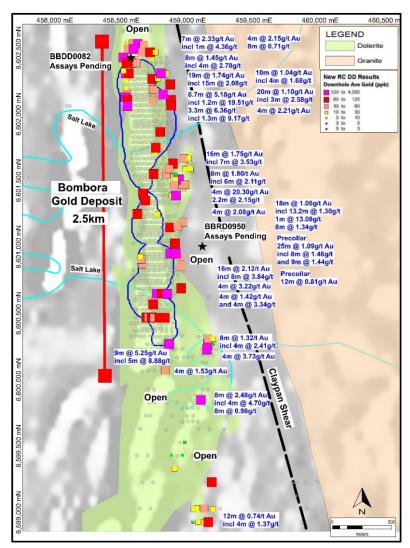
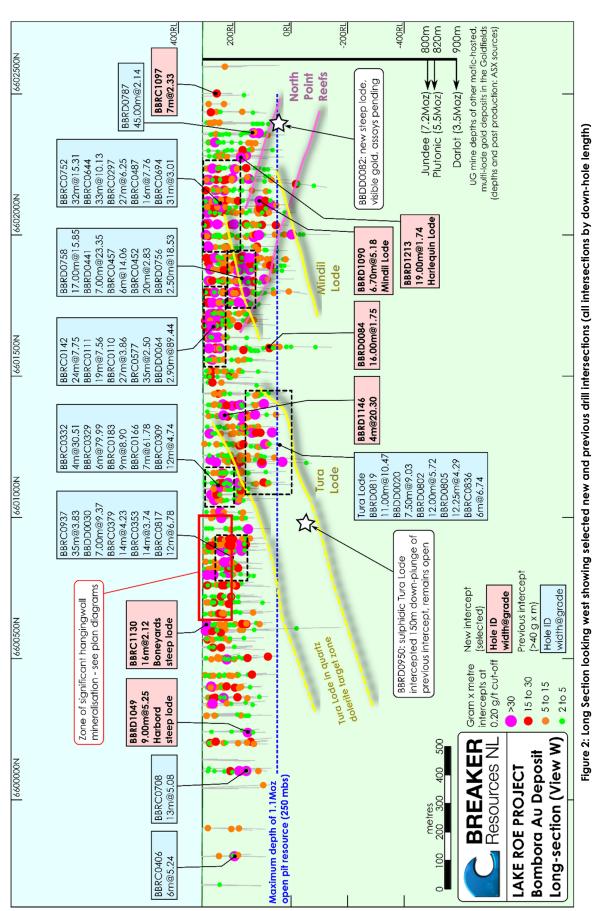



Figure 1: New Bombora RC and diamond drill holes with selected intersections colour-coded by average downhole gold over the entire drill hole over aeromagnetic image with interpreted geology (previous RC and diamond drilling as grey dots; A\$2,000 Whittle open pit shell from ASX Release 18 April 2018 in blue)

Note: an average downhole gold grade of 120ppb equates with 12 grams of gold in a 100m drill hole

Results and Analysis

Seventy seven percent of **all** drill holes and 96% of the infill drill holes, intersected significant gold mineralisation defined above a nominal lower cut-off grade of 0.5g/t Au.

Selected drill hole intersections are shown on Figures 1 and 2 and listed in Table 1 below. A full list of all significant results is provided in Appendix 1 which includes many 4m composite sample results for which 1m riffle-split samples are pending.

Hole No.	Deposit Prospect	Northing	Extensional or Infill		Interval @ g/t gold	From (m)
BBRD1146	Bombora	6601359	Extensional		4m @ 20.3g/t	84
					2.2m @ 2.15g/t	269
BBRD1049	Bombora	6600239	Extensional		9m @ 5.25g/t	183
				Incl.	5m @ 8.88g/t	185
BBRD1090	Bombora	6602120	Extensional		6.7m @ 5.18g/t	226.7
				Incl.	5.3m @ 6.31g/t	226.7
				and	1.2m @ 19.51g/t	227.4
					3.3m @ 6.36g/t	250
				Incl.	1.3m @ 9.17g/t	252
BBRD1213	Bombora	6602280	Extensional	Incl.	12m @ 0.78g/t	92
					19m @ 1.74g/t	151
				Incl.	16m @ 1.98g/t	151
				Incl.	15m @ 2.08g/t	152
BBRC1130	Bombora	6600620	Infill		16m @ 2.12g/t	8
				Incl.	8m @ 3.84g/t	12
BBRD1214	Bombora	6602196	Extensional		10m @ 1.04g/t	275
				Incl.	8m @ 1.19g/t	275
				Incl.	4m @ 1.68g/t	279
BBRD0084	Bombora	6601600	Extensional		16m @ 1.75g/t	267
				and	8m @ 3.18g/t	271
				Incl.	7m @ 3.53g/t	272
				Incl.	1m @ 9.1g/t	276
BBRD1123	Bombora	6600920	Extensional	İ	25m @ 1.09g/t	112
Precollar				Incl.	8m @ 1.46g/t	116
				Incl.	4m @ 2.18g/t	116
				and	2m @ 3.54g/t	135

Table 1: Selected drill results: Bombora gold deposit

Eastern Mineralisation

The additional shallow "eastern" mineralisation (eg. 4m @ 20.3g/t Au in BBRD1146) is not hosted by quartz dolerite and appears to be associated with the updip (hangingwall) extension of the Tura lode (Figures 3 and 4). These results so far extend over a distance of 350m (still open) and build on the discovery of shallow gold in the same area, including recently announced intersections such as those in BBRC0995 (4m @ 10.79g/t Au from 44m; ASX Release 12 December 2018), situated vertically below an intercept of 20m @ 4.2g/t Au from 8m including 4m @ 15.49g/t in BBRC0832 (ASX Release 13 June 2018).

This mineralisation indicates that gold can be hosted outside of the Bombora Sill quartz dolerite where the structure is favourable, expanding the gold prospectivity of rocks away from the main quartz dolerite areas. A similar pattern was also apparent at the recently upgraded Crescent Prospect discovery, located 2km to the north of Bombora (ASX Release 31 July 2018), which is hosted mainly by hangingwall basalt.

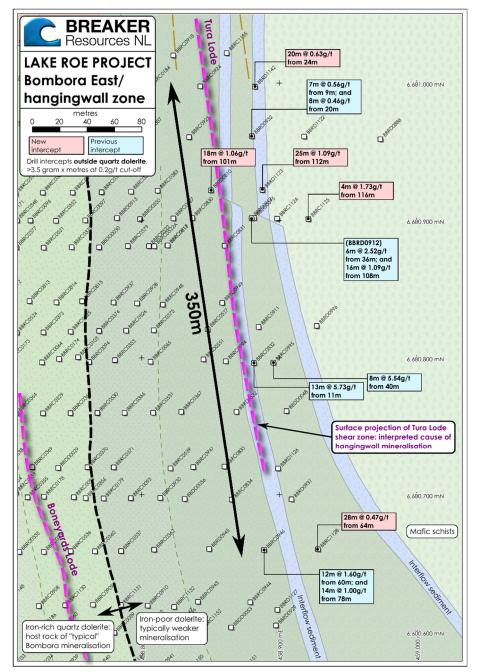


Figure 3: Eastern Hangingwall Mineralisation - summary of selected new and recent drill intersections (see also ASX Releases 12 December 2018, 23 October 2018 and 13 June 2018)

North Extensions/South Extensions

A broad overview of the main steep faults and their relationship to the gold mineralisation is provided in Figures 4 and 5. Collectively, the results upgrade the potential for further extensions to the north and south.

The new drilling results extend the Bombora deposit a further 200m northwards to 2.5km (eg. 7m @ 2.33g/t Au in BBRC1097 on 6602500N, Figure 2), and the open pit mining potential is enhanced by ongoing strong results from deeper drilling (eg. 6m @ 5.15g/t Au in BBRD1090). Results from this area are preliminary with further assay results pending and follow-up drilling currently in progress.

The visual results from deep reconnaissance diamond drilling at the north end of the deposit (BBDD0082; Figures 1 and 2; assays pending) are very encouraging and indicate the discovery of a new lode with visible gold, the Morant lode, situated to the northeast of the recently discovered Harlequin lode (ASX Releases 4 September 2018, 31 October 2018).

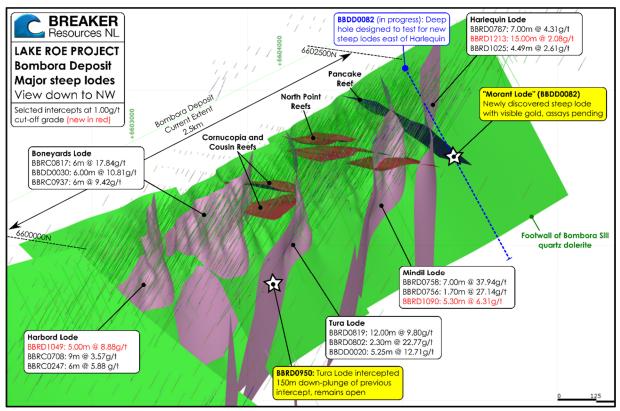


Figure 4: Perspective map of Bombora deposit showing the main steep and flat lodes and new diamond drill intersections (assays pending) in relation to the footwall contact of the Bombora Sill quartz dolerite footwall

BBDD0082 intercepted the newly named Morant lode between 307.59m and 311.83m (4.24m downhole width). The interval is characterised by sub-vertical NW-striking shearing, silica-albite-biotite-carbonate alteration, and 2-5% disseminated pyrrhotite. A laminated quartz vein between 308.20m and 308.27m contains a grain of visible gold. This is the first intercept of this steep lode structure inside the favourable quartz dolerite host rock. BBDD0082 is currently being drilled downdip of the favourable quartz dolerite host rock (east azimuth), to explore for blind steep lodes to the east of the recently discovered Harlequin lode (Figure 4).

Significant intersections in the southern part of the deposit (eg. 9m @ 5.25g/t Au incl. 5m @ 8.88g/t from 183m in BBRD1049; Figures 1 and 2), in conjunction with shallow gold intersected in exploratory drilling in the Bombora South Prospect (Appendix 1), have continued to upgrade the gold potential extending southwards.

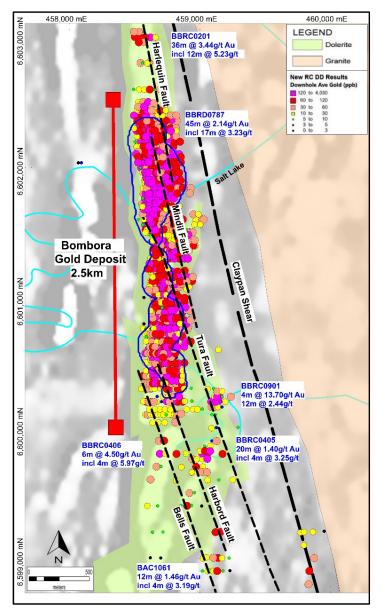


Figure 5: Map showing the relationship between the main steep mineralised faults (lodes) and RC and diamond drilling;
A\$2,000 Whittle open pit shell from ASX Release 18 April 2018 in blue

(holes colour-coded by downhole average gold with selected intersections; not all steep faults shown)

Depth Extensions

BBRD0950, a deep reconnaissance diamond drill hole in the central part of the deposit (BBRD0950; Figures 1 and 4) successfully intercepted the core of the Tura lode structure between 436.05m and 440.25m (4.20m downhole width), within a broader zone of deformation. The interval is typical of the Tura lode, with subvertical NW-striking shearing, strong silica-albite alteration, and an average 3% disseminated pyrrhotite and pyrite over the interval. This intersection validates Breaker's deep targeting model, and represents a 150m down-plunge (southern) extension of the major Tura lode structure (Figures 1 and 4), which remains open.

In conjunction with other results summarised in long section on Figure 2, BBRD0950 indicates that the gold system remains robust at depths up to 360m below surface, the current depth extent of drilling.

Background

The 2.5km Bombora discovery forms part of an 8km-long greenfields gold system concealed by thin transported cover (typically 5-10m) within the 100%-owned Lake Roe Project, located 100km east of Kalgoorlie, WA.

Most of the gold at Bombora is stratabound, occurring preferentially in quartz dolerite in three dominant "stacked" mineralised geometries in a "textbook" structural framework over the entire area which has had detailed drilling. Similar controls and geometries are apparent in many other deposits, including the Golden Mile in Kalgoorlie.

The gold distribution is controlled by multiple, stacked, steep NNW-trending mineralised faults with "linking" flat and/or west-dipping mineralised faults that are also stacked and commonly well mineralised (Figure 6). Gold occurs in sulphide-rich lodes and in quartz-sulphide stockwork zones situated preferentially in the upper, iron-rich part of a fractionated dolerite.

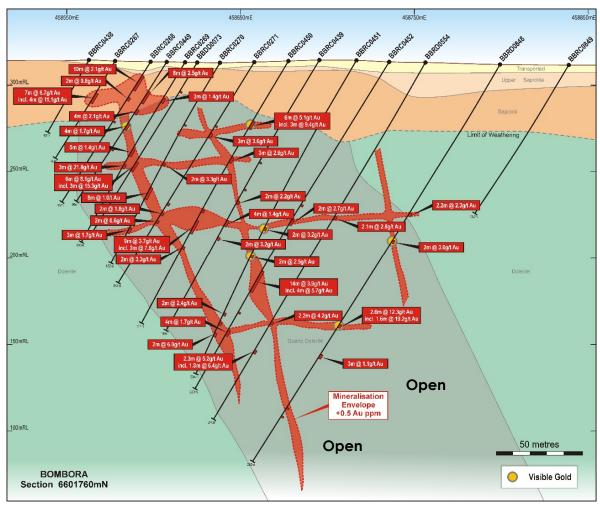


Figure 6: Cross section 6601760N

The sulphide lodes typically contain 2-5% pyrite and pyrrhotite accompanied by extensive silica, albite, biotite and carbonate alteration with varying amounts of (tensional) quartz-sulphide veinlets that can form zones of stockwork mineralisation.

Metallurgical test work indicates gold recoveries in the range of 96% to 99% in oxide and fresh mineralisation and gravity gold of 31% to 90%. The metallurgical testwork also indicates low-cost gold processing based on modest hardness and a relatively coarse grind size of 106-125µm (ASX Release 15 January 2018).

Tom Sanders

Executive Chairman Breaker Resources NL

31 January 2019

For further information on Breaker Resources NL please visit the Company's website at www.breakerresources.com.au, or contact:

Investors/Shareholders

Tom Sanders

Tel: +61 8 9226 3666

Email: breaker@breakerresources.com.au

<u>Media</u>

Paul Armstrong/Nicholas Read

Read Corporate

Tel: +61 8 9388 1474

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Targets and Exploration Results is based on and fairly represents information and supporting documentation compiled by Tom Sanders and Alastair Barker, Competent Persons, who are Members of the Australasian Institute of Mining and Metallurgy. Mr Sanders and Mr Barker are executives of Breaker Resources NL and their services have been engaged by Breaker on an 80% of full time basis; they are also shareholders in the Company. Mr Sanders and Mr Barker have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sanders and Mr Barker consents to the inclusion in the report of the matters based on their information in the form and context in which it appears.

*The information in this report that relates to the Mineral Resource and Exploration Target is based on information announced to the ASX on 6 September 2018. Breaker confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements, and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed.

Classification	Tonnes	Au (g/t)	Ounces
Indicated	12,549,000	1.5	624,000
Inferred	12,050,000	1.2	460,000
Total	24,599,000	1.4	1,084,000

Notes:

- Reported at 0.5 g/t Au cut-off
- All figures rounded to reflect the appropriate level of confidence (apparent differences may occur due to rounding)

APPENDIX 1

Hole No.	Extensional	Deposit	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBDD0077	or Infill Extensional	Prospect Bombora	147.31	6601360	458857	313	-60	272	11	12	1	0.22	Half Core
									46	47	1	1.15	Half Core
BBDD0079	Extensional	Bombora	348.45	6601159	458946	312	-59	269	117	118	1	0.50	Half Core
	25000000000	501115010	0 101 10	0001107	1007 10	0.2	0,	207	141.7	145	3.3	0.90	Half Core
			includ	dina					141.7	143	1.3	1.37	Half Core
				Jg					263	270	7	0.63	Half Core
			includ	dina		-			263	265	2	1.87	Half Core
			includ						305	306	1	0.56	Half Core
	Forte maile mail	Bombora	326	6602280	458816	314	-60	269	73	74	1	0.57	Half Core
3BDD0080	Extensional	Вотпрога	320	0002200	430010	314	-60	207			5		
									266	271		0.35	Half Core
									266	267	1	0.76	Half Core
									281	282	1	1.68	Half Core
									302	304	2	0.85	Half Core
			includ						303	304	1	1.05	Half Core
BDD0081	Extensional	Bombora	347	6601440	458915	312	-60	270	185.2	187.4	2.2	0.48	Half Core
			includ	ding					185.2	186.4	1.2	0.56	Half Core
									209	212	3	0.52	Half Core
			includ	ding					210	211	1	1.00	Half Core
									235.2	237	1.8	1.97	Half Core
			includ	ding			•		235.2	236.43	1.23	2.67	Half Core
									265	266	1	0.92	Half Core
									269	270	1	0.53	Half Core
									274	277	3	0.81	Half Core
			includ	dina					274	275	1	1.39	Half Core
BDD0082	Extensional	Bombora Deeps	520	6602400	458550	312	-58	90	2/ 7	In progre		1.07	Assays Pending
BRC1002	Infill	Bombora	132	6600441	458669	315	-60	271	8	117	9	0.67	Split
BKC 1002	1111111	вотпрога	includ		450007	313	-00	2/ 1		14	3	1.44	
									11				Split
			includ	aing					11	13	2	1.88	Split
									28	29	1	0.43	Split
									78	79	1	0.41	Split
BRC1003	Infill	Bombora	120	6600441	458685	316	-60	270	43	45	2	0.39	Split
									77	78	1	0.40	Split
									93	94	1	0.42	Split
BRC1004	Infill	Bombora	156	6600441	458707	316	-58	271	59	60	1	0.48	Split
									66	67	1	0.57	Split
									70	75	5	0.93	Split
			includ	ding					72	75	3	1.31	Split
			includ	ding					72	74	2	1.67	Split
									79	80	1	0.65	Split
									96	97	1	2.68	Split
BRC1005	Infill	Bombora	156	6600440	458726	317	-59	271	10	11	1	0.49	Split
		201112010	100	0000110	1007 20	0.7	- 07		92	94	2	1.69	Split
									93	94	1	2.48	Split
BRC1006	Infill	Bombora	192	6600439	458767	316	-59	271	44	45	1	0.39	Split
DKC 1000	1111111	BOTTIBOTA	172	0000437	430707	310	-37	2/ 1	112	115	3	2.39	Split
			inclu	ding		Ш							
			includ	airig					112	114	2	3.37	Split
				L.					141	143	2	0.67	Split
		D	includ		45000=		,, 1	0/0	142	143	1	0.89	Split
BRC1007	Infill	Bombora	108	6600439	458807	316	-60	268	33	35	2	0.77	Split
				<u> </u>					45	47	2	0.90	Split
			includ	ding					46	47	1	1.30	Split
									67	69	2	1.97	Split
			includ	ding					67	68	1	3.74	Split
BRC1009	Infill	Bombora	180	6600539	458718	314	-61	270	25	31	6	0.40	Split
			includ	ding					25	26	1	0.55	Split
			includ						76	77	1	0.47	Split
			an						132	133	1	0.64	Split
			311						137	139	2	0.42	Split
		ı	includ	dina					137	138	1	0.60	Split
DD01010	ler fill	Domboro	110	6602358	458553	313	۷0	272	38		7	0.80	
	Infill	Bombora			400003	J 313	-oU	272		45			Split
BRC1012			includ	ui ig		, ,	-		38 53	39	1	0.60	Split
BRC1012									1 53	57	4	1.64	Split
BERCIUIZ													
3BRC1012			includ	ding					53 89	56 90	3	2.09	Split Split

Hole No.	Extensional or Infill	Deposit Prospect	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBRC1013	Infill	Bombora	150	6602357	458592	313	-59	271	82	84	2	1.08	Split
									82	83	1	1.94	Split
BBRC1092	Extensional	Bombora	47	6602280	458517	315	-58	271	20	24	4	0.25	Composite
									28	32	4	0.73	Composite
BBRC1093	Extensional	Bombora	72	6602280	458537	314	-59	270	52	56	4	0.23	Composite
BBRC1096	Extensional	Bombora	126	6602501	458570	314	-60	269					
BBRC1097	Extensional	Bombora	120	6602501	458606	315	-59	271	57	64	7	2.33	Split/Composite
			includ	ding					57	58	1	4.36	Split
						11			112	116	4	0.38	Composite
BBRC1098	Extensional	Bombora	192	6602495	458649	315	-61	271	168	176	8	0.46	Composite
DDD01100		D l	includ		450 40 4	010		0.40	172	176	4	0.72	Composite
BBRC1100	Extensional	Bombora	48 includ	6602399	458494	313	-59	269	40 40	48 44	8	1.45 2.78	Composite Composite
BBRC1104	Extensional	Bombora	102	6600200	459124	312	-61	269	32	36	4	3.73	Composite
DDKC1104	Extensional	вотпрога	102	0000200	437124	312	-01	207	40	44	4	0.22	Composite
BBRC1105	Extensional	Bombora	120	6600239	459131	312	-61	270	20	28	8	1.32	Composite
DDRCTTOS	Exicisional	Вотпрога	includ		407101	012	01	270	24	28	4	2.41	Composite
									32	36	4	0.23	Composite
									40	44	4	0.26	Composite
									78	80	2	0.76	Split
			includ	ding			!		79	80	1	1.16	Split
BBRC1107	Extensional	Bombora	150	6600279	459132	312	-61	270	16	20	4	0.48	Composite
									32	36	4	1.03	Composite
BBRC1109	Extensional	Bombora	166	6601220	458752	313	-60	91	108	112	4	0.23	Composite
BBRC1112	Extensional	Bombora	120	6601480	458911	313	-59	271	32	40	8	1.80	Split
			includ						33	39	6	2.11	Split
BBRC1114	Extensional	Bombora	172	6601440	458959	312	-60	272	105	107	2	1.19	Split
			includ						106	107	1	1.65	Split
BBRC1118		Bombora	102	6601560	458958	312	-61	270					
BBRC1119	Extensional	Bombora	151	6601560	459000		-61	272	140	144	4	0.23	Composite
BBRC1120	Extensional	Bombora	102	6601640	458950	312	-61	270	12	16	4	0.39	Composite
DDDC1104	Fuda a ala a ad	Dambara	includ	6600900	450000	210	-60	2/0	92	100	8	0.28	Composite
BBRC1124 BBRC1125		Bombora Bombora	181	6600900	458900 458920	_	-60 -61	269 270	116	120	4	1.73	Composite
BBRC1128	Infill	Bombora	151	6600662	458929	-	-61	269	64	92	28	0.47	Composite
DDRC1120		borribora	includ		400727	012	-01	207	84	92	8	0.83	Composite
			includ						84	88	4	1.06	Composite
									96	100	4	0.28	Composite
BBRC1130	Infill	Bombora	151	6600620	458745	312	-61	266	8	24	16	2.12	Composite
			includ	ding	•				12	20	8	3.84	Composite
									36	40	4	0.57	Composite
									100	104	4	0.21	Composite
BBRC1131	Infill	Bombora	193	6600620	458785	312	-60	271	52	56	4	0.25	Composite
									64	72	8	0.68	Composite
			<u> </u>						175	179	4	3.22	Split
			includ		450.55		,_1		175	178	3	3.96	Split
BBRC1132	Infill	Bombora	151	6600620	458825	312	-60	271	84	88	4	1.42	Composite
						\vdash			92	96	4	3.34	Composite
									108	112	4	0.57	Composite
BBRC1136	Evtonsionsi	Bombora	157	6601221	458599	313	40	89	124	128 120	4 Ω	0.82	Composite
	Extensional	DOITIDOIG	includ		430377	313	-oU	07	112 116	120	8	1.17 2.08	Composite Composite
DERCTION			II ICIUC	an ig					132	136	4	0.25	Composite
DDRC1100							-60	269	24	28	4	0.23	Composite
	Extensional	Rombora	73	6601331	458441	312		207					
BBRC1137		Bombora Bombora	73 55	6601321 6601375	458661 458643	_		268					
BBRC1137 BBRC1138	Extensional	Bombora	55	6601375	458643	312	-60	268 268	16	20	4	0.84	Composite
BBRC1137	Extensional					312		268 268	16 132	20 136	4	0.84 0.22	Composite Composite
BBRC1137 BBRC1138	Extensional	Bombora	55 180	6601375 6601522	458643	312	-60		16 132 144	20 136 152	4 4 8	0.84 0.22 1.08	Composite Composite Composite
BBRC1137 BBRC1138	Extensional	Bombora	55	6601375 6601522	458643	312	-60		16 132 144 144	20 136 152 148	4 4 8 4	0.84 0.22 1.08 1.53	Composite Composite Composite Composite
BBRC1137 BBRC1138	Extensional	Bombora	55 180	6601375 6601522	458643	312	-60 -60		16 132 144	20 136 152	4 4 8	0.84 0.22 1.08	Composite Composite Composite
BBRC1137 BBRC1138 BBRC1140	Extensional Infill	Bombora Bombora	55 180 includ	6601375 6601522 ding	458643 458722	312 312	-60 -60	268	16 132 144 144 156	20 136 152 148 160	4 4 8 4 4	0.84 0.22 1.08 1.53 0.32	Composite Composite Composite Composite Composite
BBRC1137 BBRC1138 BBRC1140	Extensional Infill	Bombora Bombora	55 180 includ	6601375 6601522 ding 6601120	458643 458722	312 312	-60 -60	268	16 132 144 144 156 152	20 136 152 148 160 156	4 4 8 4 4 4	0.84 0.22 1.08 1.53 0.32 0.94	Composite Composite Composite Composite Composite Composite Composite
BBRC1137 BBRC1138 BBRC1140	Extensional Infill	Bombora Bombora	55 180 includ	6601375 6601522 ding 6601120	458643 458722	312 312	-60 -60	268	16 132 144 144 156 152 160	20 136 152 148 160 156 168	4 8 4 4 4 8	0.84 0.22 1.08 1.53 0.32 0.94 0.74	Composite Composite Composite Composite Composite Composite Composite Composite
BBRC1137 BBRC1138 BBRC1140	Extensional Infill	Bombora Bombora	55 180 includ	6601375 6601522 ding 6601120	458643 458722	312 312	-60 -60	268	16 132 144 144 156 152 160	20 136 152 148 160 156 168	4 4 8 4 4 4 8	0.84 0.22 1.08 1.53 0.32 0.94 0.74 1.10	Composite Composite Composite Composite Composite Composite Composite Composite Composite

Hole No.	Extensional or Infill	Deposit Prospect	Depth	North	East	RL Di	p Azim	From	То	Length	g/t Au	Sample
BBRC1143	Extensional	Bombora	216	6601680	458740	312 -6		188	192	4	0.35	Composite
BBRC1145	Infill	Bombora	216	6601720	458738	312 -6	270	84	92	8	0.59	Composite
			includ	ding	1			84	88	4	0.95	Composite
				1				172	180	8	0.54	Composite
BBRC1201	Evtonoional	Bombora	includ	6602363	458519	314 -5	9 267	172 24	176 28	4	0.86	Composite Composite
BBRC1201	Extensional	вотпрога	00	6602363	430319	314 -3	7 207	32	36	4	0.22	Composite
BBRC1204	Extensional	Bombora	30	6602100	458515	314 -5	9 268	16	24	8	0.70	Composite
DDRC1204	Exterisional	Derribera	includ		100010	10141 0	200	16	20	4	1.11	Composite
BBRC1205	Extensional	Bombora	30	6602080	458525	314 -6	269	16	20	4	0.32	Composite
BBRC1206	Extensional	Bombora	30	6602035	458525	314 -6	266	8	12	4	0.71	Composite
BBRC1207	Infill	Bombora	174	6602440	458640	315 -5	9 268	128	132	4	0.36	Composite
BBRC1208	Extensional	Bombora	242	6602400	458710	316 -5	9 268	184	188	4	0.42	Composite
								210	211	1	0.56	Composite/Split
BBRC1209	Infill	Bombora	180	6602240	458720	314 -5	9 269	84	88	4	0.88	Composite
			includ					84	85	1	1.15	Split
			an	а Г			$\overline{}$	87 138	88 141	3	1.22 0.37	Split Split
	ļ		includ	dina			_	142	141	2	0.37	Split
			1110100	I			1	162	168	6	0.27	Split/Composite
							+	164	168	4	0.66	Split/Composite
BBRC1211	Infill	Bombora	216	6602080	458716	315 -6	268	120	124	4	0.28	Composite
								128	136	8	0.36	Composite
BBRC1216	Extensional	Bombora	234	6602437	458696	315 -6	0 270	156	176	20	0.73	Composite
								164	168	4	1.00	Composite
BBRC1217	Extensional	Bombora	264	6602438	458736	315 -6		204	216	12	0.27	Composite
BBRC1218		Bombora	78	6602465	458525	314 -6	_	24	28	4	0.37	Composite
BBRC1219	Extensional	Bombora	114	6602465	458571	314 -5	9 270	24	28	4	2.15	Composite
								76	80	4	0.26	Composite
			inalus	dina				84	96	12	0.63	Composite
BBRD0084	Extensional	Bombora	includ 342	6601600	458868	312 -6	269	84 83	92 84	8	0.71	Composite Split
BBKD0004	Exterisional	вотпрога	342	0001000	430000	312 -0	207	245	254	9	0.33	Half Core
	l		includ	ldina			_	248	249	1	0.77	Half Core
							1	267	283	16	1.75	Half Core
	'		includ	ding			_	267	268.57	1.57	0.65	Half Core
			an	d				271	279	8	3.18	Half Core
			includ	ding				272	279	7	3.53	Half Core
			includ	ding	•			276	277	1	9.10	Half Core
								288	292	4	0.86	Half Core
		D l	includ 234.87		450710	014	070	288	290	2	1.49	Half Core
BBRD0653	Infill	Bombora	234.87	6602160	458718	314 -6	0 270	94 142	95 143	1	0.43	Split Split
							+	154	155	i	2.43	Split
								164	166	2	0.39	Split
			includ	ding				164	165	1	0.51	Split
BBRD0810	Extensional	Bombora	252.6	6600922	458851	312 -5	9 272	101	119	18	1.06	Half Core
			includ	ding				105	118.2	13.2	1.30	Half Core
			includ	ding				111	113	2	1.78	Half Core
			an					116.7	118.2	1.5	4.07	Half Core
	- 1		includ	ding				116.7	117.7	1	5.29	Half Core
			includ	ling		$\sqcup \bot$		127	129	2	1.58 2.96	Half Core
	1		II ICIUC	an ig			$\overline{}$	128 138	129 139	1	0.45	Half Core Half Core
						\vdash	+	145	146	1	0.45	Half Core
							+	157.55	158.8	1.25	1.00	Half Core
							1	174	175	1	13.08	Half Core
								178	184	6	0.35	Half Core
			includ	ding				183	184	1	0.67	Half Core
								192	200	8	1.34	Half Core
			includ					193	199	6	1.68	Half Core
			an		,=== -	01.5		196	199	3	2.68	Half Core
BBRD0838	Extensional	Bombora		6601438	458878	313 -6	268	226	232	6	0.88	Half Core
			includ					229	232	3	1.28	Half Core
	ı		an	u I			$\overline{}$	229 236	231 239	3	1.60 0.42	Half Core Half Core
			includ	dina				238	239	1	0.42	Half Core
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>s</u>			1	250	252	2	1.05	Half Core
			includ	ding				250	251	1	1.42	Half Core
BBRD0840	Extensional	Bombora		6601520	458820	312 -6	1 269	117	118	1	3.30	Half Core
			an					161	162	1	2.17	Half Core
		-	1	l				169	173	4	0.49	Half Core
								-	-			
			includ	ding				171 251	173 252	2	0.61	Half Core Half Core

Hole No.	Extensional	Deposit	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBRD0950	or Infill Extensional	Prospect Bombora Deeps		6600979	459089	312	-61	271				Ū.	Assays Pending
BBRD0987		Bombora	309.5	6601559	458838	312	-59	269	148	149	1	6.89	Half Core
									224	225	1	0.56	Half Core
									232	235	3	0.30	Half Core
				-li					241	245	4	0.48	Half Core
	1		includ	aing					243 248	245 250	2	0.69	Half Core Half Core
			includ	dina					240	250	1	0.64	Half Core
]					265	266	1	1.02	Half Core
BBRD0988	Infill	Bombora	285.4	6601124	458900	312	-60	268	116	119	3	0.40	Composite
									133	135	2	0.31	Half Core
			includ	ding					142	143	1	0.44	Half Core
									163	164	1	0.87	Half Core
									275	277	2	1.60	Half Core
	1		includ	ding					275	276	1	2.48	Half Core
BBRD0996	Evtonoional	P. a. m. b. a. r. a.	219.22	6600823	458927	312	-60	269	280 107	281 108	1	0.97	Half Core
DDKDU776	Extensional	Bombora	217.22	6600623	430727	312	-60	207	114	116	2	0.66	Half Core Half Core
									121	122	1	3.97	Half Core
									145	146	1	0.42	Half Core
BBRD1049	Extensional	Bombora	260.7	6600239	458838	314	-60	267	174	175	1	0.44	Composite
									183	192	9	5.25	Half Core
			includ	ding					185	190	5	8.88	Half Core
				<u> </u>					207	212	5	0.83	Half Core
	1		includ	ding			-		209	211	2	1.72	Half Core
			inal	dina					221	223 222	2	0.61	Half Core
BBRD1088	Extensional	Bombora	includ 373.03	6602080	458855	314	-60	269	221 190	191	1	0.86 1.57	Half Core Half Core
DDKD1000	extensional	вотпрога	3/3.03	0002000	430033	314	-60	207	241	244	3	1.47	Half Core
	I		includ	ding					241.8	243	1.2	2.65	Half Core
				Ĭ					266	270	4	2.21	Half Core
									305	307	2	0.61	Half Core
			includ	ding					306	307	1	0.97	Half Core
									322	324	2	0.46	Half Core
	1		includ	ding					323	324	1	0.64	Half Core
			inclus	din a					329	332	3	0.71	Half Core
			includ	aing I					331 357	332 358	1	1.02 0.33	Half Core Half Core
BBRD1089	Extensional	Bombora	355	6602039	458854	315	-61	269	181	182	1	0.38	Half Core
DDRDTOO7	Exicusional	501115014	000	0002007	100001	0.0	0.	207	184	186	2	1.40	Half Core
			includ	ding					185	186	1	2.25	Half Core
									237	241	4	0.59	Half Core
			includ	ding					237	238	1	1.03	Half Core
									252	253	1	1.47	Half Core
									285	286	1	0.78	Half Core
			inclus	din a					295	315	20	1.10	Half Core
			includ an						295 302.19	296 309	6.81	2.64 1.40	Half Core Half Core
			includ						302.17	305	2.81	1.73	Half Core
			an						307.31	308.56	1.25	1.92	Half Core
			an						312	315	3	2.58	Half Core
									321	322	1	0.50	Half Core
BBRD1090	Extensional	Bombora	298.04	6602120	458795	314	-60	269	164	166.1	2.1	1.18	Half Core
									206	207	1	0.57	Half Core
									226.7	233.4	6.7	5.18	Half Core
			includ						226.7	232	5.3	6.31	Half Core
	1		an	u 			- 1		227.4 250	228.6 253.3	1.2 3.3	19.51 6.36	Half Core Half Core
			includ	dina					250	253.3	1.3	9.17	Half Core Half Core
			1110100	, <u>9</u>			I		270.8	274	3.2	0.75	Half Core
			includ	ding					272	274	2	0.96	Half Core
			an						272	273	1	1.33	Half Core
BBRD1123	Extensional	Bombora	150	6600920	458890	312	-60	271	12	20	8	0.37	Composite
PreCollar									24	28	4	0.40	Composite
									112	137	25	1.09	Composite/Split
			includ						116	124	8	1.46	Composite
			includ						116	120	4	2.18	Composite
			an an						128 135	137 137	9	1.44 3.54	Split Split
	I .		un					0/0			20	0.63	Split Composite
RRRD1142	Extensional	Rombora	15∩	1 4401000	∆ 58885	1312	_5× I						
BBRD1142 PreCollar	Extensional	Bombora	150 includ	6601000 dina	458885	312	-58	269	24 28	44	12	0.83	Composite

Hole No.	Extensional or Infill	Deposit Prospect	Depth	North	East	RL	Dip	Azim	From	То	Length	g/t Au	Sample
BBRD1146		Bombora	300	6601359	458890	312	-60	274	84	88	4	20.30	Composite
									104	108	4	0.20	Composite
									116	123	7	0.30	Composite/Half Core
									177	178	1	0.68	Half Core
			:l	dia a					189	191	2	0.52	Half Core
			includ	aing					190 236	191 237	1	0.70	Half Core Half Core
									236	246	1	1.14	Half Core
									269	271.2	2.2	2.15	Half Core
BBRD1212	Infill	Bombora	273	6601839	458773	314	-60	266	136	140	4	0.43	Composite
									142	143	1	1.37	Half Core
									151	156	5	0.60	Half Core
			includ	ding					154	155	1	1.39	Half Core
									170	171	1	0.61	Half Core
									184	191.15	7.15	0.62	Half Core
			includ	dina					190	191.15	1.15	1.57	Half Core
									198	199	1	0.88	Half Core
									209	213	4	0.42	Half Core
			includ	ding					209	210	1	0.61	Half Core
			includ						212	213	1	0.62	Half Core
									222	223	1	0.37	Half Core
									232.67	234	1.33	3.73	Half Core
BBRD1213	Extensional	Bombora	274	6602280	458777	314	-60	267	72	76	4	0.24	Composite
									92	108	16	0.67	Composite
			includ	ding					92	104	12	0.78	Composite
									134	135	1	0.97	Half Core
									151	170	19	1.74	Half Core
			includ	ding					151	167	16	1.98	Half Core
			includ	ding					152	167	15	2.08	Half Core
									192	194	2	0.54	Half Core
			includ	ding					193	194	1	0.86	Half Core
BBRD1214	Extensional	Bombora	352	6602196	458848	314	-60	270	24	28	4	0.41	Composite
									215	217	2	0.66	Half Core
									275	285	10	1.04	Half Core
			includ	ding		•			275	283	8	1.19	Half Core
			includ	ding					279	283	4	1.68	Half Core
									288	292	4	0.43	Half Core
			includ	ding					288	289	1	1.03	Half Core
									294	295	1	0.37	Half Core
									299	301	2	0.51	Half Core
			includ	ding					300	301	1	0.75	Half Core
									313	314	1	0.38	Half Core
									328	329	1	0.47	Half Core
BBRD1057	Exploratory	Bombora Sth	276.8	6600041	458809	314	-59	271	243	257	14	0.77	Half Core
			includ		•				247	251	4	1.53	Half Core
BBRC1079	Exploratory	Bombora Sth	120	6599200	459160	317	-59	270	24	36	12	0.29	Composite
			ı						52	56	4	0.41	Composite
BBRC1082		Bombora Sth	102	6599000	459104	317	-60	269	12	24	12	0.30	Composite
BBRC1083	Exploratory	Bombora Sth	108	6599005	459166	318	-60	270	40	44	4	0.26	Composite
BBRC1085	Exploratory	Bombora Sth	78	6598900	459060	318	-59	269					
BBRC1086	Exploratory	Bombora Sth	102	6598900	459101	318	-59	268					
BBRC1087	Exploratory	Bombora Sth	102	6598900	459140	318	-59	270	36	48	12	0.74	Composite
			includ						44	48	4	1.37	Composite
BBRC1103	Exploratory	Bombora Sth	72	6599820	459079	312	-61	270	24	32	8	2.48	Composite
			includ	ding	1				24	28	4	4.70	Composite
			L	<u>.</u>					48	56	8	0.98	Composite
			includ	ding					48	52	4	1.40	Composite

Appendix 1 Notes

- One metre assay results are pending for all composite samples.
- Grades calculated above a lower cut-off grade of 0.2g/t and reported above a nominal lower cut-off grade of 0.5g/t Au (including composite samples that have scope to generate plus 0.5g/t gold intersections from 1m riffle-split samples) reflecting early open pit mining strategy. No top assay cut has been used.
- Mineralised widths shown are downhole distances. The estimated true width is unclear in many cases and drilling in some areas does not adequately "see" mineralisation that is angled sub-parallel to the drill direction.
- **▼** Further details are provided in Annexure 1.

ANNEXURE 1: JORC Code (2012 Edition) Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Holes were drilled to variable depth dependent upon observation from the supervising geologist. RC samples were collected from a trailer or rig mounted cyclone by a green plastic bag in 1m intervals and the dry sample riffle split to produce a 3kg representative sample which was placed on the ground with the remaining bulk sample in rows of 20. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken. Diamond core is drilled HQ3, HQ2 or NQ2 dependent upon ground conditions. Core is cut in half by a diamond saw on site and half core is submitted for analysis except duplicate samples which are submitted as quarter core.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples.
	Aspects of the determination of mineralisation that are Material to the Public Report.	RC samples were composited at 4m to produce a bulk 3kg sample.
	In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire	Half core samples were taken with a diamond saw generally on 1m intervals or on geological boundaries where appropriate (minimum 0.4m to maximum of 1.2m).
	assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	The 3kg composite samples were sent to MinAnalytical in Perth. Samples were sorted, dried, crushed to 10mm, pulverised to -75µm and split to produce a 50g charge for fire assay analysis for gold.
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger,	RC drilling was undertaken using a face- sampling percussion hammer with 5½" bits.
	Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Diamond core is HQ3, HQ2 or NQ2. Core is orientated using Reflex orientation tools, with core initially cleaned and pieced together at the drill site, and fully orientated by BRB field staff at Lake Roe.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC drilling recoveries were visually estimated as a semi-qualitative range and recorded on the drill log along with moisture content.

Criteria	JORC Code explanation	Commentary
		Diamond drillers measure core recoveries for every drill run completed using either three or six metre core barrels. The core recovered is physically measured by tape measure and the length is recorded for every "run". Core recovery is calculated as a percentage recovery.
		Core recovery is confirmed by BRB staff during core orientation activities on site and recorded into the database.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC holes were collared with a well-fitting stuff box to ensure material to the outside return was minimised. Drilling was undertaken using auxiliary compressors and boosters to keep the hole dry and lift the sample to the sampling equipment. Drill cyclone and splitter were cleaned regularly between rod-changes if required and after each hole to minimise down hole or cross-hole contamination.
		Various diamond drilling additives (including muds and foams) have been used to condition the drill holes to maximise recoveries and sample quality.
		Diamond drilling by nature collects relatively uncontaminated core samples. These are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse	There is no observable relationship between recovery and grade, or preferential bias in the RC drilling at this stage.
	material.	There is no significant loss of material reported in the mineralised parts of the diamond core to date.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database appropriate for mineral resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	RC and diamond core logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.
		All cores are photographed in the core tray, with individual photographs taken of each tray both dry and wet.
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Core samples were cut in half using a conventional diamond core saw. Half core samples were collected for assay except duplicate samples which are quarter cut. An entire half core sample is retained and stored in core trays.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were split 87.5%-12.5% by a stand-alone multi-tiered riffle splitter. The majority of the samples were recorded as dry and minimal wet samples were encountered. Sample duplicates were obtained by re-splitting the remaining bulk sample contained in a plastic bag in the field using the multi-tier riffle splitter. RC composite samples were collected
		via spear sampling of the riffle split bulk sample contained in green plastic bags.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The samples were sent to an accredited laboratory for sample preparation and analysis. All samples were sorted, dried pulverised to -75µm to produce a homogenous representative 50g subsample for analysis. A grind quality target of 85% passing -75µm has been established.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	RC samples were collected at 1m intervals and composited into 4m samples using a spear to sample individual metre bagged samples.
		Diamond core sample intervals are based on geological intervals typically less than a nominal 1m.
		Quality control procedures involved the use of Certified Reference Materials (CRM) along with sample duplicates (submitted as quarter core). Selected samples are also re-analysed to confirm anomalous results.
		MinAnalytical's QAQC included insertion of certified standards, blanks, check replicates and fineness checks to ensure grind size of 85% passing -75µm as part of their own internal procedures.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance	Sample duplicates for RC and diamond drilling (quarter core) are taken at least three times in every 100 samples.
	results for field duplicate/second-half sampling.	All samples submitted were selected to weigh less than 3kg to ensure total preparation at the pulverisation stage.
		Duplicate sample results are reviewed regularly for both internal and external reporting purposes.
		18 P a a a

Criteria	JORC Code explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly give an accurate indication of mineralisation given the qualitative nature of the technique and the style of gold mineralisation sought.
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique used a 50g fire assay and is appropriate to detect gold mineralisation. The use of fire assay is considered a total assay.
tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any reported element concentrations.
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie. lack of bias) and precision have been established.	BRB inserted CRMs and duplicates into the sample sequence, which were used at the frequency of three CRMs and three duplicates per 100 samples. Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing -75µm was being attained. Laboratory QAQC involved the use of internal lab standards using CRMs, blanks, splits and replicates.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Alternative BRB personnel have verified the significant results outlined in this report. It is considered that the Company is using industry standard techniques for sampling and using independent laboratories with the inclusion of Company standards on a routine basis.
	The use of twinned holes.	n/a
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary geological and sampling data were recorded digitally and on hard copy respectively, and are subsequently transferred to a digital database where it is validated by experienced database personnel assisted by the geological staff. Assay results are merged with the primary data using established database protocols run in house by BRB.
	Discuss any adjustment to assay data.	No adjustments or calibrations were undertaken other than to average any repeated analysis for each individual sample.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collars are initially located by handheld GPS and then picked up by an accredited surveyor. GPS elevation values are corrected where necessary using a digital elevation model from a LIDAR survey. Expected accuracy is +/-4m for easting, northing and RL (GPS)

Criteria	JORC Code explanation	Commentary
		and +/- 0.1m or less for surveyed and LIDAR elevation point data.
		All RC and diamond holes are gyro surveyed for rig alignment and downhole at the completion of the hole.
	Specification of the grid system used.	The grid system is GDA94 MGA, Zone 51.
	Quality and adequacy of topographic control.	As detailed above.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill holes are on a nominal spacing of 40m x 20m with wider patterns in areas of reconnaissance drilling.
		Diamond drill holes are drilled selectively, mainly to clarify structure or to assess the depth potential.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The infill drilling is being conducted to provide enough data to support estimation of a Mineral Resource.
	Whether sample compositing has been applied.	Four metre composite samples were taken for all RC holes via spearing. One metre samples were riffle split when dry or by a representative spear or scoop sample when wet/damp.
		No sample compositing has been applied to diamond drill core.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Angled RC drilling and diamond drilling has so far confirmed three mineralisation orientations. The extent, geometry and plunge of the various structural "domains" and how they interact is still being resolved. Further detailed drilling is needed to confidently quantify the degree of sample bias arising from drill orientation (positive or negative).
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Sample bias arising from orientation is discussed above.
Sample security	The measures taken to ensure sample security.	RC and diamond drill samples submitted were systematically numbered and recorded, bagged in labelled polyweave sacks and dispatched in batches to the laboratory's Kalgoorlie facility by BRB personnel. The laboratory confirms receipt of all samples on the submission form on arrival.
		All assay pulps are retained and stored in a Company facility for future reference if required.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No formal audits/reviews have been conducted on sampling technique or

Criteria	JORC Code explanation	Commentary
		data to date. However a scanning of sample quality (recovery, wetness and contamination) as recorded by the geologist on the drill rig against assay results occurs with no obvious issues identified to date.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The RC and diamond drill holes are located on tenement E28/2515, which is held 100% by BRB.
		There are no material interests or issues associated with the tenement.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical holders of the Project area include Poseidon Gold, WMC, Mt Kersey Mining and Great Gold Mines.
		Vertical rotary air blast and aircore drilling undertaken in the period 1991 to 1998 identified a zone of strong gold anomalism that extends over a potential distance of 4km under thin (5-10m) cover (maximum grade of 4m at 0.71g/t Au).
		Although the prospectivity of the trend was recognised by previous explorers, rigorous anomaly definition and appropriate follow-up of encouraging results did not occur, apparently due to "non-geological" factors, including inconvenient tenement boundaries at the time of exploration and changes in company priorities and market conditions.
Geology	Deposit type, geological setting and style of mineralisation.	BRB is targeting Archean orogenic gold mineralisation near major faults.
		Gold is associated with subsidiary faults of the Claypan Shear Zone and occurs preferentially in the Fe-rich part of a fractionated dolerite in an area of shallow (5m to 20m) transported cover. The dolerite is folded into a domal geometry between two major shear zones ("domain" boundaries) that converge and bend in the vicinity of the project.

Criteria	JORC Code explanation	Commentary
		The main exploration target is high-grade lode, stockwork, disseminated and quartz vein gold mineralisation hosted by different phases of the fractionated dolerite.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar; • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; • dip and azimuth of the hole; • down hole length and interception depth; • hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Refer to Appendix 1 for significant results from the RC and diamond drilling. Drill hole locations are described in the body of the text, in Appendix 1 and on related Figures.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	Grades calculated above a lower cut-off grade of 0.2g/t and reported above a nominal lower cut-off grade of 0.5g/t Au. No top-cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All reported RC and diamond drill assay results have been length weighted (arithmetic length weighting).
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None undertaken.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole	All drill hole intercepts are measured in downhole metres (criteria for detailed estimate of true width not yet at hand unless otherwise stated). At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive. The orientation of the drilling may
	lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').	introduce some sampling bias (positive or negative).
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole	Refer to Figures and Tables in the body of the text.

Criteria	JORC Code explanation	Commentary
	collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All holes are located on Figure 1. Grades calculated above a lower cut-off grade of 0.2g/t and reported above a nominal lower cut-off grade of 0.5g/t Au. No topcuts have been applied.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further work is planned as stated in this announcement.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	