

EXPLORATION UPDATE

Benching at Awak Mas confirms high grade overprint and Geophysics at Salu Bulo generates multiple new targets

Asia-Pacific gold development company Nusantara Resources Limited ('Nusantara', ASX: NUS) is pleased to provide the following update on exploration at its 100%-owned Awak Mas Gold Project (Project) located in South Sulawesi, Indonesia.

Summary:

Current exploration is focused on an exploration bench program and a geophysics program.

- Positive results from an exploration benching program on the Awak Mas Gold Project
 Reserve area increases confidence of a future grade uplift as suggested in the DFS. Results
 from trench sampling included:
 - o Face 66m @ 1.56 g/t Au (including 4m at 6.2 g/t, 4m at 3.6 g/t); and
 - Floor 62m @ 2.30 g/t Au (including 8m at 4.3 g/t, 3m at 4.6 g/t).
- Geophysics program at the 0.18 million-ounce gold satellite Salu Bulo deposit is defining extension targets over a 3km strike length. Follow-up diamond-drill planning is underway.

The benching and geophysics program have produced promising early results, and the Company will continue to seek further value upside for the Project by undertaking follow-up work in these and other strategically aligned areas.

"Nusantara is very focussed on moving the Awak Mas Gold project through financing and into development, notwithstanding, we haven't taken our eyes off exploration. We anticipate a very exciting second half 2019 defining and drilling new targets in what is proving to be a very large gold mineralisation system", commented Nusantara's Executive Chairman, Greg Foulis.

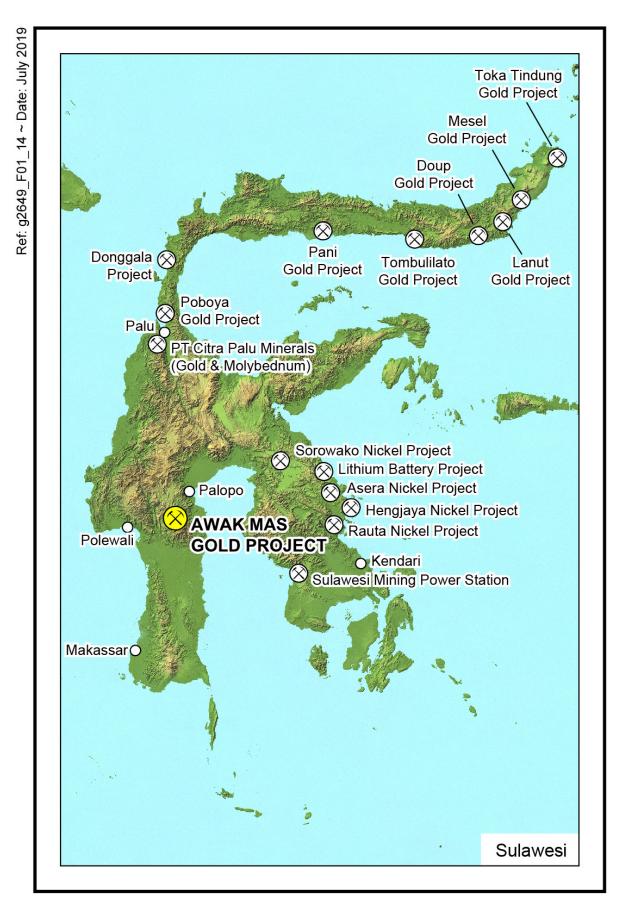
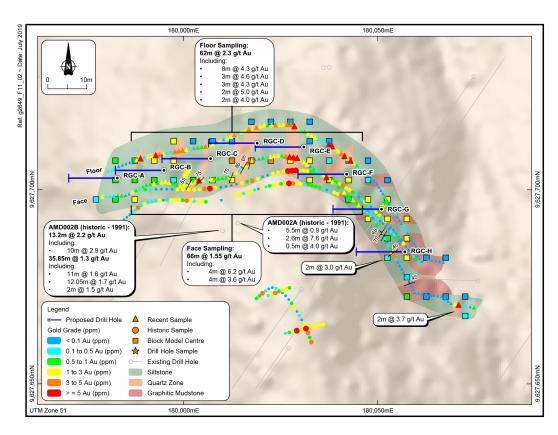


Figure 1: Location of the Awak Mas Gold Project – Sulawesi, Indonesia

Exploration benching program

As highlighted in the 2018 Definitive Feasibility Study (DFS), the Company believes there is potential for the Awak Mas Gold Project to realise a grade uplift when the ore body is mined. As explained in the DFS, the existing Reserve drill spacing, and block modelling is believed to have the potential to under-report higher grade vertical vein structures. The DFS identified a Grade uplift potential in excess of 7% available to >75% of the Awak Mas deposit.


An exploration benching exercise has been completed within the Awak Mas Gold Project Rante Starter Pit area to map and sample the exposed high-grade vertical vein structures within the deposit:

- A single 100m exploration bench was cut into the Awak Mas Gold Project Rante domain exposing a considerable, continuous width of mineralisation as modelled
- Two trenches (one in the face of the bench and one in the floor of the bench) across the 100m bench visibly exposed multiple sub-vertical structures as anticipated
- Sampling of the trench material clearly demonstrated additional high-grade structures not captured by the Reserve drilling and associated block models
- Results from trench sampling included:
 - o Face 66m @ 1.56 g/t Au (including 4m at 6.2 g/t, 4m at 3.6 g/t); and
 - Floor 62m @ 2.30 g/t Au (including 8m at 4.3 g/t, 3m at 4.6 g/t).
- Analysis of the impact of the additional structures and assays against the existing reserve drilling and block modelling is being conducted

While the results are encouraging and increase confidence that eventual mining will realise better than Reserve grades, the cost of closer spaced deposit drilling is not considered cost-effective and operational grade control drilling will be used to manage ore processing in future operations.

Proposed next steps are:

- Close spaced drilling to further prove upgrade concept; and
- Statistical re-evaluation prior to re-estimation

Figure 2: Plan view showing comparison of new trench results overlain on Block Model centroids coloured by grade. Note the location of 8 x 25m proposed close-spaced drill holes (blue traces).

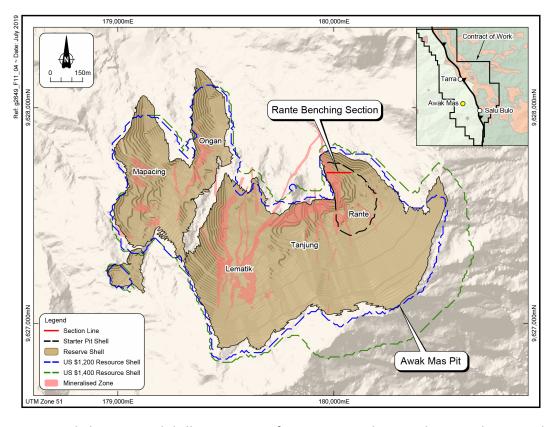
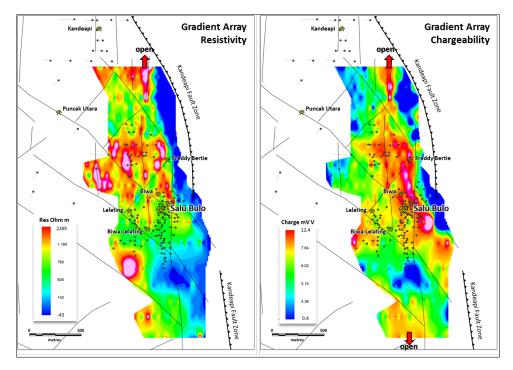


Figure 3: Proposed close spaced drilling program for Rante Bench – emulate Grade Control pattern

Geophysics program


A ground based electrical geophysics program is being completed over a 3 km strike length covering the Salu Bulo deposit and potential strike extension structures to the north and south of the existing deposit. Salu Bulo was chosen for this program as:

- exploration survey work had identified probable extensions to known mineralisation;
- Salu Bulo is within a 3 km radius of planned Awak Mas Gold Project plant;
- Salu Bulo mineralisation demonstrated elevated gold grades from other project areas;
- mineralisation trends extend into large untested areas; and
- there is potential to rapidly extend both Resource and Reserve
 - Salu Bulo resource is 3.6 million tonnes grading 1.6g/t gold containing 0.18 million ounces gold¹; and
 - Salu Bulo reserve is 2.8 million tonnes grading 1.67g/t gold containing 0.15 million ounces gold².

The geophysical program is proving to be a successful tool to identifying controlling structures to mineralisation:

- Gradient Array seeing positive near surface responses; and
- Pole-Dipole Induced Polarity method seeing deeper structures

The program has delineated consistent signatures along the structure from Salu Bulo identifying targets to be followed up with diamond drilling, with planning now underway.

Figure 4: Comparative images of Resistivity and Chargeability signatures from GA survey. Drill target generation process to be completed by August 2019.

¹ ASX Announcement 'Indicated Resource Grows by a further 0.2 Moz', 8 May 2018

² ASX Announcement 'Ore Reserve increased by 11% to 1.1 Moz gold', 13 September 2018

aa.yoca yo. g	old using the jir	e assay (1711110	, ccomique m	en roto jimon.				
C	Commis ID	Sample	Easting	Northing	Elevation	Sample	Au	Domonico
Survey Tag	Sample ID	Туре	UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t	Remarks
Rante Doma	nin							
RT01_01	RC159208	Channel	180,075	9,627,670	1,163	1	0.78	Wall sample
RT01_03	RC159210	Channel	180,073	9,627,670	1,163	1	0.26	Wall sample
RT01_04	RC159211	Channel	180,072	9,627,670	1,163	1	0.37	Wall sample
RT01_05	RC159212	Channel	180,071	9,627,670	1,163	1	5.5	Wall sample
RT01_06	RC159213	Channel	180,070	9,627,671	1,163	1	1.9	Wall sample
RT01_27	RC159236	Channel	180,055	9,627,682	1,163	1	0.4	Wall sample
RT01_28	RC159237	Channel	180,054	9,627,683	1,163	1	3.2	Wall sample
RT01_29	RC159238	Channel	180,054	9,627,684	1,163	1	2.7	Wall sample
RT01_30	RC159253	Channel	180,053	9,627,685	1,163	1	0.7	Wall sample
RT01_31	RC159254	Channel	180,053	9,627,686	1,163	1	0.2	Wall sample
RT01_33	RC159256	Channel	180,052	9,627,687	1,163	1	0.1	Wall sample
RT01_34	RC159257	Channel	180,051	9,627,688	1,163	1	0.1	Wall sample
RT01_36	RC159260	Channel	180,050	9,627,690	1,163	1	0.2	Wall sample
RT01_37	RC159261	Channel	180,050	9,627,691	1,163	1	1.0	Wall sample
RT01_38	RC159262	Channel	180,049	9,627,692	1,163	1	0.3	Wall sample
RT01_40	RC159264	Channel	180,048	9,627,693	1,163	1	0.1	Wall sample
RT01_41	RC159265	Channel	180,047	9,627,694	1,163	1	0.2	Wall sample
RT01_42	RC159266	Channel	180,047	9,627,695	1,163	1	0.4	Wall sample
RT01_43	RC159267	Channel	180,046	9,627,695	1,163	1	0.2	Wall sample
RT01_44	RC159268	Channel	180,045	9,627,696	1,163	1	1.2	Wall sample
RT01_45	RC159269	Channel	180,044	9,627,697	1,163	1	0.8	Wall sample
RT01_46	RC159270	Channel	180,044	9,627,697	1,163	1	1.1	Wall sample
RT01_47	RC159271	Channel	180,043	9,627,698	1,163	1	0.8	Wall sample
RT01_48	RC159272	Channel	180,042	9,627,699	1,163	1	0.7	Wall sample
RT01_49	RC159274	Channel	180,041	9,627,699	1,163	1	2.3	Wall sample
RT01_50	RC159275	Channel	180,041	9,627,700	1,163	1	0.4	Wall sample
RT01_51	RC159276	Channel	180,040	9,627,701	1,163	1	0.6	Wall sample
RT01_52	RC159277	Channel	180,039	9,627,701	1,163	1	0.3	Wall sample
RT01_53	RC159278	Channel	180,038	9,627,702	1,163	1	1.3	Wall sample
RT01_54	RC159279	Channel	180,038	9,627,703	1,163	1	2.2	Wall sample
RT01_55	RC159280	Channel	180,037	9,627,703	1,163	1	5.1	Wall sample
RT01_56	RC159333	Channel	180,036	9,627,704	1,163	1	1.1	Wall sample
RT01_57	RC159334	Channel	180,035	9,627,704	1,163	1	0.2	Wall sample
RT01_58	RC159335	Channel	180,034	9,627,705	1,163	1	0.5	Wall sample
RT01_59	RC159336	Channel	180,033	9,627,705	1,163	1	0.6	Wall sample
RT01_61	RC159339	Channel	180,032	9,627,707	1,163	1	2.0	Wall sample

, ,	, , , , , , , , , , , , , , , , , , ,	, ,	,	tti AAS Jinisti.				
Current Tem	Cample ID	Sample	Easting	Northing	Elevation	Sample	Au	Domoules
Survey Tag	Sample ID	Туре	UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t	Remarks
Rante Doma	nin							
RT01_62	RC159340	Channel	180,031	9,627,707	1,163	1	1.3	Wall sample
RT01_63	RC159341	Channel	180,030	9,627,708	1,163	1	2.1	Wall sample
RT01_64	RC159342	Channel	180,029	9,627,708	1,163	1	5.6	Wall sample
RT01_65	RC159343	Channel	180,028	9,627,708	1,163	1	8.7	Wall sample
RT01_66	RC159344	Channel	180,027	9,627,708	1,163	1	5.9	Wall sample
RT01_67	RC159345	Channel	180,026	9,627,709	1,163	1	4.7	Wall sample
RT01_68	RC159346	Channel	180,025	9,627,709	1,163	1	0.7	Wall sample
RT01_69	RC159347	Channel	180,024	9,627,709	1,163	1	1.6	Wall sample
RT01_70	RC159348	Channel	180,023	9,627,709	1,163	1	1.5	Wall sample
RT01_71	RC159349	Channel	180,022	9,627,708	1,163	1	1.2	Wall sample
RT01_72	RC159351	Channel	180,021	9,627,708	1,163	1	0.5	Wall sample
RT01_73	RC159352	Channel	180,020	9,627,708	1,163	1	0.5	Wall sample
RT01_76	RC159355	Channel	180,017	9,627,708	1,163	1	2.5	Wall sample
RT01_77	RC159356	Channel	180,017	9,627,707	1,163	1	3.9	Wall sample
RT01_78	RC159357	Channel	180,016	9,627,706	1,163	1	1.8	Wall sample
RT01_79	RC159358	Channel	180,015	9,627,706	1,163	1	0.4	Wall sample
RT01_80	RC159359	Channel	180,014	9,627,705	1,163	1	0.3	Wall sample
RT01_81	RC159360	Channel	180,014	9,627,704	1,163	1	1.3	Wall sample
RT01_82	RC159361	Channel	180,013	9,627,704	1,163	1	0.5	Wall sample
RT01_83	RC159362	Channel	180,012	9,627,703	1,163	1	1.8	Wall sample
RT01_84	RC159364	Channel	180,011	9,627,703	1,163	1	0.7	Wall sample
RT01_85	RC159365	Channel	180,010	9,627,703	1,163	1	0.5	Wall sample
RT01_86	RC159366	Channel	180,009	9,627,703	1,163	1	0.5	Wall sample
RT01_87	RC159367	Channel	180,008	9,627,703	1,163	1	1.0	Wall sample
RT01_88	RC159368	Channel	180,007	9,627,703	1,163	1	1.4	Wall sample
RT01_89	RC159369	Channel	180,006	9,627,703	1,163	1	0.2	Wall sample
RT01_90	RC159370	Channel	180,005	9,627,703	1,163	1	2.7	Wall sample
RT01_91	RC159371	Channel	180,004	9,627,702	1,163	1	6.8	Wall sample
RT01_92	RC159372	Channel	180,003	9,627,702	1,163	1	2.3	Wall sample
RT01_93	RC159373	Channel	180,002	9,627,702	1,163	1	2.5	Wall sample
RT01_94	RC159374	Channel	180,001	9,627,702	1,163	1	1.2	Wall sample
RT01_95	RC159375	Channel	180,000	9,627,701	1,163	1	1.2	Wall sample
RT01_96	RC159376	Channel	179,999	9,627,701	1,163	1	1.8	Wall sample
RT01_97	RC159377	Channel	179,998	9,627,701	1,163	1	0.5	Wall sample
RT01_98	RC159379	Channel	179,997	9,627,702	1,163	1	0.6	Wall sample
RT01_99	RC159380	Channel	179,996	9,627,702	1,163	1	1.8	Wall sample

, , ,		/(un aas jinisn.				
Survey Tag	Sample ID	Sample	Easting	Northing	Elevation	Sample Interval	Au	Remarks
ourroy rug	oumpio is	Туре	UTM Grid (m)	UTM Grid (m)	(m)	(m)	g/t	Remaine
Rante Doma	in							
RT01_100	RC159381	Channel	179,995	9,627,702	1,163	1	1.7	Wall sample
RT01_101	RC159382	Channel	179,994	9,627,702	1,163	1	1.5	Wall sample
RT01_102	RC159383	Channel	179,993	9,627,702	1,163	1	0.6	Wall sample
RT01_103	RC159384	Channel	179,992	9,627,702	1,163	1	1.0	Wall sample
RT01_104	RC159385	Channel	179,991	9,627,701	1,163	1	0.5	Wall sample
RT01_105	RC159386	Channel	179,990	9,627,701	1,163	1	0.5	Wall sample
RT01_106	RC159387	Channel	179,990	9,627,701	1,163	1	0.5	Wall sample
RT01_107	RC159388	Channel	179,989	9,627,700	1,163	1	0.1	Wall sample
RT01_108	RC159389	Channel	179,988	9,627,700	1,163	1	0.9	Wall sample
RT01_109	RC159391	Channel	179,987	9,627,699	1,163	1	1.6	Wall sample
RT01_112	RC159394	Channel	179,984	9,627,698	1,163	1	0.7	Wall sample
RT01_114	RC159396	Channel	179,982	9,627,698	1,163	1	0.2	Wall sample
RT01_115	RC159397	Channel	179,981	9,627,698	1,163	1	0.4	Wall sample
RT01_116	RC159398	Channel	179,980	9,627,698	1,163	1	0.3	Wall sample
RT01_117	RC159399	Channel	179,979	9,627,698	1,163	1	2.6	Wall sample
RT01_132	RC159415	Channel	180,057	9,627,690	1,163	1	0.2	Wall sample
RT01_133	RC159417	Channel	180,057	9,627,690	1,163	1	0.2	Floor sample
RT01_137	RC159421	Channel	180,055	9,627,694	1,163	1	0.2	Floor sample
RT01_138	RC159422	Channel	180,054	9,627,695	1,163	1	0.1	Floor sample
RT01_142	RC159426	Channel	180,052	9,627,698	1,163	1	0.5	Floor sample
RT01_151	RC159436	Channel	180,046	9,627,705	1,163	1	0.3	Floor sample
RT01_152	RC159437	Channel	180,045	9,627,706	1,163	1	0.4	Floor sample
RT01_153	RC159438	Channel	180,045	9,627,706	1,163	1	0.8	Floor sample
RT01_154	RC159439	Channel	180,044	9,627,707	1,163	1	1.0	Floor sample
RT01_155	RC159440	Channel	180,043	9,627,707	1,163	1	5.8	Floor sample
RT01_156	RC159441	Channel	180,042	9,627,708	1,163	1	1.5	Floor sample
RT01_157	RC159442	Channel	180,041	9,627,709	1,163	1	6.6	Floor sample
RT01_158	RC159443	Channel	180,041	9,627,709	1,163	1	3.1	Floor sample
RT01_159	RC159445	Channel	180,040	9,627,710	1,163	1	2.3	Floor sample
RT01_160	RC159446	Channel	180,039	9,627,711	1,163	1	1.9	Floor sample
RT01_161	RC159447	Channel	180,038	9,627,711	1,163	1	7.3	Floor sample
RT01_162	RC159448	Channel	180,037	9,627,712	1,163	1	6.2	Floor sample
RT01_163	RC159449	Channel	180,037	9,627,712	1,163	1	0.3	Floor sample
RT01_164	RC159450	Channel	180,036	9,627,713	1,163	1	0.3	Floor sample
RT01_165	RC159451	Channel	180,035	9,627,713	1,163	1	0.2	Floor sample
RT01_166	RC159452	Channel	180,034	9,627,714	1,163	1	1.4	Floor sample

, ,		- accay () technique wi					
Survey Tag	Sample ID	Sample	Easting	Northing	Elevation	Sample	Au	Remarks
Survey rag	Sample ID	Туре	UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t	Remarks
Rante Doma	iin		, ,					
RT01_167	RC159453	Channel	180,033	9,627,714	1,163	1	2.0	Floor sample
RT01_168	RC159454	Channel	180,032	9,627,714	1,163	1	1.7	Floor sample
RT01_169	RC159455	Channel	180,031	9,627,715	1,163	1	0.5	Floor sample
RT01_170	RC159456	Channel	180,030	9,627,715	1,163	1	0.5	Floor sample
RT01_171	RC159457	Channel	180,029	9,627,716	1,163	1	1.3	Floor sample
RT01_172	RC159459	Channel	180,029	9,627,716	1,163	1	5.6	Floor sample
RT01_173	RC159460	Channel	180,028	9,627,717	1,163	1	4.7	Floor sample
RT01_174	RC159461	Channel	180,027	9,627,717	1,163	1	3.6	Floor sample
RT01_175	RC159462	Channel	180,026	9,627,717	1,163	1	1.6	Floor sample
RT01_176	RC159463	Channel	180,025	9,627,717	1,163	1	1.1	Floor sample
RT01_177	RC159464	Channel	180,024	9,627,717	1,163	1	3.1	Floor sample
RT01_178	RC159465	Channel	180,023	9,627,717	1,163	1	1.6	Floor sample
RT01_179	RC159466	Channel	180,022	9,627,717	1,163	1	1.0	Floor sample
RT01_180	RC159467	Channel	180,021	9,627,717	1,163	1	2.2	Floor sample
RT01_181	RC159468	Channel	180,020	9,627,716	1,163	1	2.6	Floor sample
RT01_182	RC159469	Channel	180,019	9,627,716	1,163	1	4.1	Floor sample
RT01_183	RC159471	Channel	180,018	9,627,716	1,163	1	2.2	Floor sample
RT01_184	RC159472	Channel	180,017	9,627,716	1,163	1	3.3	Floor sample
RT01_185	RC159473	Channel	180,016	9,627,715	1,163	1	1.9	Floor sample
RT01_186	RC159474	Channel	180,015	9,627,715	1,163	1	1.9	Floor sample
RT01_187	RC159475	Channel	180,014	9,627,714	1,163	1	0.3	Floor sample
RT01_188	RC159476	Channel	180,013	9,627,714	1,163	1	3.0	Floor sample
RT01_189	RC159477	Channel	180,012	9,627,714	1,163	1	1.8	Floor sample
RT01_190	RC159478	Channel	180,011	9,627,713	1,163	1	2.3	Floor sample
RT01_192	RC159480	Channel	180,009	9,627,713	1,163	1	2.6	Floor sample
RT01_194	RC159482	Channel	180,008	9,627,712	1,163	1	1.3	Floor sample
RT01_195	RC159483	Channel	180,007	9,627,711	1,163	1	2.6	Floor sample
RT01_196	RC159485	Channel	180,006	9,627,711	1,163	1	3.2	Floor sample
RT01_197	RC159486	Channel	180,005	9,627,711	1,163	1	0.6	Floor sample
RT01_198	RC159487	Channel	180,004	9,627,711	1,163	1	0.5	Floor sample
RT01_200	RC159489	Channel	180,002	9,627,710	1,163	1	0.4	Floor sample
RT01_201	RC159490	Channel	180,001	9,627,710	1,163	1	1.7	Floor sample
RT01_202	RC159491	Channel	180,000	9,627,710	1,163	1	4.8	Floor sample
RT01_203	RC159492	Channel	179,999	9,627,710	1,163	1	3.6	Floor sample
RT01_204	RC159493	Channel	179,998	9,627,710	1,163	1	4.6	Floor sample
RT01_205	RC159494	Channel	179,997	9,627,710	1,163	1	0.4	Floor sample

Survey Tag	Sample ID	Sample Type	Easting UTM Grid (m)	Northing UTM Grid (m)	Elevation (m)	Sample Interval (m)	Au g/t	Remarks
Rante Doma	ain							
RT01_206	RC159495	Channel	179,996	9,627,709	1,163	1	0.4	Floor sample
RT01_207	RC159496	Channel	179,995	9,627,709	1,163	1	1.6	Floor sample
RT01_208	RC159498	Channel	179,994	9,627,709	1,163	1	4.1	Floor sample
RT01_209	RC159499	Channel	179,993	9,627,709	1,163	1	6.0	Floor sample
RT01_210	RC159500	Channel	179,992	9,627,709	1,163	1	1.2	Floor sample
RT01_211	RC159501	Channel	179,991	9,627,709	1,163	1	1.7	Floor sample
RT01_212	RC159502	Channel	179,990	9,627,708	1,163	1	0.3	Floor sample
RT01_213	RC159503	Channel	179,989	9,627,708	1,163	1	5.4	Floor sample
RT01_214	RC159504	Channel	179,988	9,627,708	1,163	1	2.7	Floor sample
RT01_220	RC159511	Channel	179,982	9,627,706	1,163	1	0.2	Floor sample
RT01_221	RC159512	Channel	179,982	9,627,705	1,163	1	0.2	Floor sample
RT01_222	RC159513	Channel	179,981	9,627,705	1,163	1	0.3	Floor sample

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary		
Sampling Techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Sampling of historic sample locations have been carried out by Nusantara using channel and single-point grab samples. A total of 222 channel samples were collected by Nusantara as an initial trial sampling program intended to demonstrate geological characterisation of grade and structural continuity presented by the modelled sub-vertical overprint mineralising episode. This is precursor to a possible future close-space drilling program. All samples were taken over an interval length of approximately one (1) metre or composites of sub-intervals.		
		 The process included: Construct new channel or exposure using mechanical trenching (excavator) to expose the outcrop; Take continuous channel samples within the available interval (1m); Place sample in calico bag and number using ticket book; Package and send samples to Geoservices Laboratory in Jakarta, and For this exercise samples were analysed only for Au with FAA40 – Fire Assay (40g). No specialised measurement tools, e.g. handheld XRF instrument, were employed. 		
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	All sampling was carried out under the company's protocols and procedures meeting industry standard practice. Quality Assurance ("QA") and Quality Control ("QC") protocols included the monitoring and analysis of inserted certified reference material, blanks and duplicates samples which to ensure sample representivity.		
	Aspects of the determination of mineralization that are Material to the Public Report.	All Nusantara samples were subjected to the standard procedures of preparation, analytical process and reporting as have been previously undertaken by PT Geoservices LTD at Cikarang – Bekasi, Indonesia.		

Criteria	JORC Code explanation	Commentary
	In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralization types (eg submarine nodules) may warrant disclosure of detailed information.	
Drilling Techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	No drilling performed, channel sampling only.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	No drilling performed, channel sampling only.
	Measures taken to maximize sample recovery and ensure representative nature of the samples.	No drilling performed, channel sampling only.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No drilling performed, channel sampling only.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	No drilling performed, channel sampling only.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel etc) photography.	All sample material was geologically assessed and reported in terms of the standard terminology used for Awak Mas Gold Project. Sample reporting has been conducted both qualitatively and quantitatively – full description of lithologies, alteration and comments are recorded, as well as percentage estimates on veining and sulphide amount.
	The total length and percentage of the relevant intersections logged.	Total length of Nusantara sample intervals has been recorded in the relevant table for reporting exploration results; Significant_Assay_Table 05July19.xlsx

Criteria	JORC Code explanation	Commentary		
		Total cumulative length of all significant channel sample data (>0.1 g/t Au) is 156m.		
Sub- Sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	No drilling undertaken.		
Techniques and Sample Preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	No drilling undertaken.		
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Nusantara samples were prepared at PT Geoservices laboratory using their "Total Sample Preparation Package", which included:		
		 Samples were weighed, dried at 105°C; Jaw crushed (to nominal 4mm) if required; Whole sample is pulverized via LM5 ring mill pulverisers, and Samples >3kg are split and pulverised in separate lots. The nature, quality and appropriateness of the sample preparation technique is consistent with industry standard practices. 		
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	All samples were channel or grab samples, no sub-sampling applicable.		
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	Coarse reject duplicate, coarse blanks, and both intra and umpire laboratory pulp duplicates were used to ensure the sampling is representative and un-biased.		
	Whether sample sizes are appropriate to the grain size of the material being sampled.	A sample size of 2.5-5 kg is considered appropriate and representative of the material being sampled given the width and continuity of the intersections and the grain size of the material being collected.		
Quality of Assay Data	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is	Current gold analysis by Nusantara has used a 40g charge fire assay method with an AAS finish.		
and Laboratory	considered partial or total.	The primary assay laboratory used is PT. Geoservices at Cikarang-Bekasi, Jakarta.		
Tests		No other additional element analysis was conducted.		
		These analyses are total assay methods, which is an industry standard for gold analysis, and an appropriate assay method for this type of deposit.		
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis	No geophysical tools were used or data analysed.		

Criteria	JORC Code explanation	Commentary
	including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	The following Quality Control ('QC') sampling protocols and insertion rates have been adopted by Nusantara for this sampling program; Certified Refence Material (5%) Coarse Blank Material (2.5%) Coarse Duplicate Samples (5%) Performance of the control samples are regularly monitored, with any disparities investigated and remedied. Acceptable levels of accuracy and precision have been established.
Verification of Sampling and Assaying	The verification of significant intersections by either independent or alternative company personnel.	 For Nusantara, verification protocols involved: Significant intersections/intervals were reviewed by the Manager Geology and Senior Geologists following receipt of the assay results. All assay results are processed and validated by the GIS/Database Administrator prior to loading into the database. This includes plotting standard and blank performances, review of duplicate results. Original assay certificates are issued as PDF's for all results and compared against digital CSV files as part of data loading procedure into the database. General Manager Geology reviews all tabulated assay data as the Competent Person for the reporting of Exploration Results.
	The use of twinned holes.	Not applicable.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 For Nusantara, documentation procedures included: Field sampling data is recorded directly into Logging templates in Excel spreadsheet format on laptop computers. Excel spreadsheets are imported to MS Access format for validation and management by the GIS/Database Administrator onsite. All sampling data is uploaded and managed via a centralised Dropbox facility with restricted access.
	Discuss any adjustment to assay data.	No adjustments have been made to any of the assay data.
Location of Data Points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Nusantara sample locations were initially located by hand held GPS with an accuracy of approximately 5-15m, dependent on satellite coverage.

Criteria	JORC Code explanation	Commentary
		All Nusantara sample locations considered to be significant will be located by third party surveyors using Differential Global Positioning System (" DGPS ") or total station electronic EDM equipment to an accuracy of approximately 0.1m if deemed further exploration or drilling work is required. The 3D location of the individual samples is considered to be adequately established, consistent with accepted industry standards.
	Specification of the grid system used.	All sample data is referenced in the UTM WGS 84 Zone 51 (Southern Hemisphere) coordinate system.
	Quality and adequacy of topographic control.	Topographic mapping of the Awak Mas Gold Project area by Airborne Laser Scanning (LiDAR) survey was carried out by P.T. Surtech in November 2017. Topographic control now exists to a vertical and horizontal accuracy of 0.15m and has been incorporated into all sample location references where possible.
Data Spacing and Distribution	Data spacing for reporting of Exploration Results.	Sample spacing for this exercise is on a consistent 1m basis to verify geological continuity of both exposed structural control and grade continuity across a trial bench; both 'face' and 'floor' sampling was conducted.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Sampling is of a 'proof of concept' nature and spacing is sufficient at this early pre-drilling phase to establish geological and grade continuity. The results from this exercise will be used at a future opportunity to quantify a possible close-spaced drilling program in the immediate location which may result in a reclassification of the Mineral Resource and Ore Reserve.
	Whether sample compositing has been applied.	No channel sample compositing was applied.
Orientation of Data in Relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Where sufficient outcrop exposure existed, sampling was performed at orientations perpendicular to the strike of the mineralised structures.
Geological Structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No drilling has been performed.
Sample Security	The measures taken to ensure sample security.	 Chain of Custody was managed by Nusantara whereby; All samples are placed into calico bags with sample tickets and clear sample ID numbering on the outside; Samples were bagged into polyweave sacks, zip tied, with the sample

Criteria	JORC Code explanation	Commentary		
		 numbers written on the outside of the sack; Samples were stored onsite within a locked facility ready for dispatch; Prior to sample dispatch, the sample numbers, duplicates and standards were checked against the dispatch form; Samples were freighted by road to Makassar, and then air freighted to the Geoservices laboratory in Jakarta, and Geoservices in Jakarta notified Nusantara when the samples had been securely received intact. 		
Audits or Reviews	The results of any audits or reviews of sampling techniques and data.	The results and subsequent modelling for comparison/proof of concept work has been conducted in-house by Nusantara Geology department personnel and peer reviewed by Cube Consulting of Perth, WA, Australia.		

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary		
Mineral Tenement and Land Tenure	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties,	The Awak Mas Gold Project includes the three main deposit areas of Awak Mas, Salu Bulo and Tarra for which current mineral Resources exist and have been reported to JORC Code (2012) guidelines.		
Status	native title interests, historical sites, wilderness or national park and environmental settings.	Nusantara Resources Limited holds a 100% beneficial interest in the Awak Mas Gold Project via a 7th Generation Contract of Work (" CoW ") through its wholly owned subsidiary PT Masmindo Dwi Area.		
		PT Masmindo Dwi Area is an Indonesian foreign investment company, which owns the exploration and mining rights to the Awak Mas Project through the CoW with the Government of the Republic of Indonesia.		
		The Awak Mas Gold Project has a long history involving multiple companies through direct ownership, joint venture farm-ins, option to purchase agreements, or equity arrangements;		
		 Battle Mountain discovered the Awak Mas deposit in 1991 after earning a 60% equity in the original partnership between New Hope and PT Asminco; Lone Star (1994) acquired the equity of both Battle Mountain and New Hope; Gascoyne structured an agreement which combined the various equities under Masmindo; Placer (1998) entered, and then later withdrew from a Joint Venture ("JV") with Masmindo; Vista Gold (2004) purchased 100% of Masmindo; Pan Asia (2009), now One Asia, acquired a 60% interest via a JV with Vista Gold upon completion of a Feasibility Study ("FS") and Environmental Impact Assessment ("AMDAL"); One Asia (2013) through its subsidiary Awak Mas Holdings purchased 100% of the Project from Vista Gold, and Nusantara Resources Limited (formerly Awak Mas Holdings) demerged from One Asia with a 100% interest in the Awak Mas Gold Project and listed on the Australian Securities Exchange ("ASX") on the 2nd August 2017. 		
		The Nusantara IPO Prospectus dated 15 June 2017 as lodged on ASX on 1 August 2017 priors an overview of all significant previous exploration on the CoW. The 7th Generation CoW was granted on 19 February 1998 and covers an area of 14,390 ha.		

Criteria	JORC Code explanation	Commentary
		The CoW allows for 100% ownership and is located within a non-forested area – (APL) Land for Other Uses.
		The AMDAL for the project has been approved and Environment Permit Issued April 2017. The Competent Person is not aware of any other agreements that are material to the Project.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate	The CoW defines a construction period of 3 years and an operating period of 30 years.
	in the area.	The Competent Person has not been advised of any environmental liabilities associated with the Awak Mas Gold Project at this time.
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	Previous exploration work at Awak Mas Gold Project has been characterised by surface geochemical studies and geological mapping, which identified numerous mineralised targets, three of which have become mineral resources. The exploration prospects include the four areas of Salu Kombong, Kandeapi, Puncak Utara and Puncak Selatan.
		Prior to One Asia, the most recent exploration work was conducted by Placer Dome in 1999, who completed a core drilling program based on the surface exploration results.
		Infill diamond core drilling by One Asia in 2011-2013 at Awak Mas resulted in the completion of a mineral resource estimate by Tetra Tech which was reported in accordance with the JORC Code (2012) guidelines.
Geology	Deposit type, geological setting and style of mineralisation.	The geological setting and mineralisation style at Awak Mas Gold Project is described as being associated with a high level, low sulphidation hydrothermal system which has notably developed at the Awak Mas, Salu Bulo and Tarra deposits. A strong sub-vertical fracture control over-print event has then channelled mineralising fluids.
		The mineralising fluids have exploited these pathways with limited lateral migration along foliation parallel, shallowly dipping favourable strata (predominantly hematitic mudstone) and along low angle thrusts.
		The multi-phase gold mineralisation is characterised by milled and crackle breccias, vuggy quartz infill, and stockwork quartz veining with distinct sub-vertical feeder structures.
		Dominant host lithologies for mineralisation are a sequence of chloritic and intercalating hematitic meta-sedimentary rocks metamorphosed to greenschist grade.

Criteria	JORC Code explanation	Commentary
		The geology of the three exploration prospect areas all demonstrate similar geological traits as the main deposits; with the notable exception of the occurrence of elevated Cu at Salu Kombong which appears to be related to fine sheeted to stock work quartz veins with associated secondary copper (malachite and azurite) and what is possibly primary enargite which is thought to be possibly associated to nearby late stage intrusives.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth hole length.	No drilling has been included by Nusantara on the sampling program area that is part of this Reporting of Exploration Results.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	No drilling has been included by Nusantara on the sampling program area that is part of this Reporting of Exploration Results.
Data Aggregation Methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	No weighting or grade cutting techniques have been used in the Reporting of Exploration Results.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No aggregation of assay results has been used in the Reporting of Exploration Results.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Metal equivalent values have not been used.
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	Both historic and recent drilling has been completed in the immediate sampling program area and has been used in current Mineral Resource Estimation process.

Criteria	JORC Code explanation	Commentary
Mineralization Widths and Intercept Lengths	If the geometry of the mineralization with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	The purpose of this sampling exercise was to demonstrate a possible upgrade effect associated with close-spaced structures at a scale that is more suitable to the geological controls on mineralisation; Mineral Resource Estimation drill spacing being considered too wide to realise all of the multiple subvertical structures.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views.	Relevant sample location plans are included within the main text of this ASX release. All mineralised sample intervals used in the reporting of the Exploration Results are tabulated in Appendix 1.
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All exploration results (Au ≥0.1 g/t) from the current sampling program have been reported.
Other Substantive Exploration Data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Historic surface geological mapping and grab or channel sampling has been used to build the geological framework for this surface sampling program. Nearby drilling has been considered as this exercise is to be used as a proof of concept study in comparison to the current Mineral Resource Estimate block model.
Further Work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	The Awak Mas Gold Project is an active growth project with additional areas to those reported having been identified for further exploration. Within the immediate area of these three exploration prospects, additional and ongoing work will be completed contiguously with the work to date. Planned further proof of concept sampling by way of a close-spaced diamond drilling program is being considered; the area tested by this sampling exercise being considered to be representative of the majority of the mineralisation volume at the Awak Mas deposit. The results of this further work will be used to assess whether more substantial close-spaced drill testing is warranted.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Not applicable to this reporting of Exploration results, no Mineral Resource estimate has been conducted.

APPENDIX 1. Awak Mas Gold Project - Assay Results Q1 and Q2 2019

			Easting	Northing	Elevation	Sample	Au
Survey Tag	Sample ID	Sample Type	UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t
Rante Domain							
RT01_01	RC159208	Channel	180,075	9,627,670	1,163	1	0.78
RT01_02	RC159209	Channel	180,074	9,627,670	1,163	1	0.08
RT01_03	RC159210	Channel	180,073	9,627,670	1,163	1	0.26
RT01_04	RC159211	Channel	180,072	9,627,670	1,163	1	0.37
RT01_05	RC159212	Channel	180,071	9,627,670	1,163	1	5.5
RT01_06	RC159213	Channel	180,070	9,627,671	1,163	1	1.86
RT01_07	RC159214	Channel	180,069	9,627,671	1,163	1	0.03
RT01_08	RC159215	Channel	180,068	9,627,671	1,163	1	0.02
RT01_09	RC159216	Channel	180,067	9,627,672	1,163	1	0.02
RT01_10	RC159217	Channel	180,066	9,627,673	1,163	1	0.005
RT01_11	RC159218	Channel	180,065	9,627,673	1,163	1	0.005
RT01_12	RC159219	Channel	180,064	9,627,673	1,163	1	0.005
RT01_13	RC159221	Channel	180,063	9,627,673	1,163	1	0.005
RT01_14	RC159222	Channel	180,063	9,627,673	1,163	1	0.005
RT01_15	RC159223	Channel	180,062	9,627,673	1,163	1	0.09
RT01_16	RC159224	Channel	180,061	9,627,673	1,163	1	0.005
RT01_17	RC159225	Channel	180,060	9,627,673	1,163	1	0.005
RT01_18	RC159226	Channel	180,059	9,627,674	1,163	1	0.005
RT01_19	RC159227	Channel	180,059	9,627,675	1,163	1	0.005
RT01_20	RC159228	Channel	180,058	9,627,676	1,163	1	0.005
RT01_21	RC159229	Channel	180,058	9,627,677	1,163	1	0.005
RT01_22	RC159230	Channel	180,057	9,627,678	1,163	1	0.005
RT01_23	RC159231	Channel	180,057	9,627,679	1,163	1	0.005
RT01_24	RC159232	Channel	180,056	9,627,680	1,163	1	0.005

C	Commiss ID	Committee Towns	Easting	Northing	Elevation	Sample	Au
Survey Tag	g Sample ID Sample Type UTM Grid (m)	UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t	
Rante Doma	in						
RT01_25	RC159234	Channel	180,056	9,627,680	1,163	1	0.005
RT01_26	RC159235	Channel	180,055	9,627,681	1,163	1	0.03
RT01_27	RC159236	Channel	180,055	9,627,682	1,163	1	0.35
RT01_28	RC159237	Channel	180,054	9,627,683	1,163	1	3.21
RT01_29	RC159238	Channel	180,054	9,627,684	1,163	1	2.73
RT01_30	RC159253	Channel	180,053	9,627,685	1,163	1	0.74
RT01_31	RC159254	Channel	180,053	9,627,686	1,163	1	0.21
RT01_32	RC159255	Channel	180,052	9,627,687	1,163	1	0.005
RT01_33	RC159256	Channel	180,052	9,627,687	1,163	1	0.13
RT01_34	RC159257	Channel	180,051	9,627,688	1,163	1	0.14
RT01_35	RC159259	Channel	180,051	9,627,689	1,163	1	0.08
RT01_36	RC159260	Channel	180,050	9,627,690	1,163	1	0.16
RT01_37	RC159261	Channel	180,050	9,627,691	1,163	1	0.99
RT01_38	RC159262	Channel	180,049	9,627,692	1,163	1	0.3
RT01_39	RC159263	Channel	180,049	9,627,693	1,163	1	0.005
RT01_40	RC159264	Channel	180,048	9,627,693	1,163	1	0.12
RT01_41	RC159265	Channel	180,047	9,627,694	1,163	1	0.24
RT01_42	RC159266	Channel	180,047	9,627,695	1,163	1	0.4
RT01_43	RC159267	Channel	180,046	9,627,695	1,163	1	0.23
RT01_44	RC159268	Channel	180,045	9,627,696	1,163	1	1.17
RT01_45	RC159269	Channel	180,044	9,627,697	1,163	1	0.75
RT01_46	RC159270	Channel	180,044	9,627,697	1,163	1	1.06
RT01_47	RC159271	Channel	180,043	9,627,698	1,163	1	0.82
RT01_48	RC159272	Channel	180,042	9,627,699	1,163	1	0.69
RT01_49	RC159274	Channel	180,041	9,627,699	1,163	1	2.26

C	Commiss ID	Committee Town	Easting	Northing	Elevation	Sample	Au
Survey Tag	Sample ID	Sample Type	UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t
Rante Doma	in						
RT01_50	RC159275	Channel	180,041	9,627,700	1,163	1	0.35
RT01_51	RC159276	Channel	180,040	9,627,701	1,163	1	0.58
RT01_52	RC159277	Channel	180,039	9,627,701	1,163	1	0.27
RT01_53	RC159278	Channel	180,038	9,627,702	1,163	1	1.28
RT01_54	RC159279	Channel	180,038	9,627,703	1,163	1	2.21
RT01_55	RC159280	Channel	180,037	9,627,703	1,163	1	5.07
RT01_56	RC159333	Channel	180,036	9,627,704	1,163	1	1.1
RT01_57	RC159334	Channel	180,035	9,627,704	1,163	1	0.23
RT01_58	RC159335	Channel	180,034	9,627,705	1,163	1	0.46
RT01_59	RC159336	Channel	180,033	9,627,705	1,163	1	0.61
RT01_60	RC159337	Channel	180,033	9,627,706	1,163	1	0.04
RT01_61	RC159339	Channel	180,032	9,627,707	1,163	1	2.04
RT01_62	RC159340	Channel	180,031	9,627,707	1,163	1	1.26
RT01_63	RC159341	Channel	180,030	9,627,708	1,163	1	2.09
RT01_64	RC159342	Channel	180,029	9,627,708	1,163	1	5.6
RT01_65	RC159343	Channel	180,028	9,627,708	1,163	1	8.74
RT01_66	RC159344	Channel	180,027	9,627,708	1,163	1	5.91
RT01_67	RC159345	Channel	180,026	9,627,709	1,163	1	4.73
RT01_68	RC159346	Channel	180,025	9,627,709	1,163	1	0.67
RT01_69	RC159347	Channel	180,024	9,627,709	1,163	1	1.55
RT01_70	RC159348	Channel	180,023	9,627,709	1,163	1	1.48
RT01_71	RC159349	Channel	180,022	9,627,708	1,163	1	1.22
RT01_72	RC159351	Channel	180,021	9,627,708	1,163	1	0.47
RT01_73	RC159352	Channel	180,020	9,627,708	1,163	1	0.53
RT01_74	RC159353	Channel	180,019	9,627,708	1,163	1	0.03

۰ -	0 1 10	0 1 7	Easting	Northing	Elevation	Sample	Au
Survey Tag	Sample ID	Sample Type	UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t
Rante Doma	in						
RT01_75	RC159354	Channel	180,018	9,627,708	1,163	1	0.03
RT01_76	RC159355	Channel	180,017	9,627,708	1,163	1	2.51
RT01_77	RC159356	Channel	180,017	9,627,707	1,163	1	3.88
RT01_78	RC159357	Channel	180,016	9,627,706	1,163	1	1.77
RT01_79	RC159358	Channel	180,015	9,627,706	1,163	1	0.44
RT01_80	RC159359	Channel	180,014	9,627,705	1,163	1	0.34
RT01_81	RC159360	Channel	180,014	9,627,704	1,163	1	1.27
RT01_82	RC159361	Channel	180,013	9,627,704	1,163	1	0.46
RT01_83	RC159362	Channel	180,012	9,627,703	1,163	1	1.84
RT01_84	RC159364	Channel	180,011	9,627,703	1,163	1	0.68
RT01_85	RC159365	Channel	180,010	9,627,703	1,163	1	0.53
RT01_86	RC159366	Channel	180,009	9,627,703	1,163	1	0.51
RT01_87	RC159367	Channel	180,008	9,627,703	1,163	1	0.97
RT01_88	RC159368	Channel	180,007	9,627,703	1,163	1	1.35
RT01_89	RC159369	Channel	180,006	9,627,703	1,163	1	0.17
RT01_90	RC159370	Channel	180,005	9,627,703	1,163	1	2.71
RT01_91	RC159371	Channel	180,004	9,627,702	1,163	1	6.8
RT01_92	RC159372	Channel	180,003	9,627,702	1,163	1	2.27
RT01_93	RC159373	Channel	180,002	9,627,702	1,163	1	2.49
RT01_94	RC159374	Channel	180,001	9,627,702	1,163	1	1.19
RT01_95	RC159375	Channel	180,000	9,627,701	1,163	1	1.19
RT01_96	RC159376	Channel	179,999	9,627,701	1,163	1	1.83
RT01_97	RC159377	Channel	179,998	9,627,701	1,163	1	0.54
RT01_98	RC159379	Channel	179,997	9,627,702	1,163	1	0.57
RT01_99	RC159380	Channel	179,996	9,627,702	1,163	1	1.83

Survey Tag	Survey Tag Sample ID	Sample Type	Easting	Northing	Elevation	Sample	Au
ourrey rug		Cumple Type	UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t
Rante Doma	ain						
RT01_100	RC159381	Channel	179,995	9,627,702	1,163	1	1.69
RT01_101	RC159382	Channel	179,994	9,627,702	1,163	1	1.52
RT01_102	RC159383	Channel	179,993	9,627,702	1,163	1	0.56
RT01_103	RC159384	Channel	179,992	9,627,702	1,163	1	1.01
RT01_104	RC159385	Channel	179,991	9,627,701	1,163	1	0.5
RT01_105	RC159386	Channel	179,990	9,627,701	1,163	1	0.5
RT01_106	RC159387	Channel	179,990	9,627,701	1,163	1	0.5
RT01_107	RC159388	Channel	179,989	9,627,700	1,163	1	0.11
RT01_108	RC159389	Channel	179,988	9,627,700	1,163	1	0.86
RT01_109	RC159391	Channel	179,987	9,627,699	1,163	1	1.61
RT01_110	RC159392	Channel	179,986	9,627,699	1,163	1	0.08
RT01_111	RC159393	Channel	179,985	9,627,699	1,163	1	0.02
RT01_112	RC159394	Channel	179,984	9,627,698	1,163	1	0.69
RT01_113	RC159395	Channel	179,983	9,627,698	1,163	1	0.05
RT01_114	RC159396	Channel	179,982	9,627,698	1,163	1	0.18
RT01_115	RC159397	Channel	179,981	9,627,698	1,163	1	0.36
RT01_116	RC159398	Channel	179,980	9,627,698	1,163	1	0.3
RT01_117	RC159399	Channel	179,979	9,627,698	1,163	1	2.6
RT01_118	RC159400	Channel	180,067	9,627,681	1,163	1	0.01
RT01_119	RC159401	Channel	180,066	9,627,682	1,163	1	0.02
RT01_120	RC159403	Channel	180,065	9,627,682	1,163	1	0.02
RT01_121	RC159404	Channel	180,064	9,627,682	1,163	1	0.005
RT01_122	RC159405	Channel	180,063	9,627,682	1,163	1	0.005
RT01_123	RC159406	Channel	180,061	9,627,682	1,163	1	0.005
RT01_124	RC159407	Channel	180,061	9,627,682	1,163	1	0.02

0	Commiss ID	Committee Town	Easting	Northing	Elevation	Sample	Au
Survey Tag	Sample ID	Sample Type	UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t
Rante Doma	in						
RT01_125	RC159408	Channel	180,060	9,627,683	1,163	1	0.005
RT01_126	RC159409	Channel	180,060	9,627,685	1,163	1	0.005
RT01_127	RC159410	Channel	180,060	9,627,685	1,163	1	0.005
RT01_128	RC159411	Channel	180,059	9,627,686	1,163	1	0.005
RT01_129	RC159412	Channel	180,059	9,627,687	1,163	1	0.01
RT01_130	RC159413	Channel	180,058	9,627,688	1,163	1	0.005
RT01_131	RC159414	Channel	180,058	9,627,689	1,163	1	0.04
RT01_132	RC159415	Channel	180,057	9,627,690	1,163	1	0.2
RT01_133	RC159417	Channel	180,057	9,627,690	1,163	1	0.15
RT01_134	RC159418	Channel	180,056	9,627,691	1,163	1	0.05
RT01_135	RC159419	Channel	180,056	9,627,692	1,163	1	0.005
RT01_136	RC159420	Channel	180,055	9,627,693	1,163	1	0.005
RT01_137	RC159421	Channel	180,055	9,627,694	1,163	1	0.2
RT01_138	RC159422	Channel	180,054	9,627,695	1,163	1	0.13
RT01_139	RC159423	Channel	180,053	9,627,696	1,163	1	0.07
RT01_140	RC159424	Channel	180,053	9,627,696	1,163	1	0.03
RT01_141	RC159425	Channel	180,052	9,627,697	1,163	1	0.03
RT01_142	RC159426	Channel	180,052	9,627,698	1,163	1	0.52
RT01_143	RC159427	Channel	180,051	9,627,699	1,163	1	0.04
RT01_144	RC159428	Channel	180,051	9,627,700	1,163	1	0.04
RT01_145	RC159429	Channel	180,050	9,627,701	1,163	1	0.005
RT01_146	RC159431	Channel	180,050	9,627,702	1,163	1	0.01
RT01_147	RC159432	Channel	180,049	9,627,702	1,163	1	0.01
RT01_148	RC159433	Channel	180,048	9,627,703	1,163	1	0.01
RT01_149	RC159434	Channel	180,048	9,627,704	1,163	1	0.01

Survey Tag	Survey Tag Sample ID	Sample Type	Easting	Northing	Elevation	Sample	Au
Survey rag		Sample Type	UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t
Rante Doma	ain						
RT01_150	RC159435	Channel	180,047	9,627,704	1,163	1	0.02
RT01_151	RC159436	Channel	180,046	9,627,705	1,163	1	0.34
RT01_152	RC159437	Channel	180,045	9,627,706	1,163	1	0.38
RT01_153	RC159438	Channel	180,045	9,627,706	1,163	1	0.8
RT01_154	RC159439	Channel	180,044	9,627,707	1,163	1	1.01
RT01_155	RC159440	Channel	180,043	9,627,707	1,163	1	5.8
RT01_156	RC159441	Channel	180,042	9,627,708	1,163	1	1.54
RT01_157	RC159442	Channel	180,041	9,627,709	1,163	1	6.57
RT01_158	RC159443	Channel	180,041	9,627,709	1,163	1	3.13
RT01_159	RC159445	Channel	180,040	9,627,710	1,163	1	2.26
RT01_160	RC159446	Channel	180,039	9,627,711	1,163	1	1.88
RT01_161	RC159447	Channel	180,038	9,627,711	1,163	1	7.25
RT01_162	RC159448	Channel	180,037	9,627,712	1,163	1	6.22
RT01_163	RC159449	Channel	180,037	9,627,712	1,163	1	0.34
RT01_164	RC159450	Channel	180,036	9,627,713	1,163	1	0.29
RT01_165	RC159451	Channel	180,035	9,627,713	1,163	1	0.16
RT01_166	RC159452	Channel	180,034	9,627,714	1,163	1	1.37
RT01_167	RC159453	Channel	180,033	9,627,714	1,163	1	1.97
RT01_168	RC159454	Channel	180,032	9,627,714	1,163	1	1.7
RT01_169	RC159455	Channel	180,031	9,627,715	1,163	1	0.54
RT01_170	RC159456	Channel	180,030	9,627,715	1,163	1	0.47
RT01_171	RC159457	Channel	180,029	9,627,716	1,163	1	1.29
RT01_172	RC159459	Channel	180,029	9,627,716	1,163	1	5.58
RT01_173	RC159460	Channel	180,028	9,627,717	1,163	1	4.71
RT01_174	RC159461	Channel	180,027	9,627,717	1,163	1	3.6

C	C	Committee Town	Easting	Northing	Elevation	Sample	Au	
Survey Tag	Sample ID	Sample Type	UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t	
Rante Doma	Rante Domain							
RT01_175	RC159462	Channel	180,026	9,627,717	1,163	1	1.62	
RT01_176	RC159463	Channel	180,025	9,627,717	1,163	1	1.14	
RT01_177	RC159464	Channel	180,024	9,627,717	1,163	1	3.07	
RT01_178	RC159465	Channel	180,023	9,627,717	1,163	1	1.63	
RT01_179	RC159466	Channel	180,022	9,627,717	1,163	1	0.95	
RT01_180	RC159467	Channel	180,021	9,627,717	1,163	1	2.18	
RT01_181	RC159468	Channel	180,020	9,627,716	1,163	1	2.55	
RT01_182	RC159469	Channel	180,019	9,627,716	1,163	1	4.05	
RT01_183	RC159471	Channel	180,018	9,627,716	1,163	1	2.15	
RT01_184	RC159472	Channel	180,017	9,627,716	1,163	1	3.27	
RT01_185	RC159473	Channel	180,016	9,627,715	1,163	1	1.94	
RT01_186	RC159474	Channel	180,015	9,627,715	1,163	1	1.87	
RT01_187	RC159475	Channel	180,014	9,627,714	1,163	1	0.27	
RT01_188	RC159476	Channel	180,013	9,627,714	1,163	1	3	
RT01_189	RC159477	Channel	180,012	9,627,714	1,163	1	1.84	
RT01_190	RC159478	Channel	180,011	9,627,713	1,163	1	2.27	
RT01_191	RC159479	Channel	180,010	9,627,713	1,163	1	0.02	
RT01_192	RC159480	Channel	180,009	9,627,713	1,163	1	2.58	
RT01_193	RC159481	Channel	180,009	9,627,712	1,163	1	0.03	
RT01_194	RC159482	Channel	180,008	9,627,712	1,163	1	1.27	
RT01_195	RC159483	Channel	180,007	9,627,711	1,163	1	2.56	
RT01_196	RC159485	Channel	180,006	9,627,711	1,163	1	3.15	
RT01_197	RC159486	Channel	180,005	9,627,711	1,163	1	0.59	
RT01_198	RC159487	Channel	180,004	9,627,711	1,163	1	0.51	
RT01_199	RC159488	Channel	180,003	9,627,711	1,163	1	0.005	

۰ -	0 1 10	2 1 7	Easting	Northing	Elevation	Sample	Au
Survey Tag	Sample ID	Sample Type	UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t
Rante Doma	in						
RT01_200	RC159489	Channel	180,002	9,627,710	1,163	1	0.37
RT01_201	RC159490	Channel	180,001	9,627,710	1,163	1	1.66
RT01_202	RC159491	Channel	180,000	9,627,710	1,163	1	4.83
RT01_203	RC159492	Channel	179,999	9,627,710	1,163	1	3.58
RT01_204	RC159493	Channel	179,998	9,627,710	1,163	1	4.59
RT01_205	RC159494	Channel	179,997	9,627,710	1,163	1	0.38
RT01_206	RC159495	Channel	179,996	9,627,709	1,163	1	0.36
RT01_207	RC159496	Channel	179,995	9,627,709	1,163	1	1.64
RT01_208	RC159498	Channel	179,994	9,627,709	1,163	1	4.06
RT01_209	RC159499	Channel	179,993	9,627,709	1,163	1	5.96
RT01_210	RC159500	Channel	179,992	9,627,709	1,163	1	1.15
RT01_211	RC159501	Channel	179,991	9,627,709	1,163	1	1.69
RT01_212	RC159502	Channel	179,990	9,627,708	1,163	1	0.28
RT01_213	RC159503	Channel	179,989	9,627,708	1,163	1	5.4
RT01_214	RC159504	Channel	179,988	9,627,708	1,163	1	2.7
RT01_215	RC159505	Channel	179,987	9,627,707	1,163	1	0.02
RT01_216	RC159506	Channel	179,986	9,627,707	1,163	1	0.005
RT01_217	RC159507	Channel	179,985	9,627,707	1,163	1	0.005
RT01_218	RC159508	Channel	179,984	9,627,706	1,163	1	0.005
RT01_219	RC159509	Channel	179,983	9,627,706	1,163	1	0.03
RT01_220	RC159511	Channel	179,982	9,627,706	1,163	1	0.2
RT01_221	RC159512	Channel	179,982	9,627,705	1,163	1	0.22
RT01_222	RC159513	Channel	179,981	9,627,705	1,163	1	0.31

Reporting Criteria: Intercepts reported are intervals of Au >1g/t with intervals of <1g/t Au up to 3m included. Where no individual intercepts >1 g/t exist, the intercepts reported are intervals of Au >0.1g/t with intervals of <0.1g/t Au up to 3m included. Downhole and estimated true thickness reported to one decimal place. Au and Ag grades reported to two significant figures. Samples are generally from diamond core drilling which is HQ diameter. Some intercepts may be of larger or smaller than HQ due to drilling logistics. Core is photographed and logged by the geology team before being cut in half. Half core samples are prepared for assay and the other half is retained in the core farm for future reference. Each assay batch is submitted with duplicates and standards to monitor laboratory quality. Samples analysed for gold using the fire assay (FAA40) technique and analysis for silver multi-acid digest with AAS finish (GAI02) technique

	Hole	Easting N	Northing	Elevation		Azimuth (Mag)	Dip	From (m)	To (m)	Interval (m)	Au	Ag
Hole ID	Туре	UTM Grid (m)	UTM Grid (m)	(m)	Depth (m)						g/t	g/t
Awak Mas - F	Rante (B	enching p	rogram area)	Historic DI	Н							
AMD002A	DDH	180,014	9,627,691	1,181	17.3	0	-90	0.0	5.5	5.50	0.9	1.0
								6.4	9.0	2.60	7.6	0.8
								9.2	9.7	0.50	4.0	0.5
AMD002B	DDH	180,010	9,627,689	1,181	50.1	0	-90	0.00	13.20	13.20	2.2	0.6
							Including	1.30	11.30	10.00	2.9	0.6
								14.25	50.10	35.85	1.3	NA
							Including	15.25	26.25	11.00	1.6	NA
							Including	32.25	44.30	12.05	1.7	NA
							Including	47.30	49.30	2.00	1.5	NA

Reporting Criteria: Au and Ag grades reported to two significant figures that greater or equal to 0.1g/t Au. Samples are from outcrop or trenches with channel or chip sampling technique. Rock samples are sent to the laboratory for preparation and assaying. Each assay batch is submitted with duplicates and standards to monitor laboratory quality. Samples analysed for gold using the fire assay (FAA40) technique and analysis for silver multi-acid digest with AAS finish (GAI02) technique

C	Ca	Commis Torres	Easting	Northing	Elevation	Sample	Au			
Survey Tag	Sample ID	Sample Type	UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t			
Rante Domain - Historic Trenches Results										
AMCS017	873087	Channel	180,061	9,627,681	1,163	1	0.31			
AMCS017	873088	Channel	180,060	9,627,682	1,163	1	0.57			
AMCS017	873089	Channel	180,059	9,627,683	1,164	1	0.31			
AMCS017	873093	Channel	180,057	9,627,686	1,164	1	1.6			
AMCS017	873100	Channel	180,052	9,627,692	1,165	1	1.4			
AMCS017	873101	Channel	180,051	9,627,693	1,165	1	0.3			
AMCS017	873102	Channel	180,050	9,627,694	1,166	1	1.6			
AMCS017	873103	Channel	180,050	9,627,694	1,166	1	1.6			
AMCS017	873104	Channel	180,049	9,627,695	1,166	1	0.2			
AMCS017	873106	Channel	180,047	9,627,696	1,165	1	0.2			
AMCS017	873107	Channel	180,047	9,627,697	1,165	1	1.2			
AMCS017	873108	Channel	180,046	9,627,698	1,165	1	0.2			
AMCS017	873110	Channel	180,044	9,627,699	1,165	1	0.1			
AMCS017	873111	Channel	180,044	9,627,699	1,165	1	1.0			
AMCS017	873112	Channel	180,043	9,627,700	1,165	1	2.8			
AMCS017	873113	Channel	180,042	9,627,700	1,165	1	1.7			
AMCS017	873114	Channel	180,041	9,627,701	1,166	1	3.5			
AMCS017	873115	Channel	180,040	9,627,702	1,166	1	1.0			
AMCS017	873116	Channel	180,039	9,627,702	1,166	1	0.8			
AMCS017	873117	Channel	180,038	9,627,703	1,166	1	0.7			
AMCS017	873118	Channel	180,038	9,627,703	1,166	1	1.6			
AMCS017	873119	Channel	180,037	9,627,703	1,166	1	0.7			
AMCS017	873120	Channel	180,036	9,627,704	1,166	1	0.3			
AMCS017	873121	Channel	180,035	9,627,704	1,166	1	0.6			
AMCS017	873122	Channel	180,034	9,627,704	1,167	1	0.7			
AMCS017	873123	Channel	180,033	9,627,705	1,167	1	0.6			
AMCS017	873124	Channel	180,032	9,627,705	1,168	1	2.3			
AMCS017	873125	Channel	180,031	9,627,705	1,169	1	2.0			
AMCS017	873126	Channel	180,030	9,627,705	1,169	1	2.1			
AMCS017	873127	Channel	180,029	9,627,705	1,169	1	10.4			
AMCS017	873128	Channel	180,028	9,627,705	1,169	1	7.8			
AMCS017	873129	Channel	180,027	9,627,705	1,169	1	5.5			
AMCS017	873130	Channel	180,026	9,627,705	1,169	1	1.3			
AMCS017	873131	Channel	180,024	9,627,704	1,170	1	1.0			
AMCS017	873132	Channel	180,023	9,627,704	1,170	1	1.2			
AMCS017	873133	Channel	180,019	9,627,703	1,171	1	1.5			
AMCS017	873134	Channel	180,018	9,627,702	1,171	1	3.7			

Reporting Criteria: Au and Ag grades reported to two significant figures that greater or equal to 0.1g/t Au. Samples are from outcrop or trenches with channel or chip sampling technique. Rock samples are sent to the laboratory for preparation and assaying. Each assay batch is submitted with duplicates and standards to monitor laboratory quality. Samples analysed for gold using the fire assay (FAA40) technique and analysis for silver multi-acid digest with AAS finish (GAl02) technique

		Samula Tura	Easting	Northing	Elevation	Sample	Au		
Survey Tag	Sample ID	Sample Type	UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t		
Rante Domain - Historic Trenches Results									
AMCS017	873135	Channel	180,016	9,627,702	1,171	1	1.0		
AMCS017	873136	Channel	180,015	9,627,702	1,171	1	2.5		
AMCS017	873137	Channel	180,008	9,627,700	1,170	1	2.2		
AMCS017	873138	Channel	180,007	9,627,700	1,170	1	5.7		
AMCS017	873139	Channel	180,005	9,627,700	1,170	1	3.8		
AMCS017	873140	Channel	180,004	9,627,700	1,170	1	2.8		
AMCS017	873141	Channel	180,003	9,627,700	1,169	1	2.3		
AMCS017	873142	Channel	180,001	9,627,700	1,170	1	1.6		
AMCS017	873143	Channel	180,000	9,627,700	1,170	1	1.2		
AMCS017	873144	Channel	179,999	9,627,700	1,170	1	1.9		
AMCS017	873147	Channel	179,992	9,627,700	1,171	1	0.3		
AMCS017	873148	Channel	179,990	9,627,700	1,171	1	0.7		
AMCS017	873149	Channel	179,989	9,627,700	1,170	1	0.1		
AMCS018	873159	Channel	180,033	9,627,661	1,187	1	3.4		
AMCS018	873160	Channel	180,033	9,627,662	1,187	1	0.7		
AMCS018	873161	Channel	180,032	9,627,663	1,186	1	3.7		
AMCS018	873162	Channel	180,032	9,627,664	1,186	1	22.6		
AMCS018	873163	Channel	180,031	9,627,665	1,186	1	1.5		
AMCS018	873165	Channel	180,030	9,627,668	1,186	1	0.4		
AMCS018	873167	Channel	180,029	9,627,670	1,186	1	1.3		
AMCS018	873168	Channel	180,028	9,627,671	1,186	1	0.8		
AMCS018	873172	Channel	180,025	9,627,674	1,186	1	0.1		
AMCS018	873173	Channel	180,024	9,627,675	1,185	1	0.2		
AMCS018	873176	Channel	180,021	9,627,674	1,186	1	0.3		
AMCS018	873177	Channel	180,020	9,627,673	1,185	1	3.2		
AMCS018	873178	Channel	180,020	9,627,673	1,185	1	0.5		
AMCS018	873179	Channel	180,019	9,627,672	1,185	1	0.8		
AMCS143	P65123	Channel	180,026	9,627,663	1,187	1	0.3		
AMCS143	P65124	Channel	180,027	9,627,663	1,187	1	0.7		
AMCS143	P65125	Channel	180,028	9,627,663	1,187	1	2.1		
AMCS143	P65126	Channel	180,029	9,627,664	1,186	1	6.1		
AMCS143	P65127	Channel	180,030	9,627,664	1,186	1	2.4		
AMCS143	P65128	Channel	180,031	9,627,664	1,186	1	1.4		
AMCS143	P65129	Channel	180,032	9,627,664	1,186	1	1.5		
AMCS143	P65130	Channel	180,033	9,627,665	1,186	1	1.9		
AMCS143	P65131	Channel	180,034	9,627,665	1,186	1	2.5		
AMCS143	P65132	Channel	180,035	9,627,665	1,186	1	2.1		

Reporting Criteria: Au and Ag grades reported to two significant figures that greater or equal to 0.1g/t Au. Samples are from outcrop or trenches with channel or chip sampling technique. Rock samples are sent to the laboratory for preparation and assaying. Each assay batch is submitted with duplicates and standards to monitor laboratory quality. Samples analysed for gold using the fire assay (FAA40) technique and analysis for silver multi-acid digest with AAS finish (GAI02) technique

Survey Tag	Sample ID	hnique and analysi. Sample Type	Easting	Northing	Elevation	Sample Interval	Au			
Survey rag	Sample ID	Sample Type	UTM Grid (m)	UTM Grid (m)	(m)	(m)	g/t			
Rante Domain - Historic Trenches Results										
AMCS143	P65133	Channel	180,036	9,627,665	1,186	1	2.3			
AMCS144	P65134	Channel	180,027	9,627,675	1,185	1	0.6			
AMCS144	P65135	Channel	180,026	9,627,674	1,185	1	1.4			
AMCS144	P65136	Channel	180,025	9,627,674	1,186	1	1.8			
AMCS144	P65137	Channel	180,025	9,627,674	1,186	1	0.7			
AMCS144	P65138	Channel	180,024	9,627,673	1,186	1	3.9			
AMCS144	P65139	Channel	180,023	9,627,673	1,186	1	2.0			
AMCS144	P65140	Channel	180,022	9,627,673	1,186	1	0.3			
AMCS145	P65144	Channel	180,055	9,627,688	1,165	1	0.5			
AMCS145	P65145	Channel	180,054	9,627,688	1,165	1	0.1			
AMCS145	P65146	Channel	180,053	9,627,689	1,165	1	0.4			
AMCS145	P65151	Channel	180,050	9,627,693	1,166	1	0.3			
AMCS145	P65152	Channel	180,049	9,627,693	1,167	1	0.3			
AMCS145	P65153	Channel	180,048	9,627,694	1,166	1	0.1			
AMCS145	P65155	Channel	180,047	9,627,695	1,166	1	0.8			
AMCS145	P65156	Channel	180,046	9,627,696	1,167	1	0.6			
AMCS145	P65157	Channel	180,045	9,627,696	1,167	1	0.9			
AMCS145	P65158	Channel	180,044	9,627,697	1,167	1	0.7			
AMCS145	P65159	Channel	180,043	9,627,697	1,168	1	0.7			
AMCS145	P65160	Channel	180,042	9,627,698	1,168	1	0.2			
AMCS145	P65162	Channel	180,041	9,627,699	1,169	1	3.7			
AMCS145	P65163	Channel	180,040	9,627,699	1,169	1	2.4			
AMCS145	P65164	Channel	180,039	9,627,699	1,169	1	1.7			
AMCS145	P65165	Channel	180,038	9,627,700	1,169	1	0.4			
AMCS145	P65167	Channel	180,036	9,627,700	1,170	1	0.3			
AMCS145	P65168	Channel	180,035	9,627,701	1,170	1	0.8			
AMCS145	P65169	Channel	180,034	9,627,701	1,171	1	0.6			
AMCS145	P65170	Channel	180,033	9,627,701	1,171	1	0.6			
AMCS145	P65171	Channel	180,032	9,627,701	1,171	1	0.9			
AMCS145	P65172	Channel	180,031	9,627,701	1,172	1	0.2			
AMCS145	P65173	Channel	180,030	9,627,702	1,172	1	2.4			
AMCS145	P65174	Channel	180,029	9,627,702	1,172	1	2.0			
AMCS145	P65175	Channel	180,028	9,627,702	1,172	1	3.3			
AMCS145	P65176	Channel	180,027	9,627,702	1,173	1	7.2			
AMCS145	P65177	Channel	180,026	9,627,702	1,173	1	2.7			
AMCS145	P65178	Channel	180,025	9,627,701	1,173	1	0.5			
AMCS145	P65179	Channel	180,024	9,627,701	1,173	1	1.1			

Reporting Criteria: Au and Ag grades reported to two significant figures that greater or equal to 0.1g/t Au. Samples are from outcrop or trenches with channel or chip sampling technique. Rock samples are sent to the laboratory for preparation and assaying. Each assay batch is submitted with duplicates and standards to monitor laboratory quality. Samples analysed for gold using the fire assay (FAA40) technique and analysis for silver multi-acid digest with AAS finish (GAI02) technique

Survey Tog	Sample ID	Sample Type	Easting	Northing	Elevation	Sample	Au
Survey Tag	Sample ID	Sample Type	UTM Grid (m)	UTM Grid (m)	(m)	Interval (m)	g/t
Rante Domain -	- Historic Trenches	s Results					
AMCS145	P65180	Channel	180,023	9,627,701	1,173	1	2.3
AMCS145	P65181	Channel	180,022	9,627,701	1,174	1	0.7
AMCS145	P65182	Channel	180,021	9,627,701	1,174	1	0.3
AMCS145	P65183	Channel	180,020	9,627,700	1,174	1	1.0
AMCS145	P65185	Channel	180,018	9,627,700	1,174	1	0.5
AMCS145	P65186	Channel	180,017	9,627,700	1,174	1	2.5
AMCS145	P65187	Channel	180,016	9,627,699	1,174	1	1.3
AMCS145	P65188	Channel	180,015	9,627,699	1,175	1	0.4
AMCS145	P65189	Channel	180,015	9,627,699	1,175	1	1.6
AMCS145	P65190	Channel	180,014	9,627,698	1,175	1	2.0
AMCS145	P65191	Channel	180,006	9,627,697	1,175	1	0.5
AMCS145	P65192	Channel	180,005	9,627,697	1,175	1	1.4
AMCS145	P65193	Channel	180,004	9,627,697	1,174	1	2.4
AMCS145	P65194	Channel	180,003	9,627,697	1,174	1	0.3
AMCS145	P65195	Channel	180,002	9,627,697	1,173	1	1.0
AMCS145	P65196	Channel	180,001	9,627,697	1,173	1	3.2
AMCS145	P65197	Channel	180,000	9,627,697	1,173	1	0.9
AMCS145	P65198	Channel	179,999	9,627,697	1,173	1	1.4
AMCS145	P65199	Channel	179,998	9,627,697	1,173	1	1.6
AMCS145	P65200	Channel	179,997	9,627,697	1,173	1	1.8
AMCS145	P65201	Channel	179,996	9,627,697	1,173	1	0.5
AMCS145	P65203	Channel	179,994	9,627,697	1,173	1	1.9
AMCS145	P65204	Channel	179,993	9,627,697	1,172	1	0.2
AMCS145	P65205	Channel	179,992	9,627,697	1,172	1	0.5
AMCS145	P65206	Channel	179,991	9,627,697	1,172	1	0.4
AMCS145	P65207	Channel	179,990	9,627,696	1,171	1	1.7
AMCS145	P65208	Channel	179,989	9,627,696	1,170	1	0.1
AMCS145	P65209	Channel	179,988	9,627,695	1,170	1	3.8
AMCS145	P65210	Channel	179,988	9,627,695	1,169	1	0.4
AMCS145	P65211	Channel	179,987	9,627,694	1,169	1	0.3

About Nusantara Resources

Nusantara is an ASX-listed gold development company with its flagship project comprising the 1.1 million-ounce Ore Reserve and 2.0 million-ounce Mineral Resource Awak Mas Gold Project located in South Sulawesi, Indonesia. Discovered in 1988, the Project has over 135 km of drilling completed in over 1,100 holes.

The Project is 100% owned through a 7th Generation CoW with the Government of Indonesia (GoI). The CoW was secured prior to the current Mining Law and was amended in 2018 by mutual agreement to align with the current law.

PT Masmindo Dwi Area (Masmindo), a wholly owned subsidiary of Nusantara, has sole rights to explore and exploit any mineral deposits within the project area until 2050. After this period, the operations under the CoW may be extended in the form of a special mining business license (IUPK) in accordance with prevailing laws and regulations, which currently allows for an extension of 10 years and a further extension of 10 years.

In the 10th year after commercial production, Masmindo is required to offer at least 51% of its share capital to willing Indonesian participants at fair market value according to international practice.

Nusantara's development strategy is for construction of a modern, low strip ratio open pit operation with ore processed by standard carbon-in-leach (CIL) processing delivering high gold recoveries. Environmental approval has already been received for the Project, which is favourably located in non-forestry land close to established roads, ports, airports, and grid power.

Nusantara's second strategy is to grow the resource base and support a mining operation beyond the initial project life of 11 years. Multiple drill-ready targets have already been outlined extending from the three main deposits and in other areas of the 140km2 CoW.

For more information please contact: **Greg Foulis Executive Chairman** Nusantara Resources Limited PH: +61 438 544 399 info@nusantararesources.com

Nusantara Resources

Nusantara_ASX

