_____ # CONFIRMATION OF CONTINUATION OF VERY HIGH-GRADE CORE IN EASTERN STRAND IN BLOCK B AT BOONANARRING Image Resources NL (ASX: IMA) ("Image" or "the Company") is pleased to advise that close-spaced infill drilling has confirmed the continuation of the very high-grade core within the eastern strand in Block B of its 100%-owned, high-grade, zircon-rich Boonanarring mineral sands project located 80 km north of Perth in the infrastructure-rich North Perth Basin in Western Australia. Initial confirmation of the existence of a high-grade core in the eastern strand came from assay results for early stage drilling in Block C at Boonanarring (current mining block). Assay results from the next stage of drilling in Block B are presented in this report, and confirm the continuation of the high-grade core the full length of Block B. These results are part of a larger drilling program designed to re-assess the Mineral Resources and Ore Reserve at Boonanarring, as announced to the ASX on 14 March 2019 (Targeting Ore Reserve Upgrade at Boonanarring in Response to Higher than Expected Ore Grades) and as announced on 15 July 2019 (Image Resources Confirms Existence of High-Grade Core in Eastern Strand at Boonanarring). The full drilling program includes close-spaced, infill drilling to delineate the full extent of the high-grade core in the eastern strand across Blocks A, B, C and D. The close-spaced infill drilling program commenced on 2nd April 2019 and has continued through to 6th August, with a total of 579 air-core holes (AC) totaling 24,393m completed. A total of 3,775 assays (90%) from Block B drilling have been received and are summarised in this report. The balance of assays for Block B, as well as assays for Block A and D drill samples are outstanding. Table 1 below shows the exceptionally high-grade results (greater than 50% HM) and Tables 2 & 3 show all the high-grade results greater than 10% HM. Table 1. Assav Results >50% HM | | 14510 1171004y 11004110 7 00 70 11111 | | | | | | | | |---------|---------------------------------------|-------------|-------------------------|--|--|--|--|--| | Hole ID | Northing (m) | Easting (m) | Intercept* | | | | | | | IM00443 | 32650 | 11185 | 3m at 56.4% HM from 35m | | | | | | | IM00454 | 32850 | 11176 | 3m at 52.8% HM from 37m | | | | | | | IM00457 | 32950 | 11185 | 3m at 57.3% HM from 35m | | | | | | | IM00485 | 33258 | 11191 | 2m at 51.3% HM from 31m | | | | | | | IM00486 | 33347 | 11190 | 2m at 56.0% HM from 31m | | | | | | | IM00487 | 33350 | 11185 | 2m at 64.0% HM from 32m | | | | | | | IM00503 | 33550 | 11196 | 2m at 54.7% HM from 33m | | | | | | | IM00523 | 33750 | 11186 | 2m at 76.7% HM from 36m | | | | | | | IM00524 | 33750 | 11191 | 3m at 63.5% HM from 35m | | | | | | | Hole ID | Northing (m) | Easting (m) | Intercept* | |---------|--------------|-------------|-------------------------| | IM00532 | 33850 | 11186 | 3m at 57.0% HM from 36m | | IM00533 | 33850 | 11190 | 4m at 56.9% HM from 36m | | IM00538 | 33950 | 11187 | 3m at 59.3% HM from 36m | | IM00542 | 33850 | 11195 | 3m at 66.8% HM from 37m | * - Width(m) at %HM from depth(m) These results from Block B close-spaced (5m) infill drilling are very positive and appear to corroborate mining and processing results for the half year ending June 2019, indicating the actual heavy mineral (HM) ore grade is substantially higher than estimated in the Mineral Resources and Ore Reserve. These results also support the Company's belief that the high-grade eastern core was not adequately delineated by the standard 15-20m drill-hole spacings used for the determination of Mineral Resources and Ore Reserve, and that the Ore Reserve may have been understated. Results from this Block B set of assays is presented by means of five cross-sections showing assay results from the initial Ore Reserve drilling compared to cross-sections of the updated assay results from the infill drilling. The locations of the five cross-sections are shown in Figure 1 which is a grade-thickness map generated from the original Ore Reserve drilling and which shows the presence of a very high-grade core greater than 150 HM% x thickness (in purple triangles) and greater than 200 HM% x thickness grade (in yellow triangles), which extends largely the full 2km length of the eastern strand within Block B of the deposit. The dimension of the eastern highest-grade core within Block B that is greater than 30% HM is listed for each drill line in Figures 3-7 and an arithmetic average for all the drill lines is 25.9m in width, 2.5m in thickness and an astonishing 42.1% HM over the entire 2km length. These cross-section comparisons (Figures 3-7) showing HM grades before and after the infill drilling, clearly show the presence of substantial high and very high-grade core material that was not identified in the initial Ore Reserve drilling results. These results should not be considered to be representative of results for the balance of the deposit as other parts of the deposit could be materially different, and these results should not be used to imply any potential quantitative change to the Mineral Resources and Ore Reserve. The target date for re-estimation of the Mineral Resources and Ore Reserve has been extended due to additional infill drilling requirements. The current estimate for completion is in the December Quarter 2019. Figure 1. Boonanarring Deposit showing grade-thickness contours and locations of cross-sections within Block B. Figure 2. Boonanarring Deposit Block B showing plan view grade-thickness contours, cross-section width, average thickness and HM grade for the eastern strand. Figure 3. Section 33750mN Eastern Strand comparison of before and after infill drilling showing greater extent of high-grade core Figure 4. Section 33550mN Eastern Strand comparison of before and after infill drilling showing greater extent of high-grade core Figure 5. Section 33350mN Eastern Strand comparison of before and after infill drilling showing greater extent of high-grade core Figure 6. Section 32850mN Eastern Strand comparison of before and after infill drilling showing greater extent of high-grade core Figure 7. Section 32650mN Eastern Strand comparison of before and after infill drilling showing greater extent of high-grade core Table 2 shows 39 intersections (ranging from 1m to 14m width) greater than 10%HM from previous drilling in Block B and used for the Mineral Resources and Ore Reserve and Table 3 shows an additional 96 intersections (ranging from 1m to 25m width) greater than 10%HM from the current close-spaced infill drilling program. These initial results returned numerous very high-grade laboratory assays from Block B. Out of 3775 single metre assays received to date, 331 assays are \geq 10% & <20% HM, 129 \geq 20% & < 30% HM, 57 \geq 30% & < 40% HM, 34 \geq 40% & < 50% HM, 22 \geq 50% & < 60% HM, 11 \geq 60% & < 70% HM, 15 \geq 70% & < 80% HM and 2 \geq 80% HM. Table 2. Pre infill Drilling Block B- Significant Intersection > 10% HM | Hole ID | North | East | From | То | Width | HM Lab | |---------|-------|-----------|------|----|-------|--------| | | m | m | m | m | m | % | | GG801 | 32854 | 11123 | 34 | 35 | 1 | 12.11 | | GG802 | 32852 | 11165 | 32 | 35 | 3 | 12.84 | | GG816 | 33250 | 11171 | 30 | 36 | 6 | 10.91 | | GG860 | 33853 | 11181 | 35 | 41 | 6 | 30.19 | | GG860 | | including | 37 | 40 | 3 | 49.87 | | GG865 | 33652 | 11143 | 33 | 36 | 3 | 12.77 | | GG866 | 33655 | 11180 | 33 | 41 | 8 | 18.30 | | GG866 | | including | 36 | 38 | 2 | 36.69 | | GG873 | 33853 | 11163 | 30 | 41 | 11 | 19.69 | | GG873 | | including | 30 | 32 | 2 | 34.99 | | GG874 | 33852 | 11202 | 36 | 42 | 6 | 21.94 | | GG874 | | including | 38 | 40 | 2 | 38.91 | | GG907 | 32251 | 11132 | 30 | 32 | 2 | 12.04 | | GG912 | 32652 | 11199 | 35 | 38 | 3 | 11.82 | | GG916 | 32652 | 11179 | 35 | 39 | 4 | 36.82 | | GG916 | | including | 36 | 38 | 2 | 56.87 | | GG1090 | 32254 | 11188 | 29 | 38 | 9 | 17.18 | | GG1118 | 33054 | 11133 | 21 | 31 | 10 | 10.64 | | GG1120 | 33049 | 11166 | 29 | 37 | 8 | 16.87 | | GG1121 | 33051 | 11188 | 33 | 41 | 8 | 21.08 | | GG1121 | | including | 34 | 36 | 2 | 62.67 | | GG1125 | 32849 | 11143 | 24 | 37 | 13 | 10.93 | | GG1126 | 32851 | 11185 | 36 | 41 | 5 | 36.26 | | GG1126 | | including | 36 | 39 | 3 | 54.37 | | GG1132 | 32454 | 11175 | 28 | 38 | 10 | 16.66 | | GG1135 | 33453 | 11168 | 26 | 36 | 10 | 12.11 | | GG1140 | 33444 | 11185 | 30 | 33 | 3 | 49.94 | | GG1140 | | including | 31 | 33 | 2 | 63.58 | | Hole ID | North | East | From | То | Width | HM Lab | |---------|-------|-----------|------|----|-------|--------| | | m | m | m | m | m | % | | GG1151 | 33430 | 10893 | 21 | 24 | 3 | 10.09 | | GG1164 | 32055 | 11166 | 25 | 37 | 12 | 16.84 | | IM00032 | 32152 | 11185 | 30 | 37 | 7 | 15.13 | | IM00032 | | including | 31 | 33 | 2 | 32.81 | | IM00036 | 32326 | 11184 | 32 | 44 | 12 | 16.70 | | IM00036 | | including | 34 | 37 | 3 | 42.61 | | IM00040 | 32550 | 11186 | 30 | 41 | 11 | 16.83 | | IM00040 | | including | 35 | 38 | 3 | 36.63 | | IM00041 | 32557 | 11157 | 29 | 35 | 6 | 11.82 | | IM00044 | 32750 | 11157 | 31 | 40 | 9 | 19.57 | | IM00048 | 32947 | 11180 | 34 | 40 | 6 | 34.30 | | IM00048 | | including | 36 | 39 | 3 | 55.34 | | IM00052 | 33145 | 11180 | 31 | 39 | 8 | 22.06 | | IM00052 | | including | 33 | 35 | 2 | 42.90 | | IM00054 | 33148 | 11131 | 20 | 24 | 4 | 21.12 | | IM00056 | 33351 | 11180 | 30 | 39 | 9 | 16.43 | | IM00056 | | including | 32 | 35 | 3 | 40.98 | | IM00057 | 33354 | 11156 | 25 | 37 | 12 | 10.97 | | IM00060 | 33551 | 11165 | 27 | 39 | 12 | 14.33 | | IM00061 | 33552 | 11142 | 25 | 39 | 14 | 10.57 | | IM00063 | 33550 | 11191 | 31 | 39 | 8 | 21.16 | | IM00063 | | including | 33 | 35 | 2 | 51.27 | | IM00065 | 33750 | 11174 | 35 | 40 | 5 | 22.62 | | IM00066 | 33751 | 11202 | 34 | 40 | 6 | 37.67 | | IM00066 | | including | 35 | 38 | 3 | 67.66 | | IM00067 | 33951 | 11165 | 27 | 41 | 14 | 10.56 | | IM00068 | 33950 | 11192 | 34 | 40
| 6 | 34.87 | | IM00068 | | including | 36 | 39 | 3 | 63.32 | Table 3. Infill Drilling Block B - Significant Intersection > 10% HM | Hole ID | North | East | From | rom To Width | | HM Lab | |---------|-------|-------|------|--------------|----|--------| | | m | m | m | m | m | % | | IM00416 | 32150 | 11180 | 29 | 34 | 5 | 20.69 | | IM00418 | 32050 | 11170 | 20 | 39 | 19 | 13.81 | | IM00422 | 32250 | 11175 | 17 | 24 | 7 | 10.34 | | IM00422 | | | 26 | 41 | 15 | 12.80 | | IM00423 | 32250 | 11166 | 23 | 25 | 2 | 16.13 | | IM00423 | | | 26 | 35 | 9 | 12.54 | | Hole ID | North | East | From | То | Width | HM Lab | |---------|-------|-----------|------|----|-------|--------| | | m | m | m | m | m | % | | IM00424 | 32250 | 11156 | 24 | 37 | 13 | 10.00 | | IM00428 | 32350 | 11196 | 32 | 43 | 11 | 22.06 | | IM00429 | 32348 | 11190 | 29 | 41 | 12 | 15.13 | | IM00429 | | including | 33 | 36 | 3 | 38.67 | | IM00431 | 32350 | 11175 | 23 | 45 | 22 | 12.67 | | IM00432 | 32450 | 11186 | 32 | 39 | 7 | 17.37 | | IM00432 | | including | 34 | 36 | 2 | 34.29 | | IM00438 | 32550 | 11164 | 23 | 39 | 16 | 10.29 | | IM00438 | | including | 25 | 27 | 2 | 33.47 | | IM00441 | 32650 | 11195 | 35 | 40 | 5 | 10.92 | | IM00442 | 32650 | 11190 | 35 | 39 | 4 | 33.80 | | IM00443 | 32650 | 11185 | 34 | 39 | 5 | 38.06 | | IM00443 | | including | 35 | 38 | 3 | 56.44 | | IM00444 | 32650 | 11176 | 30 | 39 | 9 | 20.08 | | IM00445 | 32650 | 11171 | 31 | 42 | 11 | 12.79 | | IM00448 | 32750 | 11167 | 32 | 41 | 9 | 11.35 | | IM00449 | 32750 | 11162 | 32 | 40 | 8 | 16.23 | | IM00450 | 32750 | 11152 | 25 | 30 | 5 | 11.35 | | IM00450 | | | 33 | 41 | 8 | 15.69 | | IM00452 | 32850 | 11195 | 36 | 38 | 2 | 30.06 | | IM00453 | 32850 | 11180 | 36 | 42 | 6 | 41.95 | | IM00453 | | including | 36 | 40 | 4 | 55.16 | | IM00454 | 32850 | 11176 | 35 | 42 | 7 | 28.00 | | IM00454 | | including | 37 | 40 | 3 | 52.84 | | IM00455 | 32850 | 11148 | 24 | 27 | 3 | 12.86 | | IM00456 | 32850 | 11138 | 25 | 36 | 11 | 12.28 | | IM00457 | 32950 | 11185 | 34 | 40 | 6 | 37.76 | | IM00457 | | including | 35 | 38 | 3 | 57.32 | | IM00457 | | | 41 | 42 | 1 | 16.19 | | IM00458 | 32950 | 11175 | 34 | 40 | 6 | 27.17 | | IM00458 | | including | 35 | 38 | 3 | 47.99 | | IM00459 | 32950 | 11170 | 33 | 39 | 6 | 24.87 | | IM00462 | 33050 | 11193 | 34 | 42 | 8 | 10.99 | | IM00463 | 33050 | 11183 | 33 | 37 | 4 | 48.41 | | IM00463 | | including | 34 | 36 | 2 | 72.88 | | IM00464 | 33050 | 11177 | 33 | 41 | 8 | 21.65 | | IM00464 | | including | 34 | 36 | 2 | 47.31 | | IM00469 | 33150 | 11190 | 31 | 38 | 7 | 13.70 | | IM00470 | 33150 | 11185 | 31 | 40 | 9 | 32.24 | | Hole ID | North | East | From | То | Width | HM Lab | |---------|-------|-----------|------|----|-------|--------| | | m | m | m | m | m | % | | IM00470 | | including | 31 | 36 | 5 | 49.69 | | IM00471 | 33150 | 11175 | 31 | 37 | 6 | 30.40 | | IM00471 | | including | 32 | 36 | 4 | 44.43 | | IM00472 | 33148 | 11170 | 28 | 36 | 8 | 17.11 | | IM00473 | 33142 | 11165 | 28 | 42 | 14 | 12.17 | | IM00479 | 33250 | 11181 | 27 | 37 | 10 | 24.11 | | IM00479 | | including | 31 | 35 | 4 | 45.63 | | IM00480 | 33250 | 11161 | 26 | 35 | 9 | 13.12 | | IM00485 | 33258 | 11191 | 31 | 38 | 7 | 27.25 | | IM00485 | | including | 31 | 33 | 2 | 51.33 | | IM00486 | 33347 | 11190 | 30 | 37 | 7 | 21.78 | | IM00486 | | including | 31 | 33 | 2 | 55.98 | | IM00487 | 33350 | 11185 | 30 | 39 | 9 | 22.27 | | IM00487 | | including | 32 | 34 | 2 | 64.01 | | IM00488 | 33350 | 11175 | 22 | 39 | 17 | 11.85 | | IM00489 | 33347 | 11170 | 23 | 35 | 12 | 12.59 | | IM00490 | 33345 | 11166 | 24 | 35 | 11 | 10.33 | | IM00492 | 33350 | 11151 | 25 | 38 | 13 | 11.20 | | IM00493 | 33350 | 11146 | 25 | 35 | 10 | 10.73 | | IM00494 | 33450 | 11195 | 30 | 35 | 5 | 23.09 | | IM00495 | 33450 | 11190 | 30 | 36 | 6 | 18.65 | | IM00496 | 33449 | 11180 | 29 | 36 | 7 | 27.29 | | IM00496 | | including | 31 | 34 | 3 | 47.78 | | IM00498 | 33450 | 11164 | 25 | 36 | 11 | 12.16 | | IM00500 | 33450 | 11154 | 26 | 34 | 8 | 13.94 | | IM00502 | 33550 | 11201 | 30 | 37 | 7 | 18.63 | | IM00502 | | including | 33 | 35 | 2 | 42.78 | | IM00503 | 33550 | 11196 | 31 | 35 | 4 | 34.52 | | IM00503 | | including | 33 | 35 | 2 | 54.72 | | IM00504 | 33550 | 11186 | 31 | 40 | 9 | 16.64 | | IM00504 | | including | 33 | 35 | 2 | 43.83 | | IM00505 | 33550 | 11180 | 31 | 42 | 11 | 14.11 | | IM00505 | | including | 34 | 36 | 2 | 41.00 | | IM00506 | 33550 | 11175 | 31 | 37 | 6 | 14.57 | | IM00508 | 33550 | 11160 | 27 | 40 | 13 | 12.34 | | IM00509 | 33550 | 11155 | 27 | 38 | 11 | 10.69 | | IM00515 | 33650 | 11176 | 34 | 40 | 6 | 15.86 | | IM00516 | 33650 | 11185 | 34 | 38 | 4 | 38.03 | | IM00517 | 33650 | 11190 | 17 | 42 | 25 | 11.70 | | Hole ID | North | East | From | То | Width | HM Lab | |---------|-------|-----------|------|----|-------|--------| | | m | m | m | m | m | % | | IM00517 | | including | 36 | 39 | 3 | 34.20 | | IM00518 | 33650 | 11194 | 29 | 43 | 14 | 13.12 | | IM00518 | | including | 35 | 38 | 3 | 34.89 | | IM00523 | 33750 | 11186 | 35 | 41 | 6 | 36.93 | | IM00523 | | including | 36 | 38 | 2 | 76.73 | | IM00524 | 33750 | 11191 | 35 | 44 | 9 | 28.83 | | IM00524 | | including | 35 | 38 | 3 | 63.55 | | IM00525 | 33750 | 11195 | 30 | 31 | 1 | 13.30 | | IM00525 | | | 35 | 42 | 7 | 30.96 | | IM00525 | | including | 36 | 38 | 2 | 77.49 | | IM00530 | 33850 | 11170 | 34 | 41 | 7 | 20.29 | | IM00531 | 33850 | 11176 | 35 | 40 | 5 | 30.74 | | IM00531 | | including | 35 | 37 | 2 | 34.45 | | IM00532 | 33850 | 11186 | 35 | 42 | 7 | 32.01 | | IM00532 | | including | 36 | 39 | 3 | 56.97 | | IM00533 | 33850 | 11190 | 36 | 44 | 8 | 32.34 | | IM00533 | | including | 36 | 40 | 4 | 56.94 | | IM00534 | 33950 | 11160 | 29 | 41 | 12 | 10.43 | | IM00535 | 33950 | 11170 | 22 | 41 | 19 | 10.93 | | IM00536 | 33950 | 11177 | 34 | 41 | 7 | 27.86 | | IM00536 | | including | 35 | 39 | 4 | 41.07 | | IM00537 | 33950 | 11182 | 35 | 44 | 9 | 18.60 | | IM00537 | | including | 36 | 39 | 3 | 45.54 | | IM00538 | 33950 | 11187 | 35 | 42 | 7 | 28.04 | | IM00538 | | including | 36 | 39 | 3 | 59.26 | | IM00539 | 33950 | 11197 | 35 | 40 | 5 | 14.45 | | IM00542 | 33850 | 11195 | 36 | 41 | 5 | 49.45 | | IM00542 | | including | 37 | 40 | 3 | 66.82 | | IM00543 | 33850 | 11205 | 38 | 41 | 3 | 10.63 | | IM00544 | 33451 | 11200 | 30 | 34 | 4 | 16.54 | | IM00545 | 33345 | 11195 | 30 | 34 | 4 | 23.53 | | IM00545 | | including | 31 | 33 | 2 | 43.64 | | IM00546 | 33343 | 11199 | 30 | 36 | 6 | 17.84 | | IM00548 | 32851 | 11164 | 32 | 42 | 10 | 12.02 | | IM00549 | 32850 | 11170 | 35 | 42 | 7 | 21.75 | | IM00550 | 32849 | 11185 | 36 | 42 | 6 | 32.09 | | IM00550 | | including | 37 | 40 | 3 | 46.81 | | IM00553 | 32550 | 11192 | 33 | 44 | 11 | 11.59 | | IM00553 | | including | 34 | 36 | 2 | 42.60 | www.imageres.com.au | Hole ID | North East | | From | То | Width | HM Lab | |---------|------------|-----------|------|----|-------|--------| | | m | m | m | m | m | % | | IM00554 | 32450 | 11191 | 33 | 36 | 3 | 20.89 | | IM00556 | 32050 | 11174 | 35 | 41 | 6 | 19.72 | | IM00556 | | including | 37 | 39 | 2 | 39.60 | | IM00557 | 32051 | 11179 | 33 | 40 | 7 | 14.93 | | IM00557 | | including | 41 | 46 | 5 | 11.41 | | IM00558 | 32051 | 11184 | 33 | 37 | 4 | 13.74 | | IM00563 | 32050 | 11025 | 28 | 34 | 6 | 12.22 | | IM00575 | 32450 | 10965 | 32 | 33 | 1 | 10.33 | | IM00582 | 32650 | 11031 | 27 | 31 | 4 | 10.01 | | IM00604 | 33652 | 10958 | 24 | 25 | 1 | 12.30 | | IM00605 | 33652 | 10998 | 26 | 28 | 2 | 14.83 | #### **Boonanarring Project Background Information** The Boonanarring Project is arguably one of the highest heavy mineral grades, zircon-rich, mineral sands projects in Australia. Project funding was finalised, and construction commenced in April-May 2018. Construction was completed on-time and on-budget in six months followed by successful commissioning of the processing plant in October-November 2018. Production commenced 1 December 2018 and HMC production ramped-up to full-scale in only the second month of operation (January 2019). First revenue was received in January 2019 and overall performance for Q1 and Q2 exceeded the budget in all major categories resulting in higher revenue and significantly lower costs than budgeted. Q2 results confirmed profitability and achieved positive cashflow and plotted a firm path to the goal of sustainable profitability. #### For further information, please contact: Patrick Mutz Managing Director +61 8 9485 2410 info@imageres.com.au www.imageres.com.au Or George Sakalidis Exploration Director M: +61 411 640 337 george@imageres.com.au www.imageres.com.au # COMPETENT PERSON'S STATEMENTS - EXPLORATION RESULTS, MINERAL RESOURCES AND ORE RESERVES Information in this report that relates to Exploration Results, Mineral Resources and Ore Reserves (other than Boonanarring and Atlas Mineral Resources and Ore Reserves) is based on information compiled by George Sakalidis BSc (Hons) who is a member of the Australasian Institute of Mining and Metallurgy. At the time that the Exploration Results, Mineral Resources and Ore Reserves were compiled, George Sakalidis was a director of Image Resources NL. He has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. George Sakalidis consents to the inclusion of this information in the form and context in which it appears in this report. #### FORWARD LOOKING STATEMENTS Certain statements made during or in connection with this communication, including, without limitation, those concerning the economic outlook for the mining industry, expectations regarding prices, exploration or development costs and other operating results, growth prospects and the outlook of Image's operations contain or comprise certain forward-looking statements regarding Image's
operations, economic performance and financial condition. Although Image believes that the expectations reflected in such forward-looking statements are reasonable, no assurance can be given that such expectations will prove to have been correct. Accordingly, results could differ materially from those set out in the forward looking statements as a result of, among other factors, changes in economic and market conditions, success of business and operating initiatives, changes that could result from future acquisitions of new exploration properties, the risks and hazards inherent in the mining business (including industrial accidents, environmental hazards or geologically related conditions), changes in the regulatory environment and other government actions, risks inherent in the ownership, exploration and operation of or investment in mining properties, fluctuations in prices and exchange rates and business and operations risks management, as well as generally those additional factors set forth in our periodic filings with ASX. Image undertakes no obligation to update publicly or release any revisions to these forward-looking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events. #### Boonanarring and Atlas Projects Ore Reserves as at 21 August 2017 | High Grade Ore Re | High Grade Ore Reserves - Strand Deposits; in accordance with the JORC Code (2012) | | | | | | | | | | | |---------------------------|--|-----------|-----------|------|----------|------------------|------|----------|-----------|--------|--------| | Project/Deposit | Category | Volume | Tonnes | % HM | % Slimes | HM Tonnes | VHM | Ilmenite | Leucoxene | Rutile | Zircon | | | | (million) | (million) | | | (million) | (%) | (%) | (%) | (%) | (%) | | Boonanarring ¹ | Proved | 5.0 | 9.3 | 8.6 | 14.3 | 0.8 | 76.1 | 48.9 | 1.8 | 2.2 | 23.2 | | Boonanarring ¹ | Probable | 5.6 | 10.5 | 5.9 | 17.6 | 0.6 | 78.7 | 52.3 | 1.8 | 2.7 | 21.9 | | Total Boonanarring | | 10.6 | 19.9 | 7.2 | 16.1 | 1.4 | 77.2 | 50.4 | 1.8 | 2.4 | 22.7 | | Atlas ² | Probable | 5.0 | 9.5 | 8.1 | 15.5 | 0.8 | 73.3 | 50.7 | 4.5 | 7.5 | 10.6 | | Total Atlas | | 5.0 | 9.5 | 8.1 | 15.5 | 0.8 | 73.3 | 50.7 | 4.5 | 7.5 | 10.6 | | | · | | | | | | | | | | | | Total Ore Reserves | • | 15.6 | 29.3 | 7.5 | 15.9 | 2.2 | 75.8 | 50.5 | 2.7 | 4.2 | 18.4 | #### 1. COMPLIANCE STATEMENT - Boonanarring Ore Reserves The Ore Reserves statement has been compiled in accordance with the guidelines of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code – 2012 Edition). These results were previously announced to the ASX on 10 April 2017 'Updated Ore Reserve for Boonanarring Project Increases Ore Tonnes by 39%' as well on 21 August 2017 '60% Increase in Ore Tonnes in "Proved" Category Ore Reserves at Boonanarring'. #### 1. COMPLIANCE STATEMENT - Atlas Ore Reserves The Ore Reserves statement has been compiled in accordance with the guidelines of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code – 2012 Edition). These results were previously announced to the ASX on 30 May 2017 'Ore Reserves Update for 100% Owned Atlas Project'. | Criteria | JORC Code explanation | Commentary | |---------------------|---|---| | Sampling techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | All drill holes reported in this release are vertically oriented, air-core (AC) drill holes. | | Drilling techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | All AC drill holes are drilled vertically using an NQ-sized (63.5 mm diameter) drill bit. Water injection is used to convert the sample to a slurry so it can be incrementally sampled by a rotary splitter. | | Criteria | JORC Code explanation | Commentary | |-----------------------|---|---| | Drill sample recovery | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | At the drill site, Image's geologist estimates sample recovery qualitatively (as good, moderate or poor) for each 1 m down hole sampling interval. Specifically, the supervising geologist visually estimates the volume recovered to sample and reject bags based on prior experience as to what constitutes good recovery. Image found that of the 589 samples that have a grade ≥ 10% HM that are the subject of this release, all 589 (100%) have good recovery. | | Criteria | JORC Code explanation | Commentary | |----------
--|---| | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | Image's supervising geologist logs the sample reject material at the rig and pans a small sub sample of the reject, to visually estimate the proportions of sands, heavy mineral sands, 'slimes' (clays), and oversize (rock chips) in each sample, in a semi-quantitative manner. The geologist also logs colour, grainsize, an estimate of induration (a hardness estimate) and sample 'washability' (ease of separation of slimes from sands by manual attrition). To preclude data entry and transcription errors, the logging data is captured into a digital data logger at the rig, which contains pre-set logging codes. No photographs of samples are taken. The digital logs are downloaded daily and emailed to Image's head office for data security and compilation into the main database server. Samples visually estimated by the geologist to contain more than 0.5% HM (by weight) are despatched for analysis along with the 1 m intervals above and below the mineralised interval. The level and detail of logging is of sufficient quality to support any potential future Mineral Resource Estimates. All (100%) of the drilling is logged. Geotechnical logging is not possible for the style of drilling used; however, the logging is acceptable for metallurgical sample selection if required. | | Criteria | JORC Code explanation | Commentary | |---|--|---| | Sub-sampling
techniques and
sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. | All drilling samples are collected over 1 m down hole intervals, with sample lengths determined by 1 m marks on the rig mast. | | | If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. | For exploration style drilling, two (replicate) 1/8 mass splits (each ≈ 1.25 kg) are collected from the rotary splitter into two pre-numbered calico bags for each 1 m down hole interval. A selection of the replicate samples is later collected and analysed to quantify field sampling precision, or as samples contributing to potential future metallurgical composites. Image considers the nature, quality and size of the sub samples collected are consistent with best industry practices of mineral sands explorers in the Perth Basin region. | | | Whether sample sizes are appropriate to the grain size of the material being sampled. | | | Criteria | JORC Code explanation | Commentary | |--|--|---| | Quality of assay data and laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | The laboratory despatch samples are prepared by Western Geolabs (in Bellevue Western Australia) by drying the sample for 5 to 8 hrs in an oven at 110°C. The dry weight is recorded using a laboratory digital scale. The dried sample is then crushed (using manual pummelling) until all clay and sand materials in the sample pass through a 3.3 mm screen. In samples where (>3.3 mm) rock fragments are found after pummelling and screening, the mass of the fragments is recorded,
and the material discarded. The <3.3 mm sample is then hand mixed prior to splitting through a single tier riffle splitter (16 chutes each with 8 mm aperture), as many times as required to prepare a 100 g ± 5 g sub sample. The actual mass retained is recorded using a laboratory digital scale. The riffle splitter sub sample is then wetted, undergoes further manual attrition to break up clays, before the <63 μm clays (slimes) are washed from the sample (de-sliming) using a jet wash and 63 μm screen. The <63 μm slimes (clays) are discarded and the >63 μm sub sample is placed in a metal tray and oven dried. When dry, the >63 μm sub sample is put through a 1 mm sieve and the mass of the screen oversize (>1 mm) is recorded on a digital balance. The oversize is then discarded. The de-slimed sand fraction (>63 μm & < 1mm) sub sample is then weighed on a digital scale before being separated into two fractions by mixing the sample in a glass separation funnel with a heavy liquid (TBE) of density 2.95 g/cm3. Once sufficient time has passed to allow the sample to separate and settle, the <2.95 g/cm3, 'floats' fraction is collected and discarded. The <2.95 g/cm3, 'sinks' fraction is collected from the funnel into a filter paper, then washed with acetone to remove the TBE. The sinks are then dried, and the mass recorded on a digital scale. | | Criteria | JORC Code explanation | Commentary | |----------|-----------------------|---| | | | • From the process above the laboratory reports the wet mass received, dry received mass, the mass of (>3.3 mm) rock fragments or coarse oversize (if any), the mass of the 100 g± 5 g, sub sample, and the mass of the (HM) sink fraction. | | | | The procedure can be considered a total analysis for mass concentration of heavy minerals in each sample. The method is also consistent with best industry practices employed by mineral sands explorers in the Perth Basin region. | | | | For quality control the laboratory: | | | | Uses certified masses to verify daily the accuracy of all laboratory mass scales. | | | | Prepares a replicate sample at a frequency of 2 for every 25 routine samples analysed. | | | | Uses a hydrometer to test daily the density of the TBE used for HM separation | | | | • For each laboratory despatch (ranging from ≈150 to ≈350 samples) Image includes blind standard reference samples (SRMs) that contain known (to Image) concentrations of heavy and valuable heavy minerals. Image inserts the SRMs, at a frequency of 1 in 30 sample submitted to the laboratory for resource style drilling. Image submitted 3 SRM's for the resource style drilling subject to this release. | | | | Image selected and submitted for analysis 7 field-replicate
samples from field-sample replicates collected to quantify
field sampling precision. | | | | Blanks samples for testing of cross contamination are not deemed necessary for the style of mineralisation under consideration. | | Criteria | JORC Code explanation | Commentary | |---|---|---| | Verification of
sampling and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data | The logging of significant intersections reported in this release has been verified by alternative company personnel. No twin holes have been drilled in the current programme. Logging is captured at the rig using a data recorder, downloaded daily and emailed to head office data services for incorporation into the main database. | | | verification, data storage (physical and electronic) protocols. • Discuss any adjustment to assay data. | Assay results from the laboratory are received by email in standard spreadsheet templates and merged with logging results in-house. There are no adjustments to original laboratory results. | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | The drill hole collar locations are captured by one of Image's rig team following the completion of each drill hole, using a handheld GPS with nominal accuracy of ≈ ±15 m. Elevations have also been determined with hand-held GPS and this adjusted post drilling using DEM data. More accurate locations will be determined in future by a registered surveyor using DGPS equipment where necessary. The grid system for reporting results is the MGA Zone 50 projection and the GDA94 elevation datum. No topographic control has been considered at this time. | | Data spacing and distribution | Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | The drill holes reported in this release are located at several prospects on varied spaced drill lines (between 50 m and 100 m) along the strike of mineralised strands. No sample compositing has been applied – all results are from 1 m long down hole sample intervals. | | Criteria | JORC Code explanation | Commentary | |---|--|--| | Orientation of data in relation to geological structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | All drill holes are vertical and intersect sub-horizontal strata. As such Image considers that it is highly unlikely that the orientation of drilling relative to the well understood structure of minerals sands strands, would result in a sampling bias. | | Sample security | The measures taken to ensure sample security. | All samples are collected from site by Image's staff as soon as practicable once drilling is completed and then delivered to Image's locked storage sheds. Image's staff also deliver samples to the laboratory and collect heavy mineral floats from the laboratory, which are also stored in Images locked storage. Image considers there is negligible risk of deliberate or accidental contamination of samples. Occasional sample mix-ups are usually corrected using Images checking and quality control procedures. | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | The results and logging have been reviewed internally by Images senior exploration personnel including checking of masses despatched and delivered, checking of SRM results, and verification logging of significant intercepts. | # **Section 2 Reporting of Exploration Results** (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | |--
--|--| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The Boonanarring deposit is within mining leases M70/1194 (expiry 15/12/2026) and M70/1311 (expiry 11/03/2034), and general-purpose licence G70/250 (expiry 7/05/2034). Image has a 100% interest in each of these licences. M70/1311 abuts Bartlett's Well and Boonanarring Nature Reserves and Image has allowed for a 50 m buffer zone (of no mining activity) adjacent to these reserves. | | Exploration done
by other parties | Acknowledgment and appraisal of exploration by other parties. | The Boonanarring deposit is within mining leases M70/1194 (expiry 15/12/2026) and M70/1311 (expiry 11/03/2034), and general-purpose licence G70/250 (expiry 7/05/2034). The southern 1km of the Boonanarring deposit was discovered by Iluka, who drilled out this area to a Measured Resource status. The work is well documented in reports from Iluka, prior Mineral Resource estimators McDonald Speijers (2005) and Widenbar and Associates (2013), and Harlequin Consulting Pty Ltd (2014 and 2015). | | Geology | Deposit type, geological setting and style of mineralisation. | Boonanarring is hosted in the Perth Basin, in the Pleistocene Yoganup Formation on the eastern margin of the Swan Coastal Plain. The Yoganup Formation is a buried pro-graded shoreline deposit, with dunes, beach ridge and deltaic facies. This formation lies unconformably over the Lower Cretaceous Leederville Formation and is overlain by the Pleistocene Guildford Formation and the Quaternary Bassendean Sand. The Yoganup Formation consists of unconsolidated poorly sorted sands and gravels, with local interstitial clay and heavy minerals that occur sporadically along the Gingin Scarp, which is interpreted to be an ancient shoreline that was stable during a period of marine regression. Boonanarring has two major strandlines of heavy | | Criteria | JORC Code explanation | Commentary | |--------------------------------|---|--| | | | minerals, which are interpreted to have been deposited during the Pleistocene in a notch in the local basement rock that may represent an ancient sea cliff. Lower grade mineralisation is present in the sands overlying the higher-grade strandlines. The basement to the strandline mineralisation is identified by the increased slimes content of the Leederville Formation or at the base of the Yoganup Formation. Mineralisation within this has high zircon concentrations. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | Refer to table and Figures in the text of this release. | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | No weighting or cutting of HM values, other than averaging of duplicate and repeat analyses. | | Relationship
between | These relationships are particularly important in the reporting of Exploration Results. | The geometry of the Boonanarring mineralisation is
effectively horizontal and the vertical drillholes give | | Criteria | JORC Code explanation | Commentary | |---|---|--| | mineralisation
widths and
intercept lengths | If the geometry of the mineralisation with
respect to the drill hole angle is known, its
nature should be reported. | the approximate true thicknesses of mineralisation. | | | If it is not known and only the down hole
lengths are reported, there should be a clear
statement to this effect (eg 'down hole length,
true width not known'). | | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | Refer to text. | | Balanced
reporting | Where comprehensive reporting of all
Exploration Results is not practicable,
representative reporting of both low and high
grades and/or widths should be practiced
avoiding misleading reporting of Exploration
Results. | Plus 10% HM intersections from the AC drilling
have been reported in this release outlining the
high=grade core of the eastern strand. | | Other
substantive
exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | Feasibility Study results for the Boonanarring Deposit were announced on the 30th May 2017 and a 60% increase in Ore Tonnes in "Proved" Category Ore Reserves at Boonanarring was announced on 21st August 2017. | | Further work | The nature and scale of planned further work
(e.g. tests for lateral extensions or depth
extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas
of
possible extensions, including the main
geological interpretations and future drilling
areas, provided this information is not
commercially sensitive. | 228 holes for 8996m have been completed to date on Block B. This report summarises 3775 assays (90%) that have been received to date for Block b. There is a total of 579 holes totaling 24,393m completed for Blocks A, B, C and D covering 13km of strike and were all completed by 6 August 2019. |