

ASX ANNOUNCEMENT 8th May 2019

BARRA RESOURCES LIMITED

A.B.N. 76 093 396 859

Corporate Details:

ASX Code:	BAR
Market Cap:	\$14.3M
	@ 2.7c
Cash:	\$2.0M (31 Mar)

Issued Capital:

530.89M Ordinary Shares 38M Options

Substantial Shareholders:

FMR Investments 15.4% Mineral Resources Ltd 10.8%

DIRECTORS

MD & CEO: Sean Gregory Chairman: Gary Berrell Non-Exec: Jon Young Non-Exec: Grant Mooney

PROJECTS

Mt Thirsty Co-Ni (50%) Coolgardie Au (100%)

CONTACT DETAILS

www.barraresources.com.au info@barraresources.com.au

Ground Floor, 6 Thelma St West Perth, WA 6005 T: (08) 9481 3911

BURBANKS NORTH INTERIM DRILL RESULTS

HIGHLIGHTS

- 99 hole 4,055m Air Core drilling campaign completed at Burbanks
- Completes drill testing of 1,000m of strike length along the highly prospective Burbanks North Trend
- Significant mineralisation defined over an additional 300m of strike length thus far
- Interim results for 50% of holes received to-date. Significant results include:
 - o 20m @ 2.37g/t Au from 8m down-hole
 - o 8m @ 4.30g/t Au from 20m down-hole
 - o 4m @ 4.24g/t Au from 20m down-hole , and
 - o 13m @ 1.06g/t Au from 44m down-hole
- Estimation of a Maiden Mineral Resource to commence

Figure 1 – Burbanks North Location Plan

In line with its gold strategy, Barra Resources Limited (Barra, the Company) has completed its Phase 2 Air Core (AC) drilling program aimed at extending known mineralisation along the Burbanks North Trend, 9km south of Coolgardie, Western Australia (Figure 1).

The results shown in Table 1 have already exceeded the Company's expectations by extending the gold mineralisation at Fangjaw to at least 300m of strike length. Further results are due in over the next few weeks for drilling that tested the system a further 300m to the north, including the area where the Fangjaw shear intersects with the Burbanks North shear.

As the drilling utilised the Air Core method, the depth of the drilling was limited to depth at which blade refusal occurred, nominally at the base of weathering. The structures encountered persist at depth where the gold mineralisation remains open and will be tested by future RC drilling campaigns.

The remaining results from the second half of the current program will be reported shortly. All mineralised intercepts will then be re-split at one-meter intervals, giving greater resolution of high-grade distribution than the assays of four-metre composite samples reported here on an interim basis.

Based on the significant gold mineralisation reported in this interim announcement, the earlier drilling programs¹, and the expectation of further positive results, Barra will now more forward to estimating a maiden shallow oxide Mineral Resource for the Burbanks North Trend. This will continue the trajectory towards realising the previously announced Exploration Target for the Burbanks Project.

Sel

SEAN GREGORY Managing Director & CEO

¹ Refer to ASX:BAR Announcements 30/06/2010, 25/08/2016, and 27/07/2017

Figure 2: Drillhole Location Plan

TABLE 1 - Summary of Burbanks North drilling intersections with an average gold grade ≥ 1.0 g/t.

Hole ID	Northing	Easting	Elevation (m)	Total Depth (m)	Dip (degrees)	Azimuth (degrees)	From (m)	To (m)	Width (m)	Au (g/t)
BBAC184	6567361	323499	382	30	-60	131		N	ISI	
BBAC185	6567384	323480	383	38	-60	131		Ν	ISI	
BBAC186	6567415	323431	385	26	-60	131		Ν	ISI	
BBAC187	6567427	323418	386	32	-60	131	20	28	8	4.30
BBAC188	6567387	323497	383	38	-60	131	16	20	4	1.07
BBAC189	6567447	323435	386	33	-60	131	32	33	1	9.52
BBAC190	6567389	323536	382	60	-60	131	20 36	24 40	4	1.62 2.34
BBAC191	6567402	323523	383	59	-60	131	48	56	8	1.53
BBAC192	6567421	323506	384	46	-60	131		N	ISI	
BBAC193	6567467	323454	386	38	-60	131		Ν	ISI	
BBAC194	6567475	323466	387	36	-70	131	20	24	4	3.22
BBAC195	6567417	323547	383	58	-60	131	16	24	8	1.12
BBAC196	6567431	323535	384	57	-60	131		N	ISI	
BBAC197	6567439	323525	384	50	-60	131	NSI			
BBAC198	6567486	323476	387	39	-60	131	NSI			
BBAC199	6567493	323461	387	43	-60	131	NSI			
BBAC200	6567427	323573	384	57	-60	131	12	16	4	1.17
							56	57	1	1.84
BBAC201	6567439	323561	384	54	-60	131		Ν	ISI	
BBAC202	6567451	323542	385	24	-60	131		Ν	ISI	-
BBAC203	6567482	323508	386	57	-60	131	44	57	13	1.06
BBAC204	6567497	323498	387	39	-60	131		Ν	ISI	-
BBAC205	6567509	323486	388	52	-60	131	20	24	4	1.80
BBAC206	6567471	323597	385	42	-60	131	8	28	20	2.37
BBAC207	6567479	323588	385	52	-60	131	28	32	4	2.58
BBAC208	6567485	323583	385	55	-60	131	NSI			
BBAC209	6567491	323579	385	63	-60	131	NSI			
BBAC210	6567504	323563	386	80	-60	131	NSI			
BBAC211	6567517	323543	386	52	-60	131	12	16	4	1.04
							44	48	4	1.02
BBAC212	6567530	323530	387	63	-60	131	24	28	4	2.36
BBAC213	6567540	323524	388	33	-60	131		Ν	ISI	
BBAC214	6567547	323517	388	44	-60	131	NSI			
BBAC215	6567525	323616	385	38	-60	131	NSI		1	
BBAC216	6567538	323599	386	54	-60	131	20	24	4	4.24

Hole ID	Northing	Easting	Elevation (m)	Total Depth (m)	Dip (degrees)	Azimuth (degrees)	From (m)	To (m)	Width (m)	Au (g/t)
							52	56	4	1.15
BBAC217	6567552	323583	386	72	-60	131		Ν	ISI	
BBAC218	6567576	323554	386	68	-60	131	20	28	8	1.18
BBAC219	6567588	323542	388	60	-60	131	20	28	8	1.04
BBAC220	6567555	323622	386	29	-60	131		Ν	ISI	
BBAC221	6567564	323609	386	32	-60	131		Ν	ISI	
BBAC222	6567598	323574	388	110	-60	131	80	84	4	2.95
BBAC223	6567620	323548	389	46	-60	131	NSI			
BBAC224	6567574	323632	386	14	-60	131		Ν	ISI	
BBAC225	6567585	323619	387	31	-60	131		Ν	ISI	
BBAC226	6567615	323587	387	106	-60	131		Ν	ISI	
BBAC227	6567627	323571	388	21	-60	131		Ν	ISI	
BBAC228	6567644	323559	389	20	-60	131		Ν	ISI	
BBAC229	6567601	323642	387	28	-60	131		Ν	ISI	
BBAC230	6567614	323626	387	27	-60	131		Ν	ISI	
BBAC231	6567655	323583	388	13	-60	131		Ν	ISI	
BBAC232	6567666	323569	389	14	-60	131		Ν	ISI	
BBAC233	6567617	323660	387	13	-60	131		Ν	ISI	

Notes: 1. All holes are located on the Burbanks local grid (conversion to GDA94, MGA51 is: Pt1 6700N, 2000E = 6567010.759N, 323102.821E and Pt2 7200N, 2000E = 6567384.542N, 323435.051E)

2. Northing, Easting, Elevation, Total Depth, From, To, and Width are all measured in metres. Northing, Easting and Elevation coordinates have been rounded to zero decimal places.

3. Dip and Azimuth are measured in degrees (°) with reference to the local grid; 90° local grid = ~131.5 ° GDA94 MGA51.

4. Widths are downhole widths only.

5. NSI = No Significant Intersection (i.e. Intersections which did not exceed 1.0g/t Au over width)

ABOUT BURBANKS

The Burbanks Project is located 9km southeast of Coolgardie, Western Australia. The Project includes the Burbanks Mining Centre and over 5km of the highly prospective Burbanks Shear Zone, historically the most significant gold producing structure within the Coolgardie Goldfield.

The Burbanks Mining Centre comprises the Birthday Gift and Main Lode Gold Mines. The recorded historic underground production at Burbanks (1885-1961) totalled **444,600t at 22.7 g/t Au for 324,479oz** predominantly from above 140m below the surface. Intermittent open pit and underground mining campaigns between the early 1980's to present day has seen total production from the Burbanks Mining Centre now exceed **420,000oz**.

In March 2018, Barra updated its Gold Strategy based on a newly defined Exploration Target². The Exploration Target for Burbanks is now identified as **223,000 to 564,000 ounces of gold** (Table 1). The potential quantity and grade of the Exploration Target is conceptual in nature as there has been insufficient exploration to estimate a Mineral Resource beyond Birthday Gift and Main Lode. It is uncertain if further exploration will result in an estimation of a Mineral Resource.

	Low Range			High Range		
	dmt	Au g/t	Au Oz	dmt	Au g/t	Au Oz
Main Lode to Burbanks North Exploration Target	185,000	8.0	47,600	2,170,000	5.0	348,800
Birthday Gift Exploration Target	625,000	4.0	80,000	650,000	6.0	120,000
Birthday Gift Mineral Resource	514,700	5.8	95,400	514,700	5.8	95,400
Total			223,000			564,000

Table 1: Burbanks JORC 2012 Exploration Targets and Mineral Resource

The Exploration Target is inclusive of the previously announced JORC 2012 compliant Mineral Resource Estimate³ of 125,300 ounces of gold at Burbanks (Table 2)

Mineral Resource for the Burbanks Gold Project							
Area	Cut-Off	Cut-Off Indicated Inferred					
		dmt	Au g/t	Au Oz	dmt	Au g/t	Au Oz
Christmas Open Pit	1.0	5,700	6.2	1,100	4,000	7.8	1,050
Birthday Gift Underground Mine	2.5	180,000	6.0	34,750	325,000	5.6	58,500
Main Lode Deposit	1.0	106,000	2.8	9,700	254,000	2.5	20,200
Total Mineral Resource	1.0/2.5	291,700	4.9	45,550	583,000	4.3	79,750

Table 2: Burbanks Deposit Mineral Resource

The Burbanks Exploration Target was arrived at after evaluation of historic and current exploration drilling and mining datasets including geological and resource modelling, aeromagnetic, new mapping, auger geochemistry, conceptual exploration models and recent mine production data. The information gathered was used to estimate average grades, typical dimensions, average bulk densities, and possible frequency of lode occurrences to estimate the likely ranges of the magnitude of possible extensions to known lodes and repetitions within the same geological domain, limited to a nominal depth of up to 500m.

Key target areas were identified, ranked and prioritised. This then fed into the development of a longterm strategy to explore these key target areas with a clear focus on the discovery, delineation and delivery of resources to underpin the establishment of a medium- to long-term mining operation.

Barra has a plan of ongoing drilling campaigns using air core, reverse circulation and diamond drilling methods to test these targets followed by Mineral Resource estimation where appropriate over the next four years as market conditions allow.

- ² Refer to ASX:BAR Announcement 21/3/18
- ³ Refer to ASX:BAR Announcement 30/10/18

DISCLAIMER

The interpretations and conclusions reached in this report are based on current geological theory and the best evidence available to the authors at the time of writing. It is the nature of all scientific conclusions that they are founded on an assessment of probabilities and, however high these probabilities might be, they make no claim for complete certainty. Any economic decisions that might be taken based on interpretations or conclusions contained in this report will therefore carry an element of risk.

This report contains forward-looking statements that involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this report. No obligation is assumed to update forward-looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

COMPETENT PERSON'S STATEMENT

The information in this report which relates to Exploration Results and Exploration Targets at Burbanks is based on, and fairly represents, information compiled by Mr Gary Harvey who is a Member of the Australian Institute of Geoscientists and a full-time employee of Barra Resources Limited.

The information in this report which relates to Mineral Resources at Main Lode, Burbanks is based on, and fairly represents, information compiled by Mr Andrew Bewsher full-time employee of BM Geological Services Pty Ltd who is a Member of the Australian Institute of Geoscientists.

For full details of the Burbanks Mineral Resources other than Main Lode, refer to ASX:KDR's 2016 Annual Report available to view on asx.com.au.

Messers Harvey and Bewsher have sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the JORC Code).

The company is not aware of any new information or data that materially affects the information presented and that the material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

THE FOLLOWING TABLES ARE PROVIDED TO ENSURE COMPLIANCE WITH THE JORC CODE (2012 EDITION) FOR THE REPORTING OF EXPLORATION RESULTS.

BURBANKS NORTH TREND

SECTION 1 - SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation. 	 Sampling was conducted using an Aircore (AC) drilling rig. One AC rig was utilised. Drill chips are placed directly on the ground. Composite samples are collected for every 4m interval downhole (a 1, 2, or 3m interval is collected for end-of hole as required) using an alloy scoop to collect a ~0.5kg sub-sample from each metre to form a ~2-2.5kg representative sample for each interval. Samples are submitted to the lab, pulverised and split to produce a 40g sub-sample for analysis. Field duplicates, standards were collected at a rate of 1 in every 50 samples. Blanks were inserted at the end of every hole. Sampling and QAQC procedures are carried out using Barra protocols as per industry best practice.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 AC drilling was carried out using a blade bit with an 82.2mm (3.25") diameter bit. Where a face sampling hammer was used, the drill diameter was 108mm (4.25").
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 AC sample recoveries are visually estimated qualitatively on a metre basis and recorded in the database. Drilling contractors adjust their drilling approach to specific conditions to maximise sample recovery. Moisture content and sample recovery is recorded for each sample. No sample recovery issues have impacted on potential sample bias
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 All drillholes are logged in full. AC holes were logged at 1m intervals for the entire hole from drill chips collected and stored in chip trays. Data was recorded for regolith, lithology, veining, fabric (structure), grain size, colour, sulphide presence, alteration and oxidation state. Logging is both qualitative and quantitative in nature depending on the field being logged.
Sub-sampling techniques and sample	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or 	• Wet samples, if encountered, are sampled separately as individual metre samples and flagged in the database. No wet samples were encountered in this program.

Criteria	JORC Code explanation	Commentary
preparation	 dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Due to the first pass nature of this program, field duplicate, Certified Reference Standards were inserted at a maximum rate of 1:50 samples. Sample preparation was conducted at Bureau Veritas' Kalassay Laboratory in Perth using a fully automated sample preparation system. Preparation commences with sorting and drying. Oversized samples are crushed to <3mm and split down to 3kg using a rotary or riffle splitter. Samples are then pulverised and homogenised in LM5 Ring Mills and ground to ensure >90% passes 75µm. 200g of pulverised sample is taken by spatula and used for a 40g sub-sample for Aqua Regia digest and gold analysis by ICP-MS. A high-capacity vacuum cleaning system is used to clean sample preparation equipment between each sample. The sample size is considered appropriate for this type and style of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Aqua Regia analysis is an industry standard analysis technique for determining the gold content of a sample. A nominal 40g charge of pulverised sample is digested with Aqua Regia (a mix of Nitric (HNO3) and Hydrochloric (HCI) acids) in a water bath. An aliquot of the digest solution is then taken, and gold is determined by ICP-MS. Due to the high sensitivity of the ICP-MS, lower detection limits are possible without further pre-concentration (solvent extraction) of the gold. The detection level is 1ppb Au. Laboratory QA/QC controls during the analysis process include duplicates for reproducibility, blank samples for contamination and standards for bias.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All drilling and significant intersections are verified and signed off by the Exploration Manager for Barra Resources who is also a Competent Person. No pre-determined twin holes were drilled during this program. Some holes will act as twin-holes based on the closed spaced nature of the drilling program. Geological logging was originally captured on paper, scanned and sent to the company's consultant database administrator (RoreData) for entry directly into the database via a validation process. Sampling, collar, and laboratory assay data is captured electronically and also sent to RoreData. All original data is stored and backed-up by Barra. The official database is stored by RoreData, a copy of which is uploaded to Barra's server for geologists use. Uploaded data is reviewed and verified by the geologist responsible for the data collection. No adjustments or calibrations were made to any assay data reported.

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drillhole collar locations are surveyed post completion by a qualified surveyor using sophisticated DGPS with a nominal accuracy of +/- 0.05m for north, east and RL (elevation) The drilling rig was sighted using a compass. Drillhole angle was set using an inclinometer placed on the drill mast prior to collaring the hole. Down-hole survey were not conducted for aircore drilling. All drilling was located using the GDA94, MGA Zone 51 grid system and converted to local the surveyed mine grid (BB_MineGrid) using the following conversion: Pt1 6700N, 2000E = 6567010.759N, 323102.821E and Pt2 7200N, 2000E = 6567384.542N, 323435.051E
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drillholes targeting extensions along the Burbanks North Trend were spaced 10m- 20m apart on 25m spaced traverses and sufficient to establish the necessary continuity and confidence to complete a Mineral Resource Estimate pursuant to the classifications applied under the 2012 JORC Code. No sample compositing has been applied to mineralised intervals.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling was generally perpendicular to the strike of the main mineralised structures targeted for this program. All reported intervals are however reported as downhole intervals and not true-width. No drilling orientation and/or sampling bias have been recognized in the data at this time.
Sample security	The measures taken to ensure sample security.	 Samples for analysis were tagged and recorded instantly and delivered to the laboratory at the end of each day.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 No audits or reviews have been conducted on sampling techniques and data at this stage.

SECTION 2 – REPORTING OF EXPLORATION RESULTS

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to 	 The Burbanks North Deposit is located within mining leases M15/161, located within the Burbanks Project wholly owned by Barra Resources Limited. There is no native title claim over the leases The tenements are in good standing.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	operate in the area. • Acknowledgment and appraisal of exploration by other parties.	 Mining lease M15/161 comprises the Birthday Gift Mining Centre. Historical production (1885-1999) from the Birthday Gift Mine (incl. Lady Robinson, Christmas, Far East and Tom's Lode pits) and the Main Lode Mine produced over 400,000 ounces to a depth of about 140m below surface. Birthday Gift is being actively mined today under the ownership of KDR. No mining has occurred at Main Lode since 1914. Between 1946-1951 WMC channel-sampled Level-7 at Birthday Gift yielding 30m @ 18.3g/t Au over and average width of 1.5m and 76m @ 17.4g/t Au over an average width of 1.1m. At Main Lode, channel sampling along Level-8 returned 160m @ 16.1g/t Au over an average width of 0.4m. 1978-1985; Jones Mining NL mined the Lady Robinson open pit producing 28,000t @ 6.2g/t (5,600oz). 1985-1991; Metallgesellschaft/Lubbock mined a further 172,800t @ 3.8g/t (21,100oz) from Lady Robinson. 1991-1999; Amalg Resources mined 68,100t @ 2.9g/t from the Christmas Pit, and other parcels from the Far East pit, Tom's Lode pit and minor underground development beneath Lady Robinson and Christmas Pits. 1999-2013; Barra conducted underground mining at Birthday Gift producing 36,000oz.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Burbanks Project, specifically M15/161, covers about 5km of strike of the Burbanks Shear Zone within a package of basalts and intercalated gabbro/dolerite and sediments. Gold occurs in ptygmatically folded and boudinaged laminated quartz veins with pyrite, pyrrhotite, scheelite and an alteration assemblage of plagioclase, calcite, biotite and garnet. It may also occur in quartz-pyritic biotitic shears and is often associated with garnetiferous diorite sills.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drillhole information for the drilling discussed in this report is listed in Table 1 in the context of this report. All material data has been periodically released to the ASX

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Reported intersections have been length weighted to provide the intersection width. Significant Intersections (Table 1) have been reported where the overall intersection gold grade is ≥ 1.0g/t Au only. For significant intersections, a maximum of 4m of internal waste have been included in the calculation of intersection widths. No assays have been top-cut for the purpose of this report. A lower cut-off of 0.5g/t Au has been used to identify significant results. All significant intersections have been reported. No metal equivalent values have been used for the reporting of these exploration results.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 True widths, where reported, have been estimated manually on a hole by hole basis for intersections within known mineralised zones and based on the current knowledge of the mineralised structure. Both downhole width and estimated true width have been clearly specified in this report when used. The main mineralised trend is NE and dips about 75 degrees west.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate plans and sections have been included in the body of this report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Both high and low grades have been reported accurately, clearly identified with drillhole attributes and 'from' and 'to' depths.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The Burbanks North deposit is an oxide supergene enriched deposit situated between about 10 and 50m below the surface. Most gold is located in the saprolitic clay zone and partially oxidised (transitional) zone. Water table lies about 30m below surface.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Further work has been discussed in the context of previous reports but will include: Additional infill drilling along strike to the north and south of the Burbanks North deposit and a Mineral Resource Estimation.