

ANGLO AUSTRALIAN RESOURCES NL

ACN 009 159 077

ASX/ NEWS RELEASE

15 May 2019

MANDILLA GOLD PROJECT UPDATE – MAY 2019

Anglo Australian Resources NL (**Anglo Australian** or the **Company**) is pleased to provide the following update in relation to its 100% owned Mandilla Gold Project, located approximately 75 kilometres south of Kalgoorlie, Western Australia.

HIGHLIGHTS

- Infill regolith RC drilling at the 2.5-kilometre-long, 250 metres wide Mandilla South Prospect has identified a central core of higher-grade in some cases, plus 5 g/t Au supergene enriched gold over at least 300 metres strike with best results including:
 - \Rightarrow MNAC966: 11 m @ 1.49 g/t Au from 57 m, including 1 m @ 5.59 g/t Au from 61 m
 - \Rightarrow MNAC967: 8 m @ 0.96 g/t Au from 55 m
 - \Rightarrow MNAC977: 6 m @ 1.75 g/t Au from 64 m, including 1 m @ 5.24 g/t Au from 65 m
 - \Rightarrow MNAC978: 3 m @ 2.98 g/t Au from 61 m, including 1 m @ 7.46 g/t Au from 61 m
- Review of the Mandilla East Prospect has identified two key opportunities to increase the current 38,000 oz gold Inferred Resource:
 - \Rightarrow With evidence of stockwork within the granite, mineralisation might well be better modelled as a high tonnage, low grade target rather than the low tonnage, high grade approach previously taken
 - \Rightarrow On the basis of Anglo Australian's new structural interpretation, the potential to increase the size of the resource along strike to the NW in an area only sparsely drilled but where significant gold intercepts have been recorded is considered to be excellent
- With previous drilling in the 500-metre gap between the Mandilla East and Mandilla South Prospect now appearing to be ineffective, having failed to pass through the depleted saprolite and penetrate the supergene enriched gold zone, there is potential to link the two Prospects together into a four-kilometre-long camp-scale target
- Preparations are underway for a three-hole diamond drilling campaign, due to commence in early June, co-funded under the Government of Western Australia's Exploration Incentive Scheme

The Mandilla Gold Project lies on the western margin of a porphyritic granite intrusion known as the Mandilla Granite. The Granite intrudes volcanoclastic sedimentary rocks in the Project area which form part of the Spargoville Group.

A map of the Mandilla Gold Project, identifying both the Mandilla South and Mandilla East Prospects, is set out as Figure 1.

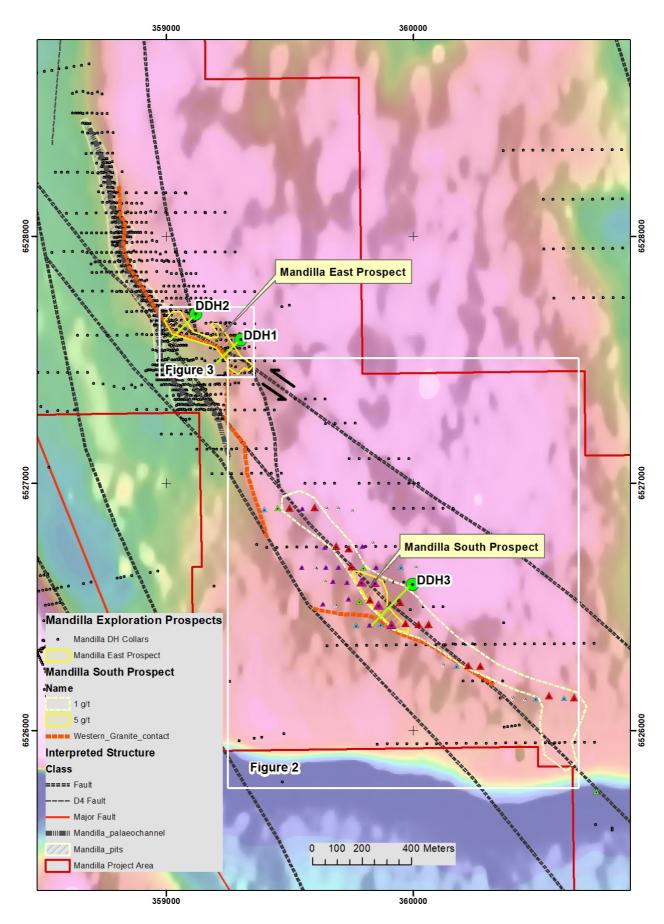


Figure 1: Map of Mandilla Project identifying both the Mandilla South and Mandilla East Prospects.

Mandilla South Prospect

In September 2018, Anglo Australian commenced a drilling campaign to confirm the size and extent of the Mandilla South target.

Results of that campaign, announced to the ASX on 28 November, showed the target to be of substantial size, with a supergene enriched gold zone exceeding 2.5 kilometres in strike length and with a width of up to 250 metres.

The Company stated in the announcement that identification of a bedrock target was a high priority.

In April, 2019, the Company undertook a slim-line reverse circulation ("RC") drilling campaign primarily aimed at seeking to identify whether any higher grade supergene gold enriched zones were present along the length of the target.

A total of 27 holes were completed for an aggregate 1,898 metres of drilling, with an average depth per hole of approximately 70 metres.

The holes were drilled on a broad 80 x 50 metre grid.

Four metre composite samples were submitted for assay. Intersections of interest were subsequently reassayed over one metre intervals.

Best intersections include:

- MNAC966: 11 m @ 1.49 g/t Au from 57 m, including 1 m @ 5.59 g/t Au from 61 m
- MNAC967: 8 m @ 0.96 g/t Au from 55 m
- MNAC977: 6 m @ 1.75 g/t Au from 64 m, including 1 m @ 5.24 g/t Au from 65 m
- MNAC978: 3 m @ 2.98 g/t Au from 61 m, including 1 m @ 7.46 g/t Au from 61 m

Although not the aim of the campaign, two of the holes did indeed penetrate up to ten metres into bedrock.

Both MNAC977 (12 m @ 0.4 g/t Au from 72m in MNAC977) and the adjacent hole MNAC978 some 50 metres to the east (1 m @ 1.23 g/t Au from 70 m) established the presence of primary gold mineralisation.

A map of the Mandilla South Prospect, illustrating key intersections, is set out as Figure 2.

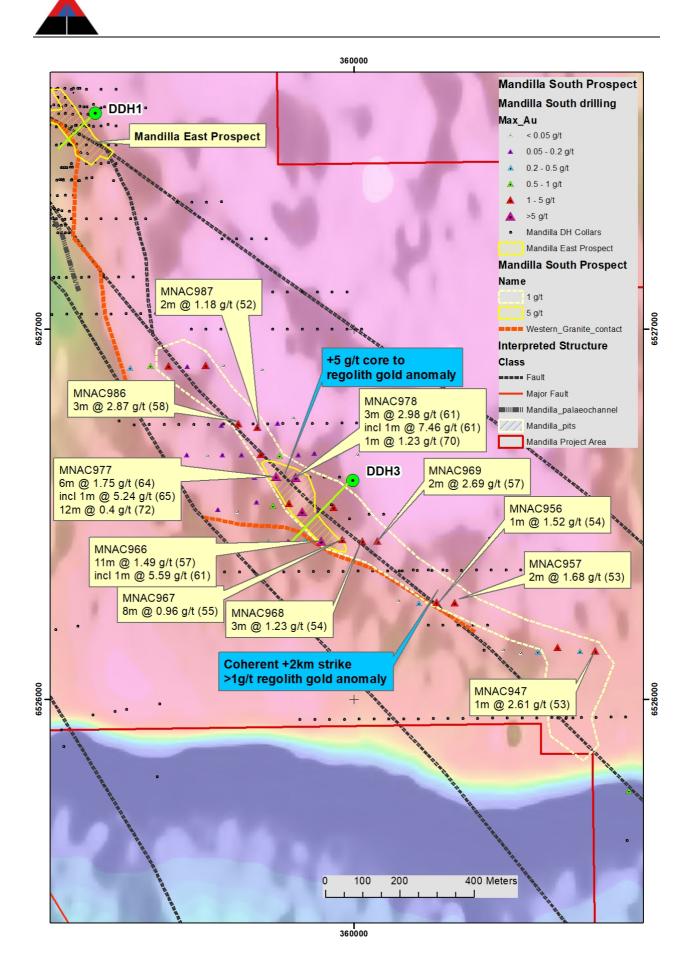


Figure 2: Map of Mandilla South Prospect illustrating key intersections.

The results of the campaign have identified a higher-grade core over a strike length of at least 300 metres with peak supergene values exceeding 5 g/t Au within the 2.5 kilometres long, 250 metres wide +1 g/t anomaly.

Mandilla South appears to follow a NW-trending structure internal to the Mandilla Granite.

The higher-grade core of the Prospect occurs close to the intersection of an interpreted E-W trending margin of the Mandilla Granite with the NW structure, and within a distinct zone of demagnetisation of the Granite, possibly representing gold-related hydrothermal alteration.

The latest drilling campaign has also confirmed that previous aircore drilling in the Mandilla South area failed to penetrate depleted saprolite into the supergene enriched gold zone which occurs at the contact with weakly weathered bedrock – the "saprock" boundary.

Significantly, with previous drilling in the 500-metre gap between the Mandilla East and Mandilla South Prospect now appearing to be ineffective, there is potential to link the two Prospects together into a four-kilometre-long camp-scale target.

Mandilla East Prospect

At Mandilla East, Anglo Australian has previously identified a bedrock Inferred Resource of 357,000 tonnes at 3.3 g/t Au for approximately 38,000 contained ounces (ASX 13/06/13).

The resource was modelled as a low tonnage, high grade target.

No recent drilling has taken place.

A map of the Mandilla East Prospect, illustrating key intersections from previous drilling, is set out as Figure 3 (a full listing of bedrock RC and diamond drill hole intersections is tabulated as Table 2).

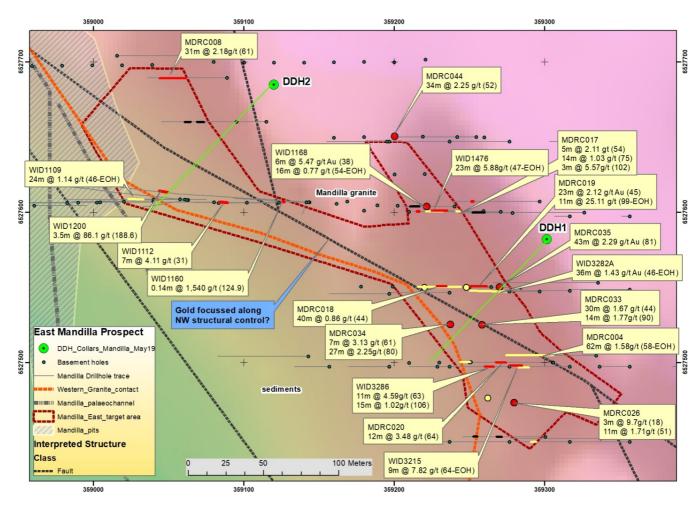


Figure 3: Map of Mandilla East Prospect illustrating key intersections from historic drilling.

As illustrated in the map, gold intersections are variously high grade to spectacular with some holes ending in mineralization.

Better intersections include:

- WID1160: 0.14 m @ 1,540 g/t Au from 125 m
- WID1476: 23 m @ 5.88 g/t Au from 47 m, with mineralisation at end of hole
- WID3215: 9 m @ 7.82 g/t Au from 64 m, with mineralisation at end of hole
- MDRC035: 43 m @ 2.29 g/t Au from 46 m, with mineralisation at end of hole
- MDRC044: 34 m @ 2.25 g/t Au from 52 m

Incomplete drill core from two historic diamond drill holes showed evidence of stockwork within the granite.

That being the case, Anglo Australian considers that the mineralisation might well be better modelled as a high tonnage, low grade target than the low tonnage, high grade approach previously taken.

Recent reinterpretation of the geology and structure of the Mandilla Project in conjunction with the recent work on Mandilla South has identified that a key control on the occurrence of gold mineralisation at Mandilla East is a NW-trending structure.

Where this structure intersects the western margin of the Mandilla Granite is broadly coincident with the best mineralization at Mandilla East.

With previous drilling at Mandilla on E-W sections, and hence highly oblique to the structural trend, this means that holes were not ideally oriented.

Broad zones of low to moderate grade gold mineralization are hosted within the Mandilla Granite and form a coherent zone of mineralization towards the south east of the Prospect where the current resource is mapped.

If the NW-trending structure does indeed control gold mineralization at Mandilla East as is postulated, there is considered to be excellent potential to expand the resource along strike to the NW into a sparsely drilled area where narrow, very high grade intercepts were recorded in historic diamond drilling – for example, WID1160 which intersected 0.14 m @ 1,540 g/t Au and WID1200 3.5 m @ 86.1 g/t Au.

Proposed Diamond Drilling Campaign

An initial campaign of three deep diamond drill holes is planned to commence at Mandilla in early June.

The purpose of the campaign is to gain a better understanding of the nature of primary gold mineralization, and to identify gold mineralization at depth.

One hole will be drilled at Mandilla South (refer Figure 2) and two holes spaced 200 metres apart at Mandilla East (refer Figure 3).

The campaign will be co-funded through a grant provided by the Department of Mines and Petroleum, Western Australia under its Exploration Incentive Scheme.

Further RC drilling is envisaged following completion of this diamond drilling campaign.

About the Mandilla Gold Project

The Mandilla Gold Project is located in the northern Widgiemooltha greenstone belt in the western part of the Kalgoorlie geological domain some 75 kilometres south of Kalgoorlie and 20 kilometres west of Kambalda. Significant nickel and gold deposits are present in the belt, the nearest gold deposit being the high-grade Wattle Dam Mine located just 3 kilometres to the west of Mandilla.

The Project lies on the western margin of a porphyritic granite intrusion, the Mandilla Granite. The granite intrudes volcanoclastic sedimentary rocks in the project area which form part of the Spargoville Group.

Significant NW to WNW-trending structures along the western flank of the project are interpreted from regional aeromagnetic data to cut through the Mandilla Granite.

One such structure localises the Mandilla East Prospect at a point where the western granite contact is offset by at least 300 metres. A second sub-parallel structure appears to host the Mandilla South Prospect.

In 2006, Anglo Australian mined the high grade Mandilla West paleochannel producing approximately 23,000 ounces of gold.

Both Prospects are covered by existed Mining Leases.

Mr John Jones, Chairman of Anglo Australian, said today:

"Whilst this recent drilling campaign at Mandilla was of itself quite modest, its impact could in fact be quite significant.

"The discovery of a high grade zone of supergene enriched gold mineralisation at Mandilla South provides Anglo Australian with another high priority gold target.

"However, in the short term, the more significant impact might well be at Mandilla East.

"First, modelling the high grade narrow lodes as bulk stockwork style mineralisation rather than the current low-tonnage high grade approach might well result see us with a significantly larger resource.

"Secondly, on the basis of our revised structural interpretation, there is every likelihood of increasing the physical size of the target through further drilling.

"All in all, there is much work for us still to do at Mandilla."

For further information: John L C Jones AM – Chairman Telephone: (08) 9322 4569

Compliance Statement

The information in this report that relates to Exploration Targets and Exploration Results is based on information compiled by David Otterman, who is an independent consultant from DW Otterman Exploration Consultant.

Mr Otterman is a Fellow of The Australasian Institute of Mining and Metallurgy (CP) and a Member of the Australian Institute of Geoscientists (RP Geo).

Mr Otterman has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Otterman consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Mr Otterman has disclosed to the reporting company the full nature of the relationship between himself and the company, including any issue that could be perceived by investors as a conflict of interest. He verifies that the Report is based on and fairly and accurately reflects in the form and context in which it appears, the information in supporting documentation relating to Exploration Targets and Exploration Results.

The information in this report that relates to the Processing and Metallurgy is based on and fairly represents, information and supporting documentation compiled by Damian Connelly who is a Fellow of The Australasian Institute of Mining and Metallurgy and a full-time employee of METS. Damian Connelly has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Damian Connelly consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Table 1

					EOH			DH		
Hole No	Easting	Northing	Inclination	Azimuth	depth	From	То	length	Grade	Comment
MNAC947	360651	6526130	-60	270	76	53	54	1	2.61	
MNAC956	360223	6526261	-60	270	84	54	55	1	1.52	
MNAC957	360272	6526260	-60	270	85	53	55	2	1.68	
MNAC966	359911	6526427	-60	270	72	57	68	11	1.49	
incl						61	62	1	5.59	
MNAC967	359969	6526431	-60	270	78	55	63	8	0.96	
MNAC968	360022	6526427	-60	270	74	54	57	3	1.23	
MNAC969	360063	6526427	-60	270	78	57	59	2	2.69	
MNAC977	359790	6526601	-60	270	84	64	70	6	1.75	
incl						65	66	1	5.24	
						72	84	12	0.4	end of hole
MNAC978	359843	6526598	-60	270	76	61	64	3	2.98	
incl						61	62	1	7.46	
						70	71	1	1.23	
MNAC986	359688	6526744	-60	270	67	58	61	3	2.7	
MNAC987	359740	6526734	-60	270	60	52	54	2	1.18	

Mandilla Project - Table of Significant RC/AC Assay Results > 0.5 g/t Au:

Table 2Mandilla East Historic Holes

Hole No	Easting	Northing	Inclination	Azimuth	EOH	From	То	DH length	Grade	Comment
WID3283	359237	Northing 6527546	-60		depth 80	66	67			Comment
WID5265	559257	0527540	-00	270	80	70	71	<u>1</u> 1	3.1 3.44	sediment-hosted
MDRC018	359264	6527550	-60	270	100	44	84	40	0.86	end of hole
incl	359204	0527550	-00	270	100	61	6 4	<u>40</u> 3	2.54	
incl						80	81		11.33	
MDRC019	250294	6527550	60	270	110	45			2.12	
	359284	6527550	-60	270	110	45	68 53	23		
incl						48 61		5	4.83	
incl						74	63 75	2	3.75	
						85	87	1 2	1.56 2.31	
						99	110	11	2.51 25.11	end of hole
ind						103	104	1	25.11	
incl						103			242.12	
incl WID3282	359277	6527547	-60	270	53	44	106 53	1		end of hole
		6527547						9	1.3 1.43	
WID3282A	359297	6527547	-60	270	80	46 47	80	34		end of hole
incl							50	3	3.99	
incl						64	68	4	7.92	
incl						67	68	1	23.0	
incl	250217	6527540	<u> </u>	270	00	71	73	1	8.1	
WID3281	359317	6527548	-60	270	80	68	71	3	0.84	4m composites; no
MDRC005	359336	6527553	-60	270	140					intervals <1g*m
WID1104	359005	6527607	-60	90	70	52	54	2	0.69	
						56	59	3	3.59	
incl						56	57	1	8.7	
						63	64	1	1.65	
WID1108	359040	6527608	-60	90	70	15	16	1	1.5	paleochannel
						29	35	6	1.42	supergene
WID1109	359057	6527609	-60	270	70	46	70	24	1.14	end of hole
incl						46	49	3	2.47	
WID1110	359080	6527609	-60	270	70					no intervals > 1 g*m
										mainly sediment
	050054			070	4.60					intersected from 59m
WID1159	359061	6527608	-60	270	162	54	56	2	0.8	depth
						59	63	4	1.65	mainly sediment
										intersected from 56m
WID1159A	359063	6527608	-60	276	298	63	66	3	1.83	depth
WID1202	359062	6527608	-81	260	199	26.6	27	0.4	2.02	
WID1160	359144	6527607	-56	274	370	68	70	2	0.53	
						74	85	11	1.02	
						124.9	125.04	0.14	1,540	
						125.04	125.53	0.49	1.6	
						144.5	145	0.5	1.2	sediment from 195m
WID1111	359083	6527606	-60	90	70					no intervals > 1 g*m
WID1112	359102	6527606	-60	270	70	31	38	7	4.11	
incl						31	35	4	5.96	

					EOH	_	_	DH		
Hole No	Easting	Northing	Inclination	Azimuth	depth	From	То	length	Grade	Comment
WID1200	359143	6527607	-76	272	204.7	92.4	92.7	0.3	11.42	
						127.8	128.3	0.5	1.86	
						134.1	135.1	1	1.61	
						145.5	146	0.5	1.84	
						155	156.7	1.7	0.71	
						169.4	170.4	1	1.38	
						188.6	192.1	3.5	86.14	
incl						188.6	189.15	0.55	284.9	
incl						188.6	188.8	0.2	772.3	no intorvolo > 1
WID1113	359123	6527606	-60	270	70					no intervals > 1 g*m
WID1199	359142	6527607	-90		206	143	143.2	0.2	8.72	
WID1165	359162	6527606	-90		70					no intervals > 1 g*m
WID1166	359189	6527605	-90		70	44	45	1	3.25	
						69	70	1	1.55	end of hole
WID1167	359202	6527604	-90		70	65	67	2	2.8	
WID1475	359240	6527604	-60	270	70	46	53	7	0.88	
MDRC017	359271	6527600	-60	270	116	43	45	2	0.75	
						49	50	1	1.32	
						54	59	5	2.11	
incl						56	59	3	3.06	
						75	89	14	1.03	
						97	100	3	0.67	
						102	105	3	5.57	
incl						102	103	1	14.42	
						108	111	3	0.85	
WID1168	359222	6527604	-90		70	38	44	6	5.47	
						40	41	1	24.14	
						54	70	16	0.77	end of hole
WID1476	359260	6527601	-60	270	70	23	26	3	1.66	
						47	70	23	5.88	
incl						49	54	5	23.06	
incl						49	50	1	102.0	
WID3287	359297	6527607	-60	270	119	90	91	1	28.0	
						95	96	1	3.81	
						102	106	4	0.82	
WID1477	359279	6527600	-60	270	64	38	54	16	0.82	
						61	63	2	1.22	
WID3213	359237	6527497	-60	270	54					no intervals > 1 g*m; sediment
WID3214	359277	6527497	-60	270	69					no intervals > 1 g*m; sediment
WID3286	359229	6527497	-60	90	130	63	74	11	4.59	possible supergene
incl			00	50		66	69	3	14.5	
incl						66	67	1	32.0	
										sediment to porphyry contact
						92	93	1	1.31	at 97m

Hole No	Easting	Northing	Inclination	Azimuth	EOH depth	From	То	DH length	Grade	Comment
MDRC020	359305	6527500	-60	270	123	64	76	12	3.48	
incl						64	69	5	8.0	
						90	91	1	1.62	
						96	98	2	0.77	
						112	123	11	0.78	end of hole
WID3215	359317	6527497	-60	270	73	64	73	9	7.82	end of hole
						68	70	2	32	
MDRC004	359334	6527505	-60	270	120	58	120	62	1.58	end of hole
incl						71	72	1	10.51	
incl						74	75	1	15.42	
incl						84	87	3	4.77	
incl						105	107	2	6.69	
incl						115	116	1	5.23	
WID3276	359237	6527447	-60	270	80	115	17	1	9.9	paleochannel
WID3270	559257	0527447	-00	270	50	65		3		paleochanner
						65	68	5	1.31	end of hole,
						79	80	1	1.14	sediment
WID3277	359277	6527447	-60	270	80	52	55	3	0.76	
MDRC021	359301	6527450	-60	270	110	52	55	3	2.55	
						91	97	6	0.96	
						106	107	1	1.58	
WID3278	359317	6527447	-60	270	80	45	53	8	1.82	
incl	00001/	0027117		270		46	47	1	6.9	
							-17		0.5	no intervals > 1
MDRC003	359336	6527449	-60	270	120					g*m
WID3279	359357	6527447	-60	270	80	56	57	1	1.46	
MDRC024	359095	6527660	-60	270	100	50	51	1	1.12	
						61	62	1	3.89	
						66	70	4	1.31	
						76	81	5	0.74	
						93	94	1	6.29	
MDRC025	359115	6527660	-60	270	102	30	33	3	1.07	
						65	68	3	0.7	
						89	93	4	1.3	
WID3270	359197	6527647	-60	270	65	15	16	1	1.15	
		002/04/	00	270		63	65	2	1.13	end of hole
WID3275	359195	6527647	-60	270	80	60	61	1	1.59	
MDRC016	359255	6527650	-60	270	110	36	60	24	1.12	
incl	333233	0527050	-00	270	110	36	38	24	1.12	
incl						41	43	2	1.17	
incl						41	43	1	4.01	
incl						51	52	1	7.36	
incl						54	56	2	3.46	
incl						59	60	1	2.17	
					_	100	101	1	7.78	
WID3271	359237	6527647	-60	270	80	15	16	1	8.9	paleochannel
						44	45	1	1.35	
						57	58	1	3.08	
						65	66	1	1.2	

Hole No	Easting	Northing	Inclination	Azimuth	EOH depth	From	То	DH length	Grade	Comment
WID3272	359277	6527647	-60	270	80	53	55	2	4.44	
						63	65	2	1.08	
MDRC008	359089	6527689	-60	270	105	45	46	1	1.63	
						61	92	31	2.18	
incl						66	70	4	8.54	
incl						66	67	1	21.04	
incl						72	74	2	3.64	
incl						89	90	1	16.36	
WID2363	359039	6527698	-90		44	20	21	1	4.93	
						42	43	1	4.54	
MDRC015	359016	6527704	-60	90	88	46	72	26	0.71	
MDRC051	359080	6527700	-90		85	48	49	1	4.23	
						70	71	1	2.39	
MDD01	359250	6527500	-90		115	56	58	2	2.84	
						93.1	93.4	0.3	5.19	
						95.05	96.8	1.75	0.97	
						102.5	102.8	0.3	7.83	
MDD02	359250	6527550	-90		110	49	50	1	2.97	
						52	52.3	1	3.87	
						76	77	1	1.27	
						77.85	79	1.15	1.03	
						89	90.3	1.3	1.28	
MDRC026	359280	6527473	-90		120	17	20	3	9.7	
incl						17	18	1	28.27	
-						51	62	11	1.71	
incl						60	62	2	4.51	
MDRC027	359262	6527476	-90		120	56	57	1	1.11	
						99	100	1	4.21	
						106	108	2	8.68	
						113	115	2	0.99	
MDRC028	359248	6527550	-90		54	39	54	15	1.52	end of hole
incl						45	46	1	11.5	
MDRC029	359306	6527500	-90		120					no assays >1g*m
MDRC030	359251	6527500	-90		114					no assays >1g*m
MDRC031	359230	6527500	-90		114	92	93	1	1.61	
						99	100	1	3.55	
								_	0.00	6.97g/t assay at
						112	114	2	3.86	end of hole
MDRC032	359210	6527500	-90		114					no assays >1g*m
MDRC033	359258	6527525	-90		110	44	74	30	1.67	
incl						72	73	1	13.44	
						90	104	14	1.77	
incl						92	93	1	10.2	
						108	110	2	2.13	end of hole
MDRC034	359237	6527525	-90		110	37	38	1	1.21	
						42	43	1	1.27	
						61	68	7	3.13	
incl						65	67	2	5.82	

Hole No	Easting	Northing	Inclination	Azimuth	EOH depth	From	То	DH length	Grade	Comment
incl	Lasting	Northing	mennation	Azimuti	ueptii	91	93		13.72	comment
incl						99	100	2	8.03	
	250270	6527550	00		102					
MDRC035	359270	6527550	-90		102	38	81	43	2.29	
incl						41	43	2	7.93	
incl						62	63	1	11.15	
incl						70	71	1	17.88	
incl						76	77	1	13.5	
MDRC036	359220	6527550	-90		120	84	85	1	17.67	
						91	92	1	7.43	
						98	101	3	1.69	
						108	113	5	1.13	
MDRC037	359199	6527551	-90		53	38	39	1	1.61	abandoned short of target
MDRC037 MDRC038	359199	6527550	-90		111	56	58	1 2	1.38	ortarget
IVIDRC038	329178	0527550	-90		111					
						64	65	1	1.33	
	050040				4.05	68	71	3	1.08	
MDRC039	359210	6527600	-90		105	32	36	4	0.95	4m composite
						80	84	4	0.42	4m composite
						100	104	4	0.39	4m composite
MDRC040	359180	6527601	-90		110	40	44	4	0.71	4m composite
						60	64	4	0.55	4m composite
						75	80	5	0.73	4m composite 76- 80m
MDRC041	359260	6527650	-90		96	75	80	5	0.75	no assays >1g*m
MDRC041 MDRC042	359200	6527650	-90		96	90	92	2	2.23	
								2		
MDRC043	359219	6527650	-90		96	18	20	2	1.43	
						27	28	1	2.18	
						31	32	1	2.39	
						35	38	3	1.29	
						42	43	1	1.53	
						47	49	2	0.9	
						75	79	4	1.01	
						85	89	4	0.94	
MDRC044	359200	6527650	-90		96	32	34	2	1.98	
						39	41	2	1.18	
						52	86	34	2.25	
incl						62	63	1	13.49	
incl						73	78	5	7.44	
incl						73	75	2	14.42	
incl						81	82	1	7.15	
incl						85	86	1	13.37	
MDRC045	359180	6527650	-90		96	18	26	8	8.06	
incl						21	22	1	54.38	
						56	57	1	1.7	
						62	67	5	1.48	
						84	86	2	2.83	
						89	94	5	0.86	
MDRC046	359160	6527650	-90		96	46	48	2	2.78	
						51	52	1	2.8	

Hole No	Easting	Northing	Inclination	Azimuth	EOH depth	From	То	DH length	Grade	Comment
						69	72	3	1.73	
MDRC049	359220	6527626	-90		100	28	37	9	0.86	
						74	75	1	1.83	
						87	89	2	0.93	
MDRC050	359200	6527225	-90		100	42	44	2	1.52	
						65	73	8	0.67	
						79	80	1	4.34	

Cutoff >1g*m

APPENDIX 1

Section 1: Sampling Techniques and Data - Mandilla

	Section 1: Sampling Techniques and	Dala - Ivial Iulila
Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	All Aircore samples were laid out in 1 metre increments and a representative 500 – 700 gram spear sample was collected from each pile and composited into a single sample every 4 metres. Average weight 2.5 – 3 kg sample.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 	All Reverse Circulation (RC) drill samples were laid out in 1 metre increments and a representative 500 – 700 gram spear sample was collected from each pile and composited into a single sample every 4 metres. Average weight 2.5 – 3 kg sample.
	3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed	All samples were trucked to Intertek in Kalgoorlie each day. On completion of the drilling program the samples were submitted for analysis.
	information.	Intertek assay standards, blanks and checks and were inserted at regular intervals. Company blanks and duplicates were inserted at 40
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer,	metre intervals. Aircore Drilling - blade bit. For a 4.5 inches diameter hole.
Drining teeningues	orary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	RC Drilling using Hammer bit. Diameter of hole 5. 5 inches
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	Visual – amount in sample piles, poor recoveries recorded in sample book.
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	Not known at this store, more drilling to required to establish
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Not known at this stage: more drilling is required to establish if there is any sample bias.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	collected and put in chip trays and retained as a record.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All 1m samples of RC chips were logged by a contract geologist on the rig; Sample chips from each hole were collected and put in chip trays and retained as a record.
		Logging is carried out at metre intervals.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	The AC samples were laid out in one metre intervals. Spear samples were taken and composited for analysis as described above. Representative samples from each 1m interval were collected and retained as described above.
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	The RC drill samples were laid out in one metre intervals. Spear samples were taken and composited for analysis as described above. Representative samples from each 1m interval were collected and retained as described above.
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	Standard Western Australian sampling techniques applied. There has been no statistical work carried out at this stage.
		Intertek assay standards, blanks and checks and were inserted at regular intervals. Company blanks and duplicates were inserted at 40 metre intervals.
		Sample sizes are appropriate to the grain size of the material being sampled.

Criteria	JORC Code Explanation	Commentary
Quality of assay data	The nature, quality and appropriateness of the assaying and	There has been no statistical work carried out at this stage. Sample receipt – LIMS Registration – Sample sorting and
and laboratory tests	laboratory procedures used and whether the technique is considered partial or total.	Reconciliation Sample weights are recorded – Samples dried on trays 105°
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, 	C for a minimum of 12 hours Samples are pulverised to 85% passing 75um using a LM5 Pulveriser.
	 calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision 	Pulps sent to Intertek Perth. 25 gram sample split off. Assayed for Au, As Co, Cu, Ni, Pb, Zn by method AR25/MS, Samples assaying greater than 1000ppb Au assay by AR25hMS
	have been established.	Standard Intertek Minerals protocols re blanks, standards & duplicates applied.
		Certified Reference Materialfrom Geostats Pty Ltd submitted at 40 metre intervals approximately.
		Referee sampling has not yet been carried out.
Verification of sampling and	 The verification of significant intersections by either independent or alternative company personnel. 	Contractor J Chellew verified hole position on site.
assaying	The use of twinned holes.	Standard data entry used on site, backed up in Subiaco WA.
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	No adjustments have been carried out .
	Discuss any adjustment to assay data.	
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	Drill holes have been picked up by hand held Garmin GPS 78). (5 -10 metre accuracy)
	Specification of the grid system used.	Grid: GDA94 Datum UTM Zone 51
Data spacing and	 Ouality and adequacy of topographic control. Data spacing for reporting of Exploration Results. 	AC Drill hole spacing is 50 to 100m on section, with 200 and
distribution	Whether the data spacing and distribution is sufficient to	400m sectional spacing (approximate).
	establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	RC Drill hole spacing is 50 on section, with 80m sectional spacing.
	Whether sample compositing has been applied.	Sample compositing was undertaken over 4 metre intervals where possible.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	All drill holes have been drilled normal to the interpreted strike.
	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	
Sample security	The measures taken to ensure sample security.	All samples taken daily to Intertek yard in Kalgoorlie.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have been carried out at this stage.

Section 2: Reporting of Exploration Results - Mandilla

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. 	Mining Leases 15/96 and 15/633 and Exploration Licence 15/1404. All are owned 100% by Anglo Australian Resources NL The licences are in good standing. No known impediments.
	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	Unavailable at current time.
Geology	Deposit type, geological setting and style of mineralisation.	Archaean orogenic gold mineralisation hosted by felsic to intermediate schist, Mafic volcanics, ultramafic intrusives and porphyry.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	This Information has been summarised in Tables 1 and 2 of the ASX announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent 	
Relationship between	values should be clearly stated.These relationships are particularly important in the reporting of	This has not been applied. Not known at this stage.
mineralisation widths and intercept lengths	Exploration Results.If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	
	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Applied
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Balanced reporting has been applied.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	No other substantive exploration data.
Further work	 The nature and scale of planned further work (eg tests for latera extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Follow up Aircore, Reverse Circulation & Diamond Drilling is planned. No reporting of commercially sensitive information at this stage.