

### ASX RELEASE: 31 July 2019

# **Metalicity Confirms Mineralisation**

### **HIGHLIGHTS**

- Drilling confirms significant mineralisation at Champion, McTavish and the DCC (Diamantina-Cosmopolitan-Cumberland) Trend.
  - Cosmopolitan 2 metres @ 22.1 g/t Au from 76 metres.
  - McTavish 4 metres @ 6.4 g/t Au from 67 metres, including 1m @ 15.47 g/t Au from 67m.
  - Cumberland 2 metres @ 1.4 g/t Au from 72 metres
  - Diamantina mineralised zone over 9 metres with:
    - 0.72 metres @ 3.1 g/t Au from 167 metres,
      - 0.21 metres @ 8.8 g/t Au from 173.07 metres
      - 1.15 metres @ 1.5 g/t Au from 174.85 metres.
- Channel sampling of the exposed DCC Trend structure in the Cumberland Pit returns 1.85 metres @ 4.3 g/t Au, including 0.68 metres at 7.1 g/t Au.
- Four of the six holes completed returned significant intersections.
- Structural model confirmed, large (approximately 2.6 kilometres) strike extents of known mineralisation at DCC plus a further 3 kilometres at McTavish and Leipold identified are yet to be tested.
- This initial programme reaffirms the excellent exploration potential of the Kookynie Gold Project.

Metalicity Limited (ASX: MCT) ("**MCT**" or "**Company**") is pleased to announce the return of significant intercepts from the initial drilling programme confirming mineralisation extends past previously developed and drilled areas for the Kookynie Project in the Eastern Goldfields, Western Australia.

### Commenting on the drilling results, Metalicity Managing Director, Jason Livingstone said:

"Our drilling programme was designed to test whether the historical drilling has defined the limits of the known mineralisation. Having stepped out and targeted the gaps, we have confirmed that mineralisation is present well past the constraints of the previously drilled areas. This programme has allowed us to reach a substantiated decision point to start planning for a high-grade resource development phase."

"The high hit ratio of mineralised intercepts for holes drilled is testament to the prospectively of the project. With a more substantial drill programme, more higher-grade results can be expected."

"This is exceptionally exciting to confirm and extend the mineralisation at the known prospects, our drilling, especially the diamond core drilling, and mapping, has highlighted the significant strike extents of the untested DCC Trend. In addition, the parallel structure, the Altona historical workings, has received little to no modern exploration attention whilst having historically produced nearly 90,000 ounces."

"Together with our farm-in partner, Nex Metals Explorations Ltd, we have the opportunity to move quickly into a systematic, resource development phase on the areas of known mineralisation, coupled with testing the strike extents of all the Prospects. To the north of Cumberland, we have 2.6 kilometres of structure to

**Metalicity Limited** 

ASX Code: MCT6 Outram Street ABN: 92 086 839 992 www.metalicity.com.au

test, to the south of Diamantina, 1.8 kilometres, let alone the Altona area which hosts 3.7 kilometres of structure. To juxtapose this against that the main DCC Trend, where 360,000 ounces has been produced, is hosted in 1.4 kilometres of this structure. We have not only confirmed that mineralisation exists and extends in the historical areas, but still have around 8 kilometres of the same or similar structure to explore."

The Kookynie Project is host to six, significant prospects; Champion, McTavish, Leipold, Diamantina, Cosmopolitan and Cumberland. The preparation of the Exploration Target was based on an in-depth review of the existing data, historical production and exploration efforts. The table below summarises the significant intercepts returned from this recent drilling programme. The full sample and assay list is available in Appendix Two.

|            |              |             |                      |         | MGA94_Zone 51 South |              |       |          |                       |                                                |        |                    |                   |                                 |  |
|------------|--------------|-------------|----------------------|---------|---------------------|--------------|-------|----------|-----------------------|------------------------------------------------|--------|--------------------|-------------------|---------------------------------|--|
| Prospect   | Hole ID      | Tenement    | Hole<br>Type         |         |                     | Collar<br>RL | Dip   | Magnetic | Final<br>Depth<br>(m) | From (m)                                       | To (m) | Down Hole<br>Width | Grade (Au<br>g/t) | Comments                        |  |
| McTavish N | McTRC0001    | M40/77      | RC                   | 350,647 | 6,754,118           | 423          | -60   | 270      | 94                    | 67                                             | 71     | 4                  | 6.4               | 4m @ 6.4 g/t Au from 67m        |  |
|            | IVICT RC0001 | 1VI40/77 NC | NC                   |         |                     |              |       |          | including             | 67                                             | 68     | 1                  | 15.47             |                                 |  |
| Champion   | CPRC0001     | M40/27      | RC                   | 352,224 | 6,757,503           | 417          | -60   | 270      | 112                   |                                                | Stope  | fill intersecte    | ed - structur     | e present, but mined out.       |  |
|            |              |             | RC/DD<br>tail 354,37 | _       | 6,753,209           | 427          | 7 -60 | 270      |                       | 167                                            | 167.72 | 0.72               | 3.1               | 0.72m @ 3.1g/t Au from 167m     |  |
| DCC Trend  | CDRCDD0001   | 1 M40/61    |                      | 354,377 |                     |              |       |          | 186.33                | 173.07                                         | 173.28 | 0.21               | 8.8               | 0.21m @ 8.8 g/t Au from 173.07  |  |
|            |              |             |                      |         |                     |              |       |          |                       | 174.85                                         | 176    | 1.15               | 1.5               | 1.15m @ 1.5 g/t Au from 174.85m |  |
| DCC Trend  | CLRC0001     | M40/61      | RC                   | 354,153 | 6,754,058           | 429          | -90   | 270      | 136                   | 72                                             | 74     | 2                  | 1.4               | 2m @ 1.4 g/t Au from 72m        |  |
| DCC Trend  | CDDD0001     | E40/332     | DD                   | 354,728 | 6,753,398           | 432          | -60   | 270      | 529.5                 | Structure diluted by Proterozoic Dolerite Dyke |        |                    |                   |                                 |  |
| DCC Trend  | CDRC0001     | M40/61      | RC                   | 354,284 | 6,753,513           | 430          | -60   | 270      | 148                   | 76 78 2 22.1 2m @ 22.1 g/t Au from 76r         |        |                    |                   | 2m @ 22.1g/t Au from 76m        |  |

Table 1 – Significant Drill Hole Intercepts

This preliminary programme only tested the DCC Trend, whilst McTavish and Champion only had a single hole into each. Please refer to Figure 1 for Prospect, tenure and drill hole collar locations:

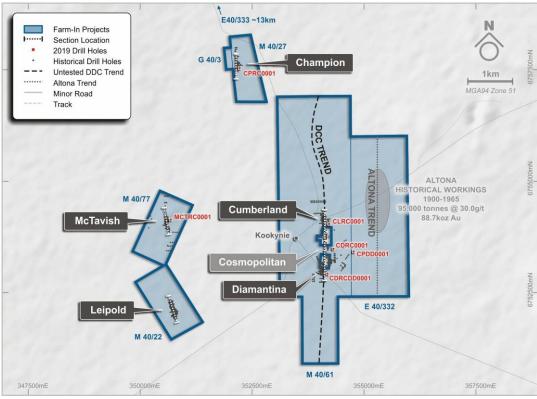



Figure 1 – Kookynie Prospect Locality Map with recent drill holes and mineralised trends.



## **Drill Hole Plane of Vein Long Sections**

Below are a series of drill hole plane of vein long sections that illustrate the recent drilling pierce points:

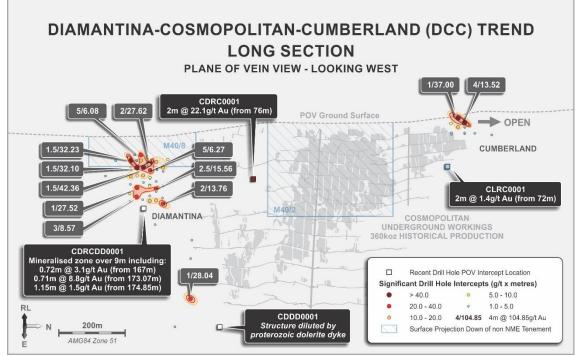



Figure 2 – DCC Trend Plane of Vein Section with recent drilling.

The DCC Trend Long Section illustrates the historical underground development and historical drill holes to date. Further annotated is the pierce points of our recent drilling programme and annotated intercepts returned from our sampling.

CDRC0001 was designed to test the area between Diamantina and Cosmopolitan. Historically, reports show that drive development occurred in this area, and channel sampling reported in 1905 showed the presence of the DCC Trend Structure, and that it was mineralised, however, historical drilling avoided this area. Whilst conceptually, and in the "Exploration Target" stated, please refer to ASX Announcement titled "*Kookynie Exploration Target Demonstrates Gold Potential*" dated 23 May 2019, we considered areas of historical workings to have zero potential. Therefore, this hole was designed to test the concept that historical workings did not stope out all mineralisation.

CDRC0001 was successful in not only intersecting the structure but showing that underground development in this area is restricted to drive development only and that significant mineralisation exists in this area. Given the reasonably shallow depth of the intercept to, and the lack of historical drilling in the drill holes vicinity, CDRC0001 has demonstrated that a sizeable portion of this structure is present and remains available for mineral resource definition.

Similarly, CDRCDD0001 and CLRC0001 which was designed to test the down plunge aspect of the Diamantina and Cumberland areas respectively, also intersected the DCC Trend structure returning mineralised zones – please refer to Table 1; Significant Drill Hole Intercepts.

Diamond hole, CDDD0001 intersected the DCC mineralised structure, but at this locality we discovered that it has been replaced with a Proterozoic Dolerite Dyke. Whilst the pierce point was some 60 metres down dip from the closest development drive, historical records showed that the mineralised structure was present in that drive, and the drill hole further up dip (NXDD003, 1m @ 28.04 g/t Au from 338.5m) strongly suggests the Proterozoic Dolerite Dyke development within the mineralised structure is limited. However, we have left this hole capped, but available for re-entry whereby "wedges" could be drilled at a later date to further explore this area.



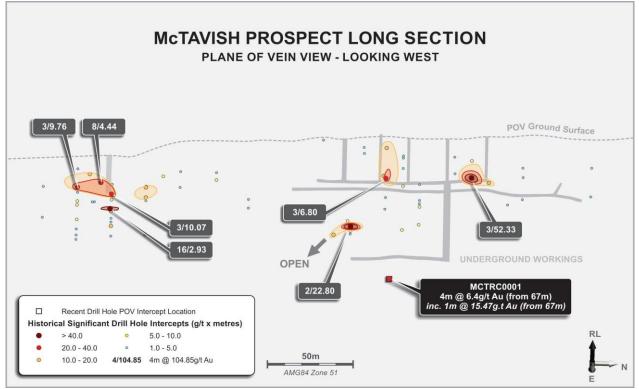



Figure 3 – McTavish Plane of Vein Section with recent drilling.

The Company completed a single Reverse Circulation (RC) drill hole at the McTavish Prospect to a depth of 94 metres in an area that is below the known historical workings and significantly down dip from historical drilling. We are pleased that the drill hole intersected the structure, demonstrating the down dip continuance of mineralisation beyond the previously defined limits of drilling, but to return an intercept of 4 metres @ 6.4 g/t Au from 67 metres is exciting to see the tenor of the grade continue.

Great encouragement is taken from the intercept including 1 metre @ 15.47 g/t Au from 67 metres, demonstrating a zonal distribution of grade within the McTavish structure. However, confirming that the mineralisation is extended at McTavish, allows for planning of a systematic drill programme with substantial step outs further along strike. Whilst we did not drill test Leipold in this round of drilling, that Prospect is on the same structural continuation as McTavish and presents an excellent opportunity for rapid definition of mineral resources.



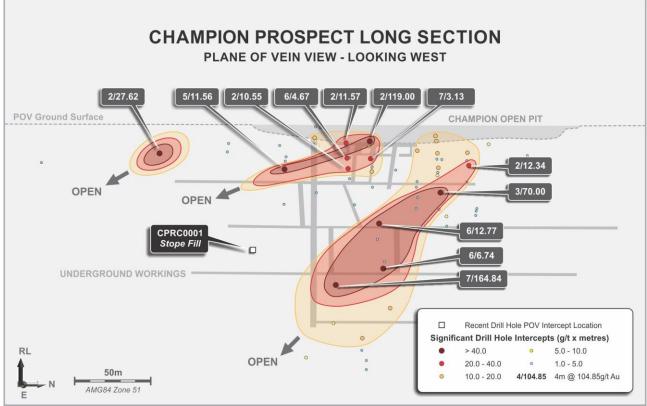
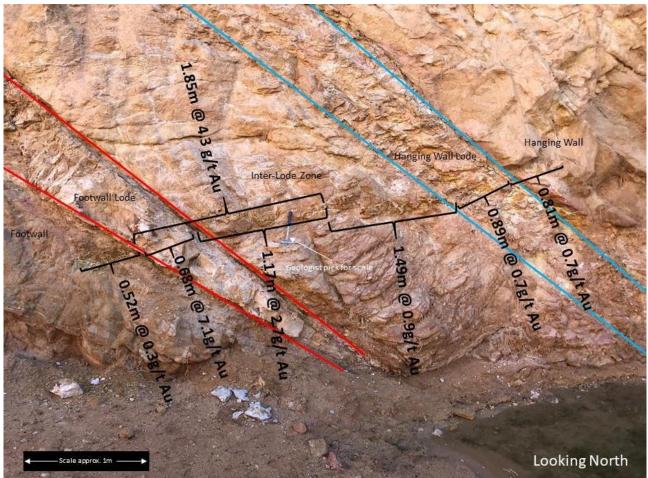



Figure 4 – Champion Plane of Vein Section with recent drilling.

Finally, given the success we had with CDRC0001 between Diamantina and Cosmopolitan in defining significant shallow mineralisation, the Company executed an RC hole to a depth of 112 metres to test the down dip extensions of historical drilling and the intra-development drive areas of the Champion underground workings.

Unfortunately, the drill hole intersected a back filled stope. But given the tenor of the intercepts some 50 metres north along strike, we believe that the area, given it was mined out preferentially to what the northern part has shown, illustrates that the down plunge extents remain exceptionally prospective for very high-grade mineralisation.


## **Cumberland Pit Channel Samples**

Channel sampling from the Cumberland Pit vein exposure returned up to 7.1 g/t Au, and 1.85 metres at 4.3 g/t Au from a vertical depth of 28 metres. The Cumberland Pit was mined by Golden Valley Mines NL in 1989 to a vertical depth of 36 metres. From the table and photograph below, remnant mineralisation of the DCC Trend is readily observable:

| Cha                 | Channel sample start coordinate (MGA94 Z51S) - *354,035mE, 6754161mN 399RL |                                                                                                |         |                                     |     |  |  |  |  |
|---------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------|-------------------------------------|-----|--|--|--|--|
| Location            | cation From (m) To (m) Sample Type Comments                                |                                                                                                |         |                                     |     |  |  |  |  |
| Cumberland Pit      | 0                                                                          | 0.52                                                                                           | Channel | Footwall                            | 0.3 |  |  |  |  |
| Cumberland Pit      | 0.52                                                                       | 1.2                                                                                            | Channel | Footwall lode - true width 48cm     | 7.1 |  |  |  |  |
| Cumberland Pit      | 1.2                                                                        | 2.37                                                                                           | Channel | Inter-Lode Zone                     | 2.7 |  |  |  |  |
| Cumberland Pit      | 2.37                                                                       | 3.86                                                                                           | Channel | Inter-Lode Zone                     | 0.9 |  |  |  |  |
| Cumberland Pit      | 3.86                                                                       | 4.75                                                                                           | Channel | Hanging wall lode - true width 56cm | 0.7 |  |  |  |  |
| Cumberland Pit      | 4.75                                                                       | 5.56                                                                                           | Channel | Hanging wall lode - true width 56cm | 0.7 |  |  |  |  |
| *Note – handheld GF | S location, zone is                                                        | *Note – handheld GPS location, zone is approximately 28 metres below the natural land surface. |         |                                     |     |  |  |  |  |

Table 2 – Cumberland Pit Channel Sample





Photograph 1 – Main DCC Trend Mineralisation observed in the Cumberland Pit.

Noteworthy is that it is encouraging to see mineralisation extending from the primary veins into the wall rock and the veined granite between the upper and lower veins being the inter-lode zone as illustrated in Photograph 1.

The Cumberland Pit is situated on M40/61 and is included in the farm-in agreement. Observing mineralisation cropping out of the northern pit wall, with little extensional drilling performed north of the pit, further illustrates the exploration potential of this area.

North of the Cumberland Pit illustrates 2.6 kilometres of potential DCC trend to the boundary of M40/61. However, this strike extent is under recent alluvial cover, which would mask any surface expression of potential mineralised sections of the DCC Trend to historical explorers who discovered the Cosmopolitan Mine back in the late 19<sup>th</sup> Century, let alone the 1.8 kilometres of untested strike south of Diamantina, and the 3.7 kilometres of Altona strike. These corridors present an exciting opportunity for future exploration programmes outside of the known DCC Trend Prospects.

## **Plan Moving Forward**

In light of these results, the Company has proven the concept that mineralisation exists beyond what the historical data has been illustrated. The next step is to execute a staged, systematic drill programme designed to not only address gold grade and geology relationships to a level to support a mineral resource estimate, but metallurgy, geotechnical and density aspects to aid in potential feasibility studies at a later date. Concurrent with this phase of work, understanding and proving viable targets along strike is paramount to compliment any mineral resource development work to ensure a pipeline of development sites is defined to realise the full value of the Kookynie Gold Project.



A programme is being developed and details will be released to the market when appropriate.

## **Quality Control**

The Company, as is normal during a drilling programme, implemented a quality assurance and control process (QAQC) whereby reconciliations with the drilled metre, the representative sample, and the actual sample bag that was submitted to the laboratory was rigorously controlled. Sampling was also based on geology, with spear two metre composites derived for zones of no apparent anomalism, compared to individual spear samples for zones of apparent anomalism. Original cone split samples from the rig mounted cone splitter were submitted to an alternate laboratory for further QAQC duplicate investigations.

Furthermore, usual Industry Practice is to insert a standard (referred to as a CRM – Certified Reference Material that has a known grade within a specified confidence interval), a duplicate or a blank (whereby it is devoid of any mineralisation whatsoever) into the sampling regime to ensure, and on top of the laboratories own QAQC measures of 1 sample in every 20 is to represent one of these samples to ensure quality control. The Company decided, due to the lack of historical QAQC measures, and to ensure the laboratory performed within specification, we implemented a 1 in 10 process.

The results returned by the laboratories where within the CRM stated acceptable standard deviation limits and the duplicity of the samples, given the nature of the mineralisation, were within acceptable limits.

### Geology

The Kookynie Project area is in the Keith-Kilkenny Tectonic Zone within the north-northwest trending Archean-aged Malcolm greenstone belt. The Keith-Kilkenny Tectonic Zone is a triangular shaped area hosting a succession of Archean mafic-ultramafic igneous and meta-sedimentary rocks. Regional magnetic data indicates the Kookynie region is bounded to the west by the north-trending Mt George Shear, the Keith-Kilkenny Shear Zone to the east and the Mulliberry Granitoid Complex to the south.

There are several styles of gold mineralisation identified in the Kookynie region. The largest system discovered to date is the high-grade mineralisation mined at the Admiral/Butterfly area, Desdemona area and Kookynie (Niagara) areas. The gold mineralisation is associated with pyritic quartz veins hosted within north to northeast dipping structures cross-cutting 'favourable' lithologies which can also extend into shears along geological contacts. Gold mineralisation at Kookynie tends to be preferentially concentrated in magnetite dominated granitic fractions of the overall granite plutons observed within the Kookynie area.

#### **ENQUIRIES**

Investors Jason Livingstone Managing Director & CEO +61 8 9324 1053 jlivingstone@metalicity.com.au Investor Relations

David Tasker/ Colin Jacoby Chapter One Advisors +61 433 112 936/ +61 439 980 359 dtasker@chapteroneadvisors.com.au

#### Competent Person Statement

Information in this report that relates to Exploration results and targets is based on, and fairly reflects, information compiled by Mr. Jason Livingstone, a Competent Person who is a Member of the Australian Institute of Geoscientists and Australian Institute of Mining and Metallurgy. Mr. Livingstone is an employee of Metalicity Limited. Mr. Livingstone has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Livingstone consents to the inclusion of the data in the form and context in which it appears.

#### Note

This Announcement is designed to lift the Trading Halt in the Company Securities put in place on 31 July 2019.



#### **Forward Looking Statements**

This announcement may contain certain "forward-looking statements" which may not have been based solely on historical facts, but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have reasonable basis. However, forward-looking statements:

(a) are necessarily based upon a number of estimates and assumptions that, while considered reasonable by the Company, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies;

(b) involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements. Such risks include, without limitation, resource risk, metals price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as political and operational risks in the countries and states in which the Company operates or supplies or sells product to, and governmental regulation and judicial outcomes; and

(c) may include, among other things, statements regarding estimates and assumptions in respect of prices, costs, results and capital expenditure, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions.

The words "believe", "expect", "anticipate", "indicate", "contemplate", "target", "plan", "intends", "continue", "budget", "estimate", "may", "will", "schedule" and similar expressions identify forward-looking statements.

All forward-looking statements contained in this presentation are qualified by the foregoing cautionary statements. Recipients are cautioned that forward-looking statements are not guarantees of future performance and accordingly recipients are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein.

The Company disclaims any intent or obligation to publicly update any forward-looking statements, whether as a result of new information, future events or results or otherwise.



## Appendix One – JORC Code, 2012 Edition – Table 1

### Section 1: Sampling Techniques and Data

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Half core with samples only taken from the right side of the core (looking down hole on the orientation line) with a cut line offset to the right of the orientation line by 1cm. Core was cut using a brick saw and a semi-automated Almonte core saw – samples were washed with clean water, prior to sampling.</li> <li>Reverse circulation (RC) sampling was conducted by the offsiders on the drill rig and checked at the end of each rod (6 metres) to ensure that the sample ID's matched the interval that was intended to be represented by that sample ID. No issues were seen or noted by the Competent person during the entire drilling campaign. These samples are kept onsite in a secure location available for further analysis if required.</li> <li>All RC samples were sieved and washed to ensure samples were taken from the appropriate intervals and to determine composites.</li> <li>Composites in interpreted non mineralised zones were taken on 2 metre intervals using the spear methodology:</li> <li>A 50mm spear made from PVC tubing was used to create composites in zones where mineralisation was not dominant. The green bag containing the RC sample was laid on its side, and in a top left to bottom right stab with the spear, then the opposite side, was taken from each 2 bags that represented 2 metres of RC drilling. On intervals where mineralisation or anomalism was seen, a single sample to represent that metre was taken using the above method. The original rig cone split samples remain onsite for further analysis or test work if needed and represent a physical record, beyond the chip trays, of the sample taken.</li> <li>Channel samples from the Cumberland Pit where chisled off using both a G-Pick and hammer and chisel, collected into a clean 201 bucket. The collected sample was then transferred to a pre-numbered calico bag and submitted for analysis</li> <li>The quality of the sampling is industry standard and was completed with the utmost care to ensure that the material being sampled, can be traced back to the interva</li></ul> |

metalicity

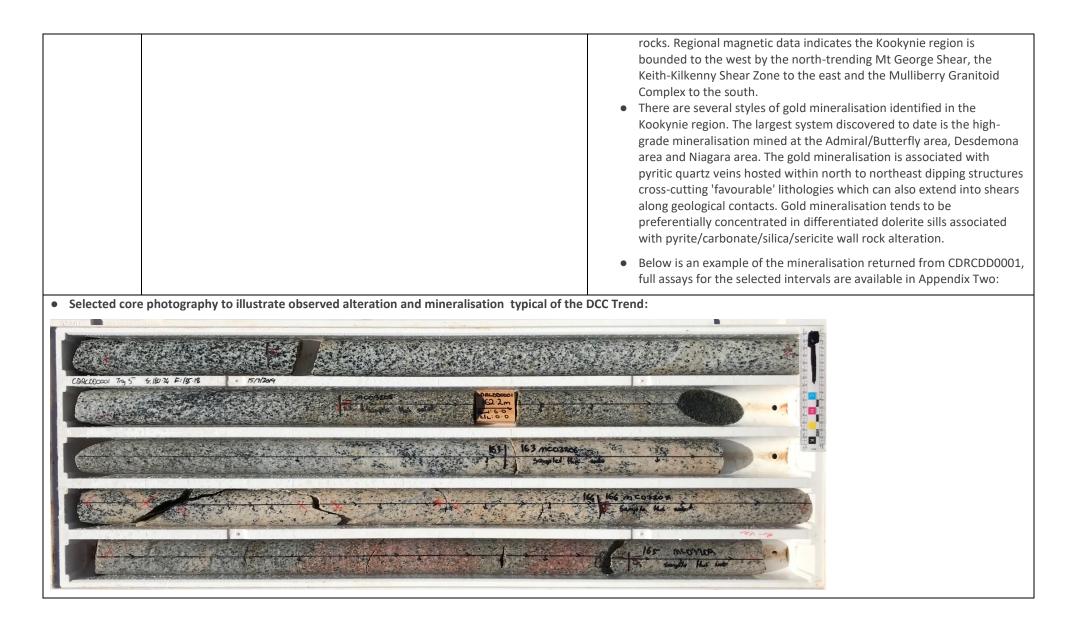
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <1ppb Au – this is a blank), OREAS 251 (Au grade range of 0.498ppm Au to 0.510ppm Au), OREAS 219 (Au grade range of 0.753ppm Au to 0.768ppm Au) and OREAS 229b (Au grade range of 11.86ppm Au to 12.04ppm Au) were used in alternating and sporadic patterns at a ratio of 1 QAQC sample in 10 samples submitted. The material used to make these standards was sourced from a West Australian, Eastern Goldfields orogenic gold deposit.                                                                                                                                                                                       |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drilling<br>techniques                                  | • Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).                                                                                                                                                                                                                                                                                                               | <ul> <li>RC drilling used a bit size of 5 ¼ inch.</li> <li>DD is orientated NQ2 diameter core.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Drill sample<br>recovery                                | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                          | <ul> <li>RC drilling sample recovery was excellent. Noteworthy is that of the 632 metres drilled, one sample at Champion was moist due to ground water inflows.</li> <li>Diamond core recovery was exceptional with near 100% recovery.</li> <li>No relationship was displayed between recovery and grade nor loss/gain of fine/course material.</li> </ul>                                                                                                                                                                                                                                                                     |
| Logging                                                 | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                | <ul> <li>All recovered sample from RC and DD has been geologically logged by the<br/>Competent Person to a level where it would support an appropriate Mineral<br/>Resource Estimate, mining studies and metallurgical test work.</li> <li>Logging was qualitative, sampling with the diamond core was based on<br/>geological boundaries, and as practical, on the metre in which a geological<br/>boundary was intersected in the RC drilling.</li> <li>Core photography was taken on the diamond core with a suitable colour<br/>scale within the frame of the photograph</li> </ul>                                         |
| Sub-sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-</li> </ul> | <ul> <li>Selected intervals, therefore, not all core, within the core drilling was sampled based on geological boundaries, the core was cut using a brick saw set up, and the right side looking downhole was the consistent side for sampling.</li> <li>RC samples were cone split from the rig. However, a 50mm spear made from PVC tubing was used to create composites in zones where mineralisation was not dominant. The green bag containing the RC sample was laid on its side, and in a top left to bottom right stab with the spear, then the opposite side, was taken from each 2 bags that represented 2</li> </ul> |

**metalicity** 

|                                                        | <ul> <li>half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>metres of RC drilling. On intervals where mineralisation or anomalism was seen, a single sample to represent that metre was taken using the above method. The original rig cone split samples remain onsite for further analysis or test work if needed and represent a physical record, beyond the chip trays, of the sample taken.</li> <li>All RC samples were dry except for one sample at Champion. All recoveries were &gt;90%.</li> <li>Duplicates were taken every 20 samples, however, given the lack of QAQC data in historical drilling, the Competent Person performed a 1 in 10 standard or blank or duplicate QAQC protocol across both the RC and diamond core sampling.</li> <li>Diamond core duplicates were ¼ from the right side to ensure that ½ core remains and is available for further test work if necessary.</li> <li>Outside of duplicates in the diamond core sampling, the right side of the cut line (with the cut line consistently on the right side of the orientation line (offset by 1cm), the ½ core was sampled and submitted for analysis.</li> <li>The Competent Person is of the opinion the sampling method described above is appropriate as far as practical, and anomalous assays will be tested further by submission of the original cone split sample.</li> </ul> |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of<br>assay data<br>and<br>laboratory<br>tests | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul> | <ul> <li>Fire assay and screen fire assay was used across channel, RC and diamond core samples. The methodologies employed at NAGROM and Intertek Genalysis in these analytical procedures are industry standard with appropriate checks and balances throughout their own processes.</li> <li>The analytical method employed is appropriate for the style of mineralisation and target commodity present.</li> <li>No geophysical tools, spectrometers, handheld XRF instruments were used.</li> <li>A 1 in 10 standard or duplicate or blank was employed during this programme. QAQC analysis shows that the lab performed within the specifications of the QAQC protocols. The standards used were from OREAS and based on material sourced from with the Eastern Goldfields. Blanks were also sourced from OREAS as well.</li> <li>All core submitted for analysis has had specific gravity determinations made to start to build the database of insitu density information for any impending mineral resource estimates in the future.</li> </ul>                                                                                                                                                                                                                                                                  |



|                                                                     | • | Resource and Ore Reserve estimation procedure(s) and classifications applied.<br>Whether sample compositing has been applied.                                                                                                                                                                                                                                                        | • | guidelines.<br>No sample compositing was applied beyond the calculation of down hole<br>significant intercepts.                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Orientation of<br>data in<br>relation to<br>geological<br>structure | • | Whether the orientation of sampling achieves unbiased sampling of possible<br>structures and the extent to which this is known, considering the deposit<br>type.<br>If the relationship between the drilling orientation and the orientation of key<br>mineralised structures is considered to have introduced a sampling bias, this<br>should be assessed and reported if material. | • | All drilling was perpendicular to the main structure that hosts<br>mineralisation. Secondary structures oblique to the main structure may<br>have influence hanging and foot wall intercepts.<br>The author believes that the drilling orientation and the orientation of key<br>mineralised structures has not introduced a bias.                                                                                                                                                   |
| Sample<br>security                                                  | • | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                        | • | The chain of supply from rig to courier to deliver the samples to the<br>laboratory was overseen by the Competent Person. At no stage has any<br>person or entity outside of the Competent Person, the drilling contractors,<br>the courier contractors and the assay laboratory, Nagrom, came into<br>contact with the samples.<br>Samples dispatched to Intertek Genalysis in Kalgoorlie were delivered to the<br>laboratory by the Competent Person, no third-party courier used. |
| Audits or<br>reviews                                                | ٠ | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                | • | No external audit of the results, beyond the laboratory internal QAQC measures, has taken place.                                                                                                                                                                                                                                                                                                                                                                                     |




## Section 2: Reporting of Exploration Results

| Criteria                                | JORC Code explanation                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                               |                                                                                                                                      |                                                                                                                                                                                                                                                             |  |  |  |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Mineral<br>tenement and                 | • Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, | Please refer to the to completed:                                                                                                                                                                                                                                                                                                        | • Please refer to the tenement schedule below to where the drill holes completed:                                                    |                                                                                                                                                                                                                                                             |  |  |  |  |
| land tenure status                      | partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.    | Prospect                                                                                                                                                                                                                                                                                                                                 | Hole_ID                                                                                                                              | Tenement                                                                                                                                                                                                                                                    |  |  |  |  |
| 510105                                  | <ul> <li>The security of the tenure held at the time of reporting along with any</li> </ul>                                              | McTavish                                                                                                                                                                                                                                                                                                                                 | McTRC0001                                                                                                                            | M40/77                                                                                                                                                                                                                                                      |  |  |  |  |
|                                         | known impediments to obtaining a licence to operate in the area.                                                                         | Champion                                                                                                                                                                                                                                                                                                                                 | CPRC0001                                                                                                                             | M40/27                                                                                                                                                                                                                                                      |  |  |  |  |
|                                         |                                                                                                                                          | Cosmopolition<br>Diamantina                                                                                                                                                                                                                                                                                                              | Cosmopolition CDBCDD0001 M40/61                                                                                                      |                                                                                                                                                                                                                                                             |  |  |  |  |
|                                         |                                                                                                                                          | Cumberland                                                                                                                                                                                                                                                                                                                               | CLRC0001                                                                                                                             | M40/61                                                                                                                                                                                                                                                      |  |  |  |  |
|                                         |                                                                                                                                          | Cosmopolitan                                                                                                                                                                                                                                                                                                                             | CDDD0001                                                                                                                             | E40/332                                                                                                                                                                                                                                                     |  |  |  |  |
|                                         |                                                                                                                                          | Cosmopolition<br>Diamantina                                                                                                                                                                                                                                                                                                              | CDDD0002                                                                                                                             | M40/61                                                                                                                                                                                                                                                      |  |  |  |  |
|                                         |                                                                                                                                          | <ul> <li>currently performing an earn in option as part of our farm in agreemed (please refer to ASX Announcement "<i>Metalicity Farms Into Prolific Ko &amp; Yundamindra Gold Projects, WA</i>" dated 6<sup>th</sup> May 2019)</li> <li>No impediments exist to obtaining a license to operate over the listed tenure above.</li> </ul> |                                                                                                                                      |                                                                                                                                                                                                                                                             |  |  |  |  |
| Exploration<br>done by other<br>parties | Acknowledgment and appraisal of exploration by other parties.                                                                            | <ul> <li>drilling completed o</li> <li>The historical work of hole surveying (if po appears below this of the location of mine verification. All laboration</li> </ul>                                                                                                                                                                   | ver the previous 3<br>completed require<br>issible) of drill hol<br>depth; hole deviat<br>ralisation in 3D. F<br>ratory certificates | e a great job of collating the H<br>30 years.<br>es further field verification via<br>es beyond 60 metres depth –<br>tion becomes a factor in estab<br>urthermore, collar pickups re-<br>for the assays on file are colla<br>e duplicate information in min |  |  |  |  |
| Geology                                 | • Deposit type, geological setting and style of mineralisation.                                                                          | north-northwes<br>Keith-Kilkenny T                                                                                                                                                                                                                                                                                                       | st trending Archea<br>Fectonic Zone is a                                                                                             | ilkenny Tectonic Zone within t<br>an-aged Malcolm greenstone l<br>triangular shaped area hostir<br>amafic igneous and meta-sedi                                                                                                                             |  |  |  |  |

**metalicity** 

14



166 micosalo 1577/209. 5:165.18 F: 169.95 CORCODDOOI Try 6 mc03212 de the 66-37 CORCODDO Tray 7 5:101.95 F: 174-2 · 15/7/2019. 174 1774 med CORCED 0001 174-2-0 Que: 2.6

**metalicity** 

| 1.                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 405 176 85 MC03221 SALU<br>I sample this water 1                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORLODOSI 709 8<br>CORLODOSI<br>175.1 a<br>R.J. 9<br>ct. 9 | STILLE F:178-58 ISTILLE'S MCO3722.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 175.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1759                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                            | I DAVIN BELLEVILLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Drill hole<br>Information                                  | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | <ul> <li>For Kookynie (and Yundramindra), please refer to the Company's announcement dated 6th May 2019, "Metalicity Farms Into Prolific Kookynie &amp; Yundamindra Gold Projects, WA", for all historical drill collar information, and selected significant intercepts.</li> <li>For the drilling performed and subject to this announcement, please see the table in the section titled "Location of data points" Table 1, Section 1 of this announcement.</li> </ul> |
| Data<br>aggregation<br>methods                             | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   | • All intercepts have been calculated using the weighted average method.<br>Specific intervals within a weighted average interval have ben described as<br>part of the overall intercept statement. All results are presented in<br>Appendix 2 for the reader to reconcile the Competent Persons' calculations.                                                                                                                                                          |
| 🔿 meta                                                     | licity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                                                                                 | <ul> <li>aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                                                                               | <ul> <li>Intervals were based on geology and no specific cut off was applied.</li> <li>No metal equivalents are discussed or reported.</li> </ul>                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>             | <ul> <li>Given the shallow dipping nature (approximately -45° on average) of the mineralisation observed at Kookynie, the nominal drilling inclination of -60° lends to close to truth width intercepts.</li> <li>However, cross cutting structures within the hanging wall and footwall are noted and may influence the results.</li> </ul>                                                                        |
| Diagrams                                                                        | • Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.                                                                                                                                                           | • Please see main body of the announcement for the relevant figures.                                                                                                                                                                                                                                                                                                                                                |
| Balanced<br>reporting                                                           | • Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.                                                                                                                                                                                                   | All results have been presented. Please refer to Appendix 2.                                                                                                                                                                                                                                                                                                                                                        |
| Other<br>substantive<br>exploration<br>data                                     | <ul> <li>Other exploration data, if meaningful and material, should be reported<br/>including (but not limited to): geological observations; geophysical survey<br/>results; geochemical survey results; bulk samples – size and method of<br/>treatment; metallurgical test results; bulk density, groundwater,<br/>geotechnical and rock characteristics; potential deleterious or<br/>contaminating substances.</li> </ul> | <ul> <li>The area has had significant historical production recorded and is accessible via the MINEDEX database.</li> <li>All stated mineral resources for the Kookynie (and Yundramindra) Projects are pre-JORC 2012. Considerable work around bulk density, QAQC, down hole surveys and metallurgy, coupled with the planned drilling will be required to ensure compliance with JORC 2012 guidelines.</li> </ul> |



| or depth extensions or large-s<br>Diagrams clearly highlighting | he areas of possible extensions, including the s and future drilling areas, provided this | • | Metalicity intends to drill the known and extend the mineralised<br>occurrences within the Kookynie and Yundramindra Projects. The<br>Yundramindra Project is currently under the plaint process, however<br>Metalicity believes that Nex Metals is well advanced in defending those<br>claims. The drilling will be designed to validate historical drilling with a view<br>to making maiden JORC 2012 Mineral Resource Estimate statements.<br>Metalicity has made the aspirational statement of developing "significant<br>resource and reserve base on which to commence a sustainable mining<br>operation focusing on grade and margin".<br>Diagrams pertinent to the area's in question are supplied in the body of this<br>announcement. |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



# Appendix Two – Drilling sample and Assay Information

|            |        |        |                       |                    | Sample   |        |
|------------|--------|--------|-----------------------|--------------------|----------|--------|
| Hole ID    | From   | То     | Analytical Method     | Laboratory         | Туре     | AU g/t |
| CDDD0001   | 81.81  | 82.12  | Screen Fire Assay 50g | NAGROM             | 1/2 core | 0.031  |
| CDDD0001   | 82.86  | 83     | Screen Fire Assay 50g | NAGROM             | 1/2 core | 0.035  |
| CDDD0001   | 92.35  | 92.41  | Screen Fire Assay 50g | NAGROM             | 1/2 core | 0.014  |
| CDDD0001   | 147.45 | 147.59 | Screen Fire Assay 50g | NAGROM             | 1/2 core | 0.006  |
| CDDD0001   | 147.82 | 147.88 | Screen Fire Assay 50g | NAGROM             | 1/2 core | 0.022  |
| CDDD0001   | 168.28 | 168.46 | Screen Fire Assay 50g | NAGROM             | 1/2 core | 0.003  |
| CDDD0001   | 168.69 | 169.13 | Screen Fire Assay 50g | NAGROM             | 1/2 core | 0.006  |
| CDDD0001   | 210.11 | 210.17 | Screen Fire Assay 50g | NAGROM             | 1/2 core | 0.005  |
| CDDD0001   | 222.33 | 222.44 | Screen Fire Assay 50g | NAGROM             | 1/2 core | 0.002  |
| CDDD0001   | 224.61 | 224.74 | Screen Fire Assay 50g | NAGROM             | 1/2 core | 0.001  |
| CDDD0001   | 294.66 | 294.98 | Screen Fire Assay 50g | NAGROM             | 1/2 core | 0.002  |
| CDDD0001   | 311.23 | 311.38 | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0.005  |
| CDDD0001   | 363.27 | 364.11 | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0      |
| CDDD0001   | 380.38 | 380.95 | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0.229  |
| CDDD0001   | 391.09 | 391.47 | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0.026  |
| CDDD0001   | 392.59 | 392.83 | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0      |
| CDDD0001   | 402.39 | 402.63 | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0.008  |
| CDDD0001   | 410.11 | 411    | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0.009  |
| CDDD0001   | 411    | 411.63 | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0.033  |
| CDDD0001   | 472.21 | 472.79 | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0.068  |
| CDDD0001   | 514    | 515    | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0.552  |
| CDDD0001   | 515    | 515.2  | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0      |
| CDDD0001   | 515.2  | 515.44 | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0      |
| CDDD0001   | 515.44 | 516    | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0      |
| CDRCDD0001 | 157.42 | 158    | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0      |
| CDRCDD0001 | 162    | 163    | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0      |
| CDRCDD0001 | 163    | 164    | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0      |
| CDRCDD0001 | 164    | 165    | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0.008  |
| CDRCDD0001 | 165    | 166    | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0.016  |
| CDRCDD0001 | 166    | 166.37 | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0.049  |
| CDRCDD0001 | 166.37 | 167    | Screen Fire Assay 50g | Intertek Genalysis | 1/2 core | 0.19   |
| CDRCDD0001 | 167    | 167.72 | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 3.07   |
| CDRCDD0001 | 167.72 | 169    | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0.02   |
| CDRCDD0001 | 169    | 170    | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0      |
| CDRCDD0001 | 170    | 171    | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0.093  |
| CDRCDD0001 | 171    | 172    | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0.008  |
| CDRCDD0001 | 172    | 173.07 | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0      |
| CDRCDD0001 | 173.07 | 173.28 | Screen Fire Assay 50g | Intertek Genalysis | 1/2 core | 8.82   |
| CDRCDD0001 | 173.28 | 174    | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0      |

Diamond Core Sampling and Assay Information:

metalicity

| CDRCDD0001 | 174    | 174.85 | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0.009 |
|------------|--------|--------|-----------------------|--------------------|----------|-------|
| CDRCDD0001 | 174.85 | 175.48 | Screen Fire Assay 50g | Intertek Genalysis | 1/2 core | 1.44  |
| CDRCDD0001 | 175.48 | 175.81 | Screen Fire Assay 50g | Intertek Genalysis | 1/2 core | 0.8   |
| CDRCDD0001 | 175.81 | 176    | Screen Fire Assay 50g | Intertek Genalysis | 1/2 core | 2.93  |
| CDRCDD0001 | 176    | 177    | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0     |
| CDRCDD0001 | 177    | 178    | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0.015 |
| CDRCDD0001 | 178    | 179    | Fire Assay 50g        | Intertek Genalysis | 1/2 core | 0.006 |

Reverse Circulation Sampling and Assay Information:

|            |      |    |                   |            | Sample |        |
|------------|------|----|-------------------|------------|--------|--------|
| Hole ID    | From | То | Analytical Method | Laboratory | Туре   | AU g/t |
| CDRCDD0001 | 0    | 2  | Fire Assay 50g    | NAGROM     | Spear  | 0.018  |
| CDRCDD0001 | 2    | 4  | Fire Assay 50g    | NAGROM     | Spear  | 0.008  |
| CDRCDD0001 | 4    | 6  | Fire Assay 50g    | NAGROM     | Spear  | 0.003  |
| CDRCDD0001 | 6    | 8  | Fire Assay 50g    | NAGROM     | Spear  | 0.002  |
| CDRCDD0001 | 8    | 10 | Fire Assay 50g    | NAGROM     | Spear  | 0.002  |
| CDRCDD0001 | 10   | 12 | Fire Assay 50g    | NAGROM     | Spear  | 0.001  |
| CDRCDD0001 | 12   | 14 | Fire Assay 50g    | NAGROM     | Spear  | <0.001 |
| CDRCDD0001 | 14   | 16 | Fire Assay 50g    | NAGROM     | Spear  | 0.001  |
| CDRCDD0001 | 16   | 18 | Fire Assay 50g    | NAGROM     | Spear  | <0.001 |
| CDRCDD0001 | 18   | 20 | Fire Assay 50g    | NAGROM     | Spear  | <0.001 |
| CDRCDD0001 | 20   | 22 | Fire Assay 50g    | NAGROM     | Spear  | 0.001  |
| CDRCDD0001 | 22   | 24 | Fire Assay 50g    | NAGROM     | Spear  | 0.001  |
| CDRCDD0001 | 24   | 26 | Fire Assay 50g    | NAGROM     | Spear  | <0.001 |
| CDRCDD0001 | 26   | 28 | Fire Assay 50g    | NAGROM     | Spear  | 0.002  |
| CDRCDD0001 | 28   | 30 | Fire Assay 50g    | NAGROM     | Spear  | 0.009  |
| CDRCDD0001 | 30   | 32 | Fire Assay 50g    | NAGROM     | Spear  | 0.002  |
| CDRCDD0001 | 32   | 34 | Fire Assay 50g    | NAGROM     | Spear  | 0.001  |
| CDRCDD0001 | 34   | 36 | Fire Assay 50g    | NAGROM     | Spear  | 0.004  |
| CDRCDD0001 | 36   | 38 | Fire Assay 50g    | NAGROM     | Spear  | 0.001  |
| CDRCDD0001 | 38   | 40 | Fire Assay 50g    | NAGROM     | Spear  | <0.001 |
| CDRCDD0001 | 40   | 42 | Fire Assay 50g    | NAGROM     | Spear  | <0.001 |
| CDRCDD0001 | 42   | 44 | Fire Assay 50g    | NAGROM     | Spear  | <0.001 |
| CDRCDD0001 | 44   | 46 | Fire Assay 50g    | NAGROM     | Spear  | 0.008  |
| CDRCDD0001 | 46   | 48 | Fire Assay 50g    | NAGROM     | Spear  | 0.003  |
| CDRCDD0001 | 48   | 50 | Fire Assay 50g    | NAGROM     | Spear  | 0.001  |
| CDRCDD0001 | 50   | 52 | Fire Assay 50g    | NAGROM     | Spear  | 0.004  |
| CDRCDD0001 | 52   | 54 | Fire Assay 50g    | NAGROM     | Spear  | <0.001 |
| CDRCDD0001 | 54   | 56 | Fire Assay 50g    | NAGROM     | Spear  | <0.001 |
| CDRCDD0001 | 56   | 58 | Fire Assay 50g    | NAGROM     | Spear  | 0.001  |
| CDRCDD0001 | 58   | 60 | Fire Assay 50g    | NAGROM     | Spear  | 0.001  |
| CDRCDD0001 | 60   | 62 | Fire Assay 50g    | NAGROM     | Spear  | 0.001  |
| CDRCDD0001 | 62   | 64 | Fire Assay 50g    | NAGROM     | Spear  | <0.001 |

**metalicity** 

| CDRCDD0001 | 64  | 66  | Fire Assay 50g | NAGROM | Spear | 0.002   |
|------------|-----|-----|----------------|--------|-------|---------|
| CDRCDD0001 | 66  | 68  | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 68  | 70  | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 70  | 72  | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 72  | 74  | Fire Assay 50g | NAGROM | Spear | 0.001   |
| CDRCDD0001 | 74  | 76  | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 76  | 78  | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 78  | 80  | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 80  | 82  | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 82  | 84  | Fire Assay 50g | NAGROM | Spear | 0.001   |
| CDRCDD0001 | 84  | 86  | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 86  | 88  | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 88  | 90  | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 90  | 92  | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 92  | 94  | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 94  | 96  | Fire Assay 50g | NAGROM | Spear | 0.001   |
| CDRCDD0001 | 96  | 98  | Fire Assay 50g | NAGROM | Spear | 0.002   |
| CDRCDD0001 | 98  | 100 | Fire Assay 50g | NAGROM | Spear | 0.002   |
| CDRCDD0001 | 100 | 102 | Fire Assay 50g | NAGROM | Spear | 0.001   |
| CDRCDD0001 | 102 | 104 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 104 | 106 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 106 | 108 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 108 | 110 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 110 | 112 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 112 | 114 | Fire Assay 50g | NAGROM | Spear | < 0.001 |
| CDRCDD0001 | 114 | 116 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 116 | 118 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 118 | 120 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 120 | 122 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 122 | 124 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 124 | 126 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 126 | 128 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 128 | 130 | Fire Assay 50g | NAGROM | Spear | 0.002   |
| CDRCDD0001 | 130 | 132 | Fire Assay 50g | NAGROM | Spear | 0.001   |
| CDRCDD0001 | 132 | 134 | Fire Assay 50g | NAGROM | Spear | 0.001   |
| CDRCDD0001 | 134 | 136 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 136 | 138 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 138 | 140 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 140 | 142 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 89  | 90  | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 90  | 91  | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 91  | 92  | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRCDD0001 | 92  | 93  | Fire Assay 50g | NAGROM | Spear | 0.003   |
| CDRCDD0001 | 93  | 94  | Fire Assay 50g | NAGROM | Spear | 0.004   |

**metalicity** 

| CDRCDD0001 | 94 | 95 | Fire Assay 50g        | NAGROM | Spear | <0.001  |
|------------|----|----|-----------------------|--------|-------|---------|
| CDRCDD0001 | 95 | 96 | Fire Assay 50g        | NAGROM | Spear | 0.002   |
| CDRCDD0001 | 96 | 97 | Fire Assay 50g        | NAGROM | Spear | 0.001   |
| CDRCDD0001 | 97 | 98 | Fire Assay 50g        | NAGROM | Spear | 0.004   |
| CDRCDD0001 | 98 | 99 | Fire Assay 50g        | NAGROM | Spear | 0.001   |
| CLRC0001   | 0  | 2  | Fire Assay 50g        | NAGROM | Spear | 0.016   |
| CLRC0001   | 2  | 4  | Fire Assay 50g        | NAGROM | Spear | 0.005   |
| CLRC0001   | 4  | 6  | Fire Assay 50g        | NAGROM | Spear | 0.005   |
| CLRC0001   | 6  | 8  | Fire Assay 50g        | NAGROM | Spear | 0.004   |
| CLRC0001   | 8  | 10 | Fire Assay 50g        | NAGROM | Spear | 0.006   |
| CLRC0001   | 10 | 12 | Fire Assay 50g        | NAGROM | Spear | 0.004   |
| CLRC0001   | 12 | 14 | Fire Assay 50g        | NAGROM | Spear | 0.002   |
| CLRC0001   | 14 | 16 | Fire Assay 50g        | NAGROM | Spear | 0.002   |
| CLRC0001   | 16 | 18 | Fire Assay 50g        | NAGROM | Spear | <0.001  |
| CLRC0001   | 18 | 20 | Fire Assay 50g        | NAGROM | Spear | <0.001  |
| CLRC0001   | 20 | 22 | Fire Assay 50g        | NAGROM | Spear | <0.001  |
| CLRC0001   | 22 | 24 | Fire Assay 50g        | NAGROM | Spear | < 0.001 |
| CLRC0001   | 24 | 26 | Fire Assay 50g        | NAGROM | Spear | 0.002   |
| CLRC0001   | 26 | 28 | Fire Assay 50g        | NAGROM | Spear | < 0.001 |
| CLRC0001   | 28 | 30 | Fire Assay 50g        | NAGROM | Spear | < 0.001 |
| CLRC0001   | 30 | 32 | Fire Assay 50g        | NAGROM | Spear | <0.001  |
| CLRC0001   | 32 | 34 | Fire Assay 50g        | NAGROM | Spear | 0.001   |
| CLRC0001   | 34 | 36 | Fire Assay 50g        | NAGROM | Spear | 0.003   |
| CLRC0001   | 36 | 38 | Fire Assay 50g        | NAGROM | Spear | <0.001  |
| CLRC0001   | 38 | 40 | Fire Assay 50g        | NAGROM | Spear | 0.024   |
| CLRC0001   | 40 | 42 | Fire Assay 50g        | NAGROM | Spear | 0.022   |
| CLRC0001   | 42 | 44 | Fire Assay 50g        | NAGROM | Spear | 0.030   |
| CLRC0001   | 44 | 46 | Fire Assay 50g        | NAGROM | Spear | 0.068   |
| CLRC0001   | 46 | 48 | Fire Assay 50g        | NAGROM | Spear | 0.052   |
| CLRC0001   | 48 | 50 | Fire Assay 50g        | NAGROM | Spear | 0.042   |
| CLRC0001   | 50 | 52 | Fire Assay 50g        | NAGROM | Spear | 0.468   |
| CLRC0001   | 52 | 53 | Fire Assay 50g        | NAGROM | Spear | 0.605   |
| CLRC0001   | 53 | 54 | Fire Assay 50g        | NAGROM | Spear | 0.035   |
| CLRC0001   | 54 | 55 | Fire Assay 50g        | NAGROM | Spear | 0.043   |
| CLRC0001   | 55 | 56 | Fire Assay 50g        | NAGROM | Spear | 0.305   |
| CLRC0001   | 56 | 57 | Fire Assay 50g        | NAGROM | Spear | 0.041   |
| CLRC0001   | 57 | 58 | Fire Assay 50g        | NAGROM | Spear | 0.006   |
| CLRC0001   | 58 | 59 | Fire Assay 50g        | NAGROM | Spear | 0.031   |
| CLRC0001   | 59 | 60 | Fire Assay 50g        | NAGROM | Spear | 0.010   |
| CLRC0001   | 60 | 61 | Fire Assay 50g        | NAGROM | Spear | 0.067   |
| CLRC0001   | 61 | 62 | Fire Assay 50g        | NAGROM | Spear | 0.037   |
| CLRC0001   | 62 | 63 | Screen Fire Assay 50g | NAGROM | Spear | 0.01    |
| CLRC0001   | 63 | 64 | Screen Fire Assay 50g | NAGROM | Spear | 0.07    |
| CLRC0001   | 64 | 65 | Screen Fire Assay 50g | NAGROM | Spear | 0.07    |

**metalicity** 

| CLRC0001 | 65  | 66  | Screen Fire Assay 50g | NAGROM | Spear | 0.03    |
|----------|-----|-----|-----------------------|--------|-------|---------|
| CLRC0001 | 66  | 67  | Fire Assay 50g        | NAGROM | Spear | 0.036   |
| CLRC0001 | 67  | 68  | Fire Assay 50g        | NAGROM | Spear | 0.006   |
| CLRC0001 | 68  | 69  | Fire Assay 50g        | NAGROM | Spear | 0.001   |
| CLRC0001 | 69  | 70  | Screen Fire Assay 50g | NAGROM | Spear | 0.09    |
| CLRC0001 | 70  | 71  | Screen Fire Assay 50g | NAGROM | Spear | 0.36    |
| CLRC0001 | 71  | 72  | Screen Fire Assay 50g | NAGROM | Spear | 0.07    |
| CLRC0001 | 72  | 73  | Screen Fire Assay 50g | NAGROM | Spear | 1.56    |
| CLRC0001 | 73  | 74  | Screen Fire Assay 50g | NAGROM | Spear | 1.17    |
| CLRC0001 | 74  | 75  | Screen Fire Assay 50g | NAGROM | Spear | 0.28    |
| CLRC0001 | 75  | 76  | Fire Assay 50g        | NAGROM | Spear | 0.336   |
| CLRC0001 | 76  | 77  | Fire Assay 50g        | NAGROM | Spear | 0.058   |
| CLRC0001 | 77  | 78  | Fire Assay 50g        | NAGROM | Spear | 0.035   |
| CLRC0001 | 78  | 79  | Fire Assay 50g        | NAGROM | Spear | 0.178   |
| CLRC0001 | 79  | 80  | Fire Assay 50g        | NAGROM | Spear | 0.367   |
| CLRC0001 | 80  | 82  | Fire Assay 50g        | NAGROM | Spear | 0.075   |
| CLRC0001 | 82  | 84  | Fire Assay 50g        | NAGROM | Spear | 0.076   |
| CLRC0001 | 84  | 86  | Fire Assay 50g        | NAGROM | Spear | 0.158   |
| CLRC0001 | 86  | 88  | Fire Assay 50g        | NAGROM | Spear | 0.072   |
| CLRC0001 | 88  | 90  | Fire Assay 50g        | NAGROM | Spear | 0.032   |
| CLRC0001 | 90  | 92  | Fire Assay 50g        | NAGROM | Spear | 0.005   |
| CLRC0001 | 92  | 94  | Fire Assay 50g        | NAGROM | Spear | <0.001  |
| CLRC0001 | 94  | 96  | Fire Assay 50g        | NAGROM | Spear | 0.003   |
| CLRC0001 | 96  | 98  | Fire Assay 50g        | NAGROM | Spear | 0.003   |
| CLRC0001 | 98  | 100 | Fire Assay 50g        | NAGROM | Spear | < 0.001 |
| CLRC0001 | 100 | 102 | Fire Assay 50g        | NAGROM | Spear | 0.002   |
| CLRC0001 | 102 | 104 | Fire Assay 50g        | NAGROM | Spear | < 0.001 |
| CLRC0001 | 104 | 106 | Fire Assay 50g        | NAGROM | Spear | < 0.001 |
| CLRC0001 | 106 | 108 | Fire Assay 50g        | NAGROM | Spear | 0.001   |
| CLRC0001 | 108 | 110 | Fire Assay 50g        | NAGROM | Spear | 0.002   |
| CLRC0001 | 110 | 112 | Fire Assay 50g        | NAGROM | Spear | < 0.001 |
| CLRC0001 | 112 | 114 | Fire Assay 50g        | NAGROM | Spear | <0.001  |
| CLRC0001 | 114 | 116 | Fire Assay 50g        | NAGROM | Spear | 0.001   |
| CLRC0001 | 116 | 118 | Fire Assay 50g        | NAGROM | Spear | 0.002   |
| CLRC0001 | 118 | 120 | Fire Assay 50g        | NAGROM | Spear | 0.001   |
| CLRC0001 | 120 | 122 | Fire Assay 50g        | NAGROM | Spear | < 0.001 |
| CLRC0001 | 122 | 124 | Fire Assay 50g        | NAGROM | Spear | < 0.001 |
| CLRC0001 | 124 | 126 | Fire Assay 50g        | NAGROM | Spear | < 0.001 |
| CLRC0001 | 126 | 128 | Fire Assay 50g        | NAGROM | Spear | 0.001   |
| CLRC0001 | 128 | 130 | Fire Assay 50g        | NAGROM | Spear | <0.001  |
| CLRC0001 | 130 | 132 | Fire Assay 50g        | NAGROM | Spear | 0.003   |
| CLRC0001 | 132 | 134 | Fire Assay 50g        | NAGROM | Spear | <0.001  |
| CLRC0001 | 134 | 136 | Fire Assay 50g        | NAGROM | Spear | 0.001   |
| CDRC0001 | 0   | 2   | Fire Assay 50g        | NAGROM | Spear | 0.019   |

**metalicity** 

| CDRC0001 | 2  | 4  | Fire Assay 50g | NAGROM | Spear | 0.005   |
|----------|----|----|----------------|--------|-------|---------|
| CDRC0001 | 4  | 6  | Fire Assay 50g | NAGROM | Spear | 0.008   |
| CDRC0001 | 6  | 8  | Fire Assay 50g | NAGROM | Spear | 0.002   |
| CDRC0001 | 8  | 10 | Fire Assay 50g | NAGROM | Spear | 0.001   |
| CDRC0001 | 10 | 12 | Fire Assay 50g | NAGROM | Spear | 0.001   |
| CDRC0001 | 12 | 14 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRC0001 | 14 | 16 | Fire Assay 50g | NAGROM | Spear | 0.163   |
| CDRC0001 | 16 | 18 | Fire Assay 50g | NAGROM | Spear | 0.001   |
| CDRC0001 | 18 | 20 | Fire Assay 50g | NAGROM | Spear | < 0.001 |
| CDRC0001 | 20 | 22 | Fire Assay 50g | NAGROM | Spear | < 0.001 |
| CDRC0001 | 22 | 24 | Fire Assay 50g | NAGROM | Spear | 0.001   |
| CDRC0001 | 24 | 26 | Fire Assay 50g | NAGROM | Spear | < 0.001 |
| CDRC0001 | 26 | 28 | Fire Assay 50g | NAGROM | Spear | 0.001   |
| CDRC0001 | 28 | 30 | Fire Assay 50g | NAGROM | Spear | < 0.001 |
| CDRC0001 | 30 | 32 | Fire Assay 50g | NAGROM | Spear | < 0.001 |
| CDRC0001 | 32 | 34 | Fire Assay 50g | NAGROM | Spear | < 0.001 |
| CDRC0001 | 34 | 36 | Fire Assay 50g | NAGROM | Spear | 0.001   |
| CDRC0001 | 36 | 38 | Fire Assay 50g | NAGROM | Spear | < 0.001 |
| CDRC0001 | 38 | 40 | Fire Assay 50g | NAGROM | Spear | < 0.001 |
| CDRC0001 | 40 | 42 | Fire Assay 50g | NAGROM | Spear | < 0.001 |
| CDRC0001 | 42 | 44 | Fire Assay 50g | NAGROM | Spear | < 0.001 |
| CDRC0001 | 44 | 46 | Fire Assay 50g | NAGROM | Spear | < 0.001 |
| CDRC0001 | 46 | 48 | Fire Assay 50g | NAGROM | Spear | < 0.001 |
| CDRC0001 | 48 | 50 | Fire Assay 50g | NAGROM | Spear | 0.003   |
| CDRC0001 | 50 | 52 | Fire Assay 50g | NAGROM | Spear | < 0.001 |
| CDRC0001 | 52 | 54 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRC0001 | 54 | 56 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRC0001 | 56 | 58 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRC0001 | 58 | 60 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRC0001 | 60 | 62 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRC0001 | 62 | 64 | Fire Assay 50g | NAGROM | Spear | 0.001   |
| CDRC0001 | 64 | 66 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRC0001 | 66 | 68 | Fire Assay 50g | NAGROM | Spear | 0.001   |
| CDRC0001 | 68 | 70 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRC0001 | 70 | 72 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRC0001 | 72 | 74 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRC0001 | 74 | 76 | Fire Assay 50g | NAGROM | Spear | 0.001   |
| CDRC0001 | 76 | 78 | Fire Assay 50g | NAGROM | Spear | 22.100  |
| CDRC0001 | 78 | 80 | Fire Assay 50g | NAGROM | Spear | 0.018   |
| CDRC0001 | 80 | 82 | Fire Assay 50g | NAGROM | Spear | 0.007   |
| CDRC0001 | 82 | 84 | Fire Assay 50g | NAGROM | Spear | 0.005   |
| CDRC0001 | 84 | 86 | Fire Assay 50g | NAGROM | Spear | <0.001  |
| CDRC0001 | 86 | 88 | Fire Assay 50g | NAGROM | Spear | 0.002   |
| CDRC0001 | 88 | 90 | Fire Assay 50g | NAGROM | Spear | 0.001   |

**metalicity** 

| CDRC0001  | 90  | 92  | Fire Assay 50g        | NAGROM | Spear | 0.002   |
|-----------|-----|-----|-----------------------|--------|-------|---------|
| CDRC0001  | 92  | 94  | Fire Assay 50g        | NAGROM | Spear | < 0.001 |
| CDRC0001  | 94  | 96  | Fire Assay 50g        | NAGROM | Spear | 0.003   |
| CDRC0001  | 96  | 98  | Fire Assay 50g        | NAGROM | Spear | 0.001   |
| CDRC0001  | 98  | 100 | Fire Assay 50g        | NAGROM | Spear | < 0.001 |
| CDRC0001  | 100 | 102 | Fire Assay 50g        | NAGROM | Spear | < 0.001 |
| CDRC0001  | 102 | 104 | Fire Assay 50g        | NAGROM | Spear | 0.005   |
| CDRC0001  | 104 | 106 | Fire Assay 50g        | NAGROM | Spear | < 0.001 |
| CDRC0001  | 106 | 108 | Fire Assay 50g        | NAGROM | Spear | < 0.001 |
| CDRC0001  | 108 | 110 | Fire Assay 50g        | NAGROM | Spear | 0.001   |
| CDRC0001  | 110 | 112 | Fire Assay 50g        | NAGROM | Spear | < 0.001 |
| CDRC0001  | 112 | 114 | Fire Assay 50g        | NAGROM | Spear | 0.001   |
| CDRC0001  | 114 | 116 | Fire Assay 50g        | NAGROM | Spear | < 0.001 |
| CDRC0001  | 116 | 118 | Fire Assay 50g        | NAGROM | Spear | 0.008   |
| CDRC0001  | 118 | 119 | Screen Fire Assay 50g | NAGROM | Spear | 0.05    |
| CDRC0001  | 119 | 120 | Screen Fire Assay 50g | NAGROM | Spear | 0.66    |
| CDRC0001  | 120 | 121 | Screen Fire Assay 50g | NAGROM | Spear | 0.26    |
| CDRC0001  | 121 | 122 | Screen Fire Assay 50g | NAGROM | Spear | 0.06    |
| CDRC0001  | 122 | 123 | Screen Fire Assay 50g | NAGROM | Spear | 0.22    |
| CDRC0001  | 123 | 124 | Screen Fire Assay 50g | NAGROM | Spear | 0.12    |
| CDRC0001  | 124 | 125 | Screen Fire Assay 50g | NAGROM | Spear | 0.01    |
| CDRC0001  | 125 | 126 | Screen Fire Assay 50g | NAGROM | Spear | 0.28    |
| CDRC0001  | 126 | 127 | Screen Fire Assay 50g | NAGROM | Spear | 0.03    |
| CDRC0001  | 127 | 128 | Screen Fire Assay 50g | NAGROM | Spear | 0.02    |
| CDRC0001  | 128 | 130 | Fire Assay 50g        | NAGROM | Spear | 0.017   |
| CDRC0001  | 130 | 132 | Fire Assay 50g        | NAGROM | Spear | 0.124   |
| CDRC0001  | 132 | 133 | Fire Assay 50g        | NAGROM | Spear | 0.595   |
| CDRC0001  | 133 | 134 | Fire Assay 50g        | NAGROM | Spear | 0.553   |
| CDRC0001  | 134 | 136 | Screen Fire Assay 50g | NAGROM | Spear | 0.11    |
| CDRC0001  | 136 | 138 | Screen Fire Assay 50g | NAGROM | Spear | 0.07    |
| CDRC0001  | 138 | 140 | Screen Fire Assay 50g | NAGROM | Spear | 0.13    |
| CDRC0001  | 140 | 142 | Screen Fire Assay 50g | NAGROM | Spear | 0.08    |
| CDRC0001  | 142 | 144 | Screen Fire Assay 50g | NAGROM | Spear | 0.01    |
| CDRC0001  | 144 | 146 | Screen Fire Assay 50g | NAGROM | Spear | 0.01    |
| CDRC0001  | 146 | 148 | Screen Fire Assay 50g | NAGROM | Spear | 0.07    |
| McTRC0001 | 0   | 2   | Fire Assay 50g        | NAGROM | Spear | 0.013   |
| McTRC0001 | 2   | 4   | Fire Assay 50g        | NAGROM | Spear | 0.005   |
| McTRC0001 | 4   | 6   | Fire Assay 50g        | NAGROM | Spear | 0.003   |
| McTRC0001 | 6   | 8   | Fire Assay 50g        | NAGROM | Spear | 0.003   |
| McTRC0001 | 8   | 10  | Fire Assay 50g        | NAGROM | Spear | 0.002   |
| McTRC0001 | 10  | 12  | Screen Fire Assay 50g | NAGROM | Spear | 0.003   |
| McTRC0001 | 12  | 14  | Screen Fire Assay 50g | NAGROM | Spear | 0.001   |
| McTRC0001 | 14  | 16  | Screen Fire Assay 50g | NAGROM | Spear | 0.001   |
| McTRC0001 | 16  | 18  | Fire Assay 50g        | NAGROM | Spear |         |

**metalicity** 

| McTRC0001 | 16 | 17 | Screen Fire Assay 50g | NAGROM | Spear | 0.001  |
|-----------|----|----|-----------------------|--------|-------|--------|
| McTRC0001 | 18 | 20 | Fire Assay 50g        | NAGROM | Spear | 0.002  |
| McTRC0001 | 20 | 22 | Fire Assay 50g        | NAGROM | Spear | 0.006  |
| McTRC0001 | 21 | 22 | Screen Fire Assay 50g | NAGROM | Spear | <0.001 |
| McTRC0001 | 22 | 24 | Fire Assay 50g        | NAGROM | Spear | 0.005  |
| McTRC0001 | 24 | 26 | Fire Assay 50g        | NAGROM | Spear | <0.001 |
| McTRC0001 | 26 | 28 | Fire Assay 50g        | NAGROM | Spear | 0.008  |
| McTRC0001 | 28 | 30 | Fire Assay 50g        | NAGROM | Spear | <0.001 |
| McTRC0001 | 30 | 32 | Fire Assay 50g        | NAGROM | Spear | 0.001  |
| McTRC0001 | 32 | 34 | Fire Assay 50g        | NAGROM | Spear | 0.003  |
| McTRC0001 | 34 | 36 | Fire Assay 50g        | NAGROM | Spear | 0.014  |
| McTRC0001 | 36 | 38 | Fire Assay 50g        | NAGROM | Spear | 0.07   |
| McTRC0001 | 38 | 40 | Fire Assay 50g        | NAGROM | Spear | 0.023  |
| McTRC0001 | 40 | 42 | Fire Assay 50g        | NAGROM | Spear | 0.051  |
| McTRC0001 | 42 | 44 | Fire Assay 50g        | NAGROM | Spear | 0.032  |
| McTRC0001 | 44 | 46 | Fire Assay 50g        | NAGROM | Spear | 0.011  |
| McTRC0001 | 46 | 48 | Fire Assay 50g        | NAGROM | Spear | 0.048  |
| McTRC0001 | 48 | 50 | Fire Assay 50g        | NAGROM | Spear | 0.061  |
| McTRC0001 | 50 | 52 | Fire Assay 50g        | NAGROM | Spear | 0.021  |
| McTRC0001 | 52 | 54 | Fire Assay 50g        | NAGROM | Spear | 0.053  |
| McTRC0001 | 54 | 56 | Fire Assay 50g        | NAGROM | Spear | 0.05   |
| McTRC0001 | 56 | 58 | Fire Assay 50g        | NAGROM | Spear | 0.028  |
| McTRC0001 | 58 | 59 | Fire Assay 50g        | NAGROM | Spear | 0.070  |
| McTRC0001 | 59 | 60 | Fire Assay 50g        | NAGROM | Spear | 0.004  |
| McTRC0001 | 60 | 61 | Fire Assay 50g        | NAGROM | Spear | 0.005  |
| McTRC0001 | 61 | 62 | Fire Assay 50g        | NAGROM | Spear | 0.002  |
| McTRC0001 | 62 | 63 | Fire Assay 50g        | NAGROM | Spear | 0.001  |
| McTRC0001 | 63 | 64 | Fire Assay 50g        | NAGROM | Spear | 0.003  |
| McTRC0001 | 64 | 65 | Fire Assay 50g        | NAGROM | Spear | 0.003  |
| McTRC0001 | 65 | 66 | Fire Assay 50g        | NAGROM | Spear | 0.026  |
| McTRC0001 | 66 | 67 | Fire Assay 50g        | NAGROM | Spear | 0.006  |
| McTRC0001 | 67 | 68 | Screen Fire Assay 50g | NAGROM | Spear | 15.47  |
| McTRC0001 | 68 | 69 | Screen Fire Assay 50g | NAGROM | Spear | 4.88   |
| McTRC0001 | 69 | 70 | Screen Fire Assay 50g | NAGROM | Spear | 2.91   |
| McTRC0001 | 70 | 71 | Screen Fire Assay 50g | NAGROM | Spear | 2.31   |
| McTRC0001 | 71 | 72 | Screen Fire Assay 50g | NAGROM | Spear | 0.21   |
| McTRC0001 | 72 | 73 | Fire Assay 50g        | NAGROM | Spear | 0.182  |
| McTRC0001 | 73 | 74 | Fire Assay 50g        | NAGROM | Spear | 0.026  |
| McTRC0001 | 74 | 76 | Fire Assay 50g        | NAGROM | Spear | 0.075  |
| McTRC0001 | 76 | 78 | Fire Assay 50g        | NAGROM | Spear | 0.052  |
| McTRC0001 | 78 | 80 | Fire Assay 50g        | NAGROM | Spear | 0.007  |
| McTRC0001 | 80 | 81 | Screen Fire Assay 50g | NAGROM | Spear | 0.02   |
| McTRC0001 | 81 | 82 | Screen Fire Assay 50g | NAGROM | Spear | 0.01   |
| McTRC0001 | 82 | 83 | Screen Fire Assay 50g | NAGROM | Spear | < 0.01 |

**metalicity** 

| McTRC0001 | 83 | 84 | Screen Fire Assay 50g | NAGROM | Spear | <0.01   |
|-----------|----|----|-----------------------|--------|-------|---------|
| McTRC0001 | 84 | 85 | Fire Assay 50g        | NAGROM | Spear | 0.018   |
| McTRC0001 | 85 | 86 | Fire Assay 50g        | NAGROM | Spear | 0.025   |
| McTRC0001 | 86 | 87 | Fire Assay 50g        | NAGROM | Spear | 0.024   |
| McTRC0001 | 87 | 88 | Fire Assay 50g        | NAGROM | Spear | 0.044   |
| McTRC0001 | 88 | 89 | Fire Assay 50g        | NAGROM | Spear | 0.002   |
| McTRC0001 | 89 | 90 | Fire Assay 50g        | NAGROM | Spear | 0.004   |
| McTRC0001 | 90 | 91 | Fire Assay 50g        | NAGROM | Spear | 0.030   |
| McTRC0001 | 91 | 92 | Fire Assay 50g        | NAGROM | Spear | 0.023   |
| McTRC0001 | 92 | 93 | Fire Assay 50g        | NAGROM | Spear | 0.029   |
| McTRC0001 | 93 | 94 | Fire Assay 50g        | NAGROM | Spear | 0.023   |
| CPRC0001  | 0  | 2  | Fire Assay 50g        | NAGROM | Spear | 0.029   |
| CPRC0001  | 2  | 4  | Fire Assay 50g        | NAGROM | Spear | 0.043   |
| CPRC0001  | 4  | 6  | Fire Assay 50g        | NAGROM | Spear | 0.006   |
| CPRC0001  | 6  | 8  | Fire Assay 50g        | NAGROM | Spear | 0.002   |
| CPRC0001  | 8  | 10 | Fire Assay 50g        | NAGROM | Spear | 0.014   |
| CPRC0001  | 10 | 12 | Fire Assay 50g        | NAGROM | Spear | 0.004   |
| CPRC0001  | 12 | 14 | Fire Assay 50g        | NAGROM | Spear | 0.001   |
| CPRC0001  | 14 | 16 | Fire Assay 50g        | NAGROM | Spear | 0.002   |
| CPRC0001  | 16 | 18 | Fire Assay 50g        | NAGROM | Spear | 0.004   |
| CPRC0001  | 18 | 20 | Fire Assay 50g        | NAGROM | Spear | 0.002   |
| CPRC0001  | 20 | 22 | Fire Assay 50g        | NAGROM | Spear | 0.020   |
| CPRC0001  | 22 | 24 | Fire Assay 50g        | NAGROM | Spear | 0.003   |
| CPRC0001  | 24 | 26 | Fire Assay 50g        | NAGROM | Spear | 0.008   |
| CPRC0001  | 26 | 28 | Fire Assay 50g        | NAGROM | Spear | 0.003   |
| CPRC0001  | 28 | 30 | Fire Assay 50g        | NAGROM | Spear | 0.031   |
| CPRC0001  | 30 | 32 | Fire Assay 50g        | NAGROM | Spear | 0.029   |
| CPRC0001  | 32 | 34 | Fire Assay 50g        | NAGROM | Spear | 0.014   |
| CPRC0001  | 34 | 36 | Fire Assay 50g        | NAGROM | Spear | 0.026   |
| CPRC0001  | 36 | 38 | Fire Assay 50g        | NAGROM | Spear | 0.010   |
| CPRC0001  | 38 | 40 | Fire Assay 50g        | NAGROM | Spear | 0.407   |
| CPRC0001  | 40 | 42 | Fire Assay 50g        | NAGROM | Spear | 0.631   |
| CPRC0001  | 42 | 44 | Fire Assay 50g        | NAGROM | Spear | 0.022   |
| CPRC0001  | 44 | 46 | Fire Assay 50g        | NAGROM | Spear | 0.158   |
| CPRC0001  | 46 | 48 | Fire Assay 50g        | NAGROM | Spear | 0.038   |
| CPRC0001  | 48 | 50 | Fire Assay 50g        | NAGROM | Spear | 0.041   |
| CPRC0001  | 50 | 52 | Fire Assay 50g        | NAGROM | Spear | 0.014   |
| CPRC0001  | 52 | 54 | Fire Assay 50g        | NAGROM | Spear | 0.024   |
| CPRC0001  | 54 | 56 | Fire Assay 50g        | NAGROM | Spear | 0.098   |
| CPRC0001  | 56 | 58 | Fire Assay 50g        | NAGROM | Spear | 0.018   |
| CPRC0001  | 58 | 60 | Fire Assay 50g        | NAGROM | Spear | 0.016   |
| CPRC0001  | 60 | 62 | Fire Assay 50g        | NAGROM | Spear | 0.009   |
| CPRC0001  | 62 | 64 | Fire Assay 50g        | NAGROM | Spear | 0.056   |
| CPRC0001  | 64 | 66 | Fire Assay 50g        | NAGROM | Spear | < 0.001 |

**metalicity** 

| CPRC0001 | 66  | 68  | Fire Assay 50g | NAGROM | Spear | 0.008  |
|----------|-----|-----|----------------|--------|-------|--------|
| CPRC0001 | 68  | 70  | Fire Assay 50g | NAGROM | Spear | 0.004  |
| CPRC0001 | 70  | 72  | Fire Assay 50g | NAGROM | Spear | 0.002  |
| CPRC0001 | 72  | 74  | Fire Assay 50g | NAGROM | Spear | 0.068  |
| CPRC0001 | 74  | 76  | Fire Assay 50g | NAGROM | Spear | 0.278  |
| CPRC0001 | 76  | 78  | Fire Assay 50g | NAGROM | Spear | 0.038  |
| CPRC0001 | 78  | 80  | Fire Assay 50g | NAGROM | Spear | 0.008  |
| CPRC0001 | 80  | 82  | Fire Assay 50g | NAGROM | Spear | 0.01   |
| CPRC0001 | 82  | 83  | Fire Assay 50g | NAGROM | Spear | <0.001 |
| CPRC0001 | 83  | 84  | Fire Assay 50g | NAGROM | Spear | 0.005  |
| CPRC0001 | 84  | 86  | Fire Assay 50g | NAGROM | Spear | 0.001  |
| CPRC0001 | 86  | 88  | Fire Assay 50g | NAGROM | Spear | 0.043  |
| CPRC0001 | 88  | 90  | Fire Assay 50g | NAGROM | Spear | 0.004  |
| CPRC0001 | 90  | 92  | Fire Assay 50g | NAGROM | Spear | 0.014  |
| CPRC0001 | 92  | 94  | Fire Assay 50g | NAGROM | Spear | 0.001  |
| CPRC0001 | 94  | 96  | Fire Assay 50g | NAGROM | Spear | 0.013  |
| CPRC0001 | 96  | 98  | Fire Assay 50g | NAGROM | Spear | 0.001  |
| CPRC0001 | 98  | 100 | Fire Assay 50g | NAGROM | Spear | 0.004  |
| CPRC0001 | 100 | 102 | Fire Assay 50g | NAGROM | Spear | 0.005  |
| CPRC0001 | 102 | 104 | Fire Assay 50g | NAGROM | Spear | 0.017  |
| CPRC0001 | 104 | 105 | Fire Assay 50g | NAGROM | Spear | 0.144  |
| CPRC0001 | 105 | 106 | Fire Assay 50g | NAGROM | Spear | 0.046  |
| CPRC0001 | 106 | 107 | Fire Assay 50g | NAGROM | Spear | 0.346  |
| CPRC0001 | 107 | 108 | Fire Assay 50g | NAGROM | Spear | 0.036  |
| CPRC0001 | 108 | 110 | Fire Assay 50g | NAGROM | Spear | 0.28   |
| CPRC0001 | 110 | 112 | Fire Assay 50g | NAGROM | Spear | 0.031  |

