Quarterly Report to 30 June 2019

23 July 2019

Highlights (All figures expressed in Australian dollars unless stated otherwise)

- Record annual production of 363,418 ounces at the top end of annual guidance with all in sustaining cost (ASIC) of \$1,029 per ounce at approximate mid-point of the guidance range.
- Group Ore Reserves (as at 31 March 2019) of 4.03Moz, an effective increase of 8% after accounting for mining depletion during the year. This added an extra year of mine life at Moolart Well
- Consistent quarterly gold production of 90,966 ounces (Mar 19: 91,087 ounces) in line with the previous quarter.
- 106,628 ounces of gold sold at an average price of \$1,832 per ounce during the quarter.
- Pre-royalty cash cost (CC) for the quarter of \$949 per ounce and AISC of \$1,189 per ounce (Mar 19: CC \$767/oz and AISC \$1,019/oz).
- Cash flow from operations of \$85.2 million for the June 2019 quarter (Mar 19: \$89.3m).
- Cash build of \$18.7 million during the quarter. Cash and bullion of \$205.3 million at the end of the quarter (Mar 19: \$186.6m).
- Good progress of underground mine development at Rosemont decline with first ore, from development, expected in the FY20 September quarter.
- Baneygo underground exploration drilling continued with results supporting the view of potential underground resources. Results include 3m @ 12.7 g/t, 3m @ 11.6 g/t and 2m @ 43 g/t.
- Drilling at Garden Well underground target also continued to show pleasing results including 3m @ 7.9 g/t and 18.9m @ 5.2 g/t.
- Very encouraging drilling results at Gloster underground target with results indicating significant potential. Results included 7m @ 26.1 g/t including 2m @ 67.5 g/t.
- McPhillamys Development Application submitted subsequent to the end of the quarter along with the Environmental Impact Statement for appraisal and assessment by the Department of Planning NSW.
- Regis is expecting another strong year of operations at the Duketon Gold Project in FY20 with gold production guidance of 340,000-370,000 oz at an AISC range of \$1,125-\$1,195/oz.
- Medium term production growth outlook to follow a rising trend.

Comment

Regis Resources Managing Director, Jim Beyer, said: "An excellent performance by the Regis Team delivering another record production year with 363,418 ounces of gold produced. An outstanding result at the upper end of our production guidance.

Our cash and bullion grew by \$18.7 million over the quarter resulting in a final cash and gold balance of just over \$205 million.

Pleasingly, the Company made good progress on its key projects. The formal Development Application for McPhillamys was submitted just after the end of the quarter, a major milestone for the Project. The Rosemont underground decline is tracking well and on its way to reach first ore this quarter. We added reserves to our portfolio which included adding another year of production to Moolart Well. Very strong exploration results continued to support the concept of underground potential at Baneygo and Garden Well and very encouraging results are being obtained from our broader exploration work across our Duketon tenements.

The outlook for our Company is exciting with guidance indicating another year of similarly strong production levels while the growth project work we are doing this year sets the scene for our production to continue increasing over the coming years."

DUKETON OPERATIONS

The Duketon Gold Project, located in Western Australia, continued to perform strongly in the June 2019 quarter with production of 90,966 ounces of gold (Mar 19: 91,087 ounces).

The cash cost before royalties for the quarter was \$949 per ounce and the AISC of \$1,189 per ounce. It was anticipated that the June 2019 quarter would see an increase in costs and this was reflected in the AISC being 17% (\$170/oz) higher than the previous quarter. This included some unbudgeted costs with the key contributors being higher than expected mining contractor costs (and subsequent accrual adjustments) and performance improvements by the contractor which resulted in an 8% increase in material movements relative to budget.

The strong June 2019 quarter saw FY19 gold production reach a record high of 363,418 ounces, which is at the upper end of the annual gold production guidance range of 340,000 – 370,000 ounces. The FY19 cash cost including royalties of \$897 per ounce was at the lower end of guidance (\$880-\$950/oz) and AISC of \$1,029 per ounce was at the midpoint of the annual cost guidance range (\$985-\$1,055/oz).

Operating results are summarised in Table 1 below.

	FY 19 June Quarter		ırter	FY19Q3
	DNO	DSO	TOTAL	Total
Ore mined (Mbcm)	0.35	0.68	1.03	0.73
Waste mined (Mbcm)	1.64	5.82	7.46	7.51
Stripping ratio (w:o)	4.7	8.5	7.2	10.4
Ore mined (Mtonnes)	0.82	1.68	2.51	1.82
Ore milled (Mtonnes)	0.64	1.69	2.33	2.24
Head grade (g/t)	1.05	1.38	1.29	1.34
Recovery (%)	93.4%	94.6%	94.3%	94.4%
Gold production (ounces)	20,213	70,753	90,966	91,087
Cash cost (A\$/oz)	1,087	910	949	767
Cash cost inc royalty (A\$/oz)	1,180	1,001	1,041	842
All in Sustaining Cost (A\$/oz)¹	1,220	1,180	1,189	1,019

1 AISC calculated on a per ounce of production basis

Table 1: Operating results for the June 2019 quarter

Duketon Northern Operations (DNO)

DNO produced 20,213 ounces of gold at an AISC of \$1,220 per ounce in the June 2019 quarter. Production was up 8% from the previous quarter as a result of higher grade ore processed from the recently developed Anchor open pit.

Mining volumes were down on the previous quarter as pre-production mining activities at the Dogbolter and Coopers deposits reduced with an increase in ore mined during the quarter resulting in a lower strip ratio.

AISC's reduced from the previous quarter although as noted above, unexpected one-off costs meant the reduction was not to the degree expected.

Annual gold production at DNO was 88,558 ounces at an AISC of \$1,055 per ounce.

Duketon Southern Operations (DSO)

DSO produced 70,753 ounces of gold at an AISC of \$1,180 per ounce in the June 2019 quarter. Gold production at DSO was 2% lower than the previous quarter.

Mining volumes were up 11% due to opportunistic mine rescheduling which along with the items noted above was a key driver in the increase in AISC over the quarter.

Annual gold production at DSO was a record 274,861 ounces at an AISC of \$1,020 per ounce.

ROSEMONT UNDERGROUND PROJECT

Since starting in February 2019, the underground mine development of the North and South Declines at the Rosemont Gold Project has progressed well. Establishment of the portal area also continued (Figure 1).

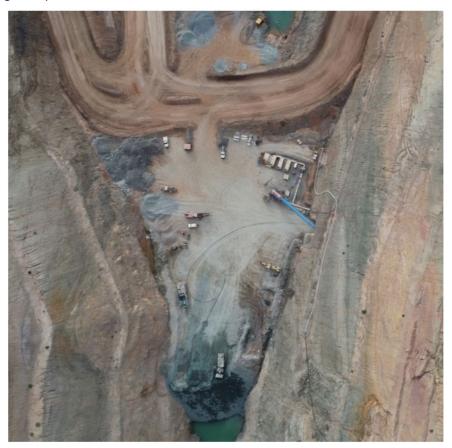


Figure 1: Rosemont UG portal area (South end of Rosemont Main Pit).

Decline advance for the Project is ahead of schedule, totalling 725 lineal metres as at the end of June 2019 (Figure 2). Ground conditions in the South decline have been variable and required additional fibrecrete and cable bolts in some areas. The resulting slower progress has been more than offset by better ground conditions and productivity experienced in the North decline. Ground conditions are expected to continue to improve as the mine goes deeper. First ore is expected to be mined in the September 2019 quarter with a second development jumbo and personnel being mobilised in the December 2019 quarter.

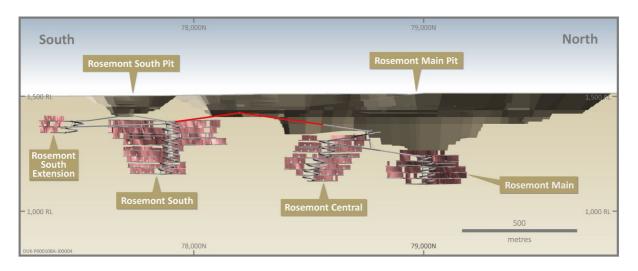
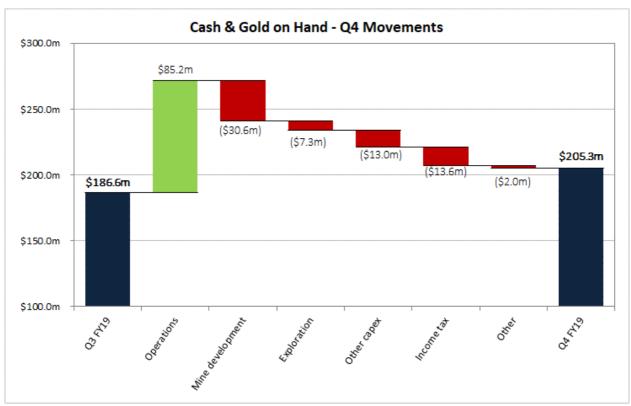


Figure 2: Underground mining progress showing decline advance (in red) to end June 2019.


CORPORATE

Cash Position and Gold Sales

The Duketon Gold Project generated operating cash flow of \$85.2 million in the June 2019 quarter a slight decrease from the \$89.3 million recorded in the previous quarter. During the quarter, Regis sold 106,628 ounces of gold at an average price of A\$1,832 per ounce compared to 76,817 ounces at A\$1,838 per ounce in the March 2019 quarter. Physical gold sales were higher than the previous quarter due to the timing of gold deliveries at the end of the month which resulted in a significant reduction in gold on hand at the end of the June quarter. There was a total of 7,886 ounces of gold on hand at the end of the quarter which was subsequently sold in July 2019. The gold on hand at the end of March 2019 was 25,236 ounces.

The Company delivered gold into a combination of spot deferred contracts and at the prevailing spot price during the June 2019 quarter. The total hedging position at the end of the quarter was 451,514 ounces with an increase in the average delivery price of A\$1,611 per ounce up from A\$1,592 in the previous quarter. These hedges are all on a spot deferred basis, meaning there is no fixed maturity date obligating a sale.

At the end of the quarter Regis had \$205.3 million in cash and bullion, an increase of \$18.7 million from the \$186.6 million held at 31 March 2019. This was after expenditure on the following significant items: \$23.9 million on pre-production costs and deferred waste; \$7.3 million on exploration and feasibility projects; \$13.6 million on income tax payments; \$3.0 million on land acquisitions; \$1.5m on TSF development; \$2.2 million on camp expansions; and \$6.1 million on Rosemont Underground. Graph 1 illustrates the movement in Regis' cash reserves over the quarter.

Graph 1: Waterfall graph illustrating the key changes in the cash and gold from Q3 to end Q4.

Board and Senior Management changes

As previously announced to the ASX (see release 13 May 2019), Mr Steve Scudamore joined the Board during the quarter. As also announced to the ASX (see release 24 June 2019), Mr Jon Latto was appointed Company Secretary.

2020 GUIDANCE

Regis is expecting another strong year of operations at the Duketon Gold Project in FY20 with gold production guidance unchanged from that provided for FY19. FY20 key guidance elements are:

Gold production: 340,000 – 370,000 ounces
 Cash costs including royalties*: \$985 – 1,055 per ounce
 All in Sustaining Cost* \$1,125 – 1,195 per ounce

Growth Capital \$62 million

The AISC guidance is above that achieved in FY19 due to the three key areas:

i. An increase in waste mining classified as sustaining capital. The total surface material movement will reduce in line with the current Life of Mine (LOM) plan and incorporated in this plan is a reduction in the pre-strip growth capital along with an increase in the mining classified as sustaining capital. As a result, while the overall surface mining volumes will reduce, the sustaining capital component of the AISC will increase.

^{*}assumes a \$0.70 exchange rate, current diesel prices and A\$1,750/oz gold price.

- ii. Rosemont underground mining is forecast to achieve commercial production in the final quarter of FY20 and from this point, will be included in the AISC calculation. The scheduled lower grades from the early production area (South) results in the AISC of the underground being well above the Rosemont underground LOM average.
- iii. General cost increases (representing less than 25% of the budgeted AISC increase) related to modest CPI and exchange rate impacts on rise and fall.

RESERVES AND RESOURCES

Group Ore Reserves

After the end of the quarter Regis announced the Group Ore Reserves as at 31 March 2019 (see ASX release 19 July 2019) in accordance with JORC Code 2012 which are estimated at 112.9 million tonnes at 1.11 g/t gold for 4.03 million ounces of gold. Table 2 details the breakdown.

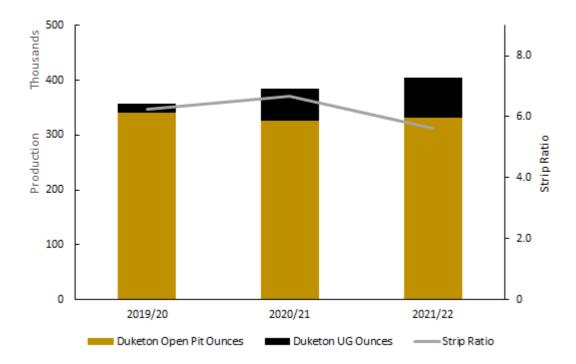
	Total Ore Reserve		
	Tonnes (Mt)	Gold Grade (g/t)	Gold Metal (koz)
31 March 2018	117.2	1.08	4,065
Depleted by Mining to 31/3/19	-9.2	1.20	-357
31 March 2018 Net of Depletion	108.0	1.07	3,708
31 March 2019	112.9	1.11	4,034
% Variation Net of Depletion	4%		8%

Table 2: Change in the Group Ore Reserve from March 2018 to March 2019.

The updated estimation of Group Ore Reserves resulted in a 4% increase in tonnes and 8% increase in ounces after allowing for depletion by mining. This was primarily the result of:

- The inclusion of a maiden Ore Reserve from Rosemont Underground;
- The inclusion of further drilling results in Open Pit areas; and
- A review of current pit optimisation shell selection strategy for each pit incorporating design parameters including costs, gold price, metallurgical and geotechnical performance of mining projects to date.

Group Mineral Resources


The Group Mineral Resources announced in accordance with JORC Code 2012 as at 31 March 2019 (see ASX release 19 July 2019) are estimated to be 263.3 million tonnes at 0.97g/t gold for 8.19 million ounces of gold, compared with the estimate at 31 March 2018 of 254.5 million tonnes at 0.96g/t gold for 7.86 million ounces of gold. The increase in the Group Mineral Resources is primarily due to the addition of Discovery Ridge.

Production Trends

With the information provided by the 2019 Resource and Reserve update (see ASX release 19 July 2019) and the pending commencement of production from the Rosemont underground, the Company is confident in providing further insight into the outlook over the coming years.

With the increase in high grade material from the Rosemont underground and currently planned open pits, gold production over the next 3 years is expected to lift, by approximately 10% above the current level by FY22. See Graph 2.

Beyond this timeframe the production profile will be impacted largely by the timing of McPhillamys, additional underground production, exploration success, reserves depletion and business development initiatives

Graph 2: Indicative 3-year Gold production profile from the Duketon operation.

The relevant proportions of Mineral Resources and Ore Reserves underpinning the production target in the preceding graph comprises 92% Ore Reserves and 8% Inferred Mineral Resources. The Inferred Mineral Resources within the production targets are wholly contained within the Rosemont Underground Resources. For the reasons set out in previous announcements to the ASX (see release 15 April 2019), the Board believes that it has reasonable grounds to include a component of Inferred Resources in the production targets contained in this announcement.

There is a low level of geological confidence associated with Inferred Mineral Resources and there is no certainty that further exploration work with result in the determination of Indicated Mineral Resources or that the production target itself with be realised.

The production targets are derived from the estimated Ore Reserves and/or Mineral Resources prepared by a Competent Person in accordance with the JORC Code 2012.

Cost Trends

The Company views the strip ratio as one of two key proxies for AISC outlook. With this in mind, the current LOM plan sees the strip ratio rise slightly in FY21 and then fall away significantly over the following years.

The second primary factor impacting on AISC is grade and the Company expects to see the benefits of the higher grade production from the underground in the central and main areas impacting positively in the second half of the current three-year life of the underground mine.

Any further discoveries and subsequent new pits or underground operations are likely to impact this outlook.

McPHILLAMYS GOLD PROJECT

The 100% Regis owned McPhillamys Gold Project, located in New South Wales, is one of Australia's larger undeveloped open pittable gold resources. The Project is located 250 kilometres west of Sydney in a well-established mining district. In July 2019 Regis announced an updated Ore Reserve of 60.8 Mt @ 1.04 g/t gold for 2.02 Moz (see ASX release 19 July 2019).

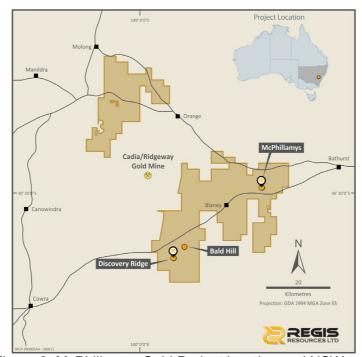


Figure 3: McPhillamys Gold Project location and NSW tenure.

Development Application (DA) and Environmental Impact Statement (EIS)

Subsequent to the end of the quarter, Regis submitted the McPhillamys DA along with the EIS for appraisal and assessment by the Department of Planning NSW. This is a significant milestone and represents the start of the formal assessment and approval process.

As part of the ongoing DA submission and assessment process, Regis continued its extensive community consultation during the quarter through the Community Consultative Committee, direct community information sessions, a public meeting, distribution of community information sheets and a number of events in the local and wider community to ensure that stakeholders can understand the Project details, approvals process and outcomes relating to the Project's benefits and impacts.

Process Water Supply

Regis continued to progress and refine the pipeline route access to utilise recycled water from the Mt Piper Power Station and Centennial Mine near Lithgow. This is one of the two long term water supply options for the Project. Negotiations continued on the formal water offtake agreement with Centennial Coal Company Limited and Energy Australia Pty Ltd for Regis to utilise this water.

Regis also continues to hold approximately 4.5 GL/pa of ground water access licences in a zone of the Lachlan catchment, approximately 80 kilometres from McPhillamys as an alternative water supply.

Development Outlook

The Definitive Feasibility Study (DFS) is progressing and will be completed subsequent to the submission of the EIS as it needs to incorporate any additional requirements for Project development emanating from the DA process. The DFS will further define the operating parameters, estimated capital and operating costs and a development timetable (subject to completion of permitting).

An additional change in scope for the DFS will be the consideration in the study of the Discovery Ridge satellite Project (located 32 kilometres away from McPhillamys) where recent drilling confirmed the significant potential of this Project. Discovery Ridge continues to shape up as a very significant additional value proposition for the McPhillamys Project and work is currently underway on a maiden reserve estimate.

Should Discovery Ridge prove to be as value enhancing as currently expected, it is anticipated that no wet processing will occur on the site with only mining and potentially primary crushing occurring there. All other crushing, processing, gold recovery and tailing disposal would occur at the McPhillamys site. For this reason, the potential additional requirements at the McPhillamys site have been taken into account in the McPhillamys EIS application. In addition, for efficiency, some of the key extra works required at McPhillamys are being considered for inclusion in the McPhillamys DFS scope and is one of the factors impacting on the anticipated increased development capital cost. It is expected that if progressed by the Company, Discovery Ridge will be subject to a separate EIS and approvals process and it is contemplated this will likely be undertaken whilst McPhillamys is in development.

The Pre-Feasibility Study (PFS), completed in September 2017 to support the maiden reserve estimate for standalone McPhillamys (ie no Discovery Ridge), contemplated a development capital cost in the order of \$215 million +/- 25%. As noted in previous updates, whilst the EIS and DFS work is continuing and finalisation is still subject to numerous variables, it is now expected the updated development capital costs for the McPhillamys Project will have a final range that incorporates the upper end of the PFS estimate.

DUKETON EXPLORATION

Regis controls a significant tenement package across the majority of the Duketon Greenstone Belt (DGB). The tenement holding encompasses 194 granted exploration, prospecting and mining leases, across 991km² and 4 exploration licence applications over 227km².

During the June 2019 quarter a total of 56,905 drill metres was completed. This work focused on drilling at depth for extensions to gold mineralisation beneath existing gold deposits at Baneygo, Garden Well South, and Gloster, and regional exploration drilling at Borodale, Steer Creek and other gold prospects shown in Figure 4.

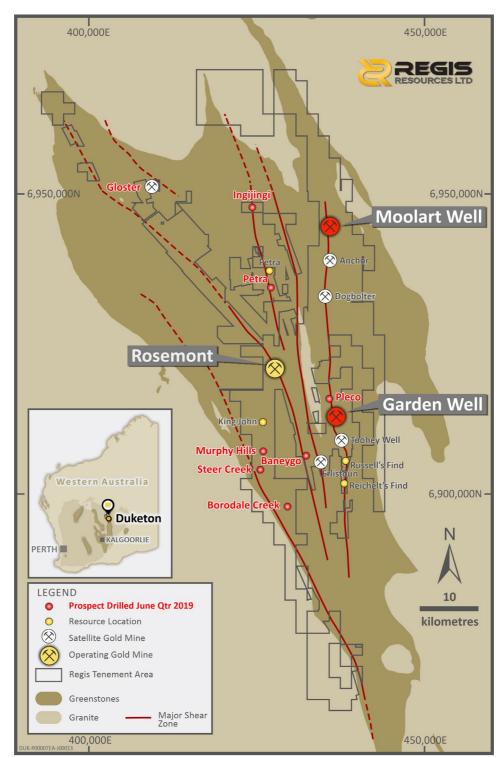


Figure 4: Satellite deposits and gold prospects of the Duketon tenement package. Prospects marked in red were drilled during the June 2019 quarter.

Rosemont Deep Exploration. Drilling to test controls on Gold Mineralisation in the Quartz Dolerite 1km below surface.

The two dimensional (2D) high resolution seismic reflection survey completed at Rosemont in the December 2018 quarter produced exciting results. The seismic survey identified a strong, moderate east dipping reflector that intersects the interpreted depth extension of the mineralised quartz dolerite at approximately 1km below surface. The reflector is interpreted to be a low angle fault and potentially the feeder structure that provided a pathway for gold mineralising fluids at Rosemont.

Deep diamond drilling has commenced at Rosemont, to test this strong seismic reflector 1km below surface and 700m below planned development at Rosemont South. Two holes are planned, the first is targeting the seismic reflector and the second is designed to test the gold mineralised quartz dolerite just above the intersection with the seismic reflector (Figure 5).

These drill holes will be the deepest diamond holes drilled in the Duketon Greenstone Belt, and will provide valuable information to confirm the mineralised systems model for Rosemont, and contribute to the broader architectural model for the Duketon Greenstone Belt. The drilling is cofunded as part of the Western Australian State Government Exploration Incentive Scheme.

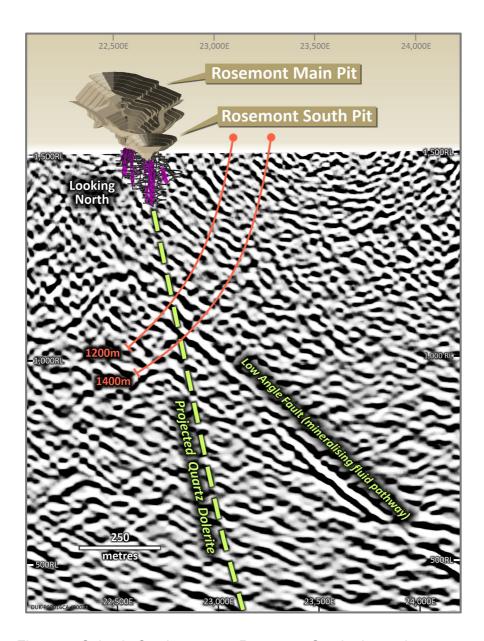


Figure 5: Seismic Section across Rosemont South shows the strong, moderate east dipping reflector and drill holes targeting the potential gold feeder structure and the quartz dolerite.

Garden Well. The underground story gains momentum with continuous gold mineralisation over 500m strike beneath the pit.

Diamond drilling continued at the southern end of Garden Well open pit mine to test the down plunge continuity of high grade gold mineralisation located to the south and below the pit design on a spacing of 80m x 40m and 40m x 40m.

Drilling to date has identified a high grade gold shoot plunging moderately to the south, extending from the southern end of the open pit. The high grade gold shoot currently measures 4-10m true width across strike and 80-100m down dip. The results of drilling this quarter has extended the length of the shoot to over 500m north-south along strike. The zones of mineralisation sit between 100-400m below surface, dip to the east and are open at depth to the south (Figure 6).

In addition multiple high-grade shoots have also been identified along strike further north, below the current pit design. Five RC holes (RRLGDRC643-647) for 2,076m were drilled to test the potential for economic gold mineralisation in this area further north. The drill holes intersected the northern shoot above the target zone, where gold mineralisation is made up of narrow intervals of gold mineralisation. Further drilling will be required below these holes to confirm the continuity of grade and thickness of potential high-grade shoots.

Diamond drilling during the quarter was designed to test the high grade southern shoot between 200m and 500m below surface, and up to 500m south of the pit design. A total of six diamond holes (RRLGDDD133-138) were completed for 3,111m along the southern high grade shoot. Assay results were received for RRLGDDD132-133 and assay results for RRLGDDD134-138 are pending.

Results continue to show significant widths and grades of gold mineralisation, demonstrating the potential for a maiden underground resource. A preliminary evaluation of the underground potential is underway and results will be discussed when available.

Significant results from diamond and reverse circulation (RC) drilling for the June 2019 quarter include:

Southern Shoot

•	15.7 metres @ 4 g/t gold from 396m	RRLGDDD132
	 Incl 3.1m @ 7.9g/t gold 	
•	8.3 metres @ 3 g/t gold from 413.7m	RRLGDDD132
•	2.4 metres @ 3.3 g/t gold from 431.3m	RRLGDDD132
•	3.1 metres @ 2.2 g/t gold from 438.6m	RRLGDDD132
•	20 metres @ 4.3 g/t gold from 485m	RRLGDDD133
	 Incl 4m @ 6.6 g/t gold from 496.8m 	
•	18.9 metres @ 5.2 g/t gold from 457m	RRLGDRCD642
	 Incl 4.6m @ 7.2g/t gold from 463.4m 	

Northern Shoots

•	2 metres @ 3.4 g/t gold from 353m	RRLGDRC643
•	2 metres @ 4.1 g/t gold from 358m	RRLGDRC643
•	3 metres @ 2.8 g/t gold from 369m	RRLGDRC643
•	2 metres @ 3.4 g/t gold from 373m	RRLGDRC644
•	3 metres @ 3.7 g/t gold from 367m	RRLGDRC645

Hole azimuths and dips for all holes are in Appendix 2 to this report. All intercepts calculated using a 2.0 g/t gold lower cut, no upper cut, maximum 2m internal dilution. All diamond drill assays determined on half core (NQ2) samples by fire assay.

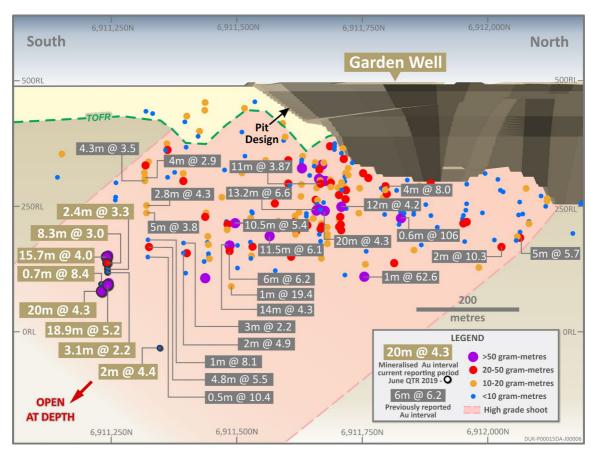


Figure 6: Garden Well long section looking west with high grade intercepts beneath South end of the current pit design.

Moolart Well Gold Mine. Testing the gold mineralised system at depth.

Aircore (AC) and RC drilling for additional oxide gold mineralisation during the previous quarter at Moolart Well contributed to the addition of 3.4 Mt @ 0.89 g/t for 89 koz to the reserve base after depletion at Moolart Well Gold Mine (See ASX release 19 July 2019). This increase in reserves will extend the Life of Mine at Moolart Well for at least another 12 months.

In addition, to this a program of diamond drilling was undertaken during the June 2019 quarter to test the stratigraphy and gold mineralised structures beneath existing oxide pits. Previous drilling at Moolart Well targeted shallow oxide gold mineralisation suitable for open pit development while gold mineralisation in fresh rock remained largely untested. Five diamond holes RRLMWDD140-144 for 2,861m were drilled during the June 2019 quarter over a strike distance of 3.5km.

Very encouraging gold assay results have been received for the first diamond hole drilled at the northern end of the Moolart Well deposit, RRLMWDD140 intersected 1 metre @ 11.4 g/t gold from 319m. This supports the view that there are gold mineralised structures in fresh rock at Moolart Well. Further work will continue to determine the extent of hypogene gold mineralisation in fresh rock beneath the existing oxide pits.

Baneygo Area Project. Testing for underground resources.

The Baneygo Area Project (Baneygo) is located 15km south and along strike of the Rosemont Gold Mine and the current Mineral Resource is 11.4Mt @ 0.99 g/t gold for 363koz, including Ore Reserves of 3.4Mt @ 1.3 g/t gold for 142koz (see ASX release 19 July 2019). Gold mineralisation at Baneygo extends over 5 strike kms and is hosted in quartz dolerite which has intruded a sequence of mafic-ultramafic-sedimentary units. The deposits are similar in style to the Rosemont Gold deposit, with gold mineralisation confined to the quartz dolerite.

Drilling during the June 2019 quarter targeted multiple high grade gold shoots in fresh rock across 2km strike beneath the pit designs (Figure 7 and 8). Four high grade gold shoots have been

identified beneath the Baneygo Pits and are open down plunge. Drilling to date indicates the high grade shoots measure up to 7m true width across strike and 40m down dip.

Figure 7: Long section looking west. Baneygo Central with significant intercepts beneath pit designs.

Very encouraging results from the area tested below the Baneygo Pits include:

•	3 metres @ 12.7 g/t gold from 92m	RRLBYRC655
•	3 metres @ 11.6 g/t gold from 96m	RRLBYRC654
•	3 metres @ 7.9 g/t gold from 210m	RRLBYRC646
•	2 metres @ 21.6 g/t gold from 261m	RRLBYRC641
•	2 metres @ 15.4 g/t gold from 167m	RRLBYRC638
•	4 metres @ 5.5 g/t gold from 220m	RRLBYRC624
•	6 metres @ 5.5 g/t gold from 245m	RRLBYRC624
•	8 metres @ 10.8 g/t gold from 170m	RRLBYRC612
•	2 metres @ 11.1 g/t gold from 183m	RRLBYRC612
•	1 metres @ 25.5 g/t gold from 159m	RRLBYRC597
•	2 metres @ 43 g/t gold from 173m	RRLBYRC588
•	1 metres @ 20.2 g/t gold from 179m	RRLBYRC580
•	2 metres @ 10.2 g/t gold from 115m	RRLBYRC568
•	2 metres @ 19.9 g/t gold from 121m	RRLBYRC567

Hole azimuths and dips for all holes are in Appendix 2 to this report. All intercepts calculated using a 2.0 g/t gold lower cut, no upper cut, maximum 2m internal dilution. All assays determined on 1m split samples by fire assay.

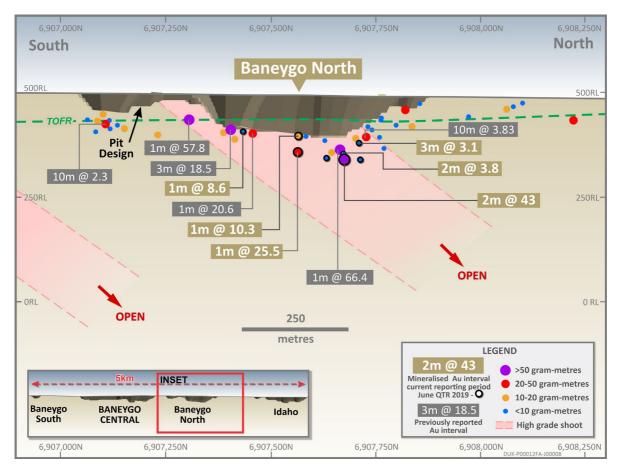


Figure 8: Long section looking west. Baneygo North with significant intercepts beneath pit designs.

Drilling beneath the final pit designs will continue at Baneygo in order to further assess the grade and thickness of multiple high grade shoots and their suitability for underground development.

Gloster. Testing for underground resources.

The Gloster gold deposit is hosted in a package of intermediate volcanics and intrusives. Gold mineralisation is interpreted to be associated with low angle quartz veins, dipping moderately to the north east. The vein system is constrained to the southwest and northeast by two steeply dipping north-northwest trending shears. Previous drilling at Gloster was targeting shallow oxide gold mineralisation suitable for open pit development while gold mineralisation in fresh rock remains largely untested.

Exploration drilling commenced beneath the open pit at Gloster to determine the extent of the gold mineralised system at depth in fresh rock and the potential for an underground resource. Two diamond holes and eight RC holes were drilled for 3,153m to assess the grade and thickness of gold bearing quartz veins beneath the pit. Gold assay results are pending for the diamond drill core, however visible gold in quartz was noted in the core 100m below the pit design in hole RRLGLDD006. Drilling will continue in the September 2019 quarter.

Encouraging assay results for RC drilling are listed below and shown on Figure 9.

•	7 metres @ 26.1 g/t gold from 101m	RRLGLRC430
	 Incl 2m @ 67.5 g/t gold from 101m 	
•	7 metres @ 4.2 g/t gold from 81m	RRLGLRC431
•	2 metres @ 6.8 g/t gold from 191m	RRLGLRC431
•	1 metres @ 10.4 g/t gold from 4m	RRLGLRC433
•	1 metres @ 10.2 g/t gold from 14m	RRLGLRC433

Hole azimuths and dips for all holes are in Appendix 2 to this report. All intercepts calculated using a 2.0 g/t gold lower cut, no upper cut, maximum 2m internal dilution. All assays determined on 1m split samples by fire assay.

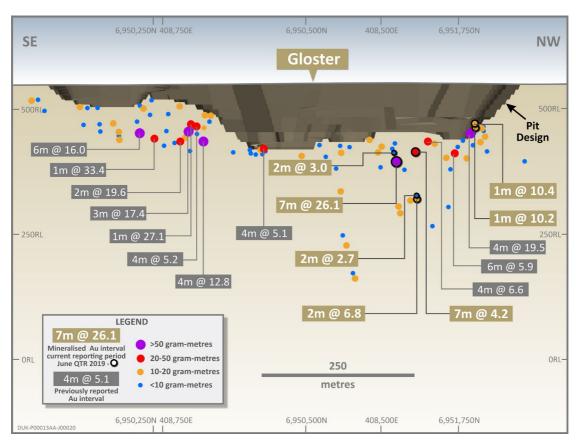


Figure 9: Long section looking south west. Gloster with significant intercepts beneath the pit design.

Pleco Gold Prospect. Emerging satellite oxide deposit.

Encouraging results were received during the June 2019 quarter for Pleco located 2km north along strike of the Garden Well Mine. The geology of Pleco is similar to Garden Well with a sequence of east dipping, tightly folded and strongly sheared mafic-ultramafic-sedimentary units overlain by 10m of palaeochannel clays. Gold mineralisation at Pleco is localised within a strongly sheared ultramafic up to 10m thick with associated quartz-carbonate veins, pyrite, and fuchsite-carbonate-silica alteration.

Drilling during the March 2019 and June 2019 quarters at Pleco reduced drill spacing to 40m x 20m, which refined the gold mineralisation to 3 zones over 2km strike (Figure 10). The majority of gold mineralisation at Pleco occurs within the saprolite above fresh rock and will provide mineralised oxide material to the Garden Well Gold Mine. A resource estimation study is underway.

Significant intercepts received from AC drilling at Pleco are listed below:

•	5 metres @ 2.5 g/t gold from 48m	RRLPLAC078
•	3 metres @ 12.2 g/t gold from 36m	RRLPLAC080
•	4 metres @ 1.4 g/t gold from 44m	RRLPLAC082
•	1 metres @ 12.1 g/t gold from 53m	RRLPLAC082
•	3 metres @ 2.7 g/t gold from 33m	RRLPLAC095
•	1 metres @ 10.5 g/t gold from 25m	RRLPLAC097
•	3 metres @ 5.8 g/t gold from 40m	RRLPLAC098
•	7 metres @ 3.2 g/t gold from 23m	RRLPLAC100
•	6 metres @ 1 g/t gold from 52m	RRLPLAC101
•	1 metres @ 5.9 g/t gold from 44m	RRLPLAC104
•	6 metres @ 2.2 g/t gold from 55m	RRLPLAC104

Hole azimuths and dips for all holes are in Appendix 2 to this report. All intercepts calculated using a 0.5 g/t gold lower cut, no upper cut, maximum 2m consecutive internal dilution. All assays determined on 1m split samples by fire assay.

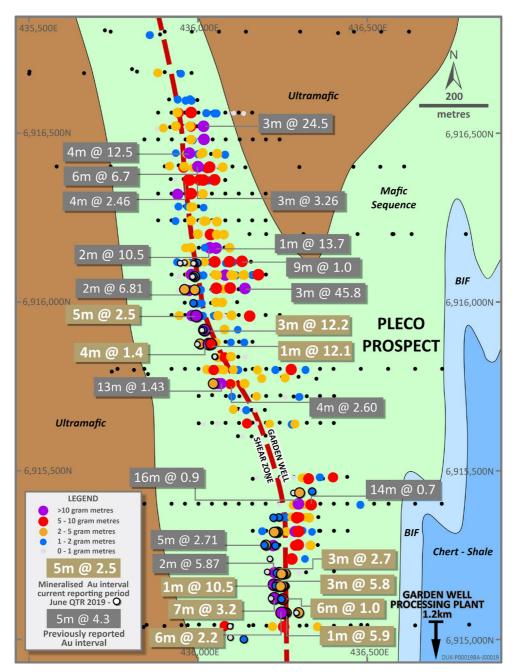


Figure 10: Plan of Pleco drilling with significant intercepts

Greenfields Exploration. Duketon belt scale strategy.

During the June 2019 quarter 314 AC holes were drilled for 23,886m across high priority regional targets searching for new gold deposits. The majority of drilling was undertaken on the poorly explored western margin of the Duketon Greenstone Belt testing the western shear trend at the Murphy Hills, Borodale Creek, and Steer Creek Prospects (Figure 4).

As part of Regis' growth strategy, exploration not only continues to test depth extensions to ore at existing deposits but has commenced a belt scale campaign in order to collect consistent baseline lithochemistry and build a geological and mineralisation model for the Duketon Greenstone Belt. As part of this work, belt scale mapping and geophysical techniques will be applied to develop a robust geological model, and regional AC and RC drilling will continue in underexplored areas across the Duketon Greenstone Belt.

Drilling and sample details for all gold deposits and other gold prospects drilled during the June 2019 quarter are included in Appendix 1. Anomalous assays received for all gold deposits and other gold prospects drilled during the March 2019 and June 2019 quarters are included in Appendix 2.

COMPETENT PERSON STATEMENT

The information in this report that relates to exploration results is based on and fairly represents information and supporting documentation that has been compiled by Ms Tara French who is a member of the Australian Institute of Geoscientists. Ms French has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which she is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ms French is a full-time employee of Regis Resources Ltd and consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

The information in this report that relates to the Company's Resources and Ore Reserves (other than Rosemont Underground Resource and Ore Reserve) is extracted from the ASX announcement released on 19 July 2019 entitled "Mineral Resource and Ore Reserve Statement as at 31 March 2019". Competent Person's consent was obtained for the announcement.

The reports are available to view on the ASX website and on the Company's website at www.regisresources.com.au. The Company confirms it is not aware of any new information or data that materially affects the information included in the original market announcement, and, in the case of estimates of Mineral Resources and Ore Reserves, that all market assumptions and technical assumptions underpinning the estimates in the relevant market announcement continue to apply and have not materially changed.

The Competent Person's consents remain in place for subsequent releases by the Company of the same information in the same form and context, until the consent is withdrawn or replaced by a subsequent report and accompanying consent.

FORWARD LOOKING STATEMENTS

This ASX announcement may contain forward looking statements that are subject to risk factors associated with gold exploration, mining and production businesses. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially, including but not limited to price fluctuations, actual demand, currency fluctuations, drilling and production results, Reserve estimations, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory changes, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimates.

Forward-looking statements, including projections, forecasts and estimates, are provided as a general guide only and should not be relied on as an indication or guarantee of future performance and involve known and unknown risks, uncertainties and other factors, many of which are outside the control of Regis Resources Ltd. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward looking statements or other forecast.

CORPORATE DIRECTORY

Regis Resources Ltd (ACN 009 174 761)

Registered Office

Second Floor, 516 Hay Street Subiaco, WA Australia 6008 Tel +618 9442 2200

Website <u>www.regisresources.com</u>
Email enquiries@regisresources.com

Directors

Mr Jim Beyer (Managing Director)
Mr James Mactier (Non-Executive Chairman)
Mr Paul Thomas (Executive Director)
Mr Ross Kestel (Non-Executive Director)
Mrs Fiona Morgan (Non-Executive Director)
Mr Steve Scudamore (Non-Executive Director)

Company Secretary

Mr Jon Latto

Share Registry

Computershare Ltd GPO Box D182 Perth WA 6840

Shareholder Enquiries: 1300 557 010 (local) +613 9415 4000 (international)

ASX Listed Securities (as at 30 June 2019)

Security	Code	No. Quoted
Ordinary Shares	RRL	507,869,065

APPENDIX 1

JORC Code, 2012 Edition – Table 1 report template Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific	Gold Projects
	specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad	Baneygo The Baneygo gold deposit was sampled using Reverse Circulation (RC) drill holes on a nominal 40m north by 40m or 20m east grid spacings angled -46° to -68° to 072° to 075° and 244° to 262°. The mineralised quartz dolerite strikes 344° and is subvertical, therefore drilling was directed from the east or west where access could be gained around historical infrastructure such as pits and waste dumps.
	meaning of sampling.	Garden Well The Garden Well gold deposit was sampled using PQ3 and NQ2 Diamond drill (DD) holes or Reverse Circulation (RC) drill holes on a nominal 40m east by 40m or 80m north grid spacing angled -55° to -63° towards 270° azimuth designed to drill perpendicular to the strike of mineralisation.
		Gloster The Gloster gold deposit was sampled using HQ and NQ2 Diamond drill (DD) holes or Reverse Circulation (RC) drill holes. DD holes were spaced 100m apart along strike, RC holes were drilled on a nominal spacing 30m to 60m apart along strike angled at -60° towards 246° azimuth designed to drill perpendicular to the strike of mineralisation.
		Moolart Well The Moolart Well gold deposit was sampled using PQ3, HQ, and NQ2 Diamond drill (DD) holes. Holes were spaced ≈700m apart along strike N-S, angled at -60° towards 270° azimuth designed to drill perpendicular to the strike of mineralisation.
		Pleco The Pleco gold prospect was sampled using Air Core (AC) drill holes on 40m north by 20m east grid spacing angled -60° to 270° azimuth designed to drill perpendicular to the strike of mineralisation.
		Other Regional Prospects Borodale Creek, Ingijingi, Murphy Hills, Petra South, Steer Creek The Regional Prospects were sampled using Air Core (AC) drill holes drill holes on various grid spacings angled -60° towards varying azimuths designed to drill as close as possible to perpendicular to the strike of mineralisation.

Criteria	JORC Code explanation	Commentary
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	All Gold Projects AC, RC, DD Regis drill hole collar locations were picked up by an independent registered consulting surveyor or site-based authorised surveyors using Trimble RTK GPS. Downhole surveying was measured by using either a Reflex EZ-Shot Downhole Survey Instrument or North Seeking Gyro based tool where magnetic host rock would affect azimuth readings. The surveys were completed every 30m down each drill hole.
		Diamond drill core is aligned and measured by tape, comparing back to down hole core blocks consistent with industry practice.
		Regis drill hole sampling had certified standards and blanks inserted every 20 th sample (DD only) or every 25 th sample (RC and AC) to assess the accuracy and methodology of the external laboratories, and field duplicates (RC and AC only) were inserted every 20 th sample to assess the repeatability and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 15 th sample to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. Results of the QAQC sampling were considered acceptable.
		Regional Prospects AC Regis drill hole collar locations were picked up by handheld GPS. Hole azimuths were measured at the collar using a Suunto sighting compass.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse	All Gold Projects AC and RC Drilling For the Regis RC drilling, and AC drilling 1m samples were obtained by cone splitter (2.5kg – 3.0kg) and were utilised for lithology logging and assaying. The drilling samples were dried, crushed and pulverised to get 85% passing 75µm and were all Fire Assayed using a 50g charge.
	circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse	All Gold Projects DD Diamond drilling completed to industry standard using varying sample lengths (0.3 to 1.3m) based on geological intervals, which are then dried, crushed and pulverised to get 85% passing 75µm and were all Fire Assayed using a 50g charge (Bureau Veritas).
	gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Regional Prospects AC For AC drilling 1m spear samples were composited to 4m intervals to obtain a 2.5kg – 3.0kg sample. The drilling samples were dried, crushed and pulverised to get 85% passing 75µm and were all Fire Assayed using a 50g charge (Bureau Veritas). Anomalous results from 4m AC drill composites were spear sampled at 1m intervals. These drill samples were dried, crushed and pulverised to get 85% passing 75µm and were all Fire Assayed using a 50g charge.

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of	All Gold Projects/Prospects RC and AC drilling RC drilling completed with a 139mm or 143mm diameter face sampling hammer. AC drilling was completed with an 89mm diameter AC blade bit.
	diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	All Gold Projects DD Surface diamond drilling carried out by using PQ3, or HQ3 (triple tube) and HQ2, NQ, or NQ2 (standard tube) techniques. Core is routinely orientated by REFLEX ACT III tool.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	All Gold Projects/Prospects RC and AC drilling RC and AC recovery was visually assessed, with recovery being excellent except in some wet intervals which are recorded on logs. 0% AC, 1.3% RC within the mineralised zones (>0.5g/t) have been recorded as wet.
		All Gold Projects DD DD core was measured and compared to the drilled intervals, and recorded as a percentage recovery. Average recovery of 98% was recorded through the mineralised zones (>0.5g/t).
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	All Gold Projects/Prospects RC and AC drilling AC and RC samples were visually checked for recovery, moisture and contamination. The drilling contractor utilised a cone splitter to provide uniform sample size, and these were cleaned routinely (cleaned at the end of each rod and more frequently in wet conditions). A booster was also used in conjunction with the RC drill rig to ensure dry samples are achieved.
		All Gold Projects DD The target mineralised zones are located in competent fresh rock, where the DD method provided high recovery.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	All Gold Projects/Prospects RC and AC drilling Sample recoveries for RC and AC drilling are visually estimated to be medium to high. No significant bias is expected in the mineralised zone, although no recovery and grade correlation study was completed.
	preferential loss/gain of fine/coarse material.	All Gold Projects DD The DD drill sample recovery in the transitional and fresh rock zones is very high, and no significant bias is expected. Recoveries in the oxidised rock were lower.

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All Gold Projects/Prospects RC and AC drilling Lithology, alteration, veining, mineralisation and, on some holes, magnetic susceptibility were logged from the RC and AC chips and saved in the database. Chips from every interval are also placed in chip trays and stored in a designated building at site for future reference.
	-	All Gold Projects DD Lithology, alteration, veining, mineralisation and geotechnical information were logged from the DD core and saved in the database. Half cores from every interval are also retained in the core trays and stored in a designated building at site for future reference.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	All logging is qualitative except for magnetic susceptibility and geotechnical measurements. Wet and dry photographs were completed on the core.
	The total length and percentage of the relevant intersections logged.	All drill holes are logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	All Gold Projects DD Core was half cut with an almonte diamond core saw with the same half always sampled and the surplus retained in the core trays.
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	All Gold Projects/Prospects RC and AC drilling RC and AC drilling utilised a cyclone and cone splitter to consistently produce 0.5kg to 3.0kg dry samples.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples are dried, crushed to 10mm, and then pulverised to 85% passing 75μm. This is considered acceptable.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	·

Criteria	JORC Code explanation	Commentary
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	Regional Prospects AC Field duplicates were taken at the rig from a second chute on the cone splitter allowing for the duplicate and main sample to be the same size and sampling technique. Field duplicates are taken every 50th sample. Laboratory duplicates (sample preparation split) were also completed roughly every 15th sample. All Gold Projects DD Field duplicates on diamond core, i.e. other half of cut core, have not been routinely assayed.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes (1.0kg to 3kg) are considered to be a sufficient size to accurately represent the gold mineralisation based on the mineralisation style (hypogene associated with shearing, and supergene enrichment), the width and continuity of the intersections, the sampling methodology, the coarse gold variability and the assay ranges for the gold.
		Field duplicates have routinely been collected to ensure monitoring of the sub-sampling quality. Acceptable precision and accuracy are noted in the field duplicates albeit the precision is marginally acceptable and consistent with coarse gold deposits.
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is	All Gold Projects AC and RC All gold assaying was completed by external commercial laboratories (Bureau Veritas) using a 50g charge for fire assay analysis with AAS finish. This technique is industry standard for gold and considered appropriate.
tests	considered partial or total.	All Gold Projects DD All gold assaying was completed by commercial laboratories (Bureau Veritas) using a 50g charge for fire assay analysis with AAS finish. This technique is industry standard for gold and considered appropriate.
		Regional Prospects AC All gold assaying was completed by commercial laboratories (Bureau Veritas) using a 50g charge for fire assay analysis for 4m composite AC samples. 1m AC re-samples are assayed by a commercial laboratory (Bureau Veritas) using a 50g charge for fire assay analysis with AAS finish.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc	Apart from magnetic susceptibility in targeted zones, no other geophysical measurements were routinely made.

Criteria	JORC Code explanation	Commentary
	Nature of quality control procedures	All Gold Projects AC and RC
	adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Certified Reference Material (CRM or standards) and blanks were inserted every 25th sample to assess the assaying accuracy of the external laboratories. Field duplicates (RC, AC) were inserted every 20th sample to assess the repeatability from the field and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 15th sample to assess the precision of assaying.
		All Gold Projects DD
		Certified Reference Material (CRM or standards) and blanks were inserted every 20 th and 25 th sample to assess the assaying accuracy of the external laboratories. Field duplicates on diamond core, i.e. other half of cut core, have not been routinely assayed. Laboratory duplicates were also completed approximately every 15th sample to assess the precision of assaying.
		Regional Prospects AC Certified Reference Material (CRM or standards) and blanks were inserted every 50 th sample (samples ending in 25 and 75) to assess the assaying accuracy of the external laboratories. Field duplicates were taken every 50 th sample (samples ending in 00 and 50) to assess the repeatability from the field and variability of the gold mineralisation. Laboratory duplicates (sample preparation split) were also completed roughly every 15th sample.
		All Sample Results
		Evaluation of both the Regis submitted standards, and the internal laboratory quality control data, indicates assaying to be accurate and without significant drift for significant time periods. Excluding obvious errors, the vast majority of the CRM assaying report shows no consistent positive or negative overall mean bias. Duplicate assays show high levels of correlation and no apparent bias between the duplicate pairs. Field duplicate samples show marginally acceptable levels of correlation and no relative bias.
		Results of the QAQC sampling were considered acceptable for the gold deposits and regional prospects. Substantial focus has been given to ensuring sampling procedures met industry best practise to ensure acceptable levels of accuracy and precision were achieved in a coarse gold environment.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	No independent personnel have visually inspected the significant intersections in RC chips or diamond drill core. Numerous highly qualified and experienced company personnel from exploration and mine production positions have visually inspected the significant intersections in AC chips, RC chips and diamond drill core.
	The use of twinned holes.	No twinning of holes was completed in the current quarter.
		Several DD holes were drilled at Garden Well in close proximity to RC holes.
		In all cases gold grades and widths of mineralisation were considered comparable between drill sample types.

Criteria	JORC Code explanation	Commentary					
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All geological and field data is entered into Logchief commercial software only allowing data to be entered using the Regis geological code system and sample protocol. Logchief data is validated and uploaded directly to the Datashed database.					
	Discuss any adjustment to assay data.	For the purpose of resource estimation any samples not assayed (i.e. destroyed in processing, listed not received) have had the assay value converted to a -9 in the database. Any samples assayed below detection limit (0.01 ppm Au) have been converted to 0.005 ppm (half detection limit) in the database.					
Location of	Accuracy and quality of surveys used to	All Gold Projects					
data points	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Regis drill hole collar locations were picked up by site-based authorized surveyors, or using Trimble RTK GPS, calibrated to a base station (expected accuracy of 20mm).					
		Downhole surveying was measured by using either a Reflex EZ-Shot Downhole Survey Instrument or North Seeking Gyro based tool where magnetic host rock would affect azimuth readings					
		The surveys were completed every 30m down each drill hole.					
		Regional Prospects					
		Regis drill hole collar locations were picked up by handheld GPS. Hole azimuths were measured at the collar using a Suur sighting compass.					
	Specification of the grid system used.	All Gold Projects					
		The grid system is AMG Zone 51 (AGD 84) for surveying pickups. Modelling at the Baneygo and Gloster Area is completed using a local grid, with conversion of digital data from AMG to local completed using macros.					
		Regional Prospects					
		The grid system set in the handheld GPS unit is AMG Zone 51 (AGD 84). Hole azimuths were measured at the collar using a Suunto sighting compass.					
		All location data is reported in Appendix 2 in accordance with DMP reporting guidelines in MGA Zone 51 (GDA 94). Conversions are performed in RRLs Datashed database.					
	Quality and adequacy of topographic control.	The topographic surface for all projects were derived from a combination of the primary drill hole pickups and the pre-existing photogrammetric contouring.					

Criteria	JORC Code explanation	Commentary
Data spacing	Data spacing for reporting of Exploration	All Gold Projects
and distribution	Results.	Baneygo The Baneygo gold deposit was sampled on a nominal 40m north by 40m or 20m east grid spacings.
		Garden Well The Garden Well gold deposit was sampled on a nominal 40m east by 40m or 80m north grid spacing.
		Gloster The Gloster gold deposit was sampled on a nominal spacing 30m to 60m apart along strike. DD holes were spaced 100m apart along strike.
		Moolart Well DD holes were spaced ≈700m apart along strike.
		Pleco The Pleco gold prospect was sampled on 40m north by 20m east grid spacing.
		Regional Prospects
		Regional Prospects are generally drilled on a broad line spacing 320m to 160m with drill holes spacing from 80m to 20m depending on the style of mineralisation and width of target.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The planned data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised domains to support the definition of Inferred and Indicated Mineral Resources under the 2012 JORC code once all other modifying factors have been addressed.
	Whether sample compositing has been applied.	All Gold Projects No sample compositing has been applied in the field within the mineralised zones.
		Regional Prospects
		All first pass AC drill samples were collected at 1m samples and composited to 4m intervals.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling on all projects is orientated to best suit the mineralisation to be closely perpendicular to both the strike and dip of the mineralisation. Intercepts are close to true-width in most cases. In the case of Baneygo drill programs, the orientation of mineralisation is sub vertical, as such the current drilling is designed to assist in refining ore geometry and therefore a more accurate estimate of true thickness. Drill orientation at Baneygo was adjusted as required to facilitate drilling around historical mine site infrastructure, and in some instances drill holes are at a high angle to the dip of mineralisation.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	It is not believed that drilling orientation has introduced a sampling bias.
Sample security	The measures taken to ensure sample security.	Samples are securely sealed and stored onsite, until delivery to Perth laboratories via contract freight Transport. Chain of custody consignment notes and sample submission forms are sent with the samples. Sample submission forms are also emailed to the laboratory and are used to keep track of the sample batches.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No external audits on sampling techniques and data have been completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Section 2 contains relevant data on projects and prospects discussed in the main body text of the June 2019 Quarterly Report, or those included in Appendix 2 and considered to be material.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Baneygo Area M38/344 – Reg Holders, Regis Resources Ltd & Duketon Resources Pty Ltd; Area 980.45ha; granted 23 April 1993; 2% Franco Nevada Royalty; no Native Title claims Garden Well The Garden Well gold deposit is located on M38/1249, M38/1250, M38/283. Current registered holders of the tenements are: M38/1249 Regis Resources Ltd; M38/1250 and M38/283 Regis Resources Ltd and Duketon resources Pty Ltd (100% subsidiary of Regis Resources Ltd); 2% Royalty to Franco Nevada. Area = 2,739 ha. Normal Western Australian state royalties apply. There are no registered Native Title Claims. Gloster The Gloster prospect is located on M38/1268. Current registered holders are M38/1268 – Regis Resources Ltd; 2% Royalty to William Robert Richmond. Normal Western Australian state royalties apply. There are no registered native title claims Moolart Well The Moolart Well Gold deposit is located on M38/498, M38/499, and M38/500. Current registered holders of the tenements are Regis Resources Ltd and Duketon Resources Pty Ltd (100% subsidiary of Regis Resources Ltd); Area = 2,267 ha. Normal Western Australian state royalties apply plus a 2% Royalty to Franco Nevada. There are no registered Native Title Claims. Pleco The Pleco gold prospect is located on M38/1249 and M38/1250. Current registered holders of the tenements are: M38/1249 Regis Resources Ltd, M38/1250 Regis Resources Ltd and Duketon resources Pty Ltd (100% subsidiary of Regis Resources Ltd); 2% Royalty to Franco Nevada. Normal Western Australian state royalties apply. There are no registered Native Title Claims.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Baneygo Area Shallow drilling (less than 100m vertical depth) was completed by Aurora, Ashton and Johnsons Well Mining in the 1990's. Garden Well Minor amounts of drilling was completed by Ashton and Johnsons Well Mining although it was mainly shallow and not extensive enough to properly define the mineralisation.

Criteria	JORC Code explanation	Commentary
		Gloster Gloster was discovered in 1902, with no modern exploration work completed until Hillmin Gold Mines Pty Ltd and Aurotech NL conducted mapping, RC drilling, DD and RAB in the mid 1980's, culminating in Resource Estimates and feasibility studies. Leader Resources NL, Maiden Gold NL and Johnsons Well Mining conducted RC, DD and RAB drilling in the 1990s to infill and extend the resource.
		Moolart Well Discovery drill holes by Normandy in the early 2000s, Resource development drilling conducted by Newmont in early 2000s.
		Pleco No historical drilling.
Geology	Deposit type, geological setting and style of mineralisation.	Baneygo Area Gold is hosted in a steeply east dipping 345° trending quartz-dolerite unit intruding an ultramafic sequence. Gold mineralisation is associated with quartz-albite-sericite-carbonate-sulphide alteration and is restricted to the quartz dolerite unit which is generally ≈ 80m wide. Weathering depths vary from 20m to 80m vertical depth.
		Garden Well & Pleco Gold is hosted in a moderate east to steeply dipping shear zone trending N-S. Gold mineralisation within ultramafic is associated with quartz, fuchsite, sericite, carbonate, sulphides. Gold mineralisation within chert, shale and BIF is associated with brecciated zones including elevated sulphides and quartz veins.
		Moolart Well Primary gold mineralisation at Moolart Well is associated with moderately east dipping N-S trending shear zones. The shear zones are closely related to diorite intrusives and rheology contrasts between units within the mine sequence of basalts/sediments, ultramafics, and dolerite sills.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Refer to body of announcement and Appendix 2.
	easting and northing of the drill hole collar	

Criteria	JORC Code explanation	Commentary
	elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
	dip and azimuth of the hole	
	down hole length and interception depth	
	hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Baneygo, Garden Well, Gloster Reported intercepts include a minimum of 2.0 g/t Au value over a minimum distance of 0.1m with a maximum 2m consecutive internal waste. No upper cuts have been applied. All other Gold Projects and Prospects reported intercepts include a minimum of 0.5 g/t Au value over a minimum distance of 1m with a maximum 2m consecutive internal waste. No upper cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Appendix 2 All assay results above 1 g/t gold are reported.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results.	Baneygo

Criteria	JORC Code explanation	Commentary
widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	The Baneygo gold deposit was drilled at -46° to -68° dip towards 072° to 075° and 244° to 262°. The mineralised quartz dolerite strikes 344° and is subvertical. Some intercepts reported are close to true width, steep angled holes are not true width where the mineralisation is sub vertical
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Garden Well The Garden Well gold deposit was drilled at -55° to -63° dip towards 270° designed to drill perpendicular to the strike of mineralisation. The mineralised zone is moderately east dipping, and the intercepts reported are close to true width. Gloster The Gloster gold deposit was drilled at -60° towards 246° designed to drill perpendicular to the strike of mineralisation. The mineralised zone is moderately north-east dipping. The intercepts reported are close to true width.
		Moolart Well The Moolart Well gold deposit was drilled at -60° towards 270° and designed to drill perpendicular to the strike of mineralisation. The mineralized zone is moderately east dipping. The intercepts reported are close to true width.
		Pleco The Pleco gold prospect was drilled at -60° to 270° azimuth designed to drill perpendicular to the strike of mineralisation. The mineralised zone is moderately east dipping, and the intercepts reported are close to true width.
		Regional Prospects The Regional Prospects were drilled at -60° towards varying azimuths designed to drill as close as possible to perpendicular to the strike of mineralisation.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to the body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should	A list of all holes drilled during the quarter attached in Appendix 2 . All assay results above 1 g/t have been reported. Assay results below 1 g/t are not considered material and are reported as such.

Criteria	JORC Code explanation	Commentary
	be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other material exploration data to report.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale stepout drilling).	Rosemont Deep diamond drilling has commenced from surface to test the strong reflective unit identified in the 2D seismic survey and the gold mineralised quartz dolerite will be tested between 800m to 1200m vertical depth below surface. Other Gold Projects Infill drilling will occur where appropriate, and extensional drilling will be conducted along strike and at depth beneath existing deposits where gold mineralisation may be of sufficient grade and thickness for underground development. Regional Prospects Drilling of high priority regional prospects will continue in 2019. Follow up drilling will be conducted where anomalous results are identified in first pass drill testing.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	See diagrams in main text

APPENDIX 2

Gold Assay Results >1 g/t Au

Borodale Creek Collar Location								Intersection >1.0 g/t Au and >1g/t Au*m			
Hole ID	Υ	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t	
RRLBOCAC001	6900539	428138	500	-60	270	71		No Signifi	cant Intercept		
RRLBOCAC002	6900539	428458	500	-60	269	11		No Signifi	cant Intercept		
RRLBOCAC003	6900539	428777	500	-60	269	76		No Signifi	cant Intercept		
RRLBOCAC004	6900539	429098	500	-60	270	95		No Signifi	cant Intercept		
RRLBOCAC005	6900539	429407	500	-60	270	134		No Signifi	cant Intercept		
RRLBOCAC006	6900539	429737	500	-60	269	78		No Signifi	cant Intercept		
RRLBOCAC007	6900539	430057	500	-60	270	137		No Signifi	cant Intercept		
RRLBOCAC008	6900539	430378	500	-60	270	153		No Signifi	cant Intercept		
RRLBOCAC009	6900539	430698	500	-60	270	78		No Signifi	cant Intercept		
RRLBOCAC010	6900539	431017	500	-60	270	98		No Signifi	cant Intercept		
RRLBOCAC011	6899899	428138	500	-60	272	20		No Signifi	cant Intercept		
RRLBOCAC012	6899899	428457	500	-60	270	129		No Signifi	cant Intercept		
RRLBOCAC013	6899899	428777	500	-60	270	30		No Signifi	cant Intercept		
RRLBOCAC014	6899899	429098	500	-60	271	54		No Signifi	cant Intercept		
RRLBOCAC015	6899899	429418	500	-60	270	26		No Signifi	cant Intercept		
RRLBOCAC016	6899899	429737	500	-60	271	64		No Signifi	cant Intercept		
RRLBOCAC017	6899899	430058	500	-60	270	116		No Signifi	cant Intercept		
RRLBOCAC018	6899899	430378	500	-60	270	24		No Signifi	cant Intercept		
RRLBOCAC019	6899899	430697	500	-60	270	39		No Signifi	cant Intercept		
RRLBOCAC020	6899894	430697	500	-60	270	67		No Signifi	cant Intercept		
RRLBOCAC021	6899899	431017	500	-60	270	89		No Signifi	cant Intercept		
RRLBOCAC022	6899259	428778	500	-60	270	65		No Signifi	cant Intercept		
RRLBOCAC023	6899259	429098	500	-60	270	24		No Signifi	cant Intercept		

Hole ID	Υ	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLBOCAC024	6899259	429737	500	-60	270	71	()	. ,	icant Intercept	61 -
RRLBOCAC025	6899259	429437	500	-60	270	34			icant Intercept	
RRLBOCAC026	6899259	430058	500	-60	270	22			icant Intercept	
RRLBOCAC027	6899259	430377	500	-60	271	61		No Signifi	icant Intercept	
RRLBOCAC028	6899259	430697	500	-60	270	52			icant Intercept	
RRLBOCAC029	6899259	431018	500	-60	270	77		No Signifi	icant Intercept	
RRLBOCAC030	6898619	429417	500	-60	270	80		No Signifi	icant Intercept	
RRLBOCAC031	6898619	429738	500	-60	275	91		No Signifi	icant Intercept	
RRLBOCAC032	6898619	430058	500	-60	270	52		No Signifi	icant Intercept	
RRLBOCAC033	6898619	430377	500	-60	270	38		No Signifi	icant Intercept	
RRLBOCAC034	6898619	430698	500	-60	273	61		No Signifi	icant Intercept	
RRLBOCAC035	6898619	431018	500	-60	270	44		No Signifi	icant Intercept	
RRLBOCAC036	6897979	427498	500	-60	270	44		No Signifi	icant Intercept	
RRLBOCAC037	6897979	427818	500	-60	268	71		No Signifi	icant Intercept	
RRLBOCAC038	6897979	428137	500	-60	270	18		No Signifi	icant Intercept	
RRLBOCAC039	6897979	428458	500	-60	270	24		No Signifi	icant Intercept	
RRLBOCAC040	6897979	428778	500	-60	270	50		No Signifi	icant Intercept	
RRLBOCAC041	6897979	429097	500	-60	268	25		No Signifi	icant Intercept	
RRLBOCAC042	6897979	429418	500	-60	270	17		No Signifi	icant Intercept	
RRLBOCAC043	6897979	430057	500	-60	270	28		No Signifi	icant Intercept	
RRLBOCAC044	6897979	430057	500	-60	270	40		No Signifi	icant Intercept	
RRLBOCAC045	6897979	430378	500	-60	270	19			icant Intercept	
RRLBOCAC046	6897979	430698	500	-60	270	39		No Signifi	icant Intercept	
RRLBOCAC047	6897979	431017	500	-60	270	35			icant Intercept	
RRLBOCAC048	6897339	427177	500	-60	272	15			icant Intercept	
RRLBOCAC049	6897339	427498	500	-60	270	12		No Signifi	icant Intercept	
RRLBOCAC050	6897339	427817	500	-60	270	28		No Signifi	icant Intercept	

Quarterly Report to 30 June 2019

Hole ID	Υ	Х	z	Din	Azimuth	Total Depth	From To Interval Au
						(m)	(m) (m) (m) g/t
RRLBOCAC051	6897339	428137	500	-60	270	23	No Significant Intercept
RRLBOCAC052	6897339	428498	500	-60	273	12	No Significant Intercept
RRLBOCAC053	6897339	428777	500	-60	273	45	No Significant Intercept
RRLBOCAC054	6897339	429097	500	-60	277	26	No Significant Intercept
RRLBOCAC055	6897339	429418	500	-60	270	59	No Significant Intercept
RRLBOCAC056	6897339	429737	500	-60	270	55	No Significant Intercept
RRLBOCAC057	6897339	430057	500	-60	270	33	No Significant Intercept
RRLBOCAC058	6897339	430378	500	-60	270	40	No Significant Intercept
RRLBOCAC059	6987339	430698	500	-60	270	29	No Significant Intercept
RRLBOCAC060	6987339	431018	500	-60	270	35	No Significant Intercept
RRLBOCAC061	6896699	426857	500	-60	270	17	No Significant Intercept
RRLBOCAC062	6896699	427178	500	-60	270	3	No Significant Intercept
RRLBOCAC063	6896699	427498	500	-60	270	9	No Significant Intercept
RRLBOCAC064	6896699	427817	500	-60	270	14	No Significant Intercept
RRLBOCAC065	6896699	428138	500	-60	270	14	No Significant Intercept
RRLBOCAC066	6896699	428777	500	-60	270	34	No Significant Intercept
RRLBOCAC067	6896699	429098	500	-60	270	36	No Significant Intercept
RRLBOCAC068	6896699	429418	500	-60	270	32	No Significant Intercept
RRLBOCAC069	6896699	429737	500	-60	270	31	No Significant Intercept
RRLBOCAC070	6896699	430058	500	-60	270	38	No Significant Intercept
RRLBOCAC071	6896699	430378	500	-60	270	25	No Significant Intercept
RRLBOCAC072	6896699	430697	500	-60	270	15	No Significant Intercept
RRLBOCAC073	6896699	431018	500	-60	270	29	No Significant Intercept
RRLBOCAC074	6896059	426538	500	-60	270	25	No Significant Intercept
RRLBOCAC075	6896059	426857	500	-60	270	23	No Significant Intercept
RRLBOCAC076	6896059	427178	500	-60	270	6	No Significant Intercept
RRLBOCAC077	6896059	427498	500	-60	270	3	No Significant Intercept

RRLBOCAC079 6896059 428138 500 -60 270 52 No Significant Inte	, ,,
RRLBOCAC079 6896059 428138 500 -60 270 52 No Significant Inte	
S	•
DDI DOCA COOO COOCOEO 4304E7 FOO CO 370 44 No Cignificant Int.	•
RRLBOCAC080 6896059 428457 500 -60 270 44 No Significant Inte	<u> </u>
RRLBOCAC081 6896059 428777 500 -60 270 15 No Significant Inte	•
RRLBOCAC082 6896059 429098 500 -60 270 30 No Significant Inte	•
RRLBOCAC083 6896059 429417 500 -60 270 8 No Significant Inte	•
RRLBOCAC084 6896059 429738 500 -60 269 12 No Significant Inte	•
RRLBOCAC085 6896059 430058 500 -60 270 24 No Significant Inte	
RRLBOCAC086 6896059 430377 500 -60 270 54 No Significant Inte	
RRLBOCAC087 6896059 430698 500 -60 270 15 No Significant Inte	
RRLBOCAC088 6896059 431018 500 -60 270 16 No Significant Inte	•
RRLBOCAC089 6895419 428457 500 -60 270 36 No Significant Inte	ercept
RRLBOCAC090 6895419 428778 500 -60 270 20 No Significant Inte	ercept
RRLBOCAC091 6895419 429738 500 -60 269 16 No Significant Inte	ercept
RRLBOCAC092 6895419 430057 500 -60 269 28 No Significant Inte	ercept
RRLBOCAC093 6895399 430397 500 -60 270 17 No Significant Inte	ercept
RRLBOCAC094 6895419 430698 500 -60 269 60 No Significant Inte	ercept
RRLBOCAC095 6895419 431017 500 -60 270 19 No Significant Inte	ercept
RRLBOCAC096 6894779 428778 500 -60 270 25 No Significant Inte	ercept
RRLBOCAC097 6894779 429097 500 -60 270 19 No Significant Inte	ercept
RRLBOCAC098 6894786 429418 500 -60 271 10 No Significant Inte	ercept
RRLBOCAC099 6894779 429738 500 -60 269 77 No Significant Inte	ercept
RRLBOCAC100 6894779 430048 500 -60 272 22 No Significant Inte	ercept
RRLBOCAC101 6894779 430378 500 -60 270 43 No Significant Inte	ercept
RRLBOCAC102 6894779 430697 500 -60 268 71 No Significant Inte	ercept
RRLBOCAC103 6894779 431017 500 -60 270 13 No Significant Inte	ercept
RRLBOCAC104 6894139 429418 500 -60 270 18 No Significant Inte	-

Hole ID	Υ	х	Z	Din	Azimuth	Total Depth	From	То	Interval	Au
Hole ID	I	۸		ыр	Azimutii	(m)	(m)	(m)	(m)	g/t
RRLBOCAC105	6894139	429132	500	-60	268	8		No Signifi	cant Intercept	
RRLBOCAC106	6894139	429737	500	-60	269	26		No Signifi	cant Intercept	
RRLBOCAC107	6894139	430058	500	-60	270	21		No Signifi	cant Intercept	
RRLBOCAC108	6894139	430378	500	-60	270	31		No Signifi	cant Intercept	
RRLBOCAC109	6894139	430697	500	-60	268	45		No Signifi	cant Intercept	
RRLBOCAC110	6894139	431018	500	-60	273	66		No Signifi	cant Intercept	
RRLBOCAC111	6893499	429737	500	-60	268	22		No Signifi	cant Intercept	
RRLBOCAC112	6893499	430058	500	-60	270	11			cant Intercept	
RRLBOCAC113	6893499	430377	500	-60	265	30		No Signifi	cant Intercept	
RRLBOCAC114	6893499	430658	500	-60	272	35		No Signifi	cant Intercept	
RRLBOCAC115	6892885	430153	500	-60	270	12		No Signifi	cant Intercept	
RRLBOCAC116	6892859	430377	500	-60	270	10		No Signifi	cant Intercept	
RRLBOCAC117	6892179	430377	500	-60	272	13		No Signifi	cant Intercept	
RRLBOCAC118	6892219	430698	500	-60	270	13		No Signifi	cant Intercept	
RRLBOCAC119	6892219	431017	500	-60	270	11			cant Intercept	
RRLBOCAC120	6892219	431657	500	-60	269	68		No Signifi	cant Intercept	
RRLBOCAC121	6892219	431338	500	-60	270	20		No Signifi	cant Intercept	
RRLBOCAC122	6892219	431978	500	-60	270	110		No Signifi	cant Intercept	
RRLBOCAC123	6892219	432297	500	-60	268	82		No Signifi	cant Intercept	
RRLBOCAC124	6892859	431738	500	-60	272	86		No Signifi	cant Intercept	
RRLBOCAC125	6892859	431978	500	-60	269	74		No Signifi	cant Intercept	
RRLBOCAC126	6892859	432298	500	-60	269	102		No Signifi	cant Intercept	
RRLBOCAC127	6891579	430378	500	-60	269	4		No Signifi	cant Intercept	
RRLBOCAC128	6891579	430697	500	-60	267	37			cant Intercept	
RRLBOCAC129	6891579	431018	500	-60	269	30		No Signifi	cant Intercept	
RRLBOCAC130	6890939	430697	500	-60	270	30		No Signifi	cant Intercept	
RRLBOCAC131	6890932	431018	500	-60	271	60		No Signifi	cant Intercept	
RRLBOCAC132	6895424	428463	500	-60	271	36		No Signifi	cant Intercept	

RRLBOCAC133	6895419	428778	500	-60	270	25			cant Intercept	
	Ва	aneygo Col	lar Loca	tion			Intersec	tion >1.0 g/	't Au and >1g/t /	∖ս *m
Hole ID	Υ	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLBYRC563	6906830	432424	502	-60	252	270	118	119	1	1.71
RRLBYRC563							124	125	1	1.82
RRLBYRC563							128	130	2	1.53
RRLBYRC563							133	134	1	1.21
RRLBYRC563							148	149	1	1.65
RRLBYRC563							164	165	1	2.02
RRLBYRC563							173	177	4	1.04
RRLBYRC563							193	194	1	1.34
RRLBYRC563							206	209	3	1.95
RRLBYRC563							214	215	1	1.75
RRLBYRC563							221	224	3	1.05
RRLBYRC563							229	230	1	1.09
RRLBYRC563							231	232	1	1.62
RRLBYRC563							236	237	1	1.33
RRLBYRC563							239	240	1	1.11
RRLBYRC564	6906837	432436	503	-60	252	300	127	129	2	1.88
RRLBYRC564							176	177	1	2.99
RRLBYRC564							189	190	1	3.82
RRLBYRC564							203	204	1	1.02
RRLBYRC564							207	209	2	1.99
RRLBYRC564							212	221	9	1.08
RRLBYRC564							238	239	1	1.43
RRLBYRC564							243	244	1	1.7
RRLBYRC565	6906914	432440	503	-60	254	300	188	189	1	1.56
RRLBYRC565							212	219	7	1.33

Hole ID	Υ	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLBYRC565							223	224	1	1.13
RRLBYRC565							227	228	1	1.63
RRLBYRC565							245	246	1	2.55
RRLBYRC566	6906816	432430	502	-69	254	339	127	128	1	1.48
RRLBYRC566							135	136	1	1.17
RRLBYRC566							175	176	1	1.54
RRLBYRC566							180	184	4	1.91
RRLBYRC566							197	198	1	1.12
RRLBYRC566							205	206	1	1.1
RRLBYRC566							212	213	1	1.2
RRLBYRC566							230	234	4	1.37
RRLBYRC566							237	238	1	2.22
RRLBYRC566							245	246	1	1.07
RRLBYRC566							249	251	2	2.62
RRLBYRC566							313	314	1	1.18
RRLBYRC566							334	335	1	2.31
RRLBYRC567	6906796	432441	503	-63	254	252	120	123	3	13.84
RRLBYRC567							178	179	1	1.64
RRLBYRC567							182	183	1	1.2
RRLBYRC567							187	199	12	3.42
RRLBYRC567							229	232	3	2.72
RRLBYRC568	6906753	432445	502	-60	254	198	115	118	3	7.11
RRLBYRC568							121	124	3	1.13
RRLBYRC568							138	140	2	2.75
RRLBYRC568							144	145	1	1.22
RRLBYRC568							150	156	6	1.24
RRLBYRC569	6906736	432468	502	-64	254	297	179	180	1	11.3
RRLBYRC569							184	185	1	1.02

						Total Depth	From	То	Interval	Au
Hole ID	Y	Х	Z	Dip	Azimuth	(m) ·	(m)	(m)	(m)	g/t
RRLBYRC569							192	195	3	2.56
RRLBYRC569							198	203	5	2.25
RRLBYRC569							211	212	1	1.75
RRLBYRC569							242	243	1	2.9
RRLBYRC570	6906935	432432	502	-60	254	267	208	211	3	1.79
RRLBYRC570							225	226	1	1.64
RRLBYRC570							232	233	1	7.3
RRLBYRC571	6906938	432445	503	-60	252	279	213	214	1	1.1
RRLBYRC571							254	255	1	1.04
RRLBYRC572	6906942	432459	504	-60	252	351	201	202	1	3.61
RRLBYRC572							251	253	2	2.12
RRLBYRC572							299	300	1	1.98
RRLBYRC573	6906946	432473	505	-60	252	468	276	277	1	1.11
RRLBYRC573							280	281	1	3.66
RRLBYRC573							284	285	1	1.11
RRLBYRC573							306	307	1	3.88
RRLBYRC573							314	315	1	1.42
RRLBYRC573							335	339	4	1.95
RRLBYRC573							367	368	1	2.72
RRLBYRC574	6906901	432464	505	-60	252	333	216	222	6	2
RRLBYRC574							229	230	1	1.32
RRLBYRC574							235	237	2	1.39
RRLBYRC575	6906907	432479	506	-60	252	381	252	253	1	1.6
RRLBYRC575							263	267	4	3.51
RRLBYRC575							274	275	1	2.38
RRLBYRC575							280	282	2	1.34
RRLBYRC575							287	288	1	2.57
RRLBYRC575							322	323	1	5.59

Hole ID	Υ	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLBYRC575							330	331	1	1.22
RRLBYRC576	6906857	432452	503	-60	254	267	194	197	3	1.4
RRLBYRC576							212	213	1	1.82
RRLBYRC576							237	238	1	1.07
RRLBYRC577	6906518	432478	499	-66	252	156	90	91	1	1.28
RRLBYRC577							94	95	1	1.04
RRLBYRC577							103	107	4	2.3
RRLBYRC577							111	112	1	6.4
RRLBYRC577							121	123	2	3.55
RRLBYRC578	6906562	432505	499	-60	252	192	137	138	1	1.52
RRLBYRC579	6906613	432552	501	-60	252	309	218	228	10	1.5
RRLBYRC579							235	238	3	1.32
RRLBYRC579							278	279	1	1.01
RRLBYRC580	6906568	432532	499	-60	252	246	152	153	1	2.97
RRLBYRC580							179	182	3	7.24
RRLBYRC580							190	191	1	3.01
RRLBYRC581	6906708	432457	501	-60	253	189	102	104	2	1.41
RRLBYRC581							137	140	3	1.02
RRLBYRC581							149	150	1	2.71
RRLBYRC581							155	156	1	1.16
RRLBYRC582	6906865	432462	504	-61	254	357	199	200	1	2.79
RRLBYRC582							225	228	3	1.63
RRLBYRC582							235	240	5	2.51
RRLBYRC582							271	272	1	2.06
RRLBYRC582							275	277	2	6.22
RRLBYRC582							286	287	1	3.87
RRLBYRC583	6907892	432058	492	-60	252	156	102	103	1	2.26
RRLBYRC583							128	129	1	1.25

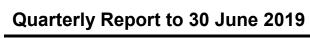
Hole ID	Υ	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLBYRC583						. ,	133	136	3	3.12
RRLBYRC584	6907896	432074	492	-60	254	228	166	174	8	1.48
RRLBYRC585	6907899	432085	492	-60	253	246		No Signific	cant Intercept	
RRLBYRC586	6907851	432065	493	-60	254	180	142	143	1	1.38
RRLBYRC586							161	162	1	1.34
RRLBYRC587	6907855	432079	493	-60	253	204	156	159	3	2.13
RRLBYRC587							163	165	2	3.79
RRLBYRC588	6907860	432095	493	-60	254	234	173	175	2	43
RRLBYRC589	6907813	432069	495	-60	254	192	134	135	1	1.2
RRLBYRC589							172	174	2	4.9
RRLBYRC590	6907818	432086	495	-60	254	222	165	166	1	2.12
RRLBYRC590							188	189	1	4.03
RRLBYRC591	6907823	432102	494	-60	254	246	147	148	1	1.08
RRLBYRC591							178	179	1	1.71
RRLBYRC592	6907774	432080	496	-60	254	198	130	131	1	1.24
RRLBYRC592							134	135	1	1.49
RRLBYRC593	6907778	432096	496	-60	253	210			cant Intercept	
RRLBYRC594	6907783	432111	495	-60	254	234		No Signific	cant Intercept	
RRLBYRC595	6907736	432082	497	-60	254	174	104	105	1	1.04
RRLBYRC596	6907738	432099	497	-60	254	198	113	114	1	10.3
RRLBYRC596							140	147	7	1.07
RRLBYRC597	6907740	432113	496	-60	254	216	159	160	1	25.5
RRLBYRC597							163	164	1	1.88
RRLBYRC598	6907692	432084	498	-60	254	156	90	91	1	2.26
RRLBYRC598							95	97	2	2.95
RRLBYRC599	6907651	432103	497	-60	254	168	132	133	1	1.5
RRLBYRC600	6907606	432095	497	-60	254	144	100	102	2	4.85
RRLBYRC601	6907612	432112	497	-60	254	162		No Signific	cant Intercept	

Hole ID	Υ	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLBYRC602	6907616	432127	496	-60	254	180	157	158	1	1.26
RRLBYRC603	6907621	432140	496	-60	254	192	169	170	1	1.6
Hole ID	Y	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLBYRC604	6907580	432141	497	-60	252	168	129	133	4	1.14
RRLBYRC605	6907582	432153	496	-60	252	186		No Signific	cant Intercept	
RRLBYRC606	6907534	432131	497	-60	254	108	71	72	1	1.44
RRLBYRC606							75	77	2	1.73
RRLBYRC606							95	96	1	4.11
RRLBYRC607	6907536	432146	497	-60	248	138			cant Intercept	
RRLBYRC608	6907541	432161	497	-60	252	162	122	124	2	2.7
RRLBYRC609	6906962	432391	501	-60	252	192	162	163	1	1.05
RRLBYRC610	6906965	432403	501	-60	252	216	189	190	1	1.29
RRLBYRC610							200	201	1	4.84
RRLBYRC611	6906969	432418	501	-60	254	264	192	193	1	2.05
RRLBYRC611							217	218	1	3.15
RRLBYRC611							222	224	2	5.26
RRLBYRC611							242	243	1	1.19
RRLBYRC612	6906931	432416	502	-60	254	222	140	143	3	1.58
RRLBYRC612							151	152	1	1.13
RRLBYRC612							170	178	8	10.77
RRLBYRC612							182	185	3	7.94
RRLBYRC612							190	195	5	2.2
RRLBYRC612							205	206	1	1.05
RRLBYRC613	6906107	432590	494	-60	254	162	105	106	1	1.91
RRLBYRC614	6906110	432600	494	-61	254	180	101	102	1	1.12
RRLBYRC614							119	120	1	4.48

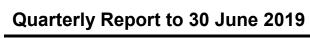
Hole ID	Υ	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLBYRC615	6906076	432638	494	-60	254	228	(111)		cant Intercept	6/ (
RRLBYRC616	6906026	432612	493	-60	254	168	82	83	1	1.26
RRLBYRC616	0300020	432012	433	-00	234	100	108	110	2	2.35
RRLBYRC616							114	115	1	1.56
RRLBYRC617	6906036	432637	493	-60	254	204	159	160	1	1.11
RRLBYRC617	0300030	432037	733	00	254	204	173	174	1	1.18
RRLBYRC618	6905993	432635	493	-60	253	186	117	119	2	1.79
RRLBYRC618	0303330	102000	.55		233	100	137	138	1	4.78
RRLBYRC619	6906002	432664	493	-60	253	234	177	180	3	2.11
RRLBYRC619							196	197	1	1.53
RRLBYRC620	6905956	432656	492	-60	253	210	132	133	1	1.13
RRLBYRC620							151	154	3	5.59
RRLBYRC621	6905964	432683	492	-60	254	234	170	171	1	1.1
RRLBYRC622	6905915	432655	491	-60	254	162	61	62	1	1.3
RRLBYRC623	6905923	432683	492	-60	254	240	142	143	1	1.27
RRLBYRC623							156	157	1	3.07
RRLBYRC623							179	180	1	1.24
RRLBYRC623							182	183	1	1.06
RRLBYRC624	6906095	432406	494	-50	74	275	220	224	4	5.51
RRLBYRC624							236	238	2	1.97
RRLBYRC624							245	251	6	5.46
RRLBYRC624							258	260	2	8.25
RRLBYRC625	6906195	432397	495	-50	72	300	216	217	1	1.25
RRLBYRC625							242	243	1	1.02
RRLBYRC626	6906269	432359	496	-50	72	300	180	181	1	1.1
RRLBYRC626							189	190	1	1.02
RRLBYRC626							204	205	1	5.93
RRLBYRC626							209	212	3	5.35

Uala ID	· ·		-	D:	A 4 la	Total Depth	From	То	Interval	Au
Hole ID	Υ	Х	Z	υір	Azimuth	(m)	(m)	(m)	(m)	g/t
RRLBYRC627	6906348	432334	498	-46	72	300	176	184	8	2.21
RRLBYRC627							218	222	4	2.78
RRLBYRC627							241	243	2	2.13
RRLBYRC627							286	287	1	2.53
RRLBYRC628	6906385	432333	499	-46	72	300	179	180	1	1.65
RRLBYRC628							192	194	2	2.77
RRLBYRC628							204	205	1	1.29
RRLBYRC628							271	273	2	3.52
RRLBYRC628							278	281	3	6.53
RRLBYRC629	6906428	432338	499	-46	72	264	138	139	1	2.06
RRLBYRC629							157	158	1	2.46
RRLBYRC629							210	211	1	1.06
RRLBYRC629							218	219	1	1.02
RRLBYRC630	6906424	432320	499	-48	72	312	275	276	1	1.5
RRLBYRC631	6906306	432345	497	-50	75	294		Awaitir	ng_Results	
RRLBYRC632	6906381	432317	498	-46	74	318		Awaitir	ng_Results	
RRLBYRC633	6906344	432321	498	-46	74	324		Awaitir	ng_Results	
RRLBYRC634	6906145	432583	494	-60	254	156		Awaitir	ng_Results	
RRLBYRC635	6906183	432548	495	-60	262	108	54	56	2	1.38
RRLBYRC635							77	78	1	3.54
RRLBYRC636	6906009	432692	492	-60	254	258	192	193	1	2.17
RRLBYRC636							220	222	2	1.72
RRLBYRC637	6906702	432438	501	-60	254	140	122	123	1	5.54
RRLBYRC638	6906714	432469	501	-60	254	218	112	113	1	1.11
RRLBYRC638							154	155	1	1.54
RRLBYRC638							160	164	4	1.14
RRLBYRC638							167	169	2	15.37
RRLBYRC639	6906671	432461	501	-60	254	182	126	128	2	1.49

Hole ID	Υ	Х	Z	Dip	Azimuth	Total Depth	From	То	Interval	Au
	•			٦.۴	7.=	(m)	(m)	(m)	(m)	g/t
RRLBYRC640	6906634	432476	500	-60	254	194	132	133	1	3.61
RRLBYRC640							144	145	1	1.97
RRLBYRC640							148	149	1	1.43
RRLBYRC641	6906642	432502	500	-60	254	266	165	166	1	8.72
RRLBYRC641							183	184	1	1.54
RRLBYRC641							200	202	2	2.55
RRLBYRC641							261	263	2	21.61
RRLBYRC642	6906592	432478	500	-60	254	172	71	73	2	1.21
RRLBYRC642							124	125	1	2.08
RRLBYRC642							129	135	6	1.7
RRLBYRC642							141	142	1	1.75
RRLBYRC643	6906600	432508	500	-60	254	220	165	166	1	7.67
RRLBYRC643							172	173	1	2.77
RRLBYRC643							188	189	1	1.65
RRLBYRC644	6906556	432493	499	-60	253	172	96	97	1	1.33
RRLBYRC644							120	127	7	1.77
RRLBYRC645	6906562	432521	499	-60	254	220	145	146	1	1.88
RRLBYRC646	6906574	432560	500	-60	254	316	208	219	11	2.94
RRLBYRC646							222	223	1	1.08
RRLBYRC646							292	293	1	2.68
RRLBYRC647	6906472	432494	498	-63	255	142	94	95	1	2.55
RRLBYRC647							106	107	1	1.32
RRLBYRC647							111	112	1	5.6
RRLBYRC647							120	121	1	1.28
RRLBYRC647							129	130	1	1.18
RRLBYRC647							125	126	1	2.38
RRLBYRC648	6906433	432503	498	-62	255	172	100	101	1	13



Hole ID	Υ	Х	Z	Dip	Azimuth	Total Depth	From	To	Interval	Au
						(m)	(m)	(m)	(m)	g/t
RRLBYRC648							109	110	1	1.08
RRLBYRC648							113	114	1	2.34
RRLBYRC648							117	118	1	1.18
RRLBYRC648							139	140	1	1.85
RRLBYRC648							155	156	1	4.87
RRLBYRC649	6906393	432515	497	-60	254	172	99	100	1	3.4
RRLBYRC649							116	118	2	6.69
RRLBYRC649							151	153	2	1.47
RRLBYRC650	6906317	432536	496	-60	254	178	110	111	1	3.7
RRLBYRC650							118	119	1	1.14
RRLBYRC650							127	128	1	1.17
RRLBYRC650							146	152	6	2
RRLBYRC651	6906241	432561	496	-62	255	148	102	103	1	5.54
RRLBYRC651							106	107	1	1.41
RRLBYRC651							112	113	1	2.3
RRLBYRC652	6906357	432525	497	-62	255	178	130	131	1	2.52
RRLBYRC652							136	138	2	2.34
RRLBYRC653	6906352	432496	497	-66	252	142	75	76	1	1.36
RRLBYRC653							82	87	5	2.12
RRLBYRC653							90	92	2	1.2
RRLBYRC653							106	112	6	1.35
RRLBYRC653							127	128	1	7.82
RRLBYRC654	6906193	432576	495	-60	262	166	96	100	4	9.01
RRLBYRC654							109	113	4	2.16
RRLBYRC654							123	124	1	1.52
RRLBYRC655	6906188	432562	495	-60	262	136	92	95	3	12.73
RRLBYRC656	6906045	432668	493	-60	254	258		Awaitii	ng_Results	



Hole ID	Υ	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLBYRC657	6907903	432088	492	-62	254	240		Awaitin	ng_Results	
RRLBYRC658	6906722	432497	502	-60	254	312	164	165	1	2.41
RRLBYRC658							219	220	1	10.1
RRLBYRC658							231	236	5	2.05
RRLBYRC658							248	249	1	1.69
RRLBYRC658							298	305	7	1.93
RRLBYRC659	6906676	432494	501	-60	254	240	184	185	1	2.46
RRLBYRC659							197	198	1	2.33
RRLBYRC660	6907863	432099	493	-62	254	258	193	194	1	1.01
RRLBYRC661	6906778	432447	503	-67	253	360		Awaitin	ng_Results	
RRLBYRC662	6906783	432450	503	-68	244	332		Awaitin	ıg_Results	
RRLBYRC663	6906689	432523	500	-60	251	300		Awaitin	ıg_Results	
RRLBYRC664	6906743	432460	500	-60	252	228		Awaitin	ıg_Results	
RRLBYRC665	6906747	432464	500	-68	254	312		Awaitin	ig_Results	
RRLBYRC666	6906155	432393	495	-50	74	318		Awaitin	ig_Results	
	Ga	rden Well (Collar Lo	cation			Intersec	tion >1.0 g/	t Au and >1g/t	: Au*m
Hole ID	Υ	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLGDDD132	6911394	437495	494	-60	270	571.9	235.66	236.1	0.44	1.42
RRLGDDD132		437433	737	00	270	371.5	249	250	1	1.05
RRLGDDD132							394	425.17	31.17	3.06
RRLGDDD132							431.3	443.6	12.3	1.78
RRLGDDD132							464	465	1	1.4
RRLGDDD132							485	487	2	1.08
RRLGDDD132							502	503	1	1.19
RRLGDDD133	6911395	437578	494	-60	270	648.51	476.83	479	2.17	3.49
RRLGDDD133							485	505	20	4.25
RRLGDDD133							515	517	2	1.43

Hole ID	Υ	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLGDDD133							538.27	538.65	0.38	1.96
RRLGDDD133							551	552	1	1.57
RRLGDDD134	6911399	437418	495	-60	270	445		Awaitir	ng_Results	
RRLGDDD135	6911399	437458	495	-60	270	470		Awaitir	ng_Results	
RRLGDDD136	6911474	437513	495	-60	270	531		Awaitir	ıg_Results	
RRLGDDD137	6911479	437428	495	-60	270	122		Awaitir	ig_Results	
RRLGDDD137A	6911479	437428	495	-60	270	483		Awaitir	ıg_Results	
RRLGDDD138	6911564	437398	495	-60	270	411		Awaitir	ıg_Results	
RRLGDRC643	6912806	437255	496	-57	270	450	321	322	1	1.62
RRLGDRC643							323	324	1	1.38
RRLGDRC643							333	340	7	1.16
RRLGDRC643							350	360	10	2.28
RRLGDRC643							369	376	7	1.8
RRLGDRC643							384	389	5	1.88
RRLGDRC643							399	400	1	1.36
RRLGDRC644	6912721	437255	496	-70	280	480	349	350	1	1.41
RRLGDRC644							359	360	1	2.9
RRLGDRC644							370	376	6	1.98
RRLGDRC644							380	381	1	1.05
RRLGDRC644							382	383	1	1.34
RRLGDRC644							389	395	6	1.85
RRLGDRC644							402	405	3	2.21
RRLGDRC644							414	415	1	1.89
RRLGDRC644							431	432	1	2.94
RRLGDRC644							453	454	1	2.14
RRLGDRC645	6912770	437256	496	-70	270	450	64	68	4	1.24
RRLGDRC645							367	380	13	1.91
RRLGDRC645							383	397	14	1.08

	-									
Hole ID	Υ	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLGDRC645							405	411	6	1.27
RRLGDRC645							414	415	1	2.19
RRLGDRC646	6913040	437346	498	-65	270	366	363	366	3	1.91
RRLGDRC647	6912994	437310	498	-58	273	330		No Signifi	cant Intercept	
RRLGDRCD638	6911478	437494	494	-60	270	609.1	468	470	2	1.74
RRLGDRCD638							473.35	474	0.65	1.78
RRLGDRCD638							494	496	2	1.34
RRLGDRCD638							575	579	4	1.45
RRLGDRCD638							589	590	1	1.63
RRLGDRCD638							595	597	2	4.41
RRLGDRCD640	6911478	437548	494	-63	270	663.4	232	233	1	1.22
RRLGDRCD640							521.1	523	1.9	2.26
RRLGDRCD640							556	557	1	1.43
RRLGDRCD640							566	567	1	1.65
RRLGDRCD640							602	603	1	1.03
RRLGDRCD640							624	625	1	1.25
RRLGDRCD640							634	635	1	1.12
RRLGDRCD642	6911397	437539	494	-60	268	610	354	355	1	1.14
RRLGDRCD642							447	448	1	1.26
RRLGDRCD642							450	452	2	1.1
RRLGDRCD642							456.02	483	26.98	4.12
RRLGDRCD642							520	521	1	1.16
	G	iloster Colla	ar Locat	ion			Intersec	tion >1.0 g,	t Au and >1g/t/	Au*m
Hole ID	Υ	х	Z	Din	Azimuth	Total Depth	From	То	Interval	Au
				-		(m)	(m)	(m)	(m)	g/t
RRLGLDD006	6950819	408923	551	-60	246	538			ng_Results	
RRLGLDD007	6950906	408870	553	-60	245	76			ng_Results	
RRLGLDD008	6950907	408871	553	-60	246	509		Awaiti	ng_Results	

Hole ID	Υ	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLGLRC430	6950848	408684	482	-60	246	218	5	6	1	1.79
RRLGLRC430							52	53	1	3.98
RRLGLRC430	6950848	408684	482	-60	246	218	5	6	1	1.79
RRLGLRC430							52	53	1	3.98
RRLGLRC430							61	63	2	2.1
RRLGLRC430							76	84	8	1.26
RRLGLRC430							92	93	1	1.46
RRLGLRC430							97	98	1	1.78
RRLGLRC430							101	108	7	26.07
RRLGLRC430							125	126	1	1.08
RRLGLRC430							132	133	1	1.06
RRLGLRC430							155	156	1	1.43
RRLGLRC430							181	183	2	1.04
RRLGLRC430							185	186	1	2.39
RRLGLRC431	6950904	408688	486	-60	246	237	2	11	9	1.23
RRLGLRC431							77	78	1	1.74
RRLGLRC431							81	88	7	4.24
RRLGLRC431							111	112	1	1.96
RRLGLRC431							159	160	1	1.95
RRLGLRC431							184	187	3	2.23
RRLGLRC431							191	194	3	5
RRLGLRC432	6950940	408581	475	-60	246	214	14	20	6	1.06
RRLGLRC432							37	38	1	1.37
RRLGLRC432							76	77	1	1.26
RRLGLRC432							109	112	3	1.99
RRLGLRC432							176	178	2	1.76
RRLGLRC433	6950955	408554	474	-60	246	160	4	5	1	10.4
RRLGLRC433							14	15	1	10.2

Hole ID	Υ	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t	
RRLGLRC433						, ,	39	40	1	1.6	
RRLGLRC433							113	114	1	3.58	
RRLGLRC433							149	150	1	2.57	
RRLGLRC433							156	157	1	1.06	
RRLGLRC434	6950896	408581	475	-60	246	203		Awaitii	ng_Results		
RRLGLRC435	6950844	408610	470	-60	246	209		Awaiti	ng_Results		
RRLGLRC436	6950952	408797	554	-60	244	401		Awaitii	ng_Results		
RRLGLRC437	6950694	408958	552	-60	246	389		Awaitii	ng_Results		
	In	ngijingi Coll	ar Locat	ion			Intersection >1.0 g/t Au and >1g/t Au*m				
Hele ID	V	V	7	Di-	A =:	Total Depth					
Hole ID	Υ	Х	Z	DID	Azimuth	(m)	(m) (m) (m) {				
RRLIJAC063	6948504	425142	540	-60	88	84			ng_Results		
RRLIJAC064	6948504	425063	540	-60	90	80			ng_Results		
RRLIJAC065	6948504	424982	540	-60	90	85			ng_Results		
RRLIJAC066	6948504	424902	540	-60	90	98		Awaiti	ng_Results		
RRLIJAC067	6948504	424824	540	-60	90	83			ng_Results		
RRLIJAC068	6948504	424743	540	-60	90	109		Awaiti	ng_Results		
RRLIJAC069	6948504	424664	540	-60	90	96		Awaiti	ng_Results		
RRLIJAC070	6948504	424584	540	-60	90	122		Awaitii	ng_Results		
RRLIJAC071	6948504	424503	540	-60	90	130			ng_Results		
RRLIJAC072	6948504	424424	540	-60	90	107		Awaitii	ng_Results		
RRLIJAC073	6948504	424344	540	-60	90	94			ng_Results		
RRLIJAC074	6948504	424263	540	-60	90	75			ng_Results		
RRLIJAC075	6948504	424104	540	-60	90	93			ng_Results		
RRLIJAC076	6948504	423942	540	-60	90	83			ng_Results		
RRLIJAC077	6948504	423782	540	-60	90	97			ng_Results		
RRLIJAC078	6947940	425182	540	-60	90	80		Awaiti	ng_Results		

Hole ID	Υ	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLIJAC079	6947940	425103	540	-60	90	109		Awaiti	ng_Results	
RRLIJAC080	6947940	425022	540	-60	90	100		Awaiti	ng_Results	
RRLIJAC081	6947940	424942	540	-60	89	103		Awaiti	ng_Results	
RRLIJAC082	6947935	424852	540	-60	89	97		Awaiti	ng_Results	
RRLIJAC083	6947940	424782	540	-60	92	106		Awaitii	ng_Results	
RRLIJAC084	6947940	424702	540	-60	88	131		Awaitii	ng_Results	
RRLIJAC085	6947940	424623	540	-60	91	132		Awaitii	ng_Results	
RRLIJAC086	6947940	424542	540	-60	92	105		Awaitii	ng_Results	
RRLIJAC087	6947940	424383	540	-60	89	108		Awaitii	ng_Results	
RRLIJAC088	6947940	424222	540	-60	92	122		Awaitii	ng_Results	
RRLIJAC089	6947940	424062	540	-60	90	138		Awaitiı	ng_Results	
RRLIJAC090	6947940	423901	540	-60	87	116		Awaitii	ng_Results	
RRLIJAC091	6947460	425201	540	-60	90	83		Awaitii	ng_Results	
RRLIJAC092	6947460	425041	540	-60	91	107		Awaitiı	ng_Results	
RRLIJAC093	6947460	424880	540	-60	90	113		Awaitiı	ng_Results	
RRLIJAC094	6947460	424721	540	-60	90	124			ng_Results	
RRLIJAC095	6947460	424561	540	-60	93	143		Awaitii	ng_Results	
RRLIJAC096	6947460	424400	540	-60	89	134		Awaitii	ng_Results	
RRLIJAC097	6947460	424241	540	-60	90	87		Awaitii	ng_Results	
RRLIJAC098	6947160	425902	540	-60	91	94		Awaitii	ng_Results	
RRLIJAC099	6947160	425741	540	-60	90	112		Awaitiı	ng_Results	
RRLIJAC100	6947160	425581	540	-60	90	107		Awaitii	ng_Results	
RRLIJAC101	6947160	425422	540	-60	90	98			ng_Results	
RRLIJAC102	6947160	425261	540	-60	90	79		Awaitii	ng_Results	
RRLIJAC103	6947160	425101	540	-60	90	105			ng_Results	
RRLIJAC104	6947160	424942	540	-60	90	105		Awaitii	ng_Results	

	Mui	phy Hills C	ollar Lo	cation			Intersec	tion >1.0 g	/t Au and >1g/t	Au*m
Hole ID	Υ	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLMUAC001	6907399	424798	510	-60	269	157		Awaiti	ng_Results	
RRLMUAC002	6907399	425118	510	-60	270	159		Awaiti	ng_Results	
RRLMUAC003	6907399	425438	510	-60	270	129		Awaiti	ng_Results	
RRLMUAC004	6908039	424798	510	-60	270	160		Awaiti	ng_Results	
RRLMUAC005	6908039	425118	510	-60	270	137		Awaiti	ng_Results	
RRLMUAC006	6908039	425438	510	-60	270	131		Awaiti	ng_Results	
RRLMUAC007	6908039	425757	510	-60	270	164		Awaiti	ng_Results	
RRLMUAC008	6908039	426077	510	-60	270	77	Awaiting_Results			
RRLMUAC009	6908039	426397	510	-60	270	153	Awaiting_Results			
RRLMUAC010	6908679	424798	510	-60	270	102		Awaiti	ng_Results	
RRLMUAC011	6908679	425118	510	-60	270	130		Awaiti	ng_Results	
RRLMUAC012	6908679	425438	510	-60	270	164		Awaiti	ng_Results	
	Mod	olart Well C	ollar Lo	cation			Intersec	tion >1.0 g,	t Au and >1g/t/	Au*m
Hole ID	Υ	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLMWDD140	6947608	435865	535	-60	270	555.63	207	208	1	3.14
RRLMWDD140							295	296	1	3.59
RRLMWDD140							319	320	1	11.4
RRLMWDD140							382.6	383	0.4	1.27
RRLMWDD141	6946359	436078	541	-60	270	550			ng_Results	
RRLMWDD142	6945958	436124	542	-60	270	613			ng_Results	
RRLMWDD143	6944757	436166	555	-60	270	600			ng_Results	
RRLMWDD144	6944709	435681	542	-65	270	543		Awaiti	ng_Results	

		Pleco Colla	r Locatio	on			Interse	ction >1.0 g	/t Au and >1g/t	Au*m
Hole ID	Υ	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLPLAC069	6916277	436111	502	-60	270	60		No Signifi	cant Intercept	
RRLPLAC070	6916276	436150	502	-60	270	58	30	31	1	1.58
RRLPLAC071	6916237	436117	502	-60	270	50		No Signifi	cant Intercept	
RRLPLAC072	6916236	436153	502	-60	270	80	50	51	1	3.54
RRLPLAC072							55	56	1	1.8
RRLPLAC073	6916197	436111	502	-60	270	60	29	30	1	2.01
RRLPLAC074	6916197	436152	502	-60	270	70	49	50	1	2.06
RRLPLAC075	6916158	436133	502	-60	270	70		No Signifi	cant Intercept	
RRLPLAC076	6916157	436152	502	-60	269	79	60	61	1	1.03
RRLPLAC077	6916116	436117	502	-60	270	60		No Signifi	cant Intercept	
RRLPLAC078	6916118	436158	502	-60	269	66	48	53	5	2.47
RRLPLAC079	6916078	436135	502	-60	269	60		No Signifi	cant Intercept	
RRLPLAC080	6916076	436174	502	-60	270	75	36	39	3	12.15
RRLPLAC080							44	45	1	1.5
RRLPLAC081	6916036	436158	502	-60	268	56	30	31	1	1.56
RRLPLAC082	6916036	436197	502	-60	271	62	45	47	2	2.13
RRLPLAC082							53	54	1	12.1
RRLPLAC083	6915997	436196	503	-60	270	51		No Signifi	cant Intercept	
RRLPLAC084	6915918	436198	502	-60	270	70	30	31	1	2.03
RRLPLAC085	6915916	436233	502	-60	270	79		No Signifi	cant Intercept	
RRLPLAC086	6915597	436456	502	-60	270	80		No Signifi	cant Intercept	
RRLPLAC087	6915598	436476	502	-60	269	80	78	79	1	1.52
RRLPLAC088	6915597	436495	502	-60	270	80	39	40	1	1.06
RRLPLAC089	6915519	436393	501	-60	270	69	31	32	1	1.46
RRLPLAC089							62	63	1	1.08
RRLPLAC090	6915478	436395	501	-60	270	70	42	43	1	1.3

Hole ID	Υ	х	z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLPLAC090							63	64	1	1.56
RRLPLAC091	6915438	436359	500	-60	270	60	38	39	1	1.54
RRLPLAC092	6915438	436392	500	-60	269	80		No Signifi	cant Intercept	
RRLPLAC093	6915398	436374	500	-60	270	53		No Signifi	cant Intercept	
RRLPLAC094	6915358	436357	500	-60	269	40		No Signifi	cant Intercept	
RRLPLAC095	6915355	436396	500	-60	270	60	33	36	3	2.73
RRLPLAC095							49	50	1	1.06
RRLPLAC096	6915354	436416	500	-60	270	74	43	44	1	2.9
RRLPLAC096							59	61	2	1.6
RRLPLAC096							66	67	1	2.21
RRLPLAC097	6915320	436376	499	-60	271	60	25	26	1	10.5
RRLPLAC098	6915318	436396	499	-60	270	70	27	28	1	1.15
RRLPLAC098							40	43	3	5.82
RRLPLAC098							52	53	1	1.01
RRLPLAC099	6915317	436416	499	-60	270	68	40	41	1	1.3
RRLPLAC099							57	58	1	1.88
RRLPLAC099							66	68	2	2.25
RRLPLAC100	6915279	436377	499	-60	270	60	23	24	1	5.65
RRLPLAC100							27	29	2	7.75
RRLPLAC101	6915279	436415	499	-60	270	68	56	57	1	2.69
RRLPLAC101							62	63	1	1.58
RRLPLAC102	6915280	436458	499	-60	270	77			cant Intercept	
RRLPLAC103	6915238	436376	499	-60	271	74		No Signifi	cant Intercept	
RRLPLAC104	6915237	436414	499	-60	270	74	31	32	1	3.32
RRLPLAC104							44	45	1	5.92
RRLPLAC104							57	61	4	2.9
RRLPLAC105	6915237	436454	499	-60	270	80	39	40	1	2.84

Hole ID	Υ	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t	
RRLPLAC106	6915236	436196	501	-60	270	47		No Signifi	cant Intercept		
RRLPLAC107	6915237	436238	500	-60	270	51		No Signifi	cant Intercept		
RRLPLAC108	6915236	436277	499	-60	270	65		No Signifi	cant Intercept		
RRLPLAC109	6915196	436216	501	-60	268	50		No Signifi	cant Intercept		
RRLPLAC110	6915198	436257	499	-60	270	68		No Signifi	cant Intercept		
RRLPLAC111	6915161	436215	501	-60	270	80		No Signifi	cant Intercept		
RRLPLAC112	6915162	436257	499	-60	272	63	No Significant Intercept				
RRLPLAC113	6915157	436296	498	-60	270	60	48	49	1	1.11	
		Petra Colla	r Locatio	on			Intersection >1.0 g/t Au and >1g/t Au*m				
Hele ID	V	V	7	Di-	ما د ا	Total Depth	<u> </u>				
Hole ID	Y	Х	Z	DIP	Azimuth	(m)	(m) (m) (m) g				
RRLPTRAC755	6934860	427650	535	-60	90	104		No Signifi	cant Intercept		
RRLPTRAC756	6934860	427571	535	-60	87	93		No Signifi	cant Intercept		
RRLPTRAC757	6934860	427490	535	-60	90	76		No Signifi	cant Intercept		
RRLPTRAC758	6934860	427411	535	-60	90	82		No Signifi	cant Intercept		
RRLPTRAC759	6934860	427331	535	-60	90	105		No Signifi	cant Intercept		
RRLPTRAC760	6934860	427250	535	-60	90	92		No Signifi	cant Intercept		
RRLPTRAC761	6934860	427171	535	-60	90	98		No Signifi	cant Intercept		
RRLPTRAC762	6934860	427090	535	-60	89	94		No Signifi	cant Intercept		
RRLPTRAC763	6934450	427705	535	-60	88	67		No Signifi	cant Intercept		
RRLPTRAC764	6934450	427626	535	-60	89	63		No Signifi	cant Intercept		
RRLPTRAC765	6934450	427547	535	-60	89	82		No Signifi	cant Intercept		
RRLPTRAC766	6934450	427466	535	-60	90	99		No Signifi	cant Intercept		
RRLPTRAC767	6934450	427386	535	-60	90	94		Awaiti	ng_Results		
RRLPTRAC768	6934450	427305	535	-60	90	95		Awaiti	ng_Results		
RRLPTRAC769	6934450	427226	535	-60	89	103		Awaiti	ng_Results		
RRLPTRAC770	6934445	427145	535	-60	91	91		Awaiti	ng_Results		

Hole ID	Υ	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t	
RRLPTRAC771	6934450	427066	535	-60	90	78	, ,		ng_Results	<u> </u>	
RRLPTRAC772	6934450	426986	535	-60	89	71			ng_Results		
RRLPTRAC773	6934060	427908	535	-60	85	83		Awaiti	ng_Results		
RRLPTRAC774	6934060	427829	535	-60	88	80		Awaiti	ng_Results		
RRLPTRAC775	6934060	427749	535	-60	90	73		Awaiti	ng_Results		
RRLPTRAC776	6934060	427669	535	-60	90	98	Awaiting_Results				
RRLPTRAC777	6934060	427589	535	-60	90	79		Awaiti	ng_Results		
RRLPTRAC778	6934060	427508	535	-60	90	89	Awaiting_Results				
RRLPTRAC779	6934060	427429	535	-60	90	86	Awaiting_Results				
RRLPTRAC780	6934060	427348	535	-60	90	81	Awaiting_Results				
RRLPTRAC781	6934060	427269	535	-60	90	80	Awaiting_Results				
RRLPTRAC782	6934060	427189	535	-60	90	93		Awaiti	ng_Results		
RRLPTRAC783	6934060	427108	535	-60	90	82		Awaiti	ng_Results		
RRLPTRAC784	6934060	427029	535	-60	90	83		Awaiti	ng_Results		
RRLPTRAC785	6934060	426948	535	-60	90	89		Awaiti	ng_Results		
RRLPTRAC786	6934060	426869	535	-60	90	86		Awaiti	ng_Results		
RRLPTRAC787	6934060	426789	535	-60	90	78		Awaiti	ng_Results		
RRLPTRAC788	6934060	426708	535	-60	90	71		Awaiti	ng_Results		
		Steer Creel	(Locatio	on			Intersed	ction >1.0 g	t Au and >1g/t	Au*m	
Hole ID	Υ	х	Z	Din	Azimuth	Total Depth	From	То	Interval	Au	
				•		(m)	(m)	(m)	(m)	g/t	
RRLSCAC058	6902279	428377	500	-60	270	142			cant Intercept		
RRLSCAC059	6902279	428638	500	-60	270	128	No Significant Intercept				
RRLSCAC060	6902279	428958	500	-60	270	145	No Significant Intercept				
RRLSCAC061	6902279	429277	500	-60	270	167	No Significant Intercept				
RRLSCAC062	6902279	429597	500	-60	270	179	No Significant Intercept				
RRLSCAC063	6902279	429918	500	-60	270	138		No Signifi	cant Intercept		

Hole ID	Υ	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLSCAC064	6902279	430238	500	-60	270	143		No Signifi	cant Intercept	_
RRLSCAC065	6902279	430557	500	-60	270	148		No Signifi	cant Intercept	
RRLSCAC066	6902279	431198	500	-60	270	64		No Signifi	cant Intercept	
RRLSCAC067	6902279	431518	500	-60	270	48		No Signifi	cant Intercept	
RRLSCAC068	6902279	431837	500	-60	270	59		No Signifi	cant Intercept	
RRLSCAC069	6902279	432157	500	-60	270	80		No Signifi	cant Intercept	
RRLSCAC070	6902279	432478	500	-60	270	9		No Signifi	cant Intercept	
RRLSCAC071	6901639	428318	500	-60	270	150		No Signifi	cant Intercept	
RRLSCAC072	6901639	428638	500	-60	270	144		No Signifi	cant Intercept	
RRLSCAC073	6901639	428957	500	-60	270	119		No Signifi	cant Intercept	
RRLSCAC074	6901639	429277	500	-60	270	126		No Signifi	cant Intercept	
RRLSCAC075	6901639	429598	500	-60	270	154		No Signifi	cant Intercept	
RRLSCAC076	6901639	429918	500	-60	270	156		No Signifi	cant Intercept	
RRLSCAC077	6901639	430237	500	-60	270	160		No Signifi	cant Intercept	
RRLSCAC078	6901639	430557	500	-60	270	164		No Signifi	cant Intercept	
RRLSCAC079	6900999	428318	500	-60	270	119		No Signifi	cant Intercept	
RRLSCAC080	6900999	428638	500	-60	270	121		No Signifi	cant Intercept	
RRLSCAC081	6900999	428957	500	-60	268	119		No Signifi	cant Intercept	
RRLSCAC082	6900999	429278	500	-60	270	166		No Signifi	cant Intercept	
RRLSCAC083	6900999	429598	500	-60	269	139		No Signifi	cant Intercept	
RRLSCAC084	6900999	429917	500	-60	270	135		No Signifi	cant Intercept	
RRLSCAC085	6900999	430237	500	-60	270	126			cant Intercept	
RRLSCAC086	6900999	430558	500	-60	270	81			cant Intercept	
RRLSCAC087	6900999	430878	500	-60	270	80			cant Intercept	
RRLSCAC088	6901639	425437	500	-60	270	35			cant Intercept	
RRLSCAC089	6901639	425758	500	-60	269	109			cant Intercept	
RRLSCAC090	6901639	426078	500	-60	270	14		No Signifi	cant Intercept	

Hole ID	Υ	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLSCAC091	6901639	426397	500	-60	270	19		No Signifi	cant Intercept	
RRLSCAC092	6901639	426717	500	-60	270	155		No Signifi	cant Intercept	
RRLSCAC093	6901639	427038	500	-60	269	130		No Signifi	cant Intercept	
RRLSCAC094	6901639	427358	500	-60	270	119		No Signifi	cant Intercept	
RRLSCAC095	6901639	427677	500	-60	270	155		No Signifi	cant Intercept	
RRLSCAC096	6900999	426717	500	-60	270	9	4	8	4	1.22
RRLSCAC097	6900999	427038	500	-60	270	48		No Signifi	cant Intercept	
RRLSCAC098	6900999	427358	500	-60	270	83		No Signifi	cant Intercept	
RRLSCAC099	6902279	425117	500	-60	269	33		No Signifi	cant Intercept	
RRLSCAC100	6902279	425437	500	-60	270	82		No Signifi	cant Intercept	
RRLSCAC101	6902279	425758	500	-60	270	49		No Signifi	cant Intercept	
RRLSCAC102	6902279	426078	500	-60	271	3		No Signifi	cant Intercept	
RRLSCAC103	6902279	426397	500	-60	270	28		No Signifi	cant Intercept	
RRLSCAC104	6902279	426717	500	-60	270	52		No Signifi	cant Intercept	
RRLSCAC105	6902279	427038	500	-60	269	89		No Signifi	cant Intercept	
RRLSCAC106	6902279	427358	500	-60	268	107		No Signifi	cant Intercept	
RRLSCAC107	6902279	427678	500	-60	270	45		No Signifi	cant Intercept	
RRLSCAC108	6902919	427037	500	-60	270	8		No Signifi	cant Intercept	
RRLSCAC109	6902919	427358	500	-60	268	9		No Signifi	cant Intercept	
RRLSCAC110	6902919	427678	500	-60	270	12		No Signifi	cant Intercept	
RRLSCAC111	6903559	426398	500	-60	272	81		No Signifi	cant Intercept	
RRLSCAC112	6903559	426717	500	-60	271	121			cant Intercept	
RRLSCAC113	6903559	427037	500	-60	270	51			cant Intercept	
RRLSCAC114	6903559	427358	500	-60	270	51			cant Intercept	
RRLSCAC115	6903559	427678	500	-60	270	81			cant Intercept	
RRLSCAC116	6904199	426718	500	-60	270	152		No Signifi	cant Intercept	
RRLSCAC117	6904199	427037	500	-60	270	90		No Signifi	cant Intercept	

						Total Depth	From	То	Interval	Au
Hole ID	Y	X	Z	Dip	Azimuth	(m)	(m)	(m)	(m)	g/t
RRLSCAC118	6904199	427357	500	-60	269	93		No Significar	t Intercept	
RRLSCAC119	6904199	427678	500	-60	270	125		No Significar	t Intercept	
RRLSCAC120	6904839	426718	500	-60	271	62		No Significar	t Intercept	
RRLSCAC121	6904839	427037	500	-60	270	105		No Significar	t Intercept	
RRLSCAC122	6904839	427357	500	-60	270	186		No Significar	t Intercept	
RRLSCAC123	6904839	427677	500	-60	270	133		No Significar	t Intercept	
RRLSCAC124	6905479	426077	500	-60	270	98		No Significar	t Intercept	
RRLSCAC125	6905479	426398	500	-60	270	83		No Significar	t Intercept	
RRLSCAC126	6905479	426718	500	-60	270	36		No Significar	t Intercept	
RRLSCAC127	6905479	427038	500	-60	268	142		No Significar	t Intercept	
RRLSCAC128	6905479	427357	500	-60	270	163		No Significar	t Intercept	
RRLSCAC129	6905479	427677	500	-60	270	182		No Significar	t Intercept	
RRLSCAC130	6906119	425757	500	-60	270	153	No Significant Intercept			
RRLSCAC131	6906119	426077	500	-60	271	200		No Significar	t Intercept	
RRLSCAC132	6906119	426398	500	-60	270	154		No Significar	t Intercept	
RRLSCAC133	6906119	426718	500	-60	270	165		No Significar	t Intercept	
RRLSCAC134	6906119	427038	500	-60	270	146		No Significar	•	
RRLSCAC135	6906119	427357	500	-60	270	171		No Significar	t Intercept	
RRLSCAC136	6906119	427677	500	-60	270	87		No Significar	t Intercept	
RRLSCAC137	6906759	425437	500	-60	268	149		No Significar	t Intercept	
RRLSCAC138	6906759	425757	500	-60	270	116		No Significar	t Intercept	
RRLSCAC139	6906759	426077	500	-60	270	61		No Significar	•	
RRLSCAC140	6906759	426398	500	-60	270	122		No Significar	· · · · · · · · · · · · · · · · · · ·	
RRLSCAC141	6906759	426718	500	-60	268	152		No Significar	· · · · · · · · · · · · · · · · · · ·	
RRLSCAC142	6901639	431238	500	-60	269	96		No Significar	· •	
RRLSCAC143	6901639	431517	500	-60	270	15		No Significar	•	
RRLSCAC144	6901639	431837	500	-60	271	21		No Significar	t Intercept	

Hole ID	Υ	х	z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au g/t
RRLSCAC145	6901639	432158	500	-60	268	60		No Signifi	cant Intercept	
RRLSCAC146	6901639	432478	500	-60	270	31		No Signifi	cant Intercept	
RRLSCAC147	6900999	431517	500	-60	269	99		No Signifi	cant Intercept	
RRLSCAC148	6900999	431838	500	-60	270	17		No Signifi	cant Intercept	
RRLSCAC149	6900999	432158	500	-60	270	29		No Signifi	cant Intercept	