

Level 2, 159 Adelaide Terrace East Perth WA 6004, Australia PO Box 3233 East Perth WA 6892, Australia T: +61 8 9215 7888 F: +61 8 9215 7889 E: info@focusminerals.com.au

W: www.focusminerals.com.au

22 July 2019

ASX Announcement

High Value Exploration Results from Beasley Creek and Lancefield Thrust

West Australian gold explorer Focus Minerals (**ASX: FML**) (**Focus** or **the Company**) is pleased to announce that the RC and DD drilling completed to June at Beasley Creek and the Wedge-Lancefield Thrust have returned high value intersections.

High value intersections were returned from Beasley Creek across more than 440m strike including:

- 19BSDD024¹ 12.86m @ 8.78g/t from 159.61m, including 0.66m @ 76.9g/t Au from 170.04m
- 19BSRD017¹ 29.4m @ 2.29g/t from 214.6m, including 0.9m @ 11.49g/t Au from 225.8m
- 19BSDD030¹ 15.1m @ 3.41g/t from 160.9m, including 0.45m @ 68.64g/t Au from 171.7m
- 19BSDD017¹ 12.9m @ 3.91g/t from 166.1m, including 1.0m @ 21.19g/t Au from 176.0m
- 19BSDD040¹ 7.0m @ 5.44g/t from 172m, including 1.0m @ 19.29g/t Au from 175.0m

High value intersections where returned from the Wedge-Lancefield Thrust at Wedge and Lancefield North: The following intersections were calculated using 0.5g/t cut off and up to 2m internal dilution:

- 19WDRC0019 7.00m @ 3.36g/t from 63m
- 19WDRC0048 9.00m @ 2.26g/t from 75m
- 19LNRC031 8.00m @ 4.61g/t from 82m
- 19LNRC030 6.00m @ 5.32g/t from 57m
- 19LNRC025 6.00m @ 5.07g/t from 83m

On releasing the results, Focus Minerals CEO Mr Zhaoya Wang commented,

"The most recent exploration results demonstrated the continuity in delivering high value exploration results from Beasley Creek and Lancefield area that started from late 2018². The results boosted our confidence in expediting our effort in working toward to production per our Stage 1 strategies³.

"The mineral resource estimates update work is currently on track and we estimate the release of the results in late Q3 or early Q4 of 2019."

¹ All lost core intervals included in the reported intersections have been fully diluted using 0g/t grade. Intersection has been calculated using 0.5g/t Au cut off and up to 3m Internal dilution.

² ASX Announcement on 30 January 2019.

³ ASX Announcement on 31 May 2019.

Beasley Creek Project

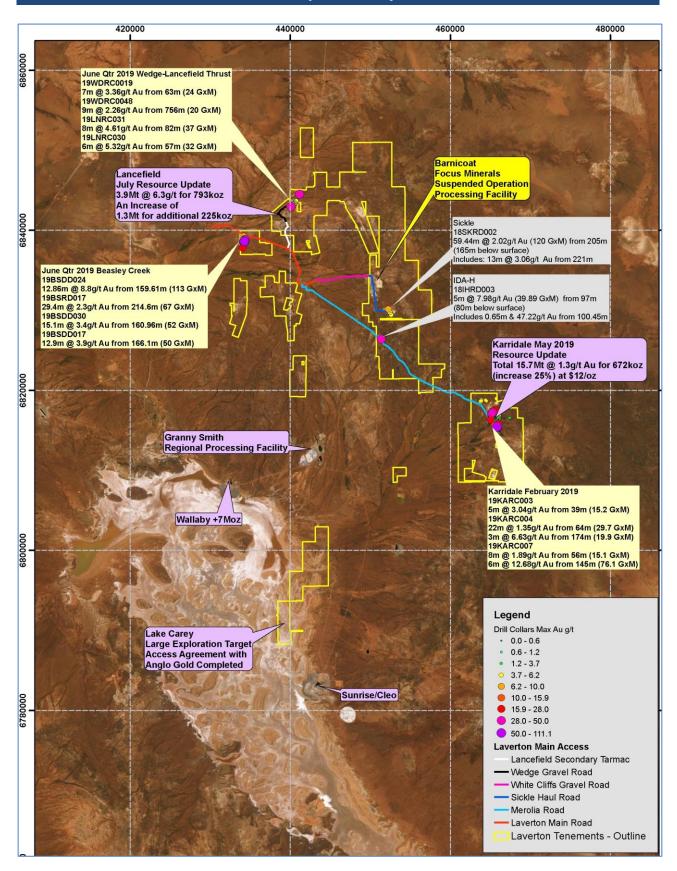


Figure 1: Laverton Project Locations with significant intersections/resources and roads

Page 2 of 24

Beasley Creek is located around 10km northwest of the Laverton township and was mined by WMC in the late 1980's and the early 1990's with ore processed at Windarra. The incomplete pit was wound up early due to changes in gold prices and pit design issues.

Since the cessation of mining it was investigated by Metex/Delta Gold in 1996/7 for potential satellite feed for Granny Smith. Crescent Gold (now Focus Minerals) completed resource drilling at 12 - 15m spacing at South Beasley Creek in 2010 but did not re-assess the main pit area at that time.

Focus has drilled extensively at Beasley Creek since 2018 and with announcements on 30/01/2019 and 29/04/2019. The drilling to date has located high and bonanza type gold grades located in 7 shoots beneath the historic WMC open pit.

The majority of the mineralisation is hosted on the Beasley Creek Shear. The southern extension of the Beasley Creek Shear is offset west about 140m by the cross cutting Fitton Fault Zone in the south of the pit. The Fitton Fault Zone is also strongly mineralised and a target for follow up resource drilling. Importantly the southern extension of the Beasley Creek Shear was not tested successfully by past explorers and remains an attractive exploration target with +400m strike between Beasley Creek and Beasley Creek South.

Focus re-commenced RC and Diamond resource development drilling at Beasley Creek on 16 January 2019. Four drills comprising three diamond rigs supported by an RC drill have been used for 50% of the reporting period.

Drill productivity 31 March to 30 June 2019 comprises 11,232.16m spread over 30 DD holes, 49 RC Holes and 1 RC/DD hole. The drilling has targeted the main structures defined in 2018 and with some infill of currently located VHG/high metal content shoots.

For the purposes of reporting Beasley Creek mineralised intersections in this announcement Focus has used a cut off of 0.5g/t Au and up to 3m internal dilution. Furthermore, all core loss within calculated Beasley Creek intersections has been assigned a fully diluted grade of 0.0g/t in order to provide conservative grade estimations.

Assays were received for 86 holes at Beasley Creek in the June Quarter 2019: Intersections have been calculated using a 0.5g/t Au cut off and up to 3m internal dilution. All intervals of core loss have been assigned a grade of 0g/t Au for the purposes of calculating significant intersections. Core loss was variable ranging from 0% to 46%. Core loss is limited as much as possible by using HQ3 drilling and short runs in soft highly oxidised ground. The core loss occurs as a function of grinding and washing material from the oxidised shears which host the Beasley Creek mineralisation.

Hole_ID	From	То	Width	Au g/t	GxM	CoreLoss_m	Core Loss%
19BSDD017	137.6	139	1.4	3.31	4.6		
19BSDD031	143.4	154.2	10.8	0.53	5.7	2.85	26.39
19BSDD037	96	97.8	1.8	2.67	4.8		
19BSDD040	81	90	9	0.86	7.7		
19BSDD040	156.7	160.7	4	2.17	8.7		
19BSRD026	117	122.92	5.92	1.03	6.1	0.2	3.38
19BSRD026	138.25	144.4	6.15	1.1	6.8	0.3	4.88

Table 1: Hanging Wall of the Beasley Shear – 17 holes. Intersections exceeding 4 GxM (downhole width of mineralisation multiplied by length weighted grade) are listed

Hole_ID	From	То	Width	Au g/t	GxM	CoreLoss_m	CoreLoss%
19BSDD016	163	168	5	5.35	26.8	0.3	6
19BSDD017	160	162.4	2.4	2.43	5.8	0.4	16.67
19BSDD017	166.1	179	12.9	3.91	50.4		
19BSDD018	159.2	168.32	9.12	1.05	9.6	0.4	4.39
19BSDD027	166.1	171.6	5.5	4.13	22.7	1.45	26.36
19BSDD028	157.03	170	12.97	1.29	16.7	0.3	2.31
19BSDD030	160.9	176	15.1	3.41	51.5	4.85	32.12
19BSDD031	166.9	174.6	7.7	2.12	16.3	3.55	46.1
19BSDD032	169.3	173.12	3.82	1.08	4.1		
19BSDD033	167.09	178.99	11.9	1.64	19.5	0.9	7.56
19BSDD034	169.41	173	3.59	3.35	12.0		
19BSDD037	162.42	168.8	6.38	0.82	5.2	0.7	10.97
19BSDD040	166	168	2	11.11	22.2		
19BSDD040	172	179	7	5.44	38.1	0.55	7.86
19BSDD041	144.67	145	0.33	14.71	4.9		
19BSRD015	213	223.7	10.7	1.4	15.0		
19BSRD017	214.6	244	29.4	2.29	67.3	3.1	10.54
19BSRD018	214.79	230	15.21	2.31	35.1	0.2	1.31
19BSRD026	148.6	153.5	4.9	3.23	15.8	0.2	4.08
19BSRD031	214	224	10	0.65	6.5	0.54	5.4
19BSRD032	238.78	245.68	6.9	0.83	5.7		
19BSRD034	203	208.4	5.4	2.01	10.9	0.2	3.7

Table 2: Beasley Creek Main Shear - 23 holes. Intersections exceeding 4 GxM are listed

Hole_ID	From	То	Width	Au g/t	GxM	CoreLoss_m	CoreLoss%
19BSDD029	184	188	4	1.15	4.6	0.3	7.5
19BSDD034	177.93	180	2.07	3.83	7.9		
19BSRD017	248.2	258.84	10.64	2.15	22.9	0.15	1.41
19BSRD025	181.2	193	11.8	2.26	26.7	2.02	17.12
19BSRD026	164	181.13	17.13	1.19	20.4	3.25	18.97

Table 3: Beasley Creek Main Shear Footwall - 8 holes. Intersections exceeding 4 GxM are listed.

Hole_ID	From	То	Width	Au g/t	GxM	CoreLoss_m	CoreLoss%
19BSDD021	160.3	163.02	2.72	2.36	6.4	0.3	11.03
19BSDD021	167	168.08	1.08	4.86	5.2		
19BSDD024	159.61	172.47	12.86	8.78	112.9	0.4	3.11
19BSDD025	160.5	165.2	4.7	1.65	7.8	0.28	5.96
19BSDD038	157	173	16	1.25	20.0	4.6	28.75
19BSDD043	145	155.5	10.5	0.91	9.6	0.15	1.43

Table 4: Fitton Fault Zone (Dextral Cross Fault at the South end of the historic pit) – 7 holes. Intersections exceeding 4 GxM are listed.

Hole_ID	From	То	Width	Au g/t	GxM	CoreLoss_m	CoreLoss%
19BSRC015	29	41	12	2.41	28.9		
19BSRC016	54	61	7	8.13	56.9		
19BSRC056	60	62	2	2.38	4.8		
19BSRD009	192.9	200	7.1	0.68	4.8	0.25	3.52
19BSRD023	213	216	3	1.6	4.8		
19BSRD023	301.88	303	1.12	8.77	9.8		
19BSRD027	189.25	194.9	5.65	1.09	6.2		
19BSRD028	175	195.85	20.85	1.73	36.1		

Table 5: Beasley Creek South Extension which comprises multiple sub parallel mineralised structures – 8 holes. Intersections exceeding 4 GxM are listed.

Hole_ID	From	То	Width	Au g/t	GxM	CoreLoss_m	CoreLoss%
19BSDD007	115.6	134.19	18.59	4.03	74.9	0.5	2.69
19BSDD008	126.65	140.95	14.3	2.35	33.6	1.4	9.79
19BSDD011	140.3	147.25	6.95	4.14	28.8	0.2	2.88
19BSDD011	171	187.45	16.45	1.61	26.5	1.56	9.48
19BSDD013	159.2	173	13.8	1.77	24.4	0.4	2.9
19BSDD014	177.1	179.9	2.8	2.37	6.6		
19BSDD015	202	225.9	23.9	0.78	18.6	2.45	10.25
19BSDD015	237.2	241.7	4.5	1.08	4.9	0.9	20
19BSDD019	161.2	164.7	3.5	1.68	5.9		
19BSDD022	179	192.3	13.3	1.13	15.0	2.9	21.8
19BSRC018	38	45	7	1.3	9.1		
19BSRC022	27	32	5	0.95	4.8		
19BSRC023	52	54	2	3.16	6.3		
19BSRC026	58	60	2	4.32	8.6		
19BSRC029	61	62	1	4.34	4.3		
19BSRC030	36	44	8	0.95	7.6		
19BSRC032	46	51	5	2.69	13.5		
19BSRC033	108	114	6	0.74	4.4		
19BSRC034	30	39	9	0.67	6.0		
19BSRC035	28	37	9	0.88	7.9		
19BSRC038	98	100	2	3.48	7.0		
19BSRC043	81	84	3	2.47	7.4		
19BSRC043	99	109	10	3.41	34.1		
19BSRC044	66	72	6	1.82	10.9		
19BSRC044	76	78	2	2.25	4.5		
19BSRC049	76	78	2	3.46	6.9		
19BSRC053	89	90	1	4	4.0		
19BSRC053	96	101	5	1.28	6.4		
19BSRC054	108	111	3	2.44	7.3		
19BSRC055	34	48	14	0.56	7.8		

Table 6: Beasley Creek Fault Zone (WNW striking cross fault at the north end of the historic pit) – 37 holes. Note angle of intersection for some holes are not ideal. Until modelling is completed Focus Minerals is not representing intersections as true widths. Intersections exceeding 4 GxM are listed.

Hole_ID	From	То	Width	Au g/t	GxM	CoreLoss_m	CoreLoss%
19BSDD007	141.9	150.5	8.6	0.58	5.0		
19BSDD011	191.3	201	9.7	1.49	14.5	0.62	6.39
19BSDD013	138.2	153.8	15.6	3.37	52.6	1.3	8.33
19BSDD015	163.06	172.1	9.04	2.09	18.9	1.7	18.81
19BSDD015	175.5	190.5	15	4.63	69.5	3.35	22.33
19BSDD019	120.9	134.9	14	2.89	40.5	4	28.57
19BSDD019	144.9	150.5	5.6	1.28	7.2	0.9	16.07
19BSDD022	197	200.86	3.86	5.75	22.2	0.7	18.13
19BSDD022	205.8	223.9	18.1	0.94	17.0	3.6	19.89
19BSDD023	184.2	188.2	4	1.32	5.3	0.9	22.5
19BSDD023	191.5	193.1	1.6	2.63	4.2		
19BSDD023	201.3	210.6	9.3	3.59	33.4	1.7	18.28
19BSDD026	154.1	160.6	6.5	0.76	4.9		
19BSDD028	175	179.25	4.25	3.63	15.4	0.95	22.35
19BSDD028	183.3	190	6.7	4.68	31.4	2.05	30.6
19BSDD028	201	223	22	2	44.0	0.4	1.82
19BSDD031	178.5	184.3	5.8	2.9	16.8	1.25	21.55
19BSDD032	177.33	184.6	7.27	1	7.3		
19BSDD041	160	168.75	8.75	0.88	7.7	0.65	7.43
19BSDD041	178	196	18	0.6	10.8	2.65	14.72
19BSRC018	30	33	3	1.84	5.5		
19BSRC025	33	44	11	0.8	8.8		
19BSRC026	23	46	23	4.15	95.5		
19BSRC027	29	37	8	2.14	17.1		
19BSRC028	27	33	6	0.71	4.3		
19BSRC043	75	77	2	3.3	6.6		
19BSRC050	36	39	3	3.37	10.1		
19BSRC050	50	57	7	0.71	5.0		
19BSRD033	114	119	5	0.99	5.0		
19BSRD033	181	188.32	7.32	0.82	6.0	1.15	15.71

Table 7: Beasley Creek NW Footwall comprising at least three sub-parallel shallow SW dipping mineralised structures – 32 holes. Note angle of intersection for many holes are not ideal. Until modelling is completed Focus Minerals is not representing intersections as true widths. Intersections exceeding 4 GxM are listed.

Results received in the June quarter 2019 continue to validate the gross structural model for Beasley Creek. Drilling at Beasley Creek was paused in May before restarting with a mix of RC and DD in June. Pending final assays currently being processed a small number of additional holes may be completed in July prior to finalising the database for resource estimation.

In addition, a small program of 8 vertical RC holes was also completed targeting potentially water bearing structures interpreted from SAM and airborne magnetics. One hole targeting an interpreted cross fault SE of Beasley Creek intersected significant mineralisation and will be followed up in due course. Intersections exceeding 4 GxM are listed.

Hole_ID	From	То	Width	Au g/t	GxM	CoreLoss_m	CoreLoss%
19BSRC056	13	17	4	5.53	22.12		

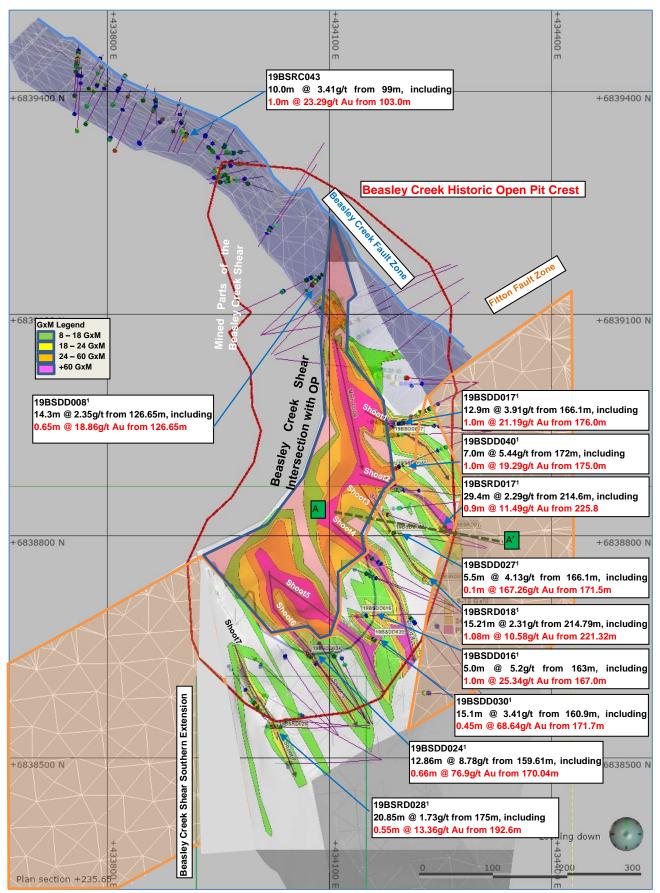


Figure 1: Beasley Creek plan of drilling with results received in the June quarter 2019 with labelled shoots contoured by grade x width (GXM) and labelled gross structure cut to topography. Location of Section Line marked A – A'

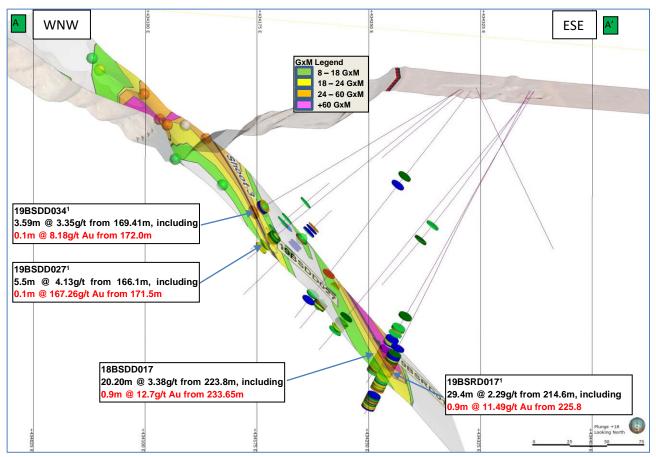


Figure 2: Beasley Creek drill section A-A' (±25m clipping) looking north and slightly down, with contoured GxM draped on the Beasley Creek Shear. Previous drill intersections are represented as small GxM coloured spheres.

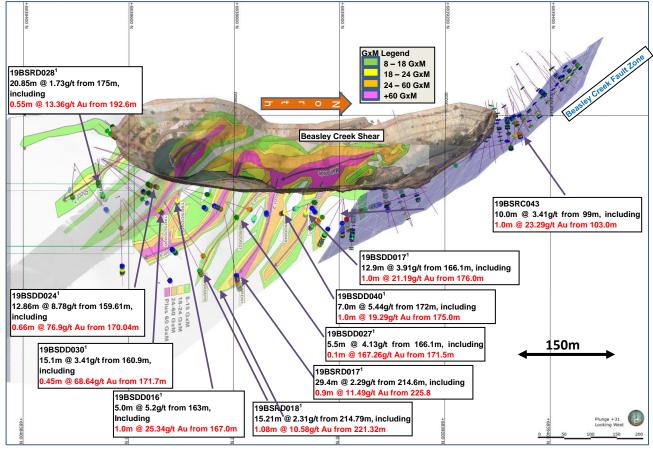


Figure 3: Beasley Creek 3D mineralisation model to 200m depth from surface, looking west and slightly down at the open pit. All holes with assays received in the June Qtr 2019 are shown.

Wedge - Lancefield

As illustrated in Figure 1, the project is located 10km north of the Laverton township.

Focus Minerals is targeting the Wedge-Lancefield Thrust between Telegraph and the historic Lancefield North deposit with shallow RC to define potentially open pitable mineralisation. First results were announced on 30 October 2018 and followed up on 30 January 2019.

In the June quarter, results from 1,988m RC completed in the March quarter and, some results for a further 5,545.9m completed in the June quarter were received.

New results from the Wedge-Lancefield Thrust were calculated at 0.5ppm Au cut off, maximum 2m internal dilution and include:

- 19WDRC013 3.00m @ 2.58g/t from 47m
- 19WDRC016 9.00m @ 1.45g/t from 38m
- 19WDRC017 5.00m @ 2.27g/t from 56m
- 19WDRC018 5.00m @ 3.21g/t from 73m
- 19WDRC019 7.00m @ 3.36g/t from 63m
- 19WDRC023 5.00m @ 1.61g/t from 79m
- 19WDRC024 3.00m @ 4.48g/t from 90m
- 19WDRC026 8.00m @ 2.04g/t from 48m
- 19WDRC031 8.00m @ 2.04g/t from 42m
- 19WDRC031 8.00m @ 1.05g/t from 54m
- 19WDRC032 6.00m @ 1.57g/t from 58m
- 19WDRC033 13.00m @ 1.23g/t from 60m
- 19WDRC035 5.00m @ 2.09g/t from 78m
- 19WDRC037 7.00m @ 1.67g/t from 67m
- 19WDRC042 7.00m @ 1.88g/t from 81m
- 19WDRC044 7.00m @ 1.46g/t from 98m
- 19WDRC045 8.00m @ 1.69g/t from 87m
- 19WDRC048 9.00m @ 2.26g/t from 75m
- 19WDRC049 3.00m @ 2.69g/t from 79m
- 19WDRC050 3.00m @ 5.89g/t from 89m
- 19LNRC019 3.00m @ 2.84g/t from 32m
- 19LNRC025 6.00m @ 5.07g/t from 83m
- 19LNRC026 9.00m @ 2.66g/t from 73m
- 19LNRC027 11.00m @ 1.55g/t from 38m
- 19LNRC029 7.00m @ 1.25g/t from 41m
- 19LNRC030 6.00m @ 5.32g/t from 57m
- 19LNRC031 8.00m @ 4.61g/t from 82m
- 19LNRC034 6.00m @ 1.47g/t from 61m
- 19LNRC037 6.00m @ 1.29g/t from 21m
- 19LNRC040 8.00m @ 1.31g/t from 78m
- 19LNRC041 9.00m @ 1.31g/t from 20m
- 19LNRC045 6.00m @ 1.89g/t from 86m

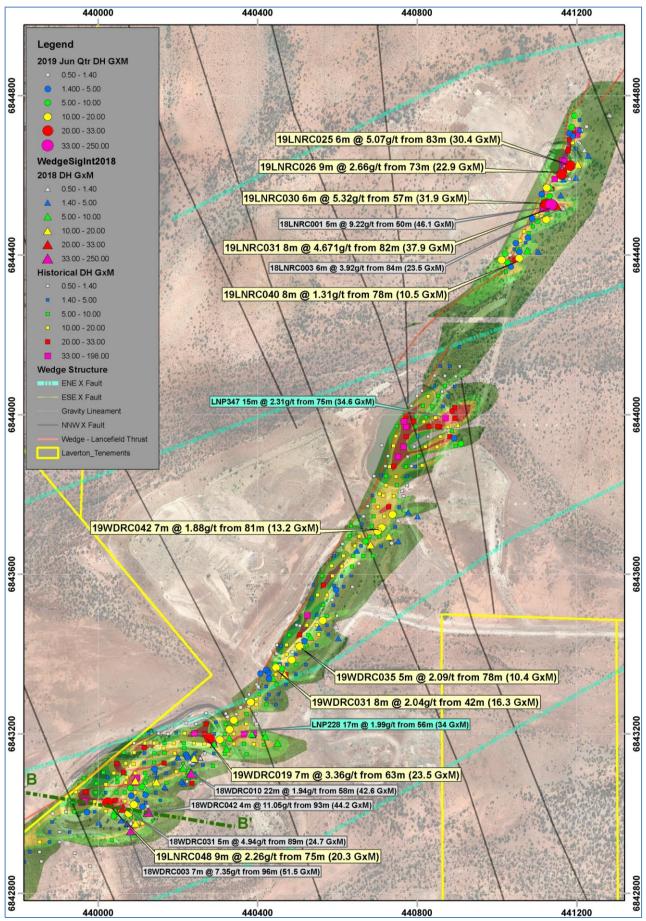


Figure 5: Summary of Wedge-Lancefield Thrust Results: June Qtr 2019 results (dots coloured by GxM with yellow labels), 2018 results previously reported (triangles coloured by GxM with grey labels) and, historical intersections (squares coloured by GxM with blue labels). GxM contours as per the intersection colour legend. Section line B-B' is also shown

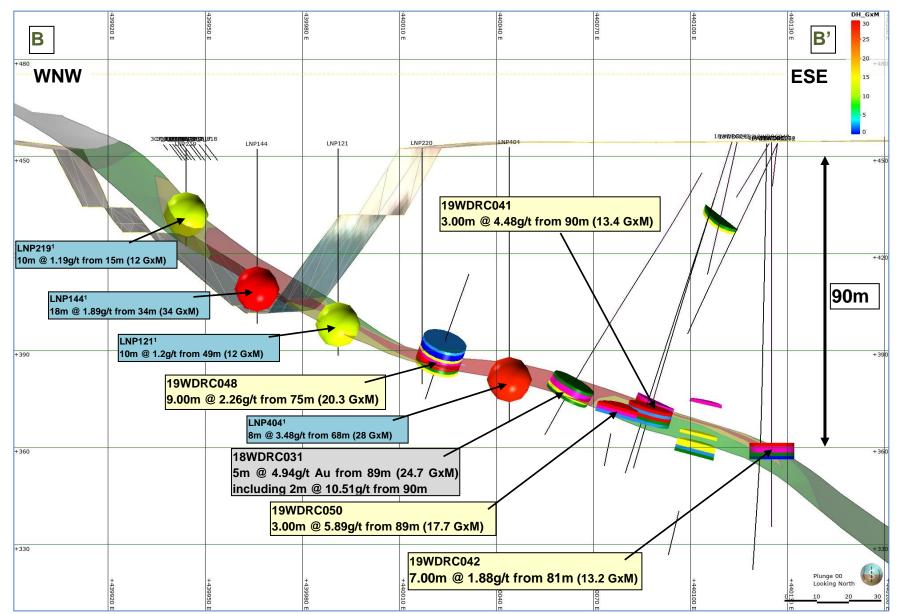


Figure 6: View north Section B-B' (Figure 5) with contoured GxM, Historic intersections - Spheres coloured by GxM /blue labels, 2018 RC drilling with intersection labels coloured grey, 2019 June Qtr RC drilling with intersection labels coloured yellow. Interpreted Wedge-Lancefield SZ with contoured GxM.

Table A: Significant Intersections – Beasley Creek and Wedge-Lancefield Thrust Received in the June Quarter 2019

JORC Code, 2012 Edition – Table 1 Report

Note: All Beasley Creek Intersections are calculated using a 0.5g/t Au cut off, up to 3m internal dilution and all core loss fully diluted to 0g/t Au. Furthermore, Beasley Creek significant intersections are compiled for reporting based on gross structural location.

Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То	Interval	Grade	Core Loss %
	(MC	GA 94 Zone	51)	(m)		(MGA94)	(m)	(m)	(m)	(g/t Au)	
		Beasley	Creek Hanç	gingwall Ju	ne Quarter	2019 Sign	ificant Int	ersectio	ns		
19BSDD016	434270.0	6838697.0	435.0	200.6	-38.2	268.8	152.6	152.8	0.2	2.53	
19BSDD017	434318.2	6838941.1	434.7	205.0	-38.6	267.9	137.6	139	1.4	3.31	
1986880011	434318.2	0050541.1	434.7	205.0	-38.0	207.5	153	153.9	0.9	1.97	
19BSDD018	434268.0	6838701.0	435.0	196.2	-41.8	294.2	155.1	155.3	0.2	0.59	
19BSDD029	434329.0	6838851.0	434.0	205.2	-38.3	264.7	155.8	156.5	0.75	1.67	
19BSDD030	434257.0	6838592.7	433.5	190.3	-44.0	304.8	155.5	156.4	0.92	1.93	
19BSDD031	434322.3	6838944.0	434.7	200.0	-35.3	280.8	143.4	154.2	10.8	0.53	26.39
19BSDD032	434272.0	6838702.0	434.0	188.3	-39.9	301.3	151.7	155.1	3.38	0.6	
102022002	434272.0	0030702.0	434.0	100.5	33.5	501.5	157.9	159	1.08	0.65	
19BSDD033	434329.2	6838852.1	434.3	190.2	-36.2	272.7	135	136	1	0.54	
	10 102012	00000211	10 110	100.2	00.2		161	161.5	0.48	0.57	
19BSDD035	434265.6	6838705.5	434.8	175.1	-34.1	290.3	147.7	150.7	2.98	0.62	20.13
			434.9		-37.9		88	88.7	0.7	0.69	
19BSDD037	434317.5	6838941.2		195.7		275.2	96	97.8	1.8	2.67	
102022001				1000		27012	148.1	149	0.9	0.54	
							151	151.9	0.9	0.51	
							81	90	9	0.86	
19BSDD040	434319.4	6838943.4	434.9	195.7	-35.9	248.4	96.1	97	0.9	0.62	
							156.7	160.7	4	2.17	
19BSDD041	434301.6	6838585.3	433.3	263.1	-71.3	269.4	124.1	125	0.9	0.98	
							129	129.4	0.35	2.63	
19BSRD015	434358.1	6838782.0	434.1	264.3	-64.3	283.9	200	201.1	1.1	0.63	
			-				205.2	206.2	0.95	0.95	
19BSRD017	434300.1	6839006.7	435.0	182.1	-60.5	242.2	209.8	210.8	1	0.55	
19BSRD025	434300.1	6839006.7	435.0	182.1	-60.5	242.2	125.2	126.5	1.26	0.78	7.94
19BSRD026	434296.9	6838587.7	433.2	249.4	-54.1	319.3	117	122.9	5.92	1.03	3.38
							138.3	144.4	6.15	1.1	4.88
19BSRD031	434298.7	6839006.8	435.6	209.6	-46.8	243.1	205	206	1	0.64	
							209.9	210.1	0.18	0.52	

Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То	Interval	Grade	Core Loss %
	(MC	GA 94 Zone	51)	(m)		(MGA94)	(m)	(m)	(m)	(g/t Au)	
		Beasle	ey Creek Ma	ain Shear J	une Quart	er 2019 Siç	gnificant l	ntersectio	ons		
19BSDD016	434270.0	6838697.0	435.0	200.6	-38.2	268.8	157	158	1	0.53	
198300010	434270.0	0838097.0	433.0	200.0	-30.2	200.0	163	168	5	5.35	6
19BSDD017	434318.2	6838941.1	434.7	205.0	-38.6	267.9	160	162.4	2.4	2.43	16.67
1555555017	434310.2	0030341.1	-37	205.0	56.0	207.5	166.1	179	12.9	3.91	
19BSDD018	434268.0	6838701.0	435.0	196.2	-41.8	294.2	159.2	168.32	9.12	1.05	4.39
19BSDD027	434310.4	6838782.9	434.3	192.3	-41.3	280.4	166.1	171.6	5.5	4.13	26.36
19BSDD028	434289.5	6839130.1	435.1	230.3	-35.9	230.7	157.03	170	12.97	1.29	2.31
19BSDD029	434329.0	6838851.0	434.0	205.2	-38.3	264.7	172.42	173	0.58	1.26	
150500025	434323.0	0050051.0	-30	205.2	56.5	204.7	176	176.6	0.6	1.96	
19BSDD030	434257.0	6838592.7	433.5	190.3	-44.0	304.8	160.9	176	15.1	3.41	32.12
19BSDD031	434322.3	6838944.0	434.7	200.0	-35.3	280.8	166.9	174.6	7.7	2.12	46.1
19BSDD032	434272.0	6838702.0	434.0	188.3	-39.9	301.3	169.3	173.12	3.82	1.08	
19BSDD033	434329.2	6838852.1	434.3	190.2	-36.2	272.7	167.09	178.99	11.9	1.64	7.56
19BSDD034	434312.4	6838784.1	434.4	183.7	-35.1	288.1	169.41	173	3.59	3.35	
19BSDD035	434265.6	6838705.5	434.8	175.1	-34.1	290.3	169	170.45	1.45	2.04	
19BSDD037	434317.5	6838941.2	434.9	195.7	-37.9	275.2	162.42	168.8	6.38	0.82	10.97
19BSDD040	434319.4	6838943.4	434.9	195.7	-35.9	248.4	166	168	2	11.11	
1555555040	434313.4	0030343.4	-35	155.7	33.5	240.4	172	179	7	5.44	7.86
19BSRD015	434301.6	6838585.3	433.3	263.1	-71.3	269.4	213	223.7	10.7	1.4	
19BSRD017	434358.1	6838782.0	434.1	264.3	-64.3	283.9	214.6	244	29.4	2.29	10.54
19BSRD018	434311.6	6838668.4	433.5	280.8	-65.2	315.0	214.79	230	15.21	2.31	1.31
19BSRD025	434299.3	6839007.9	435.0	193.7	-56.2	267.2	150.3	150.8	0.5	0.55	
1983KD025	434299.3	0839007.9	435.0	193.7	-30.2	207.2	152.7	152.96	0.26	0.79	
19BSRD026	434300.1	6839006.7	435.0	182.1	-60.5	242.2	148.6	153.5	4.9	3.23	4.08
19BSRD031	434296.9	6838587.7	433.2	249.4	-54.1	319.3	214	224	10	0.65	5.4
19BSRD032	434304.6	6838587.0	433.1	257.2	-64.8	325.4	238.78	245.68	6.9	0.83	
19BSRD034	434312.8	6838667.0	433.5	226.8	-57.8	309.9	203	208.4	5.4	2.01	3.7
19BSDD041	434298.7	6839006.8	435.6	209.6	-46.8	243.1	144.67	145	0.33	14.71	
196300041	+3+230.7	0033000.8	433.0	203.0	-40.0	243.1	151.35	152	0.65	3.88	

Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То	Interval	Grade	Core Loss %
	(N	1GA 94 Zone	ə 51)	(m)		(MGA94)	(m)	(m)	(m)	(g/t Au)	
		Beasl	ey Creek F	ootwall She	ar June Qu	arter 2019 S	Significan	t Intersect	ions		
19BSDD016	434270.0	6838697.0	435.0	200.6	-38.2	268.8	172.9	174	1.1	1.99	
19BSDD027	434310.4	6838782.9	434.3	192.3	-41.3	280.4	176	180	4	0.66	
19BSDD029	434329.0	6838851.0	434.0	205.2	-38.3	264.7	184	188	4	1.15	7.5
19BSDD034	434312.4	6838784.1	434.4	183.7	-35.1	288.1	177.93	180	2.07	3.83	
19BSDD037	434317.5	6838941.2	434.9	195.7	-37.9	275.2	176.15	177	0.85	2.32	
19BSRD017	434358.1	6838782.0	434.1	264.3	-64.3	283.9	248.2	258.84	10.64	2.15	1.41
							161.5	162.5	1	0.68	
19BSRD025	434299.3	6839007.9	435.0	193.7	-56.2	267.2	172.1	172.5	0.4	0.54	
							181.2	193	11.8	2.26	17.12
19BSRD026	434300.1	6839006.7	435.0	182.1	-60.5	242.2	164	181.13	17.13	1.19	18.97
Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То	Interval	Grade	Core Loss %
	(MG	GA 94 Zone	51)	(m)		(MGA94)	(m)	(m)	(m)	(g/t Au)	
			Fitton Fau	lt Zone Jun	e Quarter 2	019 Signific	ant Inters	ections			
19BSDD025	434154.4	6838545.1	434.9	186.3	-46.5	319.0	168.8	169.6	0.8	3.5	
19BSDD021	434154.5	6838546.1	434.6	178.6	-40.0	329.1	160.3	163.02	2.72	2.36	11.03
1555555021	434134.5	0000040.1	434.0	170.0	40.0	525.1	167	168.08	1.08	4.86	
19BSDD024	434153.9	6838545.8	434.9	195.1	-40.7	319.8	159.61	172.47	12.86	8.78	3.11
19BSDD025	434154.4	6838545.1	434.9	186.3	-46.5	319.0	160.5	165.2	4.7	1.65	5.96
19BSDD038	434151.6	6838547.3	434.4	187.3	-30.7	328.8	157	173	16	1.25	28.75
19BSDD039	434111.7	6838531.4	433.5	180.6	-35.3	325.4	154.7	155.13	0.43	0.75	
1555555555	454111.7	0050551.4	433.5	100.0	33.5	525.4	155.7	156.5	0.8	0.54	
19BSRD022	434157.3	6838546.0	434.3	202.8	-54.3	336.1	155.8	158.7	2.9	0.9	6.9
1303110022	13-137.3	3636340.0		202.0	5-7.5	550.1	140.55	142.4	1.85	1.69	
19BSDD043	434151.8	6838546.4	433.6	172.5	-46.9	331.8	145	155.5	10.5	0.91	1.43
				1, 2.0	.0.0	001.0	160.4	161.25	0.85	4.48	

Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То	Interval	Grade	Core Loss %
	(M	GA 94 Zone s	51)	(m)		(MGA94)	(m)	(m)	(m)	(g/t Au)	
		I	Beasley Cre	ek South J	une Quarte	er 2019 Sig	nificant Int	ersections		-	
19BSDD042	434023.8	6838539.7	434.6	150.0	-50.0	324.0	172.3	173.7	1.4	2.16	
198300042	434023.8	0838339.7	434.0	150.0	-30.0	324.0	185	186.1	1.1	1.18	
							29	41	12	2.41	
19BSRC015	434169.3	6838497.5	433.7	226.9	-51.0	1.0 267.1	45	46	1	1.97	
15551(6015	454105.5	0030437.5	455.7	220.5	51.0	207.1	121	123	2	1.19	
							130	131	1	0.58	
							35	36	1	1.41	
				222.5	-57.4	7.4 277.2	46	47	1	1.34	
19BSRC016	434154.7	6838540.2	434.7				54	61	7	8.13	
155500010	454154.7	0050540.2			57.4		65	67	2	0.73	
							89	90	1	2.09	
							97	98	1	0.63	
19BSRC056	434012.8	6838552.0	434.7	136.0	-49.9	326.6	60	62	2	2.38	
19BSRD009	434012.8	6838552.0	434.7	136.0	-49.9	326.6	192.9	200	7.1	0.68	3.52
							208.08	209	0.92	0.78	
19BSRD023	434012.8	6838552.0	434.7	136.0	-49.9	326.6	213	216	3	1.6	
							301.88	303	1.12	8.77	
19BSRD027	434023.8	6838539.7	434.6	150.0	-50.0	324.0	184.4	185	0.6	1.38	
1982KD027	454023.8	0000039.7	454.0	150.0	-50.0	524.0	189.25	194.9	5.65	1.09	
19BSRD028	434023.8	6838539.7	434.6	150.0	-50.0	324.0	175	195.85	20.85	1.73	
1903KD028	434023.8	0030339.7	434.0	120.0	-50.0	524.0	201.5	202	0.5	0.75	

Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То	Interval	Grade	Core Loss %
	(M	GA 94 Zone	51)	(m)		(MGA94)	(m)	(m)	(m)	(g/t Au)	
		Beasley	Creek WNW	/ Extension	June Quar	ter 2019 Si	gnificant l	ntersectio	ons		
19BSDD007	434009.6	6839072.2	433.3	219.1	-42.0	65.6	115.6	134.19	18.59	4.03	2.69
19BSDD008	434006.6	6839071.6	433.9	216.7	-41.7	45.5	126.65	140.95	14.3	2.35	9.79
							140.3	147.25	6.95	4.14	2.88
19BSDD011	434300.7	6839006.9	434.8	217.9	-47.3	273.8	171	187.45	16.45	1.61	9.48
19BSDD013	434007.1	6839071.3	433.2	211.6	-46.5	80.7	159.2	173	13.8	1.77	2.9
							177.1	179.9	2.8	2.37	
							189.5	190.6	1.1	2.04	
19BSDD014	434020.6	6839044.9	430.6	217.7	-57.0	41.9	200.5	201.55	1.05	0.99	
							202	225.9	23.9	0.78	10.25
19BSDD015		6839039.5	430.2	244.2	-44.8	97.0	237.2	241.7	4.5	1.08	20
19BSDD019	434025.1	6839044.2	430.4	224.9	-40.0	67.2	161.2	164.7	3.5	1.68	
19BSDD020	434273.3	6839165.8	435.3	219.8	-38.9	237.6	219.05	219.84	0.79	0.56	
19BSDD022	434281.6	6839148.4	435.1	241.0	-34.8	240.1	179	192.3	13.3	1.13	21.8
							38	45	7	1.3	
19BSRC018	433757.3	6839423.9	434.1	66.0	-50.3	5.7	49	50	1	0.53	
							51	52	1	0.88	
							60	65	5	0.54	
19BSRC019	433755.3	6839393.7	436.0	84.0	-49.9	2.2	71	72	1	1.45	
							78	81	3	0.5	
19BSRC020		6839369.5	436.4	114.0	-49.6	6.1	93	94	1	1.27	
19BSRC021		6839346.2	437.2	132.0	-50.4	3.4	113	114	1	0.51	
19BSRC022	433778.5	1	434.7	42.0	-49.6	34.4	27	32	5	0.95	
19BSRC023	433774.3	6839403.9	436.0	66.0	-50.2	29.4	52	54	2	3.16	
19BSRC025	433937.8	6839276.1	435.8	114.0	-49.9	82.5	73	75	2	0.61	
19BSRC026	433933.3	6839280.9	435.8	126.0	-63.4	75.8	58	60	2	4.32	
							74	75	1	0.55	
19BSRC027	433936.4	6839288.4	435.7	108.0	-65.2	62.1	82	83	1	1.16	
19BSRC028	433948.1	6839288.5	435.2	138.0	-55.4	107.0	74	77	3	0.89	
19BSRC029	433941.8	6839296.4	435.4	96.0	-50.2	80.8	61	62	1	4.34	
19BSRC030	433945.3	6839303.8	435.2	84.0	-50.1	29.3	36	44	8	0.95	
							46	51	5	2.69	
19BSRC032	433960.7	6839318.6	435.7	90.0	-89.8	183.3	79	80	1	0.72	
							75	76	1	0.88	
19BSRC033	433950.4	6839310.5	435.3	114.0	-80.3	312.2	108	114	6	0.74	
							30	39	9	0.67	
19BSRC034		1	435.8	72.0	-50.7	82.7	50	53	3	0.63	
19BSRC035		1	436.2	42.0	-49.9	25.3	28	37	9	0.88	
19BSRC038		1	437.7	114.0	-50.7	24.1	98	100	2	3.48	
19BSRC041	433890.8	6839366.9	435.1	42.0	-49.9	17.4	26	27	1	1	
19BSRC042	433887.4	6839342.5	435.2	66.0	-50.2	21.0	44	45	1	0.74	
10000000	400000 -	0000010-	105.1	100.0		05.0	81	84	3	2.47	
19BSRC043	433893.9	6839316.5	435.4	126.0	-74.5	25.6	99	109	10	3.41	
100000000	400000 -	0000010	105 5	402.2	05.0	00.0	66	72	6	1.82	
19BSRC044			435.5	102.0	-65.3	23.2	76	78	2	2.25	
19BSRC045			435.3	90.0	-49.6	24.4	63	67	4	0.9	
19BSRC048	433917.9	6839317.6	435.6	84.0	-56.1	31.9	46	50	4	0.66	
400000000	400000 0		405 7	00.0	05.0	40.4	49	51	2	1.31	
19BSRC049	433939.6	6839328.2	435.7	96.0	-85.3	49.4	76	78	2	3.46	
400000051	400770 0	000005555	407.0	4440	54.0	07.4	86	87	1	0.61	
19BSRC051	433770.0	6839355.5	437.2	114.0	-51.0	27.4	94	95	1	2.53	
100000000	400040.0	6000004 0	100.4	100.0	60.4	24.4	89	90	1	4	
19BSRC053	433842.6	6839331.0	436.1	102.0	-60.4	24.1	96	101	5	1.28	
10000054	422042.0	6020220.0	126.0	1110	67.0	42.4	98 108	99 111	1	0.56 2.44	
19BSRC054		6839329.2 6839356 7	436.0	114.0	-67.2	43.4					
19BSRC055	433866.2	6839356.7	434.6	72.0	-48.1	357.4	34	48	14	0.56	

Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То	Interval	Grade	Core
	(M	GA 94 Zone	51)	(m)		(MGA94)	(m)	(m)	(m)	(g/t Au)	
Beasle	ey Creek Sha	allow SW Di	p Footwall L	odes June	e Quarter 2	2019 Signif	icant Inters	ections. In	tersections	are not Tru	e Wid
19BSDD007	434009.6	6839072.2	433.3	219.1	-42.0	65.6	141.9	150.5	8.6	0.58	
102022001	10100010	000007212	10010	21011	.2.10	00.0	154.04	159	4.96	0.65	
							114	114.35	0.35	1.34	
19BSDD008	434006.6	6839071.6	433.9	216.7	-41.7	45.5	144.9	147	2.1	0.78	
							153	154	1	1.03	
19BSDD010	434082.5	6839301.6	436.6	159.0	-43.6	214.7	136.1	137	0.9	1.52	
							160.8	163.9	3.1	0.54	
19BSDD011	434300.7	6839006.9	434.8	217.9	-47.3	273.8	191.3	201	9.7	1.49	
							206.97	211.3	4.33	0.81	
19BSDD013	434007.1	6839071.3	433.2	211.6	-46.5	80.7	132.5	134.3	1.8	1.62	
190300013	434007.1	0839071.3	433.2	211.0	-40.5	80.7	138.2	153.8	15.6	3.37	
19BSDD014	434020.6	6839044.9	430.6	217.7	-57.0	41.9	163.89	165.45	1.56	1.67	1
							163.06	172.1	9.04	2.09	
19BSDD015	434027.0	6839039.5	430.2	244.2	-44.8	97.0	175.5	190.5	15	4.63	:
							195	195.5	0.5	0.74	
19BSDD019	434025.1	6839044.2	430.4	224.9	-40.0	67.2	120.9	134.9	14	2.89	:
190200019	434025.1	6839044.2	430.4	224.9	-40.0	67.2	144.9	150.5	5.6	1.28	
4000000000	424204 6	60204.40.4	425.4	244.0	24.0	240.4	197	200.86	3.86	5.75	
19BSDD022	434281.6	6839148.4	435.1	241.0	-34.8	240.1	205.8	223.9	18.1	0.94	
							179.3	180.2	0.9	0.53	;
							184.2	188.2	4	1.32	
19BSDD023	434264.3	6839166.7	435.4	225.0	-27.4	252.1	191.5	193.1	1.6	2.63	
							201.3	210.6	9.3	3.59	
4000000000		6000004 F	106.1	100.0			154.1	160.6	6.5	0.76	
19BSDD026	434093.1	6839331.5	436.1	192.0	-27.9	213.9	166	166.37	0.37	0.62	
							175	179.25	4.25	3.63	
19BSDD028	434289.5	6839130.1	435.1	230.3	-35.9	230.7	183.3	190	6.7	4.68	
							201	223	22	2	
4000000004	424222.2	6020044.0	1217	202.0	25.2	200.0	178.5	184.3	5.8	2.9	:
19BSDD031	434322.3	6838944.0	434.7	200.0	-35.3	280.8	190.65	192	1.35	1.31	
19BSDD032	434272.0	6838702.0	434.0	188.3	-39.9	301.3	177.33	184.6	7.27	1	
							160	168.75	8.75	0.88	
19BSDD041	433757.3	6839423.9	434.1	66.0	-50.3	5.7	172	173	1	0.76	
							178	196	18	0.6	
19BSRC018	433774.3	6839403.9	436.0	66.0	-50.2	29.4	30	33	3	1.84	I
19BSRC019	433937.8	6839276.1	435.8	114.0	-49.9	82.5	0	2	2	0.86	
19BSRC021	433937.8	6839276.1	435.8	114.0	-49.9	82.5	99	100	1	0.6	
19BSRC023	433933.3	6839280.9	435.8	126.0	-63.4	75.8	38	39	1	1.64	Ī
							21	24	3	0.55	
19BSRC025	433933.3	6839280.9	435.8	126.0	-63.4	75.8	33	44	11	0.8	İ
							23	46	23	4.15	
19BSRC026	433936.4	6839288.4	435.7	108.0	-65.2	62.1	50	51	1	1.12	
			·				19	21	2	0.98	
19BSRC027	433948.1	6839288.5	435.2	138.0	-55.4	107.0	29	37	8	2.14	
							48	49	1	0.53	
							6	8	2	1.26	
	422041.0	6839296.4	435.4	96.0	-50.2	80.8	27	33	6	0.71	
19BSRC028	433941.8	0039290.4									

ACN: 005 470 799 | ABN: 56 005 470 799 | ASX Code: FML

Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То	Interval	Grade	Core Loss %
	(M	GA 94 Zone	51)	(m)		(MGA94)	(m)	(m)	(m)	(g/t Au)	
	Beasle	y Creek Sha	llow SW Dip	Footwall L	odes Con	tinued Jun	e Quarter 2	019 Signifi	cant Inters	ections	-
							25	26	1	1.01	
19BSRC029	433945.3	6839303.8	435.2	84.0	-50.1	29.3	37	39	2	0.72	
							52	57	5	0.73	
19BSRC030	433802.3	6839334.4	437.7	114.0	-50.7	24.1	12	13	1	0.57	
19BSRC032	433893.9	6839316.5	435.4	126.0	-74.5	25.6	39	40	1	0.87	
19BSRC033	433939.6	6839328.2	435.7	96.0	-85.3	49.4	61	62	1	0.87	
19BSRC038	433771.4	6839379.6	436.5	90.0	-51.1	26.2	69	70	1	0.52	
19BSRC043	433771.4	6839379.6	436.5	90.0	-51.1	26.2	75	77	2	3.3	
19BSRC049	433968.8	6839098.7	436.8	196.3	-51.2	64.3	35	36	1	0.58	
100000000	422060.0	C020000 7	420.0	100.0	F1 0	64.2	36	39	3	3.37	
19BSRC050	433968.8	6839098.7	436.8	196.3	-51.2	64.3	50	57	7	0.71	
							114	119	5	0.99	
19BSRD033	422060.0	6920009 7	120.0	106.2	F1 0	64.3	171.05	171.4	0.35	0.85	
1903KD033	9BSRD033 433968.8	6839098.7	436.8	196.3	-51.2	04.3	173.95	177.4	3.45	0.64	37.68
							181	188.32	7.32	0.82	15.71

Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То	Interval	Grade	Core Loss %
	(M	GA 94 Zone :	51)	(m)		(MGA94)	(m)	(m)	(m)	(g/t Au)	
	Beasley Creek South East Cross Fault June Quarter 2019 Significant Intersections										
							7	8	1	0.92	
19BSRC056	434109.4	6838195.7	431.7	150.0	-89.3	163.1	13	17	4	5.53	
							24	25	1	0.84	

Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То	Interval	Grade
	(MC	GA 94 Zone	51)	(m)		(MGA94)	(m)	(m)	(m)	(g/t Au)
Wedge si	ignificant In	tersections	calculated u	using 0.5g/	/t Au cut off	and up to	2m interna	I dilution J	une Quarte	r 2019
							55	56	1	1.11
19WDRC001	439719.4	6842927.3	452.9	126	-50.37	324.9	59	61	2	0.7
19WDRC002	439749.5	6842887.5	452.9	132	-50.32	321.88	72	73	1	0.65
19WDRC003	439784.3	6842847.8	452.8	150	-50.2	330.77	93	94	1	0.83
19WDRC004	439814.7	6842808.4	452.9	138	-50.8	321.92	70	71	1	0.54
							21	22	1	0.68
							28	29	1	2.63
19WDRC005	439646.8	6842818.8	452.5	96	-60.72	311.65	80	81	1	0.52
19WDRC006	439678.7	6842790.8	452.6	108	-60.55	310.31	99	100	1	2.28
							61	63	2	0.74
19WDRC007	439715.9	6842760.6	452.6	132	-60.93	314.52	119	122	3	0.7
							147	148	1	0.7
19WDRC008	439749.6	6842730.5	452.6	168	-60.65	310.54	151	153	2	0.54
19WDRC009	439571.9	6842671.4	452.0	168	-51.27	309.09	52	53	1	1.68
19WDRC010	439343.5	6842656.6	451.0	132	-51.24	309.98	54	55	1	0.65
19WDRC013	439459.0	6842555.2	450.8	162	-50.66	308.7	47	50	3	2.58
19WDRC014	440367.2	6843258.5	455.7	36	-55.77	305.42	22	23	1	0.5
19WDRC016	440362.7	6843220.5	455.6	54	-50.96	301.56	38	47	9	1.45
							56	61	5	2.27
19WDRC017	440355.5	6843183.6	455.2	72	-50.11	316.2	64	65	1	0.6
19WDRC018	440337.0	6843148.8	455.4	90	-50.66	318.35	73	78	5	3.21
19WDRC019	440304.7	6843154.0	455.2	78	-49.94	323.31	63	70	7	3.36
							45	46	1	0.68
							66	72	6	0.59
19WDRC020	440243.3	6843101.5	454.7	90	-50.28	332.59	76	82	6	0.67
							60	62	2	0.81
19WDRC021	440169.6	6843083.5	454.3	78	-49.13	313.79	67	68	1	0.61
19WDRC022	440143.8	6843023.8	454.1	102	-50.13	321.48	86	89	3	2.08
19WDRC023	440106.3	6843019.1	454.1	96	-49.91	330.19	79	84	5	1.61
19WDRC024	440126.9	6843001.3	454.0	108	-61.7	300.51	90	93	3	4.48
19WDRC026	440408.3	6843259.4	455.7	66	-50.6	307.01	48	56	8	2.04
19WDRC028	440397.1	6843244.6	455.6	66	-50.85	321.42	49	50	1	0.75
19WDRC029	440412.3	6843304.7	455.6	54	-55.86	321.02	31	32	1	0.96
19WDRC030	440426.5	6843326.3	455.6	60	-55.06	320.25	56	58	2	1.46
							42	50	8	2.04
19WDRC031	440457.1	6843339.0	455.5	72	-49.8	336.87	54	62	8	1.05
							58	64	6	1.57
19WDRC032	440483.8	6843331.2	455.6	84	-49.51	322.75	75	76	1	0.78
19WDRC033	440517.5	6843357.7	455.6	90	-50	310	60	73	13	1.23
19WDRC034	440520.3	6843378.3	455.5	90	-50.16	308.28	65	66	1	0.75
19WDRC035	440543.9	6843386.3	455.7	96	-51.06	310.5	78	83	5	2.09
							59	65	6	0.8
19WDRC036	440544.8	6843406.6	455.6	78	-50.31	312.06	69	70	1	1.33
19WDRC030	440595.9	6843456.1	455.0	84	-50.31	309.91	67	74	7	1.67
19WDRC037	440595.9	6843506.5	455.9	90	-50.73	310.91	73	74	1	1.07
19WDRC038	440619.2	6843532.5		90 84	-50.73	310.91			2	0.94
			455.6				71	73		
19WDRC040	440678.0	6843608.3	457.0	84	-51.08	306.88	49	50	1	0.59

Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То	Interval	Grade
	(M	GA 94 Zone 5	1)	(m)		(MGA94)	(m)	(m)	(m)	(g/t Au)
Continued \	Nedge signific	ant Intersection	ons calculate	d using 0.5g/	/t Au cut off a	nd up to 2m	internal di	lution Jur	ne Quarter	2019
19WDRC041	440703.6	6843655.8	457.5	90	-50.98	310.06	68	70	2	2.66
							9	11	2	0.54
19WDRC042	440740.4	6843674.0	457.5	96	-50.74	310.1	81	88	7	1.88
							112	116	4	1.5
19WDRC043	440961.8	6843882.2	457.3	174	-50.64	309.6	155	157	2	1.87
19WDRC044	440760.6	6843690.6	458.1	114	-50.85	337.96	98	105	7	1.46
19WDRC045	440759.5	6843683.1	458.1	102	-48.07	304.89	87	95	8	1.69
							27	29	2	1.84
							45	46	1	1.83
19WDRC046	440437.2	6843342.7	455.3	60	-56.08	317.09	49	50	1	0.52
19WDRC047	440447.4	6843320.3	455.4	54	-50.66	311.99	41	45	4	0.9
19WDRC048	440046.4	6842988.7	454.0	96	-54.87	328.83	75	84	9	2.26
							68	69	1	0.54
19WDRC049	440061.9	6842991.5	453.9	102	-74.31	277.27	79	82	3	2.69
19WDRC050	440095.1	6842971.2	454.2	108	-66.66	327.54	89	92	3	5.89
							29	31	2	1.14
19WDRC051	440124.3	6843003.8	453.9	108	-49.95	314.33	89	94	5	0.88
							30	31	1	0.51
19WDRC052	440126.9	6843003.4	453.9	108	-60.29	347.79	90	94	4	1.12
19WDRC053	440337.8	6843231.7	454.6	36	-49.97	307.72	27	28	1	0.92
19WDRC054	439975.1	6842952.9	453.9	90	-50.41	356.58	77	82	5	0.88
19WDRC055	439890.7	6842983.7	453.2	36	-50.68	343.19	27	28	1	0.55

Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То	Interval	Grade
	(M	GA 94 Zone 8	51)	(m)		(MGA94)	(m)	(m)	(m)	(g/t Au)
Lancefie	eld North sig	nificant Inters	ections calc	ulated using	ց 0.5g/t Au cւ	ut off and up	to 2m intern	al dilution J	une Quarter	2019
19LNRC019	441215.9	6844750.3	458.5	54	-49.4	267.5	32	35	3	2.84
19LNRC020	441205.0	6844722.0	458.7	48	-49.6	266.3	25	28	3	1.99
19LNRC021	441193.7	6844705.4	458.8	42	-50.1	268.3	17	20	3	0.78
19LNRC022	441216.6	6844684.9	458.3	66	-50.8	298.1	47	50	3	1.14
19LNRC023	441229.0	6844665.8	458.0	78	-50.7	304.0	42	43	1	0.5
19LNRC023	441229.0	6844665.8	458.0	78	-50.7	304.0	49	50	1	0.94
19LNRC024	441265.4	6844696.0	458.1	96	-51.0	301.0	77	78	1	1.04
19LNRC025	441227.6	6844594.9	457.3	90	-51.2	301.5	83	89	6	5.07
101 NID CO2C	441202 7	6044570.2	456.0	0.4	50.0	200.2	40	41	1	0.65
19LNRC026	441203.7	6844578.2	456.9	84	-50.6	298.3	73	82	9	2.66
19LNRC027	441149.3	6844557.1	456.5	54	-50.8	295.6	38	49	11	1.55
19LNRC028	441168.2	6844529.9	456.3	84	-51.3	295.6	64	68	4	1.5
19LNRC029	441141.0	6844523.5	456.3	60	-50.9	303.2	41	48	7	1.25
19LNRC030	441156.1	6844512.3	456.2	72	-50.7	295.4	57	63	6	5.32
19LNRC031	441181.1	6844499.2	456.2	102	-50.6	301.5	82	90	8	4.61
19LNRC032	441117.7	6844549.8	456.6	42	-51.2	304.2	7	13	6	0.62
19LNRC033	441111.9	6844481.6	456.0	54	-50.5	293.7	41	44	3	1.15
19LNRC034	441137.2	6844466.5	456.0	72	-51.2	297.3	61	67	6	1.47
19LNRC035	441119.0	6844421.7	456.6	90	-50.9	297.7	72	75	3	0.78
19LNRC036	441074.9	6844412.7	455.8	60	-51.3	301.7	50	54	4	1.14
19LNRC037	441033.7	6844397.3	455.7	36	-51.3	296.0	21	27	6	1.29
19LNRC038	441055.1	6844386.9	455.7	54	-50.8	299.6	41	42	1	0.57
19LNRC039	441098.7	6844381.7	455.7	84	-50.9	300.4	75	76	1	1.29
19LINKC039	441098.7	0844381.7	455.7	04	-30.9	300.4	79	82	3	1.43
19LNRC040	441103.6	6844369.4	455.8	96	-50.2	295.0	78	86	8	1.31
19LNRC041	441024.9	6844379.6	455.9	36	-50.0	302.3	20	29	9	1.31
19LNRC042	441051.0	6844367.5	455.7	54	-50.8	299.9	40	49	9	0.91
19LNRC043	441075.4	6844348.5	455.6	78	-50.6	299.9	72	75	3	0.51
19LNRC045	441173.1	6844461.7	456.0	102	-50.7	298.5	86	92	6	1.89
13LINAC045	4411/3.1	0044401.7	430.0	102	-30.7	230.3	96	97	1	0.57

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Explanation
	This report relates to results from Reverse Circulation (RC) and diamond core drilling.
	RC Sampling
	 RC percussion drill chips were collected through a cone splitter from the drill rig. The bulk sample from drilling was placed in neat rows directly on the ground (not bagged) with the nominal 2-3kg calico split sub-sample placed on top of the corresponding pile.
	 RC chips were passed through a cone splitter to achieve a nominal sample weight of approximately 3kg. The splitter was levelled at the beginning of each hole. Geological logging defined whether a sample was to be submitted as a 1m cone split sample or a 4m spear composite sample. Split samples (1m) were transferred to sample numbered calico bags for submission to the laboratory. Composite samples were spear sampled using a scoop to obtain a small representative sample and deposited into numbered sample bags. Diamond Sampling
Sampling techniques	• Diamond core was sampled across geologically identified zones of mineralisation, the sample widths varied between a minimum of 0.2m and a maximum of 1.2m with material on either side sampled to capture the entire mineralised zone.
	• The diamond core was marked up for sampling by the supervising geologist during the core logging process, with sample intervals determined by the presence of lithology, alteration and where applicable core loss. The core was cut in half using a core saw and the same half of the core (RHS looking downhole) was routinely sent to the laboratory for analysis. Some soft core was sampled half by using a bolster, and some fractured quartz core were cut in half by using manual diamond core saw to ensure half core was sampled.
	• A small number of whole core samples where routinely collected for bulk density analysis. These samples were submitted to the same lab for gold analysis after bulk density measurement.
	• RC drilling was conducted using a 5 3/8inch face sampling hammer for RC drilling.
	At hole completion, downhole surveys for RC holes were completed at a 10m interval human True North Secling Cure tech
	 by using True North Seeking Gyro tool. At hole completion diamond holes were survey using a single shot tool at a range of
	intervals between 20m and 50m, averaging 30m
Drilling techniques	• Diamond drill holes with dips less than 50 degrees were collared from surface to a predetermined depth using a rock roller bit.
	• Where possible on holes with dips more than 50 degrees an RC precollar was completed to improve drilling efficiency.
	All precollars where cased off and the diamond component of the drill hole completed using HQ3 (producing 63mm core diameter) equipment.
	Wherever core conditions and hole orientation would allow, drill core was oriented by the drilling contractor using the electronic ACT III Tool.
	• RC sample recovery was recorded by a visual estimate during the logging process.
	DD sample recovery was measured and calculated (core loss) during the logging process. DD core had generally reasonable recovery <10% core loss in and around
Drill sample recovery	process. DD core had generally reasonable recovery <10% core loss in and around mineralisation. Some holes had more than 30% core loss. Where this core loss was experienced around HG and VHG it likely had a material impact on the calculated intersection grade as all core loss was fully diluted and assigned a grade of 0.0g/t Au.
	• All RC samples were geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure, texture and any other notable features that are present. All data is entered directly into validating digital software directly.
	All core samples were oriented where possible, marked into metre intervals and compared to the depth measurements on the core blocks. Any loss of core was noted
	 and recorded in the drilling database. All diamond core was logged for structure, geology and geotechnical data using the same system as that for RC.
Logging	 Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present.
	• The logging information was transferred into the company's drilling database once the log was complete.
	• Diamond core was photographed one core tray at a time using a standardised photography jig. RC chip trays are routinely photographed.
	The entire length of all holes is geologically logged, except for rock roller diamond pre- collars, which produce no sample.

Criteria	Explanation
	• All samples were collected in a pre-numbered calico bag bearing a unique sample ID.
	 At the assay laboratory, all samples were oven dried, crushed to a nominal 10mm using a jaw crusher (core samples only) and weighed. Samples in excess of 3kg in weight were riffle split to achieve a maximum 3kg sample weight before being pulverized to 90% passing 75µm. Gold analysis was by 40g Fire Assay with an AAS Finish. Jinning Testing & Inspection completed the assay testing, with sample preparation
Sub-sampling techniques and sample preparation	 omning resulting a inspection completed the assay testing, with sample preparation completed in Kalgoorlie or Perth and analysis completed in Perth. The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of mineralisation. Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion.
	 QAQC checks involved inserting standards 1:20 samples (with minimum 3 standards every submission). Duplicate samples for RC were achieved by producing 2 samples for each metre one hole every 20th hole drilled and submitting all produced samples. The remaining bulk sample was also bagged to plastic bags for retention and further checks. Diamond core field duplicates were not taken.
	 Regular reviews of the sampling were carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out. The sample sizes were appropriate for the type, at the and consistency of minorplication.
	The sample sizes were appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration.
	 The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample.
	 No geophysical tools, spectrometers or handheld XRF instruments were used for assay determination.
Quality of assay data and laboratory tests	 The QA/QC process described above was sufficient to establish acceptable levels of accuracy and precision. All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances and where they didn't further analysis was conducted as appropriate.
	 Umpire samples are collected on a routine basis will be submitted to independent ISO certified labs in 2019 Additional bulk mineralised RC samples have also been collected and retained for
	follow up QAQC, metallurgical and sample characterisation purposes
Verification of sampling and assaying	 Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process. Primary logging data is sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imports the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory. Once loaded, data was extracted for verification by the geologist in charge of the project. Drill collars are surveyed after completion using a DGPS instrument. Where possible,
	 all drill core was oriented by the drilling contractor using an ACT III electronic system. A True North Seeking Gyro for RC end of holes surveys or a Reflex single shot camera for diamond drilling was used for "single shot" surveys whilst advancing drilling.
Location of data points	 All coordinates and bearings use the MGA94 Zone 51 grid system. FML utilises Landgate sourced regional topographic maps and contours as well as internally produced survey pick-ups produced by the mining survey teams utilising DGPS base station instruments.
	 After completion the drill hole locations were picked up by DGPS with accuracy of +/- 20cm.
Data spacing and distribution	 Beasley Creek and Wedge-Lancefield Thrust drill spacing approximates 40m x 40m and in places at Wedge down to 20m x 20m Spacing for both programs is deemed to be appropriate for the stage of exploration of the targets.

Criteria	Explanation
Orientation of data in relation to geological structure	 Drilling was designed based on known/developing geological models, field mapping, verified historical data, cross-sectional and long-sectional interpretation. Where achievable, drill holes were oriented at right angles to strike of deposit, with dip optimised for drill capabilities and the dip of the ore body. Please note this was not always possible in the NW part of the pit where relatively complex mineralisation has been intersected in the footwall of the Beasley Creek Shear. True widths have not been calculated for reported intersections. However, drill orientation was wherever possible consistently optimised to approximate true width of mineralisation.
	 All samples were reconciled against the sample submission with any omissions or variations reported to FML.
Sample security	 All samples were bagged in a tied numbered calico bag. The bags were placed into plastic green bags with a sample submission sheet and delivered directly from site to the Kalgoorlie laboratories by FML personnel at completion of each hole.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Explanation
Mineral tenement and land tenure status	 The drilling was conducted on tenements 100% owned by Focus Minerals (Laverton) Pty Ltd. All tenements are in good standing. There are currently no registered Native Title claims over the Laverton project areas.
Exploration done by other parties	 Beasley Creek was formerly mined as an open pit to about 80m depth by WMC in the late 1980's/early 1990's. Later exploration has been performed by Metex/Delta Gold 1996/1997 and then Crescent Gold in 2010. Wedge to Lancefield North were formerly mined to a shallow depth in a series of pits by Ashton Mining for oxide and supergene upgraded gold mineralisation. Reasonably extensive RAB, AC and RC drilling was also conducted by Ashton with the deepest drilling completed under the Wedge North Pit. Metex completed limited exploration at Wedge prior to discovering/focussing on the Chatterbox SZ south of Beasley Creek.
Geology	 Mineralisation at Beasley Creek is located on the Beasley Creek Shear Zone and cross cutting Fitton FZ. The Beasley Creek SZ is deeply weathered to at least 200m depth with gold mineralisation hosted in: saprolitic clays, saprock of hydrothermally brecciated sediments, conglomerates and minor black shale, iron stone after gossan, laminated veins and, breccia vein infill. Core loss typically occurs when quartz breccia fragments become partially lodged in the drill bit. These hard fragments rotate with the bit causing grinding/washing of the soft highly oxidised shear matrix.
Drill hole information	See Table A
Data aggregation methods	 New Beasley Creek exploration results - mineralised intersections are reported at a 0.5g/t Au cut-off with a minimum reporting width of 1m and up to 3m internal dilution. The length weighted average grades from diamond core can include measured intervals of core loss. Any intervals of core loss incorporated into a significant intersection is fully diluted with an assigned grade of 0.0g/t Au. New Wedge-Lancefield Thrust Intersections are calculated using a 0.5g/t Au cut off and up to 2m internal dilution
Relationship between mineralization widths and intercept lengths	 Wherever possible holes were drilled orthogonal to mineralisation Holes targeting the WNW extension structures and Shallow SW dipping footwall structures in the NW part of the Beasley Creek Project often have sub-optimal orientations due to limited drilling collar locations. None of these intersections are represented as true widths at this stage. True widths can be estimated once geological/mineralisation modelling has been completed. Furthermore, no intersections are represented as calculated true widths in this report
Diagrams	 Accurate plans are included in this announcement. 3D perspective views and schematic cross-sections are included to illustrate the distribution of grade

Page 23 of 24

Criteria	Explanation
Balanced reporting	 Drilling results are reported in a balanced reporting style. The ASX announcement shows actual locations of holes drilled, and representative sections as appropriate.
Other substantive exploration data	• There is no other material exploration data to report at this time.
Further work	• FML anticipates additional drilling to follow up on encouraging results in Laverton.

For further information please contact:

For media and investor enquiries please contact:

Zaiqian Zhang Chief Financial Officer	Peter Kermode
Focus Minerals Ltd	Cannings Purple
Phone: +61 8 9215 7888	Phone: +61 411

ings Purple e: +61 411 209 459

About Focus Minerals Limited (ASX: FML)

Focus is a Perth-based, ASX-listed gold exploration company with Projects in Laverton and Coolgardie.

The company is focused on delivering shareholder value from its Laverton Gold Project, in Western Australia's north-eastern Goldfields. The Laverton project covers 507km² area of highly prospective ground that includes the historic Lancefield and Chatterbox Trend mines. Focus' priority target is to confirm the extent of gold mineralisation at deposits Beasley Creek and Lancefield Thrust and advance the Sickle, Ida-H and Karridale-Burtville deposits and targets.

Focus also owns the non-core Coolgardie Gold Project, also in the Goldfields, which includes a 1.2Mtpa processing plant at Three Mile Hill. The plant is on care and maintenance. Focus is pursuing a divestment strategy for its Coolgardie Projects and continues to maintain them and add value while this process continues.

Competent Person Statement

The information in this announcement that relates to Exploration Results is based on information compiled by Mr Alex Aaltonen, who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Aaltonen is an employee of Focus Minerals Limited. Mr Aaltonen has sufficient experience that is relevant to the style of mineralization and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.

Mr Aaltonen consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.