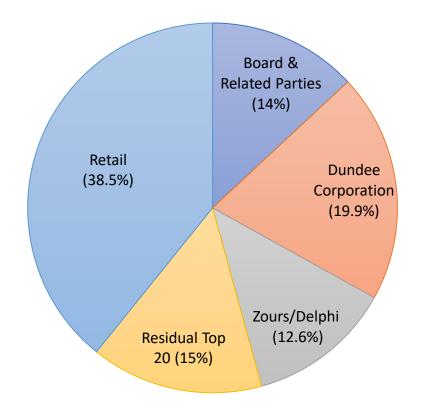


ASX Code: ZMI August 2019

The Kildare Zinc Project
Advanced Exploration Project Delivering in 2019

The Project, Team and Plan to Progress Development

- Located in established zinc mining province with existing infrastructure
- Recently completed JORC Inferred Resource of 9.0Mt @ 9.5% Zn+Pb for 859,000 tonnes of contained
 Zn+Pb
- New discovery potential and immediate resource growth opportunity
- Excellent metallurgical performance: high quality, marketable, zinc and lead concentrates produced
- De-risking activities in parallel with resource growth
- Experienced board and management team with considerable operating experience within Europe
- Well funded with cash, receivables and liquid assets of > A\$3 million


Corporate Overview

TICKER

SHARES ON ISSUE

ASX: ZMI 121.5 million

OPTIONS ON ISSUE

83 million

MARKET CAPITALISATION

~A\$11 million

CASH AT BANK³

>A\$3 million

- Positioned with a strong share register including significant insider & institutional ownership
- Fully funded 2019 budget
 - Top 3 groups own ~47%
 - Top 20 own ~60%
 - Project potential recognised by cornerstone investor Dundee Resources

Notes:

- 1. A breakdown of the Options on issue is available in the latest Appendix 3B lodged with ASX
- 2. Details are as at 1 August 2019
- 3. Includes receivables and liquid assets of \$623,000 in the form of VAT refunds and shares in ASX:KWR

Experienced and Proven Board of Directors

Richard Monti

Chairman

Corporate geologist with over 30 years experience in the international resource industry.

Over 42 "director years" experience for 13 ASX and TSX listed companies.

Patrick Corr

Executive Director

Corporate lawyer with considerable legal, finance and management experience with both private, public and ASX listed companies.

Held Director roles within companies with projects in Europe, Australia, Africa, North America and South America.

Julian Barnes

Non-Executive Director

Geologist with over 37 years experience in major exploration and development projects.

Previously, Executive Vice President of Dundee Precious Metals, founded and led Resource Service Group which ultimately became RSG Global, before being sold to Coffey Mining.

Adrian Goldstone

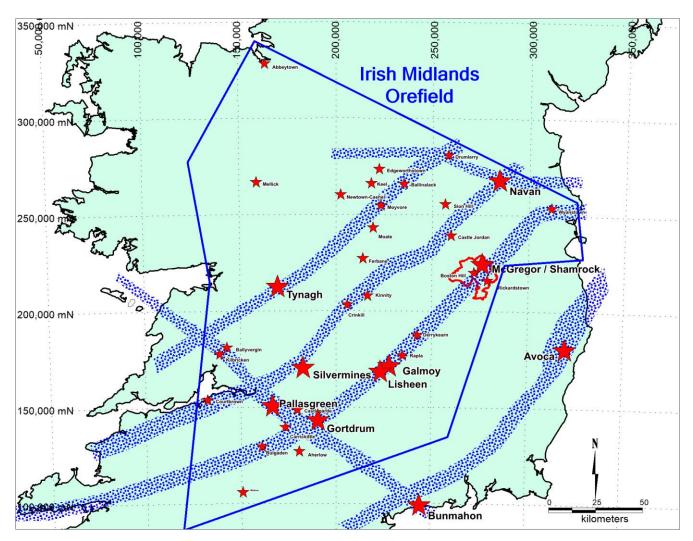
Non-Executive Director

In excess of 35 years experience in senior roles including Executive Vice President, responsible for Dundee Precious Metal's major projects in Europe and Africa.

Uniquely successful in the areas of environmental, social licence and project management and taking new projects through the development process and into construction.

Thomas Corr

Non-Executive Director


10 years experience in finance and resource sectors in both Australia and Europe.

Responsible for identifying the potential of Kildare and successfully acquiring the projects.

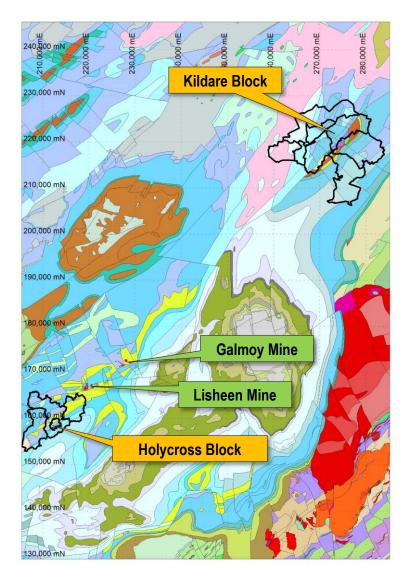
Resides in Ireland.

Ireland – The World's Most Prospective Zinc Region RANKED FIRST IN THE WORLD FOR ZINC DISCOVERED PER KM²

- 50 years of exploration has resulted in the discovery of >25 deposits containing
 +20Mt of Zn metal
- Majors presently exploring and mining include Boliden, Teck & Glencore

Deposit	Year of Discovery	Mt	Grade % Zn+Pb	Status				
Lisheen	1990	22.8	14.10%	Closed Underground				
Galmoy	1986	9.7	16.20%	Closed Underground				
Silvermines	1963	17.7	8.90%	Closed Underground				
Tynagh	1961	9.2	11.20%	Closed Pit / Underground				
Pallas Green	2004	44	8.0%	Resource Definition				
Navan	1970	112.0	9.8%	Operating Underground				

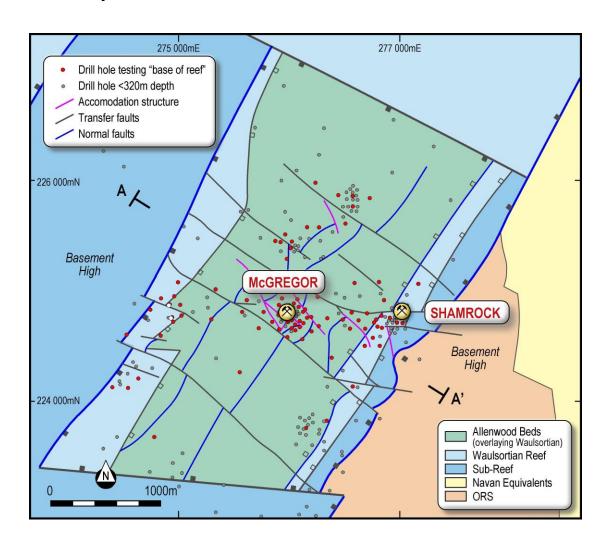
Ireland: A Place Where Zinc Mines are Built



Aerial view of Lisheen Mine whilst in production.

- Established mining industry
- Home to Europe's largest Zn mine in operation since 1977 - Boliden's Tara Mine
- Grid power, roads, railways & ports
- Modest cost profiles, skilled local workforce
- Numerous smelters within Europe
- 25% corporate tax rate on mining operations
- Royalty: negotiated on a project basis, expected range 1.5% - 3.5% NSR

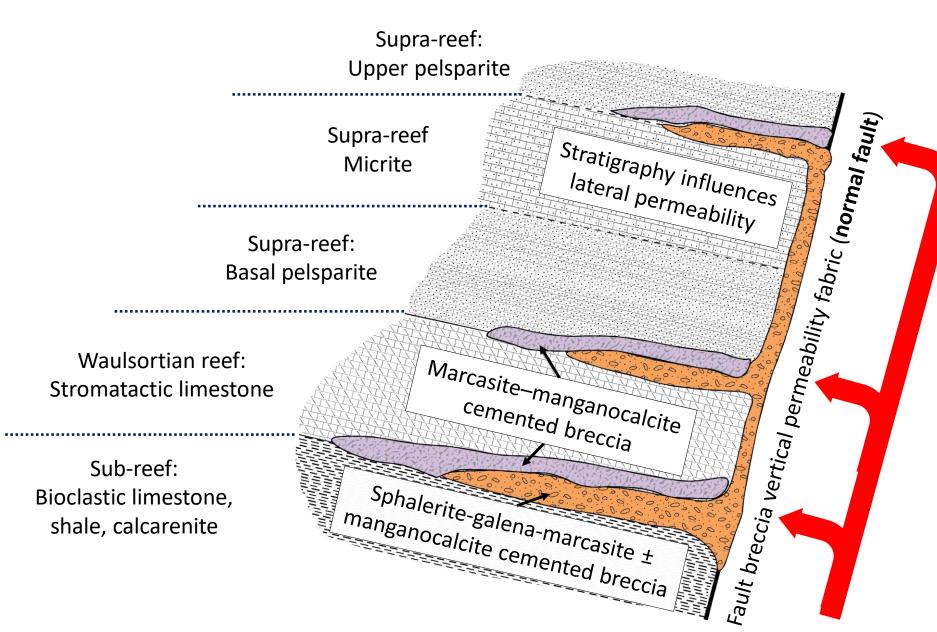
The Kildare Project THE RATHDOWNEY TREND – THE HOME OF PROFITABLE ZINC MINES



- The Kildare Block (272km²), contiguous and prospective land package within the Rathdowney Trend
- Focus on the Allenwood Graben (within the Kildare Block)
 which hosts an inferred resource of 9.0Mt @ 9.5% Zn+Pb
- Located ~60km along trend from two profitable zinc mines:
 Lisheen and Galmoy
- ZMI recently acquired the Holycross Block (89km²)
- The Rathdowney Trend land package contains significant untapped exploration potential

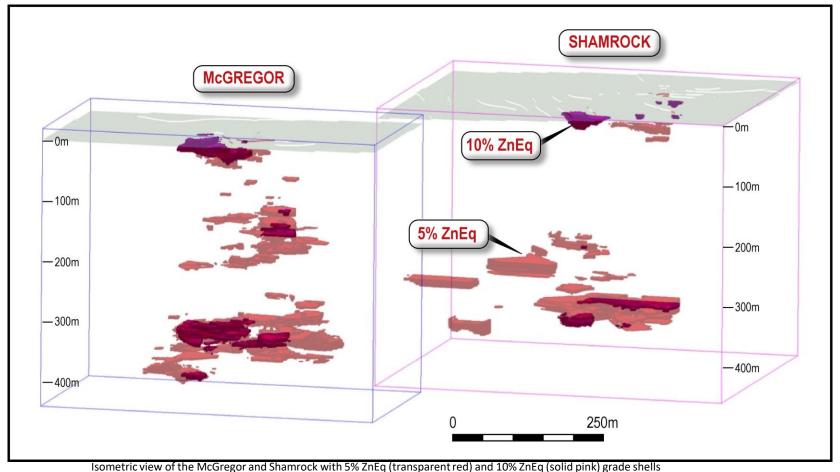
The Allenwood Graben

> 850,000 TONNES OF CONTAINED ZINC & LEAD......SO FAR



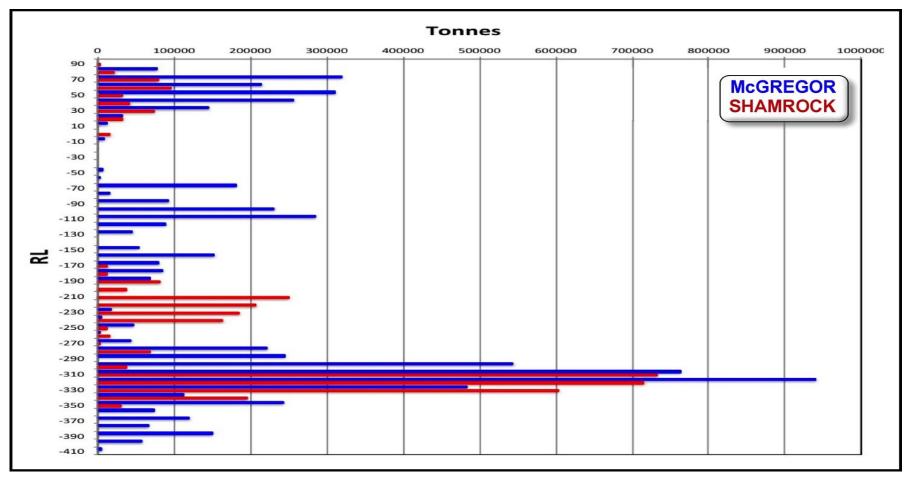
- Centrepiece of the Kildare Block
- Large hydrothermal system with widespread mineralisation
- Multiple zones of mineralisation starting near surface with over 500m of vertical extent
- Only <20% of all drilling has tested the primary 'base of reef' position

Allenwood Graben: Mineralisation Model



Metal rich and slightly acidic hydrothermal fluid derived from basement are channeled up pre- and syn-sedimentary faults and spread laterally along stratigraphic controlled porosity and permeability.

JORC Inferred Resource – 9.0Mt @ 9.5% Zn+Pb 8.2% Zn & 1.3% Pb at 5.5% ZnEq Cut-Off¹

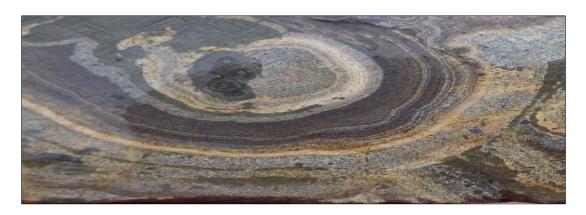


- isometric view of the ivicoregor and snamrock with 5% ZnEq (transparent red) and 10% ZnEq (solid pink) grade snells
- Multiple zones of mineralisation from near surface for ~500m of vertical extent
- Main zones include high grade (>10%ZnEq) core
- Significant extension potential between McGregor & Shamrock

1.Additional information relating to the Inferred Resource and ZnEq calculations is included in the Appendix.

> 850,000 Tonnes of Contained Zinc & Lead

Resource distribution graph subdivided by 10m RL increment for McGregor and Shamrock, based on a 5% ZnEq cut off grade


- Most mineralisation in base of reef
- Significant mineralisation at shallower depths
- Shallower mineralisation would improve project economics in an underground mining scenario

Exceptional Metallurgy Performance Confirmed

Zinc concentrate:

- **96% recovery** of Zn to concentrate
- **56% Zn** in concentrate
- Minimal Pb in Zn concentrate

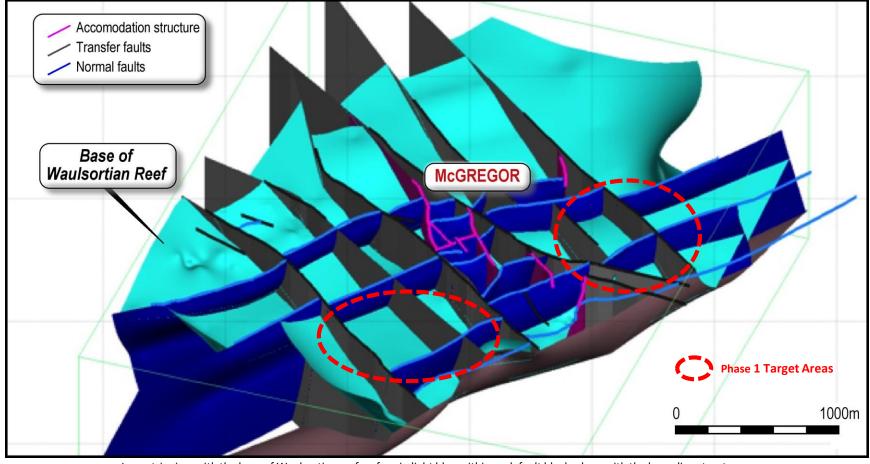
Lead concentrate:


- **86% recovery** of Pb to concentrate
- **62% Pb** in concentrate
- Minimal Zn in Pb concentrate

- Minimal deleterious elements in either concentrate
- Standard differential flotation/standard reagent scheme
- Low energy costs for target grind size

For further information on the metallurgical testwork refer to ZMI ASX announcement dated 23 April 2019

McGregor-Shamrock: Additional Exploration Upside



Zoomed plan of Allenwood Graben with McGregor & Shamrock grade shells in pink and red shading

- Significant extension upside between McGregor and Shamrock
- Phase 2 drilling to target resource additions

Allenwood Graben: Additional Discovery Potential

Isometric view with the base of Waulsortian reef surface in light blue within each fault block, along with the bounding structures

- ~40 fault compartments outside of McGregor/Shamrock zones all with zinc discovery potential
- Limited base of reef drilling outside of McGregor & Shamrock
- Phase 1 drilling focussing on areas with potential to host additional zones of Zn-Pb resources

Additional De-Risking Activities

Metallurgical Testwork

Excellent recoveries and concentrates produced

JORC Resource Update

✓ 9.0Mt @ 9.5% Zn+Pb, for a total of 859,000 tonnes of contained Zn + Pb

Environmental Baseline

- ☐ Establish EIA-related baseline requirements
- ☐ Commence pre-development footprint planning

Heritage & Social

Stakeholder engagement, community relations, heritage study

Reasons To Invest

- EXISTING ZINC RESOURCE reduces the exploration risk threshold; growth potential
- EXPLORATION DRILLING ONGOING testing for additional zones of mineralisation
- **EXCELLENT METALLURGY** high quality zinc and lead concentrates produced
- **PROJECT DE-RISKING** parallel activities to reduce study timeframes
- PROVEN BOARD AND MANAGEMENT operational experience in the EU
- **STRONG SHAREHOLDER BASE** cornerstone shareholders, EU mining experience, tight ownership structure
- CASH OF ~A\$3 MILLION funded to meet current project objectives
- HIGHLY LEVERAGED TO UPSIDE enterprise value of only ~A\$8 million

Appendix: Additional Information McGregor & Shamrock Inferred Resources

						Mc		nd@hamr		le-Tonnage									
MCGREGOR								Subdivided@y@key@ithostratigraphic@unit SHAMROCK COMBINED											
							UPPERI	CARBONA	ATE-DOM	INATEDIZO	NE								
ZnEq©Cutoff	Mt	Zn%	Pb%	Zn%+Pb%	Zn©kt	Pb@kt	Mt	Zn%	Pb%	Zn%+Pb%	Zn®kt	Pb®kt	Mt	Zn%	Pb%	Zn%+Pb%	Znikt	Pb@kt	
4.0 4.5	0.49	8.6 8.8	2.8	11.4 11.6	42 41	14 13	0.30	8.6 10.1	2.4	11.0 12.6	26 24	7	0.79 0.71	8.6 9.2	2.6 2.7	11.2 11.9	68 65	21 19	
5.0	0.44	9.2	2.0	12.1	41	13	0.24	10.1	2.5	13.2	23	5	0.65	9.2	2.7	12.4	63	18	
5.5	0.41	9.6	2.9	12.5	39	12	0.21	11.0	2.5	13.5	23	5	0.62	10.0	2.8	12.8	62	17	
6.0	0.38	10.0	2.9	12.9	38	11	0.20	11.3	2.5	13.7	23	5	0.58	10.4	2.8	13.2	61	16	
6.5 7.0	0.35	10.4	3.0	13.4	37 35	11 10	0.20	11.5	2.4	13.9	23	5	0.55 0.51	10.8	2.8	13.6	59 58	15	
7.0	0.33	11.6	3.0	13.8	33	9	0.19	11.9	2.3	14.2	22	4	0.51	11.7	2.7	13.9	55	13	
8.0	0.26	12.1	2.9	15.0	32	8	0.18	12.3	2.3	14.5	22	4	0.44	12.2	2.6	14.8	54	12	
8.5	0.24	12.7	3.0	15.7	30	7	0.16	12.9	2.1	15.0	21	3	0.40	12.8	2.6	15.4	51	10	
9.0 9.5	0.21	13.5 14.0	3.0	16.5 17.0	28 27	6	0.14	14.0 14.5	1.9	15.9 16.2	19 19	3	0.35	13.7 14.2	2.6	16.2 16.6	47 46	9	
10.0	0.19	14.5	3.0	17.5	26	5	0.13	14.5	1.6	16.2	18	2	0.32	14.2	2.5	17.0	44	7	
10.0	0.10	14.5	3.0	17.3	20		0.12		VAULSOI		10		0.50	14.0	2.4	17.0			
Cutoff	Mt	Zn%	Pb%	Zn%+Pb%	Zn©kt	Pb@kt	Mt	Zn%	Pb%	Zn%+Pb%	Znūkt	Pb@kt	Mt	Zn%	Pb%	Zn%+Pb%	Znūkt	Pb@kt	
4.0	2.75	6.8	1.3	8.1	186	36	0.00	0.0	0.0	0.0	0	0	2.75	6.8	1.3	8.1	186	36	
4.5 5.0	2.23 1.77	7.5 8.3	1.5	8.9 9.9	166 147	32 29	0.00	0.0	0.0	0.0	0	0	2.23 1.77	7.5 8.3	1.5 1.6	8.9 9.9	166 147	32 29	
5.5	1.77	8.8	1.6	10.5	135	26	0.00	0.0	0.0	0.0	0	0	1.77	8.8	1.6	10.5	135	26	
6.0	1.38	9.2	1.7	11.0	128	24	0.00	0.0	0.0	0.0	o	0	1.38	9.2	1.7	11.0	128	24	
6.5	1.22	9.8	1.8	11.6	119	22	0.00	0.0	0.0	0.0	0	0	1.22	9.8	1.8	11.6	119	22	
7.0 7.5	1.12	10.1	1.9	11.9	113	21 19	0.00	0.0	0.0	0.0	0	0	1.12	10.1	1.9	11.9 12.3	113	19	
7.5 8.0	0.93	10.4	1.9	12.3	100	17	0.00	0.0	0.0	0.0	0	0	0.93	10.4	1.9	12.3	100	17	
8.5	0.81	11.3	1.9	13.2	92	15	0.00	0.0	0.0	0.0	0	0	0.81	11.3	1.9	13.2	92	15	
9.0	0.67	12.1	1.9	14.0	80	13	0.00	0.0	0.0	0.0	0	0	0.67	12.1	1.9	14.0	80	13	
9.5	0.54	13.0	1.9	14.9	70	10	0.00	0.0	0.0	0.0	0	0	0.54	13.0	1.9	14.9	70	10	
10.0	0.46	13.8	1.8	15.6	64	8	0.00	0.0	0.0	0.0	0	0	0.46	13.8	1.8	15.6	64	8	
Cutoff	Mt	Zn%	Pb%	Zn%+Pb%	Znikt	Pb/kt	Mt	Zn%	Pb%	Zn%+Pb%	Znikt	Pb@kt	Mt	Zn%	Pb%	Zn%+Pb%	Znikt	Pb@kt	
4.0	4.71	6.7	0.9	7.6	316	44	2.25	4.8	1.1	5.9	107	25	6.96	6.1	1.0	7.1	423	69	
4.5	3.77	7.4	1.1	8.4	277	40	1.58	5.2	1.3	6.4	81	20	5.35	6.7	1.1	7.8	358	60	
5.0	2.89	8.2	1.2	9.4	237	35	1.19	5.6	1.2	6.8	67	14	4.08	7.4	1.2	8.7	304	50	
5.5 6.0	2.32 1.95	9.0	1.4	10.4	209 189	32 28	0.95	5.9 6.1	1.2	7.1	55 41	12	3.27 2.63	8.1 8.8	1.3	9.4 10.2	264	43 37	
6.5	1.67	10.3	1.6	11.9	173	26	0.42	6.3	1.5	7.4	26	6	2.09	9.5	1.5	11.1	199	32	
7.0	1.47	10.9	1.7	12.5	160	24	0.16	6.7	1.7	8.4	10	3	1.63	10.5	1.7	12.1	171	27	
7.5	1.29	11.5	1.8	13.2	147	23	0.05	7.5	2.1	9.7	4	1	1.34	11.3	1.8	13.1	151	24	
8.0 8.5	1.11	12.1	1.9	14.0	135	21 19	0.04	7.9	2.2	10.1	3	1	1.15	12.0	1.9	13.9 14.5	137	22	
9.0	0.99	13.3	2.0	15.4	115	18	0.03	8.6	2.5	11.1	1	0	0.88	13.2	2.0	15.3	117	18	
9.5	0.78	13.8	2.2	16.0	108	17	0.01	9.5	2.2	11.7	1	ō	0.79	13.8	2.2	16.0	108	17	
10.0	0.71	14.3	2.3	16.5	101	16	0.01	10.5	1.6	12.1	1	0	0.71	14.2	2.3	16.5	102	16	
				,					VAULSO							,			
Cutoff 4.0	Mt 2.40	Zn% 6.7	Pb% 0.9	Zn%+Pb% 7.6	Zn®kt 160	Pb@kt 21	Mt 3.16	Zn% 6.6	Pb% 0.6	Zn%+Pb% 7.2	Zn®kt 208	Pb@kt	Mt 5.56	Zn% 6.6	Pb%	Zn%+Pb% 7.3	Zn@kt 368	Pb@kt 40	
4.5	2.40	7.2	0.9	8.1	146	19	2.74	7.0	0.6	7.6	191	18	4.79	7.0	0.7	7.8	337	36	
5.0	1.76	7.6	1.0	8.6	134	17	2.33	7.4	0.7	8.0	171	16	4.09	7.5	0.8	8.3	305	33	
5.5	1.52	8.0	1.0	9.0	121	15	2.10	7.6	0.7	8.3	160	15	3.61	7.8	0.8	8.6	281	30	
6.0 6.5	0.91	8.6 9.5	1.1	9.7 10.8	105 86	13 12	1.77	8.0 8.5	0.7	8.7 9.3	141	13	2.99 2.31	8.2 8.9	1.0	9.1 9.9	246	26 23	
7.0	0.70	10.4	1.5	11.9	72	10	1.40	8.9	0.8	9.3	104	9	1.86	9.4	1.1	10.5	176	20	
7.5	0.59	11.0	1.6	12.6	65	10	1.02	9.1	0.8	10.0	93	8	1.61	9.8	1.1	10.9	159	18	
8.0	0.52	11.5	1.7	13.3	59	9	0.85	9.5	0.8	10.3	81	7	1.37	10.3	1.2	11.4	140	16	
8.5 9.0	0.46	12.0 12.4	1.8	13.8 14.4	55 51	8	0.75 0.47	9.7	0.8	10.5 11.2	73 48	6	1.21 0.88	10.5 11.3	1.2	11.8 12.7	127 99	15 12	
9.0	0.41	12.4	2.0	14.4	46	8	0.47	10.3	1.0	11.2	48 36	3	0.88	11.3	1.4	13.5	82	11	
10.0	0.33	13.5	2.3	15.1	42	7	0.30	11.1	1.0	12.0	33	3	0.61	12.3	1.6	13.9	75	10	
									TOTAL										
Cutoff	Mt	Zn%	Pb%	Zn%+Pb%	Zn®kt	Pb@kt	Mt	Zn%	Pb%	Zn%+Pb%	Zn©kt	Pblkt	Mt	Zn%	Pb%	Zn%+Pb%	Znikt	Pb@kt	
4.0	10.35	6.8	1.1	7.9	704	115	5.71	6.0	0.9	6.9	341	52	16.07	6.5	1.0	7.5	1045	167	
4.5 5.0	8.51 6.86	7.4 8.1	1.2	8.6 9.5	631 558	104 93	4.56 3.74	6.5 7.0	1.0 1.0	7.5 7.9	296 261	44 36	13.06 10.60	7.1 7.7	1.1 1.2	8.2 8.9	927 819	148 129	
5.5	5.78	8.7	1.5	10.2	505	85	3.25	7.3	1.0	8.3	238	31	9.03	8.2	1.3	9.5	743	116	
6.0	4.93	9.3	1.6	10.9	460	77	2.65	7.7	1.0	8.8	205	27	7.58	8.8	1.4	10.1	665	104	
6.5	4.14	10.0	1.7	11.7	414	70	2.02	8.3	1.1	9.4	168	22	6.16	9.4	1.5	10.9	582	92	
7.0	3.61	10.5	1.8	12.3	381	65	1.51	9.0	1.1	10.1	136	16	5.13	10.1	1.6	11.7	517	82	
7.5 8.0	3.19 2.82	11.1 11.6	1.9	12.9 13.5	353 326	60 55	1.26	9.5	1.1	10.6 11.0	119 105	14 12	4.45 3.88	10.6 11.1	1.7 1.7	12.3 12.8	472 431	74 67	
8.5	2.49	12.1	2.0	14.1	302	50	0.94	10.2	1.1	11.3	96	10	3.43	11.6	1.8	13.3	397	60	
9.0	2.15	12.8	2.1	14.9	275	45	0.62	11.1	1.2	12.3	69	7	2.77	12.4	1.9	14.3	343	52	
9.5 10.0	1.87 1.66	13.4 14.0	2.2	15.6 16.2	250 232	41 37	0.47	11.8 12.1	1.2 1.2	13.0 13.3	56 52	6	2.34	13.1 13.6	2.0	15.1 15.6	306 284	46 42	
							0.43					5							

ZnEq Calculation:

In order to determine appropriate Pb and Zn prices for use in calculating a ZnEq cut off grade, the monthly average LME spot prices for Pb and Zn were assessed for the 5 years between June 2014 and June 2019, resulting in an average price of US\$2,468 per tonne for Zn and US\$2,047 per tonne for Pb. For the purposes of calculating a ZnEq cut off, these two prices were rounded to \$2,500 per tonne for Zn and \$2,000 per tonne for Pb, resulting in a 0.8 ratio between Pb and Zn. All elements included in the ZnEq formula calc (i.e. zinc and lead) have a reasonable potential to be recovered and sold.

The resultant ZnEq formula used in resource reporting is:

ZnEq = (Zn% * Zn recovery) + (0.8* (Pb% * Pb recovery)).

ZnEq = (Zn% * 0.9639) + (0.8 * Pb% * 0.8644).

For further information on the Mineral Resource Estimate and ZnEq calculations refer to ZMI ASX announcement dated 31 July 2019.

ZMI confirms that all material assumptions referenced on 31 July 2019, continue to apply and have not materially changed.

Disclaimer

The following disclaimer applies to this presentation and any information provided regarding the information contained in this presentation. You are advised to read this disclaimer carefully before reading or making any other use of this presentation or any information contained in this presentation. In accepting this presentation, you agree to be bound by the following terms and conditions, including any modifications to them. This presentation has been prepared by Zinc of Ireland NL ("ZMI"). The information contained in this presentation is a professional opinion only and is given in good faith. Certain information in this document has been derived from third parties and though ZMI has no reason to believe that it is not accurate, reliable or complete, it has not been independently audited or verified by ZMI.

The information contained in this presentation is for information only and does not constitute an offer to sell, issue or arrange to sell securities or other financial products. Any forward-looking statements included in this document involve subjective judgement and analysis and are subject to uncertainties, risks and contingencies, many of which are outside the control of, and may be unknown to ZMI. In particular, they speak only as of the date of this document, they assume the success of ZMI's strategies, and they are subject to significant regulatory, business, competitive and economic uncertainties and risks. Actual future events may vary materially from the forward looking statements and the assumptions on which the forward-looking statements are based. Recipients of this document ("Recipients") are cautioned to not place undue reliance on such forward-looking statements. Past performance is not a guarantee of future performance. ZMI makes no representation or warranty, expense or implication as to the accuracy, reliability or completeness of information or the likelihood of achievement or reasonability of forecasts, prospects or returns capital in this document and does not take responsibility for updating any information or correcting any error or omission which may become apparent after this document has been issued.

To the extent permitted by law, ZMI and its related bodies corporate and any of their respective officers, employees and agents and any other person ("Agents") disclaim all liability, direct, indirect or consequential (and whether or not arising out of the negligence, default or lack of care of ZMI and/or any of its Agents) for any loss or damage suffered by a Recipient or other persons arising out of, or in connection with, any use or reliance on this presentation or information. This presentation has been prepared without taking into account the investment objectives, financial situation or particular needs of any particular person. You are totally responsible for forming your own opinions and conclusions on such matters in the market and for making your own independent assessment of the information. You are solely responsible for seeking independent professional advice in relation to the information and any action taken on the basis of the information. All currency amounts are in A\$ unless stated otherwise. The release, publication or distribution of this presentation in jurisdictions outside of Australia may be a violation of applicable laws.

Competent Person's Statements

The information in this report that relates to exploration results is based on information compiled by Mr. Sean Hasson, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr. Hasson is Zinc of Ireland NL's Exploration Manager. Mr. Hasson has sufficient experience, which is relevant to the style of mineralisation and types of deposits under consideration and to the activity which has been undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Mr. Hasson consents to the inclusion in the presentation of the matters based on his information in the form and context in which it appears.

The information in this report that relates to the Mineral Resources is based on information compiled by Brian Wolfe, Senior Resource Consultant of International Resource Solutions Pty Ltd. Mr. Wolfe is a Member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and types of deposits under consideration and to the activity which has been undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Mr. Wolfe consents to the inclusion in the presentation of the matters based on his information in the form and context in which it appears.

The information in this document that relates to mineral resource estimates is extracted from the ASX announcement entitled "Updated Mineral Resource at Kildare Zinc Project" dated 30 July 2019 and is available to view on www.zincofireland.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which Competent Person's findings are presented here have not been materially modified from the original market announcement.