

ABBOTTS DRILLING RESULTS CONFIRM HIGH GRADE ZONE

Ora Gold Limited (ASX: OAU) is pleased to announce the results of two reverse circulation drilling programs and the first phase of diamond drilling at the Abbotts Gold Project (M51/390). The programs were designed to extend and duplicate some of the gold intersections from previous explorers and to validate the mineralisation model in the upper part of the mineralised system.

The first and second phases of reverse circulation (RC) drilling and the initial diamond drilling (DD) program at the Abbotts Gold Project, which is located 35 kilometres north of Meekatharra (Figure 1), have been completed and assay results returned.

The program of fifty short RC holes totalled 3,242m and three diamond tails totalled 297.5m over the New Murchison King and South Vranizan area (Figure 2). Details of the drill holes are included in Tables 3 and 4. The RC program confirmed previous drilling (pre-2002) with results that were as expected or slightly better. The DD tested the down-dip extension of the Eastern Shear Zone (ESZ) below the high grade shallow historical workings (21,700t at 35g/t Au recovered: GSWA Bull. 96).

Continuity of the ESZ is indicated by drilling to 170m below surface, with a width of 1-2 metres and a strike of 100 metres to date. The ESZ is interpreted to be open at depth and plunging to the north.

Figure 1. Abbotts Gold Project location showing Ora Gold tenements and regional geology

Figure 2. Abbotts Gold Project showing historical and recent drill holes and potential pit outlines

The Abbotts Gold Project gold mineralisation is interpreted to be within an 80 metre-wide northstriking structural corridor with the high-grade gold mineralisation in quartz veins, predominantly along the east side (ESZ) of the corridor and cross-cutting the structure. The high-grade gold mineralisation within the ESZ is interpreted to plunge gently to the north. The main mineralised structure is displaced by a late fault zone immediately north of the New Murchison King Mine and a south-west trending drainage follows this main discontinuity (Figure 2). Cube Consulting will update the mineralisation model and additional drilling is required to confirm initial pit design and to assess the possibility of an underground development on the high-grade Eastern Zone. The potential pits shown in Figure 2 may change in shape and dimension.

Assay results from both reverse circulation and diamond holes with more than 1g/t Au are included in Table 1 and the ESZ is highlighted with its high-grade values. All the assays over 0.5g/t au are included in Appendix 1.

Hole ID	From(m)	To(m)	Au(ppm)	Comments
OGGRC169	50	51	1.10	
OGGRC170	61	62	1.04	
OGGRC170	69	70	1.27	
OGGRC170	77	78	1.51	
OGGRC171	45	46	5.07	Eastern Shear Zone
OGGRC173	23	24	1.88	
OGGRC173	29	30	1.66	
OGGRC173	47	48	2.93	6m at 7.94g/t Au from 47m
OGGRC173	48	49	40.58	Eastern Shear Zone
OGGRC173	49	50	1.75	
OGGRC173	62	63	1.09	
OGGRC174	38	39	1.93	
OGGRC176	28	29	2.96	
OGGRC176	29	30	1.78	
OGGRC177	29	30	1.05	
OGGRC180	30	31	1.04	
OGGRC181	0	1	17.3	Eastern Shear Zone
OGGRC181	1	2	32.67	4m at 17.82g/t Au from 0m
OGGRC181	2	3	19.99	
OGGRC181	3	4	1.33	
OGGRC181	16	17	2.76	
OGGRC181	18	19	1.41	
OGGRC182	32	33	3.99	
OGGRC182	33	34	1.15	
OGGRC182	34	35	1.03	
OGGRC182	43	44	1.74	
OGGRC182	44	45	1.05	
OGGRC183	32	33	1.15	
OGGRC184	28	29	1.43	
OGGRC184	29	30	1.34	
OGGRC184	33	34	1.20	
OGGRC185	26	27	1.46	
OGGRC185	30	31	4.09	
OGGRC185	34	35	3.21	
OGGRC185	37	38	1.32	
OGGRC187	38	39	6.72	Eastern Shear Zone
OGGRC187	41	42	1.79	
OGGRC188	42	43	1.04	

Table 1. Significant gold intersections (over 1g/t Au)

Hole ID	From(m)	To(m)	Au(ppm)	Comments
OGGRC188	43	44	1.32	
OGGRC188	46	47	1.14	
OGGRC188	48	49	1.72	10m at 3.15g/t Au from 42m
OGGRC188	50	51	20.65	Eastern Shear Zone
OGGRC188	51	52	2.15	
OGGRC189	43	44	1.19	
OGGRC190	10	11	5.72	Eastern Shear Zone
OGGRC192	28	29	1.81	
OGGRC200	4	5	3.50	
OGGRC203	66	67	1.17	
OGGRC205	5	6	2.24	
OGGRC205	10	12	2.11	
OGGRC205	12	14	1.58	
OGGRC206	39	42	1.47	
OGGRC207	25	26	1.57	
OGGRC208	18	21	1.15	
OGGRC208	21	22	2.73	
OGGRC209	40	41	1.50	
OGGRC209	50	53	1.51	
OGGRC209	53	54	3.54	
OGGRC209	54	56	2.86	
OGGRC212	48	49	6.40	Eastern Shear Zone
OGGRC212	51	52	18.95	4m at 6.5g/t Au from 48m
OGGRC212	67	70	1.23	
OGGRCDD213	125.7	126.2	1.26	Eastern Shear Zone
OGGRCDD214	79.9	80.1	2.03	Eastern Shear Zone
OGGDD217	118.5	119	3.17	Eastern Shear Zone
OGGDD217	125.8	126.2	0.71	
OGGDD217	126.2	126.6	0.58	1.7m at 8.04g/t Au from 125.8m
OGGDD217	127.3	127.5	65.67	Eastern Shear Zone

 Table 2.
 Reverse circulation hole details

Hole ID	Dip	Azimuth	RL	Drill Type	Depth	Easting	Northing	Lease_ID
OGGRC167	-90	0	523	RC	78	639092	7087508	M51/390
OGGRC168	-90	0	524	RC	57	639101	7087546	M51/390
OGGRC169	-90	0	524	RC	60	639094	7087566	M51/390
OGGRC170	-90	0	523	RC	84	639066	7087527	M51/390
OGGRC171	-90	0	524	RC	70	639052	7087547	M51/390
OGGRC172	-90	0	524	RC	72	639077	7087559	M51/390
OGGRC173	-90	0	525	RC	66	639090	7087587	M51/390
OGGRC174	-60	270	524	RC	78	639059	7087586	M51/390
OGGRC175	-60	270	524	RC	40	639027	7087588	M51/390
OGGRC176	-60	270	525	RC	75	639053	7087671	M51/390
OGGRC177	-90	0	525	RC	60	639069	7087646	M51/390
OGGRC178	-60	270	526	RC	60	639112	7087627	M51/390
OGGRC179	-60	270	523	RC	50	639075	7087346	M51/390
OGGRC180	-60	270	524	RC	40	639065	7087286	M51/390

Hole ID	Dip	Azimuth	RL	Drill Type	Depth	Easting	Northing	Lease_ID
OGGRC181	-60	270	524	RC	45	639077	7087266	M51/390
OGGRC182	-90	0	524	RC	60	639102	7087266	M51/390
OGGRC183	-60	270	524	RC	40	639061	7087217	M51/390
OGGRC184	-60	270	524	RC	40	639090	7087216	M51/390
OGGRC185	-60	270	524	RC	40	639100	7087188	M51/390
OGGRC186	-60	270	524	RC	30	639080	7087188	M51/390
OGGRC187	-60	270	523	RC	60	639090	7087146	M51/390
OGGRC188	-60	270	524	RC	60	639110	7087146	M51/390
OGGRC189	-60	270	522	RC	60	639113	7087105	M51/390
OGGRC190	-60	270	520	RC	40	639089	7087102	M51/390
OGGRC191	-60	270	520	RC	40	639080	7086866	M51/390
OGGRC192	-60	270	521	RC	60	639089	7086900	M51/390
OGGRC193	-60	270	521	RC	35	639077	7086912	M51/390
OGGRC194	-90	0	526	RC	60	639050	7088166	M51/390
OGGRC195	-90	0	527	RC	70	639050	7088126	M51/390
OGGRC196	-90	0	527	RC	90	639047	7088046	M51/390
OGGRC197	-90	0	527	RC	96	639060	7088026	M51/390
OGGRC198	-60	270	530	RC	72	639123	7087986	M51/390
OGGRC199	-60	270	528	RC	30	639109	7087966	M51/390
OGGRC200	-90	0	527	RC	70	639078	7088006	M51/390
OGGRC201	-60	270	523	RC	120	639089	7087386	M51/390
OGGRC202	-90	0	524	RC	92	639053	7087566	M51/390
OGGRC203	-60	270	523	RC	80	639088	7087386	M51/390
OGGRC204	-60	270	524	RC	72	639054	7087328	M51/390
OGGRC205	-60	270	523	RC	70	639050	7087287	M51/390
OGGRC206	-60	270	524	RC	90	639068	7087166	M51/390
OGGRC207	-60	270	523	RC	78	639070	7087146	M51/390
OGGRC208	-60	270	524	RC	84	639085	7087126	M51/390
OGGRC209	-60	270	523	RC	108	639110	7087126	M51/390
OGGRC210	-60	270	520	RC	54	638966	7087052	M51/390
OGGRC211	-60	270	520	RC	42	638973	7087027	M51/390
OGGRC212	-60	50	523	RC	82	639066	7087115	M51/390
OGGRC213	-60	270	523	RC	108	639169	7087391	P51/2958
OGGRCDD214	-60	270	524	RC	54	639138	7087144	M51/390
OGGRC215	-60	270	523	RC	70	639092	7087362	M51/390
OGGRC216	-70	270	523	RC	50	639163	7087388	P51/2958
				Total	3242			

Table 3. Diamond drill hole details

Hole ID	Dip	Azimuth	Easting	Northing	From	То	Interval	Lease_ID
OGGRCDD213	-60	270	639169	7087391	108.5m	146.2m	37.7m	P51/2959
OGGRCDD214	-60	270	639138	7087144	55m	201.5m	146.5m	M51/390
OGGDD217	-60	270	639169	7087389	83.3m	196.6m	113.3m	P51/2959

About Ora Gold Limited

The Company is an ASX-listed company exploring and conducting pre-production activities on its Abbotts and Garden Gully tenements near Meekatharra, Western Australia. The near-term focus is of low-cost development of its already identified shallow mineralisation, while investigating the potential extensions for larger deposits. The Company's 100% owned Garden Gully and Abbotts tenements cover the majority of the Abbotts Greenstone Belt of about 393 square kilometres, located in Western Australia's Murchison region north-west of the town of Meekatharra.

About Abbotts Gold Project

Historical gold mining at the Abbotts Gold Project commenced in 1887 with two main gold mines producing 42,000 ounces until 1908 at Mt. Vranizan, to the north and New Murchison King, to the south. First exploration drilling over the project began in 1985 by Invincible Gold NL and was followed by St Barbara Mines between 1993 and 2001. No previous explorers have diamond drilled to assess the deeper continuity of the narrow high-grade linear structures.

Competent Person Statement

The details contained in this report that pertain to Exploration Results, Mineral Resources or Ore Reserves, are based upon, and fairly represent, information and supporting documentation compiled by Mr Costica Vieru, a Member of the Australian Institute of Geoscientists and a full-time employee of the Company. Mr Vieru has sufficient experience which is relevant to the style(s) of mineralisation and type(s) of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Vieru consents to the inclusion in this report of the matters based upon the information in the form and context in which it appears.

For Further Information Contact: Philip Bruce +61 412 409555 / +61 8 9389 6927

ORA GOLD LIMITED		ASX Code
Quoted Shares:	646.1M	OAU
Quoted Options:	109.3M	OAUOB

Appendix 1. Assay results over 0.5g/t Au done by Fire Assay 50g charge and analysed by Flame Atomic Absorption Spectrometry at Intertek Genalysis labs in Perth

Hole ID	From	То	g/t Au
OGGRC169	50	51	1.1
OGGRC170	33	34	0.54
OGGRC170	57	58	0.56
OGGRC170	59	60	0.54
OGGRC170	61	62	1.04
OGGRC170	68	69	0.62
OGGRC170	69	70	1.15
OGGRC170	70	71	0.66
OGGRC170	71	72	0.64
OGGRC170	76	77	0.50
OGGRC170	77	78	1.51
OGGRC171	41	42	1.00
OGGRC171	45	46	5.07
OGGRC171	52	53	0.76
OGGRC171	56	57	0.57
OGGRC172	44	45	0.93
OGGRC173	12	13	0.52
OGGRC173	23	24	1.88
OGGRC173	29	30	1.66
OGGRC173	37	38	0.83
OGGRC173	47	48	2.93
OGGRC173	48	49	41.98
OGGRC173	49	50	1.75
OGGRC173	50	51	0.84
OGGRC173	51	52	0.87
OGGRC173	52	53	0.67
OGGRC173	55	56	0.55
OGGRC173	62	63	1.09
OGGRC174	35	36	0.51
OGGRC174	38	39	1.93
OGGRC176	23	24	0.61
OGGRC176	24	25	0.81
OGGRC176	26	27	0.85
OGGRC176	28	29	2.96
OGGRC176	29	30	1.78
OGGRC177	29	30	1.05
OGGRC179	36	37	0.62
OGGRC179	40	41	0.93
OGGRC179	41	42	0.51
OGGRC180	11	12	0.75
OGGRC180	12	13	1.06
OGGRC180	30	31	1.04

Hole ID	From	То	g/t Au
OGGRC181	0	1	17.30
OGGRC181	1	2	34.70
OGGRC181	2	3	33.10
OGGRC181	3	4	0.64
OGGRC181	16	17	2.76
OGGRC181	17	18	0.53
OGGRC181	18	19	1.41
OGGRC181	19	20	0.87
OGGRC182	32	33	3.99
OGGRC182	33	34	1.11
OGGRC182	34	35	1.02
OGGRC182	43	44	1.76
OGGRC182	44	45	1.03
OGGRC183	32	33	1.77
OGGRC184	28	29	1.43
OGGRC184	29	30	1.34
OGGRC184	32	33	0.79
OGGRC184	33	34	1.20
OGGRC185	26	27	1.46
OGGRC185	30	31	4.09
OGGRC185	34	35	3.21
OGGRC185	37	38	1.32
OGGRC186	29	30	0.81
OGGRC187	17	18	0.51
OGGRC187	32	33	0.82
OGGRC187	37	38	0.53
OGGRC187	38	39	8.69
OGGRC187	41	42	1.79
OGGRC187	47	48	0.68
OGGRC187	48	49	0.52
OGGRC188	41	42	1.04
OGGRC188	42	43	1.36
OGGRC188	43	44	0.69
OGGRC188	44	45	0.34
OGGRC188	45	46	1.14
OGGRC188	46	47	0.48
OGGRC188	47	48	1.72
OGGRC188	49	50	20.00
OGGRC188	50	51	13.09
OGGRC188	51	52	1.24
OGGRC189	41	42	2.35
OGGRC189	42	43	1.20
OGGRC190	3	4	1.00
OGGRC190	9	10	5.72
OGGRC190	10	11	3.27

Hole ID	From	То	g/t Au
OGGRC190	11	12	0.68
OGGRC190	12	13	0.94
OGGRC190	19	20	4.93
OGGRC191	33	36	2.35
OGGRC192	25	26	0.93
OGGRC192	27	28	1.76
OGGRC192	28	29	0.95
OGGRC192	36	37	0.60
OGGRC192	41	42	0.53
OGGRC192	44	47	0.95
OGGRC193	14	15	2.32
OGGRC197	18	19	0.90
OGGRC197	94	96	0.51
OGGRC200	4	5	3.50
OGGRC200	5	7	0.66
OGGRC200	28	29	0.74
OGGRC202	45	46	0.70
OGGRC203	62	63	0.59
OGGRC203	64	65	0.51
OGGRC203	65	66	0.75
OGGRC203	66	67	1.17
OGGRC204	18	19	0.81
OGGRC205	5	6	2.24
OGGRC205	8	9	0.78
OGGRC205	10	12	2.11
OGGRC205	12	14	1.58
OGGRC206	36	38	0.69
OGGRC206	38	39	0.75
OGGRC206	39	42	1.47
OGGRC207	25	26	1.57
OGGRC207	30	33	0.80
OGGRC208	18	21	1.15
OGGRC208	21	22	2.55
OGGRC208	69	71	0.50
OGGRC209	36	37	0.90
OGGRC209	40	41	1.50
OGGRC209	50	53	1.51
OGGRC209	53	54	3.54
OGGRC209	54	56	2.86
OGGRC212	48	49	6.74
OGGRC212	51	52	18.95
OGGRC212	52	55	0.80
OGGRC212	55	58	0.62
OGGRC212	67	70	1.23
OGGRC215	39	42	0.64

Hole ID	From	То	g/t Au
OGGRCDD213	125.7	126.2	1.26
OGGRCDD213	126.2	126.7	0.28
OGGRCDD214	79.9	80.1	2.03
OGGRCDD214	139	139.5	0.51
OGGDD217	118.5	119	3.17
OGGDD217	125.8	126.2	0.71
OGGDD217	126.2	126.6	0.58
OGGDD217	127.3	127.5	65.67
OGGDD217	133	133.5	0.80
OGGDD217	133.5	134	0.54

Appendix 2 JORC Table 1 Checklist of Assessment and Reporting Criteria

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling	• Nature and quality of sampling (eg cut channels, random	• This was mainly a reverse circulation (RC) drilling
techniques	chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments	programme with three diamond tails as well. RC sample was collected through a rig-mounted cyclone with cone splitter attachment and split in even metre intervals. Wet sample
	etc). These examples should not be taken as limiting the	was speared or on occasion scoop-sampled. RC drill chips
	broad meaning of sampling.	(from each metre interval) were examined visually and
	Include reference to measures taken to ensure sample	logged by the geologist. Cores were also examined visually
	representativity and the appropriate calibration of any	and logged by the geologist. Where selected, core was
	 Aspects of the determination of mineralisation that are 	sampled at intervals dictated by the geology observed, with core marked up and cut into half and quarter core for
	material to the Public Report. In cases where 'industry	duplicates using a large diamond blade saw. Any visual
	standard' work has been done this would be relatively	observation of alteration or of mineralisation was noted on
	simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g	the drill logs. Where considered appropriate, intervals were tested by hand-held XRF to assist in identifying zones to be
	charge for fire assay'). In other cases more explanation may	sampled for laboratory analysis.
	be required, such as where there is coarse gold that has	• Duplicate samples are submitted at a rate of
	inherent sampling problems. Unusual commodities or	approximately 4% of total samples taken (one duplicate
	disclosure of detailed information.	calibrated before each session and is serviced according to
		the manufacturer's (Olympus) recommended schedule.
		• The presence or absence of mineralisation is initially
		determined visually by the site geologist, based on experience and expertise in evaluating the styles of
		mineralisation being sought.
Drilling	Drill type (eg core, reverse circulation, open-hole hammer,	• Diamond holes are being drilled at HQ3 size (63.5mm
techniques	rotary air blast, auger, Bangka, sonic, etc) and details (eg	diameter) by a track mounted Hydco 1200H multipurpose rig
	core diameter, triple or standard tube, depth of diamond	with automated break outs using triple tube coring to
	oriented and if so, by what method, etc).	drive. Core was oriented using NO REFLEX Ori tools. Hole
		attitude where surveyed uses Champ gyro. Reverse
		circulation holes are drilled by a truck mounted MK10
		ALMET MASTERS rig with 1350cpm@500psi compressor. The
		system.
Drill sample	• Method of recording and assessing core and chip sample	Recovered core is inspected visually and recovery is
recovery	recoveries and results assessed.	recorded on blocks after each run. Volume of material
	 Measures taken to maximise sample recovery and ensure representative pature of the samples 	collected from each metre interval of RC drilling completed is monitored visually by the site geologist and field
	Whether a relationship exists between sample recovery	assistants. Dry sample recoveries were estimated at ~95%.
	and grade and whether sample bias may have occurred due	Where moisture was encountered the sample recovery was
	to preferential loss/gain of fine/coarse material.	still excellent, estimated at >80%.
		Triple tube coring on HQ3 used to maximise core recovery.
		cone splitter. One duplicate sample is submitted for every
		25 samples. Diamond drilling samples are half- or quarter-
		cored using a large diamond blade core saw.
		No evidence has been observed of a relationship between sample recovery and grade. The event article recovery
		obtained preclude any assumption of grain size bias.
Logging	• Whether core and chip samples have been geologically	• Core and chips are logged visually by experienced and
	and geotechnically logged to a level of detail to support	competent geologists.
	appropriate Mineral Resource estimation, mining studies	Each interval of core is photographed and recorded prior to complian and account Qualitative personators include
	 and metanorgical studies. Whether logging is qualitative or quantitative in nature 	to sampling and assay. Quantative parameters include lithology, alteration, structure: quantitative include vein
	Core (or costean, channel, etc) photography.	percentage; mineralisation (sulphide / visible gold)
	The total length and percentage of the relevant	percentage; structural orientation.
	intersections logged.	The entire length of each drill hole is logged and avaluated
		evaluated.

Sub-sampling	• If core, whether cut or sawn and whether quarter, half or	• Core was sawn with an Almonte automatic core saw. Half
techniques	all core taken.	core was taken for samples. • BC material was cone split sampled dry where possible
preparation	etc and whether sampled wet or dry.	and wet when excess ground water could not be prevented.
preparation	 For all sample types, the nature, guality and 	Sample condition (wet, dry or damp) is recorded at the time
	appropriateness of the sample preparation technique.	of logging.
	Quality control procedures adopted for all sub-sampling	 The entire ~3kg RC sample is pulverized to 75µm (85%
	stages to maximise representativity of samples.	passing). This is considered best practice and is standard
	Measures taken to ensure that the sampling is	throughout the industry.
	representative of the in situ material collected, including for	Pulp duplicates are taken at the pulverising stage and
	Instance results for field duplicate/second-nait sampling.	selective repeats conducted as per the laboratory's normal standard OA/OC practices
	• Whether sample sizes are appropriate to the grain size of the material being sampled	Dunlicate samples taken every 25th sample Standards
	the material being sampled.	also submitted to check laboratory accuracy.
		•Sample size is industry standard and is appropriate for
		grain size of the material sampled.
Quality of	• The nature, quality and appropriateness of the assaying	• Fire assay is a total digest technique and is considered
assay data	and laboratory procedures used and whether the technique	appropriate for gold. No other elements were assayed.
and	is considered partial or total.	• Handheld XRF equipment, where used, is an Olympus
laboratory	For geophysical tools, spectrometers, handheld XRF	Delta XRF Analyser Ora Gold follows the manufacturer's
tests	Instruments, etc, the parameters used in determining the	recommended calibration protocols and usage practices.
	times calibrations factors applied and their derivation etc	interval downhole
	Nature of quality control procedures adopted (eg	Certified references material standards as 1 every 20
	standards, blanks, duplicates, external laboratory checks)	samples, duplicates 1 every 25 samples.
	and whether acceptable levels of accuracy (ie lack of bias)	• Lab using random pulp duplicates and certified reference
	and precision have been established.	material standards.
		•Accuracy and precision levels have been determined to be
		satisfactory after analysis of these QA/QC samples.
Verification	• The verification of significant intersections by either	All sampling is routinely inspected by senior geological
of sampling	independent or alternative company personnel.	staff. Significant intersections are inspected by senior
and assaying	 The use of twinned holes. Documentation of primary data data entry procedures 	• The program included no twin holes
	data verification, data storage (physical and electronic)	Data is collected and recorded initially on hand-written
	protocols.	logs with summary data subsequently transcribed in the
	 Discuss any adjustment to assay data. 	field to electronic files that are then copied to head office.
		 No adjustment to assay data has been needed.
Location of	Accuracy and quality of surveys used to locate drill holes	Collar locations were located and recorded using hand-
data points	(collar and down-hole surveys), trenches, mine workings and	held GPS (Garmin 60Cx model) with typical accuracy of ±3m.
	other locations used in Mineral Resource estimation.	Down-hole surveys every ~50m in RC hole and every 18m to
	Specification of the grid system used. Quality and adequacy of topographic control	som in diamond noies, using a keilex EZ-track tool of Champ
	• Quanty and adequacy of topographic control.	• The grid system applicable to the area is Australian
		Geodetic Grid GDA94, Zone 50.
		Topographic control is based on standard industry
		practice of using the GPS readings. Local topography is
		essentially flat across the project at RL 525m. Detailed
		altimetry (and thus the reporting of RLs for each drill collar)
Data an aire	Determined for an extension of Free Level to President	Is not warranted.
Data spacing	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to	Urill note collars were located and oriented so as to deliver maximum relevant geological information to allow the
distribution	establish the degree of geological and grade continuity	geological model being tested to be assessed effectively
alothoution	appropriate for the Mineral Resource and Ore Reserve	• This is still early stage exploration and is not sufficiently
	estimation procedure(s) and classifications applied.	advanced for this to be applicable.
	• Whether sample compositing has been applied.	• Samples taken on a 1m basis, unless otherwise specified.
Orientation	Whether the orientation of sampling achieves unbiased	• Current drilling aims to ascertain the details of the
of data in	sampling of possible structures and the extent to which this	complex structural regime hosting the mineralisation. To
relation to	is known, considering the deposit type.	date there is still insufficient data to confirm true widths,
geological	 If the relationship between the drilling orientation and the orientation of key mineralized structures is considered. 	consistent orientation of lithologies, relationships between
structure	to have introduced a sampling bias, this should be assessed	direction on controlling structures and faulting. The drilling
	and reported if material.	programmes continue to generate geological data to
		develop an understanding of these parameters.
		 Data collected so far presents no suggestion that any
		sampling bias has been introduced.

Sample	• The measures taken to ensure sample security.	When all relevant intervals have been sampled, the
security		samples are collected and transported by Company
		personnel to secure locked storage in Perth before delivery
		by Company personnel to the laboratory for assay.
Audits or	• The results of any audits or reviews of sampling	 Internal reviews are carried out regularly as a matter of
reviews	techniques and data.	policy. All assay results are considered to be representative
		as both the duplicates and standards from this programme
		have returned satisfactory replicated results.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral	• Type, reference name/number, location and ownership	• The Garden Gully Project comprises twenty one granted
tenement and	including agreements or material issues with third parties	prospecting licences P51/2909, P51/2910, P51/2911,
land tenure	such as joint ventures, partnerships, overriding royalties,	P51/2912, P51/2913, P51/2914, P51/2760, P51/2761,
status	native title interests, historical sites, wilderness or national	P51/2762, P51/2763, P51/2764, P51/2765, P51/2941,
	park and environmental settings.	P51/2948, P51/3009, P51/2958, P51/2959, seven granted
	 The security of the tenure held at the time of reporting 	exploration licences E51/1661, E51/1737, E51/1609, E51/
	along with any known impediments to obtaining a licence	1708, E51/1757, E51/1790,e51/1791 and two granted mining
	to operate in the area.	leases M51/390 and M51/567 totalling 393 square
		kilometres. Ora Gold Limited holds a 100% interest in each
		lease. The project is partially located in the Yoothapina
		pastoral lease, 15km north of Meekatharra, in the
		Murchison of WA.
		 The licences are in good standing and there are no known
		impediments to obtaining a licence to operate.
Exploration	 Acknowledgment and appraisal of exploration by other 	 Historical gold mining at the Abbotts Gold Project
done by other	parties.	commenced in 1897 with two main gold mines producing
parties		42,000 ounces until 1908 at Mt. Vranizan and New
		Murchison King. First modern exploration drilling began in
		1985 by Invincible Gold NL and was followed by St Barbara
		Mines between 1993 and 2001. Exploration to date has been
		sporadic and shallow with an historical estimate of 471,000t
		at 1./g/t Au by St Barbara Mines Limited in 2001.
		Workings at the Garden Gully Project began with the
		Crown gold mine (1895 – 1901: 264 tonnes at 1.99 oz/t (15 6
		g/t) Au average). The Kyarra mine followed (1909 – 1917):
		18,790 02 gold from quartz veins in "strongly sheared,
		decomposed, sericite rich country rock . From 1977 to 2009,
		over the area with aircore RAB and RC drilling. An historical
		estimate of 267 000 tonnes at 3 7g/t was done by Kyarra
		Gold Mine Limited in 2005
Geology	Deposit type, geological setting and style of	The Abbotts and Garden Gully projects are on the Abbotts
0001087	mineralisation.	Greenstone Belt: comprised of Archaean rocks of the
		Greensleeves Formation (Formerly Gabanintha): a bimodal
		succession of komatilitic volcanic mafics and ultramafics
		overlain by felsic volcanics and volcaniclastic sediments.
		black shales and siltstones and interlayered with mafic to
		ultramafic sills. Regional synclinal succession trending N-NE
		with a northern fold closure postdating E-W synform, further
		transected by NE trending shear zones.
		The Project is blanketed by broad alluvial flats, occasional
		lateritic duricrust and drainage channels braiding into
		the regional drainage system.
Drill hole	A summary of all information material to the	• A summary and the relevant drill hole details are
Information	understanding of the exploration results including a	presented in Tables 1, 2 and 3. The collar RL is not recorded
	tabulation of the following information for all material drill	against each individual drill hole as the project area is
	holes:	relatively flat and so detailed altimetric measurements are
	 easting and northing of the drill hole collar 	not required. For data evaluation and plotting, the regional
		RL (525m) is used.

-		
	 elevation or RL (Reduced Level – elevation above sea 	
	level in metres) of the drill hole collar	
	 dip and azimuth of the hole 	
	 down hole length and interception depth 	
	 hole length. 	
	 If the exclusion of this information is justified on the 	
	basis that the information is not material and this exclusion	
	does not detract from the understanding of the report, the	
	Competent Person should clearly explain why it is the case.	
Data	 In reporting Exploration Results, weighting averaging 	• All significant drill intercepts are presented in Table 1. All
aggregation	techniques, maximum and/or minimum grade truncations	assay results over 0.5.g/t Au are shown in Appendix 1.
methods	(eg cutting of high grades) and cut-off grades are usually	Arithmetic weighted averages are used. For example: 0m
	material and should be stated.	to 4m in OGGRC 181 is reported as 4m at 17.82g/t Au. This
	Where aggregate intercepts incorporate short lengths of	comprised four samples of 1m intervals for a total of 4m,
	high- grade results and longer lengths of low-grade results,	calculated as follows:
	the procedure used for such aggregation should be stated	[(1x17.3)+(1x32.7)+(1x19.9)+(1x1.36)]/4 = [71.29/4] = 17.82
	and some typical examples of such aggregations should be	g/t Au to two decimal points.
	shown in detail.	No metal equivalent values are used.
	 The assumptions used for any reporting of metal 	
	equivalent values should be clearly stated.	
Relationship	• These relationships are particularly important in the	 Insufficient geological data have yet been collected to
between	reporting of Exploration Results. If the geometry of the	confirm the geometry of the mineralisation. The current
mineralisation	mineralisation with respect to the drill hole angle is known,	drilling programmes aim to confirm our interpretation and
widths and	its nature should be reported.	afford greater certainty.
intercept	 If it is not known and only the down hole lengths are 	 True widths are unknown with any certainty. The
lengths	reported, there should be a clear statement to this effect	information available to date is advancing our interpretation
	(eg 'down hole length, true width not known').	of geometry but requires further investigation. Reported
		intercepts are downhole intercepts and are noted as such.
Diagrams	 Appropriate maps and sections (with scales) and 	 Relevant location maps are included in the body of this
	tabulations of intercepts should be included for any	announcement (Figure 1 and 2).
	significant discovery being reported. These should include,	
	but not be limited to, a plan view of drill hole collar	
	locations and appropriate sectional views.	
Balanced	 Where comprehensive reporting of all Exploration 	• This announcement includes the results of Au assays for
reporting	Results is not practicable, representative reporting of both	the holes drilled at the Abbotts Gold Project in this follow-
	low and high grades and/or widths should be practiced to	up programme. The reporting of the results to hand is
	avoid misleading reporting of Exploration Results.	comprehensive and thus by definition balanced.
Other	 Other exploration data, if meaningful and material, 	 This announcement includes data relating to
substantive	should be reported including, but not limited to: geological	interpretations and potential significance of geological
exploration	observations; geophysical survey results; geochemical	observations from the recent drilling programme. Additional
data	survey results; bulk samples – size and method of	relevant information will be reported and announced as and
	treatment; metallurgical test results; bulk density;	when it becomes available to provide context to current and
	groundwater, geotechnical and rock characteristics;	planned programmes.
	potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests 	 <u>Upon</u> completion of the evaluation of the recent drill
	for lateral extensions or depth extensions or large-scale	programmes, follow-up work programmes will be planned
	step-out drilling).	and PoWs submitted. It is hoped that the interpretation will
	Diagrams clearly highlighting the areas of possible	warrant infill drilling as part of the next stage of exploration
	extensions, including the main geological interpretations	to move towards definition of a maiden resource.
	and tuture drilling areas, provided this information is not	
	commercially sensitive.	