

ASX Announcement 11 September 2019

Continued exploration success at Graphmada with significant graphite drill intersections encountered.

Bass Metals Limited (ASX: "BSM") ("Bass" or the "Company") is pleased to provide a material update on its exploration activities, furthering a primary objective to increase its resource base at its 100% wholly owned Graphmada Mine Complex, located in Madagascar.

HIGHLIGHTS

- The Company recently completed 34 diamond drill holes for a total 1,092m drilled, to an average depth of 33m without incident at the Mahefedok Large Flake Graphite Deposit. The principal aim of the program was to provide further data to support a reclassification of the existing Mineral Resource of 3.5mt @ 4.2% Total Graphitic Carbon (TGC) and potentially expand the resource.
- Key results include:

13.8m @ 7.5% TGC	25.9m @ 5.0% TGC
8.2m @ 7.2% TGC	15.9m @ 4.9% TGC
9.8m @ 7.0% TGC	20.9m @ 4.8% TGC
14.4m @ 6.7% TGC	20.3m @ 4.7% TGC

- The deposit remains open in all directs and to depth, providing a solid basis to conduct a subsequent drill program aimed at expanding the resource at Mahefedok with extensions of mineralization discovered outside of the existing open pit footprint, which may lead to an expansion current open pit mining operations.
- The Company is proceeding with a revised Mineral Resource estimate for the Mahefedok Deposit, expected to be announced in October.

MAHEFEDOK DEPOSIT

The Company 100% owns and operates at the Mahefedok Deposit via exploitation permit number 26670. The permit grants the exclusive rights for 40 years to explore and mine graphitic resources.

The graphite mineralization at Mahefedok is hosted in gneissic units, striking north to south and dipping to the west at approx. 40°, with mineralization hosted in regolith (weathered material) and fresh bedrock.

The known strike lengths from historical exploration and 2,300 meters of diamond drilling completed in 2017 for the northern, central and southern zones are approximately 500m, 900m, and 400m respectively for a cumulative strike length of approximately 1,800m. Current mining operations at Mahefedok target the first of three zones of mineralization that constitute the existing Mineral Resource of 3.5mt at 4.2% TGC.

Figure 1: Mahefedok Mineral Resource in proximity to processing infrastructure.

2019 DRILLING PROGRAM

Recent mining operations confirmed further mineralization not reported as part of the Mahefedok maiden Mineral Resource. To infill and gather additional data 1,092m of drilling was completed in and around the operating Mahefedok North Pit. The information collected is to be assimilated into the existing geological model for an update of the Mahefedok Mineral Resource of 3.5mt @ 4.2% TGC and is expected in October.

Below in blue is a representative long section of the Mineral Resource model used for the maiden Mineral Resource estimate and in red the additional tonnes identified from current mining operations.

Figure 2: Mahefedok Mineral Resource vs tonnes mined from current operations.

During drilling additional mineralization was also intercepted outside of the Mineral Resource footprint and will be incorporated into the update of the Mahefedok Mineral Resource. Any possible extensions of mineralization may lead to an expansion of the Mahefedok North Pit.

The below cross-section of the style of mineralization at Mahefedok demonstrates the drill intercepts outside of current open pit operations. Of particular interest for the re-estimation of Mineral Resources is the potential influence of the thick, high grade intersections such as drill hole BSMD84 at less than 35m in depth, and in soft, low cost and easily mineable regolith.

Figure 3: 2019 drilling (red) vs 2017 Mineral Resource drilling (blue).

The Company will follow up this mineralization with dense grade control augering to assimilate these new ore bodies into current mine designs, and with a reclassification of Mineral Resources in October, look to develop an Ore Reserve estimate in accordance with the JORC Code 2012 later in the year.

Figure 4: Mahefedok drill collars with weighted average TGC intersections.

Drill hole ID	From (m)	To (m)	Intersection (m)	WA.TGC (%)
BSMD091	7.6	33.5	25.9	5.0
BSMD069	9.4	31.8	20.9	4.8
BSMD075	1.8	22.6	20.8	3.9
BSMD097	0.0	20.3	20.3	4.7
BSMD083	30.0	47.3	17.4	6.7
BSMD084	19.3	35.3	15.9	4.9
BSMD066	5.9	22.0	15.6	4.2
BSMD067	26.5	41.3	14.8	2.4
BSMD095A	11.7	26.2	14.5	5.9
BSMD083	9.8	23.6	13.8	7.5
BSMD095A	31.6	44.0	12.4	5.1
BSMD073	13.1	25.0	11.9	4.1
BSMD090	7.4	17.4	10.0	4.6
BSMD084	8.6	18.4	9.8	7.0
BSMD089	7.3	17.1	9.8	4.6
BSMD074	8.3	18.0	9.8	3.4
BSMD079	1.7	11.0	9.3	3.2
BSMD093	5.8	15.0	9.2	3.0
BSMD080	7.6	16.7	9.1	5.6
BSMD094	19.2	28.1	8.9	4.0
BSMD081	12.3	20.6	8.2	7.2
BSMD076	14.2	22.3	8.2	3.2
BSMD070	9.8	18.0	8.2	5.8
BSMD066	29.4	38.5	8.1	3.4
BSMD078	2.6	10.6	8.0	2.9
BSMD082	12.6	20.4	7.8	6.2
BSMD065	13.2	20.9	7.7	3.2
BSMD067	12.2	19.6	7.4	2.7
BSMD065	30.4	37.4	6.8	3.4
BSMD072	11.3	18.0	6.7	4.0
BSMD073	0.0	6.5	6.5	3.2
BSMD080	26.0	32.4	6.4	3.5
BSMD079	28.6	34.3	5.7	3.6
BSMD088	6.3	11.7	5.4	3.6

Table 1: Weighted average intersections of graphitic mineralization.

Drill hole ID	From (m)	To (m)	Intersection (m)	WA.TGC (%)
BSMD096	19.0	24.3	5.3	2.8
BSMD071	11.0	16.1	5.1	4.9
BSMD078	21.6	26.3	4.7	3.9
BSMD075	35.7	40.4	4.7	3.0
BSMD092	4.3	9.0	4.7	6.0
BSMD079	16.1	20.7	4.6	2.5
BSMD087	24.8	29.3	4.6	3.6
BSMD071	34.4	38.7	4.4	3.4
BSMD094	8.8	12.9	4.1	3.3
BSMD088	28.4	32.4	4.0	3.7
BSMD088	20.9	24.9	4.0	2.4
BSMD093	0.0	4.0	4.0	2.8
BSMD087	13.3	17.3	3.9	2.3
BSMD076	2.7	6.5	3.8	7.8
BSMD087	1.9	5.6	3.7	2.9
BSMD077	31.2	34.8	3.6	3.7
BSMD092	19.4	22.8	3.4	2.0
BSMD074	3.8	7.1	3.2	2.5
BSMD072	6.5	9.7	3.2	3.4
BSMD096	7.1	10.3	3.2	2.7
BSMD088	16.5	19.4	2.9	3.3
BSMD073	34.9	37.8	2.9	3.4
BSMD077	21.8	24.5	2.7	3.6
BSMD092	39.4	42.0	2.6	3.3
BSMD068	18.7	21.3	2.6	4.7
BSMD077	12.4	14.9	2.5	2.5
BSMD070	5.0	7.4	2.4	4.4
BSMD071	29.4	31.6	2.3	4.0
BSMD068	5.3	7.4	2.2	2.2
BSMD077	16.3	18.3	2.0	2.6
BSMD090	25.5	27.4	1.9	4.7
BSMD091	38.0	39.8	1.8	2.6
BSMD065	6.9	8.6	1.8	6.4
BSMD096	29.7	31.3	1.6	3.1
BSMD097	32.0	33.5	1.6	2.4
BSMD068	12.5	13.8	1.4	6.0
BSMD093	32.2	33.5	1.3	2.9

MAHELA DEPOSIT UPDATE

With the completion of diamond drilling at Mahela, samples are now with the laboratory for analysis. The Company expects to receive the results within the next 4-6 weeks, to define a significant mineralization footprint and proceed with a maiden Mineral Resource estimate for the project. To date, results have been very encouraging, with substantial zones of graphite mineralization intersected with the resource open in all directions.

TIM MCMANUS CEO:

"The team at Bass continues to significantly progress both our exploration and operational results, towards development of large-scale mining and processing operations at the lowest capital intensity pathway for our shareholders.

To have again realized significant large flake graphite potential in direct proximity to our fully developed infrastructure is an excellent result, and we eagerly anticipate the findings from our more extensive drilling program at the Mahela Deposit.

Bass will continue to aggressively explore its Permits within the region, to continue to accelerate its growth in Mineral Resources to support large scale operations and downstream integration."

For more information, please contact:

Tim McManus Chief Executive Officer Phone: (07) 3203 5894 Email: admin@bassmetals.com.au www.bassmetals.com.au I @bassmetals Peter Wright Executive Director Phone: (07) 3203 5894 Email: admin@bassmetals.com.au

Disclaimer

This document has been prepared by Bass Metals Limited (the "Company"). It should not be considered as an invitation or offer to subscribe for or purchase any securities in the Company or as an inducement to make an invitation or offer with respect to those securities. No agreement to subscribe for securities in the Company will be entered into on the basis of this document.

This document is provided on the basis that neither the Company nor its officers, shareholders, related bodies corporate, partners, affiliates, employees, representatives and advisers make any representation or warranty (express or implied) as to the accuracy, reliability, relevance or completeness of the material contained in the document and nothing contained in the document is, or may be relied upon as a promise, representation or warranty, whether as to the past or the future. The Company hereby excludes all warranties that can be excluded by law.

Forward Looking Statements

This announcement contains certain 'forward-looking statements' within the meaning of the securities laws of applicable jurisdictions. Forward-looking statements can generally be identified by the use of forward-looking words such as 'may,' 'should,' 'expect,' 'anticipate,' 'estimate,' 'scheduled' or 'continue' or the negative version of them or comparable terminology.

Any forecasts or other forward-looking statements contained in this announcement are subject to known and unknown risks and uncertainties and may involve significant elements of subjective judgment and assumptions as to future events which may or may not be correct. There are usually differences between forecast and actual results because events and actual circumstances frequently do not occur as forecast and these differences may be material.

Bass Metals does not give any representation, assurance or guarantee that the occurrence of the events expressed or implied in any forward-looking statements in this announcement will actually occur and you are cautioned not to place undue reliance on forward-looking statements. The information in this document does not take into account the objectives, financial situation or particular needs of any person. Nothing contained in this document constitutes investment, legal, tax or other advice.

Important information

This announcement does not constitute an offer to sell, or a solicitation of an offer to buy, securities in the United States, or in any other jurisdiction in which such an offer would be illegal. The securities referred to in this document have not been and will not be registered under the United States Securities Act of 1933 (the 'US Securities Act'), or under the securities laws of any state or other jurisdiction of the United States and may not be offered or sold, directly or indirectly, within the United States, unless the securities have been registered under the US Securities Act or an exemption from the registration requirements of the US Securities Act is available.

This document may not be distributed or released in the United States.

Competent Person Statement

The information in this document that relates to Exploration Results, Exploration Targets and Mineral Resources is based on information compiled by Tim McManus, a Competent Person who is a member of the Australasian Institute of Mining and Metallurgy and a full-time employee of the Company.

Tim McManus has sufficient experience that is relevant to the style of mineralization and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.

Tim McManus consents to the inclusion of the information in this document in the form and context in which it appears.

APPENDIX OF RESULTS

Mahefedok Collar Coordinates

Drill hole ID	Utm39sX	Utm39sY	Azimuth	Inclination	Total Depth
BSMD065	289,005	7,905,704	90	-60	37.4
BSMD066	288,977	7,905,701	90	-60	41.3
BSMD067	288,953	7,905,700	90	-60	41.3
BSMD068	288,929	7,905,704	90	-60	28.3
BSMD069	288,897	7,905,699	90	-60	35.8
BSMD070	288,899	7,905,648	90	-60	24.4
BSMD071	288,924	7,905,650	90	-60	42.4
BSMD072	288,951	7,905,650	90	-60	20.3
BSMD073	288,980	7,905,602	90	-60	40.3
BSMD074	288,957	7,905,603	90	-60	20.3
BSMD075	288,929	7,905,602	90	-60	41.3
BSMD076	289,054	7,905,548	90	-60	29.3
BSMD077	289,020	7,905,546	90	-60	34.8
BSMD078	288,987	7,905,503	90	-60	26.3
BSMD079	288,977	7,905,552	90	-60	35.2
BSMD080	288,946	7,905,548	90	-60	32.4
BSMD081	288,910	7,905,546	90	-60	26.3
BSMD082	288,903	7,905,600	90	-60	24.4
BSMD083	288,906	7,905,450	90	-60	47.3
BSMD084	288,901	7,905,501	90	-60	35.3
BSMD085	289,082	7,905,406	90	-60	19.4
BSMD086	289,081	7,905,456	90	-60	24.4
BSMD087	289,042	7,905,458	90	-60	29.3
BSMD088	288,986	7,905,458	90	-60	32.4
BSMD089	288,957	7,905,456	90	-60	24.3
BSMD090	288,952	7,905,502	90	-60	27.4
BSMD091	288,894	7,905,741	90	-60	43.4
BSMD092	288,920	7,905,832	90	-60	47.4
BSMD093	288,959	7,905,650	0	-90	33.5
BSMD094	288,936	7,905,705	0	-90	37.5
BSMD095	288,918	7,905,400	90	-60	40.3
BSMD095A	288,917	7,905,404	90	-60	44.0
BSMD096	288,975	7,905,403	90	-60	31.3
BSMD097	288,964	7,905,604	0	-90	33.5

Mahefedok Assay Results

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD065	3.9	4.5	0.6	0.2	Saprolith
BSMD065	4.5	5.5	1.0	0.7	Saprolith
BSMD065	5.5	6.6	1.1	0.5	Saprolith
BSMD065	6.6	6.9	0.3	1.1	Saprolith
BSMD065	6.9	7.8	0.9	4.7	Saprolith
BSMD065	7.8	8.6	0.9	8.2	Saprolith
BSMD065	8.6	9.6	1.0	0.7	Saprolith
BSMD065	9.6	10.6	1.0	0.6	Saprolith
BSMD065	10.6	11.5	0.9	1.5	Saprolith
BSMD065	11.5	12.3	0.8	0.9	Saprolith
BSMD065	12.3	13.2	0.9	0.6	Saprolith
BSMD065	13.2	14.0	0.8	1.9	Saprolith
BSMD065	14.0	15.1	1.0	8.1	Saprolith
BSMD065	15.1	16.2	1.1	3.0	Saprolith
BSMD065	16.2	17.4	1.2	1.3	Saprolith
BSMD065	17.4	18.5	1.2	1.2	Saprolith
BSMD065	18.5	19.9	14	4.6	Saprolith
BSMD065	19.9	20.9	1.0	2.5	Saprolith
BSND065	20.9	20.5	1.0	0.9	Saprolith
BSND065	20.5	22.1	0.9	1 1	Saprolith
BSMD065	22.1	23.0	1.3	2.1	Saprolith
BSMD065	23.0	24.4	1.5	0.5	Saprolith
BSMD065	27.7	25.4	0.0	0.5	Saprolith
BSMD065	25.4	20.3	0.9	0.8	Saprolith
BSMD065	20.3	27.4	1.1	0.4	Saprolith
	27.4	20.3	0.9	0.5	Saprolith
BSMD065	28.3	29.4	1.1	1.1	Saprolith
BSMD065	29.4	30.6	1.2	1.5	Saprolith
BSMD065	30.6	32.0	1.4	2.4	Saprolith
BSMD065	32.0	32.7	0.8	6.0	Saprolith
BSMD065	32.7	33.4	0.6	5.0	Saprolith
BSMD065	33.4	33.9	0.5	3.3	Saprolith
BSMD065	33.9	34.9	1.0	1.5	Saprolith
BSMD065	34.9	35./	0.8	3.3	Graphitic Gneiss
BSMD065	35.7	36.6	0.8	2.8	Graphitic Gneiss
BSMD065	36.6	37.4	0.8	4.2	Graphitic Gneiss
BSMD066	4.0	4.8	0.8	0.2	Saprolith
BSMD066	4.8	5.1	0.3	0.4	Saprolith
BSMD066	5.1	5.9	0.8	1.4	Saprolith
BSMD066	5.9	6.7	0.8	4.7	Saprolith
BSMD066	6.7	7.5	0.9	1.7	Saprolith
BSMD066	7.5	8.1	0.6	3.7	Saprolith
BSMD066	8.1	9.4	1.3	6.7	Saprolith
BSMD066	9.4	10.6	1.1	9.6	Saprolith
BSMD066	10.6	11.6	1.1	6.5	Saprolith
BSMD066	11.6	12.3	0.7	4.8	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD066	12.3	13.4	1.1	5.0	Saprolith
BSMD066	13.4	14.3	0.9	4.0	Saprolith
BSMD066	14.3	15.8	1.6	3.6	Saprolith
BSMD066	16.3	17.4	1.1	2.5	Saprolith
BSMD066	17.4	17.8	0.3	0.5	Saprolith
BSMD066	17.8	19.4	1.6	1.3	Saprolith
BSMD066	19.4	21.4	2.0	2.0	Saprolith
BSMD066	21.4	22.0	0.6	7.2	Saprolith
BSMD066	22.0	23.0	1.0	1.3	Saprolith
BSMD066	23.0	24.6	1.6	1.1	Saprolith
BSMD066	24.6	25.3	0.8	2.5	Saprolith
BSMD066	25.3	26.5	1.1	0.9	Saprolith
BSMD066	26.5	27.5	1.1	1.4	Saprolith
BSMD066	27.5	28.4	0.9	1.8	Saprolith
BSMD066	28.4	29.4	1.0	2.0	Saprolith
BSMD066	29.4	29.9	0.5	6.8	Saprolith
BSMD066	29.9	30.8	0.9	2.5	Saprolith
BSMD066	31.3	32.1	0.8	2.1	Saprolith
BSMD066	32.1	32.8	0.7	1.6	Saprolith
BSMD066	33.3	34.4	1.1	3.0	Saprolith
BSMD066	34.4	35.8	1.4	4.9	Graphitic Gneiss
BSMD066	35.8	36.6	0.8	4.4	Graphitic Gneiss
BSMD066	36.6	37.5	0.9	1.8	Graphitic Gneiss
BSMD066	37.5	38.5	1.0	4.2	Graphitic Gneiss
BSMD066	38.5	39.4	0.9	1.0	Graphitic Gneiss
BSMD066	39.4	40.3	0.9	1.7	Graphitic Gneiss
BSMD066	40.3	41.3	1.0	2.0	Graphitic Gneiss
BSMD067	6.3	6.8	0.5	0.1	Saprolith
BSMD067	6.8	7.5	0.7	0.0	Saprolith
BSMD067	7.5	8.3	0.8	2.4	Saprolith
BSMD067	8.3	9.5	1.1	3.0	Saprolith
BSMD067	9.5	10.4	1.0	1.6	Saprolith
BSMD067	10.4	11.4	0.9	1.5	Saprolith
BSMD067	11.4	12.2	0.8	1.5	Saprolith
BSMD067	12.2	12.9	0.7	5.3	Saprolith
BSMD067	12.9	13.3	0.4	7.1	Saprolith
BSMD067	13.3	14.3	0.9	2.9	Saprolith
BSMD067	14.3	15.1	0.9	2.2	Saprolith
BSMD067	15.1	16.4	1.2	1.4	Saprolith
BSMD067	16.4	17.4	1.0	2.2	Saprolith
BSMD067	17.4	18.7	1.3	2.0	Saprolith
BSMD067	18.7	19.6	0.9	2.5	Saprolith
BSMD067	19.6	20.5	0.9	0.0	Saprolith
BSMD067	20.5	21.6	1.1	0.0	Saprolith
BSMD067	21.6	22.7	1.1	0.1	Saprolith
BSMD067	22.7	23.8	1.2	1.0	Saprolith
BSMD067	23.8	24.3	0.5	2.8	Saprolith
BSMD067	24.3	25.4	1.0	1.1	Saprolith
BSMD067	25.4	25.8	0.5	0.7	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD067	25.8	26.5	0.7	1.0	Saprolith
BSMD067	26.5	27.3	0.9	3.4	Saprolith
BSMD067	27.3	28.3	1.0	3.0	Saprolith
BSMD067	28.3	29.2	0.9	4.9	Saprolith
BSMD067	29.2	30.4	1.2	1.0	Saprolith
BSMD067	30.4	31.4	1.1	1.8	Saprolith
BSMD067	31.4	32.3	0.9	1.3	Saprolith
BSMD067	32.3	33.3	1.0	2.0	Saprolith
BSMD067	33.3	34.4	1.1	1.2	Saprolith
BSMD067	34.4	35.3	0.9	2.5	Saprolith
BSMD067	35.3	36.5	1.2	1.3	Saprolith
BSMD067	36.5	37.4	0.9	3.4	Saprolith
BSMD067	37.4	38.3	0.9	3.5	Saprolith
BSMD067	38.3	39.3	1.0	2.9	Saprolith
BSMD067	39.3	40.2	0.9	2.6	Saprolith
BSMD067	40.2	41.3	1.1	2.3	Saprolith
BSMD068	4.3	5.3	1.0	0.3	Saprolith
BSMD068	5.3	6.2	0.9	0.4	Saprolith
BSMD068	6.2	7.4	1.3	0.9	Saprolith
BSMD068	7.4	8.3	0.9	0.2	Saprolith
BSMD068	8.3	9.3	1.0	1.5	Saprolith
BSMD068	9.3	10.0	0.7	1.0	Saprolith
BSMD068	10.0	10.5	0.5	2.6	Saprolith
BSMD068	10.5	11.0	0.5	0.2	Saprolith
BSMD068	11.0	11.8	0.8	0.6	Saprolith
BSMD068	11.8	12.5	0.7	1.1	Saprolith
BSMD068	12.5	13.1	0.6	2.9	Saprolith
BSMD068	13.1	13.8	0.8	8.6	Saprolith
BSMD068	13.8	14.5	0.7	1.6	Saprolith
BSMD068	14.5	15.3	0.8	0.5	Saprolith
BSMD068	15.3	16.1	0.8	1.1	Saprolith
BSMD068	16.1	16.7	0.6	1.8	Saprolith
BSMD068	16.7	17.7	1.0	2.6	Saprolith
BSMD068	17.7	18.7	1.1	1.1	Saprolith
BSMD068	18.7	19.9	1.1	3.0	Saprolith
BSMD068	19.9	20.4	0.6	6.9	Saprolith
BSMD068	20.4	21.3	0.8	8.2	Saprolith
BSMD068	21.3	22.4	1.1	2.2	Saprolith
BSMD068	22.4	23.4	1.1	1.1	Saprolith
BSMD068	23.4	24.4	1.0	2.1	Saprolith
BSMD068	24.4	25.5	1.1	0.0	Dolerite
BSMD069	6.7	7.4	0.8	0.7	Saprolith
BSMD069	7.4	8.4	1.0	1.7	Saprolith
BSMD069	8.4	9.4	0.9	2.2	Saprolith
BSMD069	9.4	11.3	2.0	4.3	Saprolith
BSMD069	12.8	13.7	0.9	4.2	Saprolith
BSMD069	13.7	14.5	0.7	3.8	Saprolith
BSMD069	14.5	15.7	1.2	4.1	Saprolith
BSMD069	15.7	16.6	0.9	3.8	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD069	16.6	17.4	0.9	4.3	Saprolith
BSMD069	17.4	18.4	1.0	3.2	Saprolith
BSMD069	18.4	19.4	1.0	4.4	Saprolith
BSMD069	19.4	20.3	0.9	4.3	Saprolith
BSMD069	20.3	21.8	1.5	2.8	Saprolith
BSMD069	21.8	22.8	1.0	6.9	Saprolith
BSMD069	22.8	23.8	1.1	5.3	Saprolith
BSMD069	23.8	25.0	1.2	5.3	Saprolith
BSMD069	25.0	26.0	1.0	4.1	Saprolith
BSMD069	26.0	26.8	0.9	5.5	Saprolith
BSMD069	26.8	27.5	0.6	6.4	Saprolith
BSMD069	27.5	28.1	0.6	7.0	Saprolith
BSMD069	28.1	28.5	0.4	6.8	Saprolith
BSMD069	28.5	29.3	0.8	7.5	Saprolith
BSMD069	29.3	30.4	1.1	8.0	Saprolith
BSMD069	30.4	31.1	0.7	3.1	Saprolith
BSMD069	31.1	31.8	0.7	3.0	Saprolith
BSMD069	31.8	32.6	0.9	1.8	Graphitic Gneiss
BSMD069	32.6	33.5	0.9	1.9	Graphitic Gneiss
BSMD069	33.5	34.3	0.8	2.1	Graphitic Gneiss
BSMD069	34.3	35.1	0.8	0.0	Graphitic Gneiss
BSMD069	35.1	35.8	0.7	2.1	Gneiss
BSMD070	4.4	5.0	0.7	0.0	Saprolith
BSMD070	5.0	6.6	1.6	4.1	Saprolith
BSMD070	6.6	7.4	0.9	4.8	Saprolith
BSMD070	7.4	8.2	0.7	0.1	Saprolith
BSMD070	8.2	8.6	0.4	1.1	Saprolith
BSMD070	8.6	9.3	0.7	0.2	Saprolith
BSMD070	9.3	9.8	0.5	2.2	Saprolith
BSMD070	9.8	10.9	1.0	7.1	Saprolith
BSMD070	10.9	12.4	1.5	8.9	Saprolith
BSMD070	12.4	12.9	0.5	7.8	Saprolith
BSMD070	12.9	13.6	0.7	12.0	Saprolith
BSMD070	13.6	14.6	1.1	4.5	Saprolith
BSMD070	14.6	16.0	1.4	3.1	Saprolith
BSMD070	16.0	17.2	1.2	3.1	Saprolith
BSMD070	17.2	18.0	0.9	2.6	Graphitic Gneiss
BSMD070	18.0	18.9	0.9	2.1	Graphitic Gneiss
BSMD070	18.9	19.8	0.9	2.1	Graphitic Gneiss
BSMD070	19.8	20.7	0.9	1.8	Graphitic Gneiss
BSMD070	20.7	21.6	0.9	2.5	Graphitic Gneiss
BSMD070	21.6	22.5	0.9	1.8	Graphitic Gneiss
BSMD070	22.5	23.4	0.9	2.5	Graphitic Gneiss
BSMD070	23.4	24.4	1.0	1.8	Graphitic Gneiss
BSMD071	5.4	5.9	0.5	0.3	Saprolith
BSMD071	5.9	6.9	1.0	2.9	Saprolith
BSMD071	6.9	7.8	1.0	3.0	Saprolith
BSMD071	7.8	8.9	1.1	2.3	Saprolith
BSMD071	8.9	10.2	1.3	2.9	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD071	10.2	11.0	0.8	2.5	Saprolith
BSMD071	11.0	11.9	0.8	4.7	Saprolith
BSMD071	11.9	12.6	0.7	7.3	Saprolith
BSMD071	12.6	13.9	1.3	3.2	Saprolith
BSMD071	13.9	15.4	1.5	5.6	Saprolith
BSMD071	15.4	16.1	0.8	4.7	Saprolith
BSMD071	16.1	16.9	0.8	2.9	Saprolith
BSMD071	16.9	17.7	0.9	2.6	Saprolith
BSMD071	17.7	18.9	1.1	1.1	Saprolith
BSMD071	18.9	19.9	1.1	1.0	Saprolith
BSMD071	19.9	21.1	1.2	2.0	Saprolith
BSMD071	21.1	22.0	1.0	0.9	Saprolith
BSMD071	22.0	22.8	0.8	0.2	Saprolith
BSMD071	22.8	23.4	0.5	0.6	Saprolith
BSMD071	23.4	24.0	0.6	1.3	Saprolith
BSMD071	24.0	24.9	1.0	0.5	Saprolith
BSMD071	24.9	25.9	1.0	2.0	Saprolith
BSMD071	25.9	26.9	1.0	1.0	Saprolith
BSMD071	26.9	28.4	1.4	1.4	Saprolith
BSMD071	28.4	29.4	1.0	1.6	Saprolith
BSMD071	29.4	29.9	0.6	4.1	Saprolith
BSMD071	29.9	30.6	0.7	4.6	Saprolith
BSMD071	30.6	31.6	1.0	3.6	Saprolith
BSMD071	31.6	32.7	1.0	0.7	Saprolith
BSMD071	32.7	33.4	0.8	1.8	Saprolith
BSMD071	33.4	34.4	1.0	0.8	Saprolith
BSMD071	34.4	35.2	0.9	2.3	Saprolith
BSMD071	35.2	35.9	0.6	2.4	Saprolith
BSMD071	35.9	36.5	0.6	2.2	Saprolith
BSMD071	36.5	37.2	0.7	4.9	Saprolith
BSMD071	37.2	37.9	0.7	4.7	Saprolith
BSMD071	37.9	38.7	0.8	3.9	Saprolith
BSMD071	38.7	39.5	0.8	0.7	Saprolith
BSMD071	39.5	40.2	0.7	0.3	Saprolith
BSMD071	40.2	40.9	0.7	1.0	Graphitic Gneiss
BSMD071	40.9	41.6	0.7	1.3	Graphitic Gneiss
BSMD071	41.6	42.4	0.8	1.0	Graphitic Gneiss
BSMD072	0.0	1.0	1.0	6.7	Saprolith
BSMD072	1.0	2.0	1.1	0.7	Saprolith
BSMD072	2.0	2.6	0.6	0.8	Saprolith
BSMD072	2.6	3.3	0.7	2.0	Saprolith
BSMD072	3.3	3.8	0.5	1.7	Saprolith
BSMD072	3.8	4.5	0.7	0.8	Saprolith
BSMD072	4.5	5.2	0.7	1.9	Saprolith
BSMD072	5.2	5.8	0.7	1.4	Saprolith
BSMD072	5.8	6.5	0.6	1.5	Saprolith
BSMD072	6.5	7.2	0.7	3.0	Saprolith
BSMD072	7.2	7.8	0.6	8.5	Saprolith
BSMD072	7.8	8.9	1.1	1.7	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD072	8.9	9.7	0.8	2.3	Saprolith
BSMD072	9.7	10.3	0.6	2.0	Saprolith
BSMD072	10.3	10.8	0.5	1.2	Saprolith
BSMD072	10.8	11.3	0.5	1.1	Saprolith
BSMD072	11.3	12.0	0.7	7.0	Saprolith
BSMD072	12.0	12.7	0.8	6.0	Saprolith
BSMD072	12.7	13.3	0.5	2.7	Saprolith
BSMD072	13.3	13.6	0.3	3.6	Saprolith
BSMD072	13.6	14.5	1.0	5.1	Saprolith
BSMD072	14.5	15.5	0.9	3.6	Saprolith
BSMD072	15.5	16.4	0.9	3.1	Saprolith
BSMD072	16.4	17.2	0.8	2.7	Graphitic Gneiss
BSMD072	17.2	18.0	0.8	2.6	Graphitic Gneiss
BSMD072	18.0	19.0	1.0	0.0	Dolerite
BSMD073	0.0	1.0	1.0	5.1	Saprolith
BSMD073	1.0	2.0	1.0	3.0	Saprolith
BSMD073	2.0	3.0	1.0	2.9	Saprolith
BSMD073	3.0	4.1	1.1	3.4	Saprolith
BSMD073	4.1	4.7	0.6	3.6	Saprolith
BSMD073	4.7	5.6	0.9	1.8	Saprolith
BSMD073	5.6	6.5	0.9	2.7	Saprolith
BSMD073	6.5	7.3	0.9	0.4	Saprolith
BSMD073	7.3	8.2	0.8	1.1	Saprolith
BSMD073	8.2	9.0	0.9	1.2	Saprolith
BSMD073	9.0	10.1	1.0	1.6	Saprolith
BSMD073	10.1	10.4	0.4	1.0	Saprolith
BSMD073	10.4	10.9	0.5	1.0	Saprolith
BSMD073	10.9	11.4	0.5	0.9	Saprolith
BSMD073	11.4	12.2	0.8	1.2	Saprolith
BSMD073	12.2	12.6	0.4	1.7	Saprolith
BSMD073	12.6	13.1	0.5	1.5	Saprolith
BSMD073	13.1	13.8	0.7	2.2	Saprolith
BSMD073	13.8	14.8	1.1	3.6	Saprolith
BSMD073	14.8	15.8	1.0	3.0	Saprolith
BSMD073	15.8	16.5	0.7	3.8	Saprolith
BSMD073	16.5	17.1	0.6	5.2	Saprolith
BSMD073	17.1	17.5	0.4	4.0	Saprolith
BSMD073	17.5	18.3	0.9	3.0	Saprolith
BSMD073	18.3	19.4	1.1	3.5	Saprolith
BSMD073	19.4	20.1	0.7	2.6	Saprolith
BSMD073	20.1	20.7	0.6	1.9	Saprolith
BSMD073	20.7	21.1	0.4	3.0	Saprolith
BSMD073	21.1	21.9	0.8	7.4	Saprolith
BSMD073	21.9	22.7	0.8	6.1	Saprolith
BSMD073	22.7	23.4	0.7	6.5	Saprolith
BSMD073	23.4	24.2	0.8	6.3	Saprolith
BSMD073	24.2	25.0	0.8	3.6	Saprolith
BSMD073	25.0	25.7	0.7	1.1	Saprolith
BSMD073	25.7	26.2	0.5	1.0	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD073	26.2	27.3	1.1	0.9	Saprolith
BSMD073	27.3	28.2	0.9	0.7	Saprolith
BSMD073	28.2	29.1	0.9	1.7	Saprolith
BSMD073	29.1	30.3	1.3	4.9	Saprolith
BSMD073	30.3	31.8	1.4	0.9	Saprolith
BSMD073	31.8	32.8	1.0	1.1	Saprolith
BSMD073	32.8	34.1	1.3	1.5	Saprolith
BSMD073	34.1	34.9	0.9	1.9	Saprolith
BSMD073	34.9	35.8	0.8	2.8	Saprolith
BSMD073	35.8	36.6	0.8	4.9	Graphitic Gneiss
BSMD073	36.6	37.8	1.2	2.8	Graphitic Gneiss
BSMD073	37.8	38.6	0.8	1.5	Graphitic Gneiss
BSMD073	38.6	39.5	0.9	2.2	Graphitic Gneiss
BSMD073	39.5	40.3	0.8	0.9	Graphitic Gneiss
BSMD074	0.0	0.6	0.6	1.3	Saprolith
BSMD074	0.6	1.2	0.6	1.2	Saprolith
BSMD074	1.2	2.1	0.9	0.8	Saprolith
BSMD074	2.1	2.6	0.5	0.7	Saprolith
BSMD074	2.6	3.2	0.6	0.6	Saprolith
BSMD074	3.2	3.8	0.6	1.6	Saprolith
BSMD074	3.8	4.3	0.4	5.0	Saprolith
BSMD074	4.3	4.9	0.6	1.2	Saprolith
BSMD074	4.9	5.3	0.4	1.1	Saprolith
BSMD074	5.3	6.3	1.0	2.7	Saprolith
BSMD074	6.3	6.8	0.5	2.0	Saprolith
BSMD074	6.8	7.1	0.3	3.9	Saprolith
BSMD074	7.1	7.4	0.3	1.3	Saprolith
BSMD074	7.4	8.3	0.9	2.7	Saprolith
BSMD074	8.3	9.3	1.0	6.3	Saprolith
BSMD074	9.3	10.3	1.0	3.7	Saprolith
BSMD074	10.3	11.3	1.0	3.1	Saprolith
BSMD074	11.3	12.0	0.8	1.6	Saprolith
BSMD074	12.0	12.8	0.8	2.5	Saprolith
BSMD074	12.8	13.4	0.6	4.1	Saprolith
BSMD074	13.4	13.7	0.3	8.1	Saprolith
BSMD074	13.7	14.3	0.7	3.1	Saprolith
BSMD074	14.3	15.1	0.7	2.9	Saprolith
BSMD074	15.1	15.9	0.9	2.8	Saprolith
BSMD074	15.9	16.8	0.8	2.6	Saprolith
BSMD074	16.8	17.4	0.6	3.6	Graphitic Gneiss
BSMD074	17.4	18.0	0.7	2.6	Graphitic Gneiss
BSMD074	18.0	19.0	1.0	0.0	Dolerite
BSMD075	0.0	1.0	1.0	0.4	Saprolith
BSMD075	1.0	1.8	0.8	1.5	Saprolith
BSMD075	1.8	2.3	0.5	8.3	Saprolith
BSMD075	2.3	3.2	0.9	2.7	Saprolith
BSMD075	3.2	4.1	0.9	1.7	Saprolith
BSMD075	4.1	5.1	1.0	3.2	Saprolith
BSMD075	5.1	5.9	0.8	2.2	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD075	5.9	6.7	0.8	2.7	Saprolith
BSMD075	6.7	7.5	0.8	1.8	Saprolith
BSMD075	7.5	8.3	0.7	2.7	Saprolith
BSMD075	8.3	9.5	1.2	4.7	Saprolith
BSMD075	9.5	9.9	0.4	2.1	Saprolith
BSMD075	9.9	10.9	1.0	3.2	Saprolith
BSMD075	10.9	11.5	0.5	2.3	Saprolith
BSMD075	11.5	12.0	0.6	1.7	Saprolith
BSMD075	12.0	12.3	0.3	3.7	Saprolith
BSMD075	12.3	13.4	1.1	2.9	Saprolith
BSMD075	13.4	14.3	0.9	3.0	Saprolith
BSMD075	14.3	15.3	1.0	3.5	Saprolith
BSMD075	15.3	15.9	0.6	4.9	Saprolith
BSMD075	15.9	16.8	0.9	5.6	Saprolith
BSMD075	16.8	17.3	0.5	8.6	Saprolith
BSMD075	17.3	17.8	0.6	7.1	Saprolith
BSMD075	17.8	18.5	0.7	4.9	Saprolith
BSMD075	18.5	19.3	0.8	5.2	Saprolith
BSMD075	19.3	20.2	0.9	7.6	Saprolith
BSMD075	20.2	21.5	1.3	4.1	Saprolith
BSMD075	21.5	22.6	1.1	2.5	Saprolith
BSMD075	22.6	23.3	0.7	0.1	Saprolith
BSMD075	23.3	24.0	0.7	0.3	Saprolith
BSMD075	24.0	24.8	0.8	1.5	Saprolith
BSMD075	24.8	25.7	1.0	0.9	Saprolith
BSMD075	25.7	26.6	0.8	0.9	Saprolith
BSMD075	26.6	27.4	0.8	1.3	Saprolith
BSMD075	27.4	28.5	1.1	1.6	Saprolith
BSMD075	28.5	29.6	1.1	1.2	Saprolith
BSMD075	29.6	30.3	0.7	2.0	Saprolith
BSMD075	30.3	31.3	1.0	1.1	Saprolith
BSMD075	31.3	32.3	1.0	1.2	Saprolith
BSMD075	32.3	33.3	1.0	0.9	Saprolith
BSMD075	33.3	34.2	0.9	1.4	Saprolith
BSMD075	34.2	34.8	0.6	1.2	Saprolith
BSMD075	34.8	35.7	0.9	1.5	Saprolith
BSMD075	35.7	36.3	0.6	7.3	Saprolith
BSMD075	36.3	36.9	0.6	1.6	Saprolith
BSMD075	36.9	37.6	0.8	2.0	Saprolith
BSMD075	37.6	38.3	0.7	3.0	Saprolith
BSMD075	38.3	39.5	1.2	2.7	Graphitic Gneiss
BSMD075	39.5	40.4	0.9	2.4	Graphitic Gneiss
BSMD075	40.4	41.3	0.9	1.6	Graphitic Gneiss
BSMD076	1.8	2.7	1.0	0.1	Saprolith
BSMD076	2.7	3.4	0.7	2.0	Saprolith
BSMD076	3.4	4.1	0.7	13.6	Saprolith
BSMD076	4.1	4.9	0.8	10.4	Saprolith
BSMD076	4.9	5.8	0.9	10.4	Saprolith
BSMD076	5.8	6.5	0.8	2.0	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD076	6.5	7.7	1.1	0.8	Saprolith
BSMD076	7.7	8.4	0.7	0.5	Saprolith
BSMD076	8.4	9.0	0.6	0.4	Saprolith
BSMD076	9.0	9.6	0.6	1.0	Saprolith
BSMD076	9.6	10.6	1.0	0.9	Saprolith
BSMD076	10.6	11.2	0.5	1.3	Saprolith
BSMD076	11.2	12.4	1.2	1.0	Saprolith
BSMD076	12.4	13.2	0.9	1.9	Saprolith
BSMD076	13.2	14.2	0.9	1.8	Saprolith
BSMD076	14.2	15.1	0.9	3.2	Saprolith
BSMD076	15.1	16.0	0.9	2.4	Saprolith
BSMD076	16.0	17.0	1.0	4.5	Saprolith
BSMD076	17.0	17.8	0.8	3.8	Saprolith
BSMD076	17.8	18.7	0.9	4.2	Saprolith
BSMD076	18.7	19.5	0.9	2.4	Saprolith
BSMD076	19.5	20.3	0.8	3.5	Saprolith
BSMD076	20.3	21.0	0.7	1.5	Saprolith
BSMD076	21.0	21.4	0.4	1.8	Saprolith
BSMD076	21.4	22.3	0.9	3.6	Saprolith
BSMD076	22.3	23.3	1.0	1.3	Saprolith
BSMD076	23.3	24.3	1.0	0.0	Saprolith
BSMD077	1.5	1.9	0.4	0.1	Saprolith
BSMD077	1.9	2.6	0.7	1.2	Saprolith
BSMD077	2.6	3.8	1.2	0.5	Saprolith
BSMD077	4.3	5.1	0.9	1.5	Saprolith
BSMD077	5.1	5.6	0.5	0.8	Saprolith
BSMD077	5.6	6.4	0.8	0.8	Saprolith
BSMD077	6.4	7.3	0.9	0.8	Saprolith
BSMD077	7.3	8.1	0.9	0.8	Saprolith
BSMD077	8.1	9.0	0.8	0.5	Saprolith
BSMD077	9.0	9.4	0.5	0.6	Saprolith
BSMD077	9.4	10.2	0.7	1.0	Saprolith
BSMD077	10.2	10.9	0.8	1.8	Saprolith
BSMD077	10.9	11.6	0.7	1.3	Saprolith
BSMD077	11.6	12.4	0.8	1.1	Saprolith
BSMD077	12.4	13.2	0.8	1.9	Saprolith
BSMD077	13.2	14.0	0.8	1.3	Saprolith
BSMD077	14.0	14.9	0.9	4.2	Saprolith
BSMD077	14.9	15.9	1.0	1.4	Saprolith
BSMD077	15.9	16.3	0.4	0.7	Saprolith
BSMD077	16.3	16.7	0.4	2.1	Saprolith
BSMD077	16.7	17.5	0.8	1.0	Saprolith
BSMD077	17.5	18.3	0.8	4.3	Saprolith
BSMD077	18.3	19.1	0.8	1.2	Saprolith
BSMD077	19.1	19.9	0.8	1.8	Saprolith
BSMD077	19.9	20.9	0.9	1.8	Saprolith
BSMD077	20.9	21.8	0.9	1.6	Saprolith
BSMD077	21.8	22.7	1.0	3,5	Saprolith
BSMD077	22.7	23.7	1.0	1.1	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD077	23.7	24.5	0.8	7.0	Saprolith
BSMD077	24.5	25.5	1.0	0.8	Saprolith
BSMD077	25.5	26.3	0.8	0.5	Saprolith
BSMD077	26.3	26.8	0.6	1.1	Saprolith
BSMD077	26.8	27.4	0.6	1.2	Saprolith
BSMD077	27.4	28.4	1.0	0.5	Saprolith
BSMD077	28.4	29.5	1.1	0.5	Saprolith
BSMD077	29.5	30.4	0.9	1.6	Saprolith
BSMD077	30.4	31.2	0.8	1.4	Saprolith
BSMD077	31.2	32.0	0.8	2.7	Saprolith
BSMD077	32.0	32.8	0.8	1.9	Saprolith
BSMD077	32.8	33.5	0.7	6.6	Graphitic Gneiss
BSMD077	33.5	34.2	0.7	6.2	Graphitic Gneiss
BSMD077	34.2	34.8	0.6	3.3	Graphitic Gneiss
BSMD078	0.9	1.9	1.0	2.7	Pedolith
BSMD078	1.9	2.6	0.7	1.8	Saprolith
BSMD078	2.6	3.2	0.6	4.1	Saprolith
BSMD078	3.2	4.0	0.8	2.3	Saprolith
BSMD078	4.0	4.9	0.9	3.0	Saprolith
BSMD078	4.9	5.5	0.6	3.2	Saprolith
BSMD078	5.5	6.1	0.5	1.5	Saprolith
BSMD078	6.1	6.6	0.6	3.2	Saprolith
BSMD078	6.6	7.3	0.7	4.2	Saprolith
BSMD078	7.3	8.0	0.6	3.1	Saprolith
BSMD078	8.0	9.0	1.1	2.3	Saprolith
BSMD078	9.0	9.8	0.8	2.2	Saprolith
BSMD078	9.8	10.6	0.7	2.6	Saprolith
BSMD078	10.6	11.3	0.7	0.0	Dolerite
BSMD078	11.3	12.2	1.0	0.0	Dolerite
BSMD078	12.2	13.2	1.0	0.0	Dolerite
BSMD078	13.2	14.3	1.1	0.0	Dolerite
BSMD078	14.3	15.3	1.1	0.0	Dolerite
BSMD078	15.3	16.9	1.6	1.5	Saprolith
BSMD078	16.9	18.0	1.1	2.1	Saprolith
BSMD078	18.0	18.4	0.5	0.4	Saprolith
BSMD078	18.4	19.5	1.1	3.7	Saprolith
BSMD078	19.5	20.5	1.0	0.4	Saprolith
BSMD078	20.5	21.6	1.2	0.2	Saprolith
BSMD078	21.6	22.5	0.8	2.7	Saprolith
BSMD078	22.5	23.1	0.7	2.4	Saprolith
BSMD078	23.1	23.7	0.6	7.2	Graphitic Gneiss
BSMD078	23.7	24.4	0.7	4.6	Graphitic Gneiss
BSMD078	24.4	25.1	0.7	2.5	Graphitic Gneiss
BSMD078	25.1	25.9	0.8	5.0	Graphitic Gneiss
BSMD078	25.9	26.3	0.5	3.5	Graphitic Gneiss
BSMD079	0.0	0.7	0.7	0.0	Saprolith
BSMD079	0.7	1.1	0.4	0.2	Saprolith
BSMD079	1.1	1.7	0.5	1.3	Saprolith
BSMD079	1.7	2.3	0.6	2.6	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD079	2.3	3.0	0.7	3.0	Saprolith
BSMD079	3.0	3.8	0.8	4.2	Saprolith
BSMD079	3.8	4.4	0.7	4.0	Saprolith
BSMD079	4.4	5.1	0.6	3.7	Saprolith
BSMD079	5.1	5.9	0.9	3.3	Saprolith
BSMD079	5.9	6.8	0.9	3.2	Saprolith
BSMD079	6.8	7.6	0.8	2.5	Saprolith
BSMD079	7.6	8.5	0.9	3.3	Saprolith
BSMD079	8.5	9.4	0.8	3.0	Saprolith
BSMD079	9.4	10.2	0.8	3.0	Saprolith
BSMD079	10.2	11.0	0.8	3.0	Saprolith
BSMD079	11.0	12.0	1.1	0.2	Dolerite
BSMD079	12.0	13.0	1.0	0.0	Dolerite
BSMD079	13.0	14.2	1.1	0.0	Dolerite
BSMD079	14.2	15.1	0.9	0.0	Dolerite
BSMD079	15.1	16.1	1.0	0.0	Dolerite
BSMD079	16.1	17.1	1.0	3.9	Saprolith
BSMD079	17.1	17.7	0.6	2.5	Saprolith
BSMD079	17.7	18.4	0.7	2.3	Saprolith
BSMD079	18.4	19.0	0.6	1.2	Saprolith
BSMD079	19.0	19.8	0.9	2.6	Saprolith
BSMD079	19.8	20.7	0.9	2.1	Saprolith
BSMD079	20.7	21.5	0.8	1.8	Saprolith
BSMD079	21.5	22.6	1.1	0.0	Saprolith
BSMD079	22.6	23.3	0.7	0.9	Saprolith
BSMD079	23.3	24.1	0.7	1.1	Saprolith
BSMD079	24.1	24.9	0.8	1.8	Saprolith
BSMD079	24.9	25.6	0.8	1.1	Saprolith
BSMD079	25.6	26.5	0.9	1.5	Saprolith
BSMD079	26.5	27.3	0.8	1.0	Saprolith
BSMD079	27.3	28.0	0.7	0.9	Saprolith
BSMD079	28.0	28.6	0.6	1.7	Saprolith
BSMD079	28.6	29.5	0.9	3.2	Saprolith
BSMD079	29.5	30.3	0.8	5.6	Saprolith
BSMD079	30.3	30.9	0.6	3.5	Saprolith
BSMD079	30.9	31.5	0.6	4.5	Saprolith
BSMD079	31.5	32.4	1.0	3.7	Graphitic Gneiss
BSMD079	32.4	33.4	0.9	2.9	Graphitic Gneiss
BSMD079	33.4	34.3	1.0	2.4	Graphitic Gneiss
BSMD079	34.3	35.2	0.9	1.4	Graphitic Gneiss
BSMD080	1.1	1.9	0.8	0.1	Pedolith
BSMD080	1.9	2.8	0.9	0.2	Saprolith
BSMD080	2.8	3.6	0.8	0.0	Saprolith
BSMD080	3.6	4.1	0.5	0.0	Saprolith
BSMD080	4.1	4.7	0.6	0.0	Saprolith
BSMD080	4.7	5.4	0.7	0.0	Saprolith
BSMD080	5.4	6.1	0.7	0.0	Saprolith
BSMD080	6.1	6.7	0.6	0.4	Saprolith
BSMD080	6.7	7.6	0.9	1.2	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD080	7.6	8.4	0.8	3.2	Saprolith
BSMD080	8.4	9.2	0.8	3.5	Saprolith
BSMD080	9.2	10.0	0.8	3.0	Saprolith
BSMD080	10.0	10.9	0.9	3.2	Saprolith
BSMD080	10.9	11.8	0.9	3.5	Saprolith
BSMD080	11.8	12.6	0.8	4.2	Saprolith
BSMD080	12.6	13.4	0.8	6.7	Saprolith
BSMD080	13.4	14.3	1.0	6.5	Saprolith
BSMD080	14.3	15.4	1.1	10.9	Saprolith
BSMD080	15.4	16.4	1.0	10.1	Saprolith
BSMD080	16.4	16.7	0.4	3.1	Saprolith
BSMD080	16.7	17.6	0.8	1.9	Saprolith
BSMD080	17.6	18.5	0.9	0.8	Saprolith
BSMD080	18.5	19.1	0.6	3.4	Saprolith
BSMD080	19.1	20.0	0.9	1.4	Saprolith
BSMD080	20.0	20.8	0.8	1.0	Saprolith
BSMD080	20.8	21.2	0.5	1.1	Saprolith
BSMD080	21.2	22.1	0.9	1.8	Saprolith
BSMD080	22.1	23.1	1.0	1.7	Saprolith
BSMD080	23.1	23.6	0.5	0.4	Saprolith
BSMD080	23.6	24.5	0.9	1.3	Saprolith
BSMD080	24.5	25.2	0.8	1.4	Saprolith
BSMD080	25.2	26.0	0.8	1.7	Saprolith
BSMD080	26.0	27.4	1.4	4.8	Saprolith
BSMD080	27.4	28.0	0.6	5.6	Saprolith
BSMD080	28.0	28.6	0.6	2.9	Saprolith
BSMD080	28.6	29.6	1.0	2.6	Graphitic Gneiss
BSMD080	29.6	30.6	1.0	3.4	Graphitic Gneiss
BSMD080	30.6	31.5	0.9	2.4	Graphitic Gneiss
BSMD080	31.5	32.4	0.9	2.9	Graphitic Gneiss
BSMD081	8.3	9.6	1.2	0.3	Saprolith
BSMD081	9.6	10.2	0.6	3.4	Saprolith
BSMD081	10.2	11.0	0.9	1.0	Saprolith
BSMD081	11.0	11.7	0.7	1.3	Saprolith
BSMD081	11.7	12.3	0.7	2.9	Saprolith
BSMD081	12.3	12.9	0.6	6.1	Saprolith
BSMD081	12.9	13.6	0.7	7.8	Saprolith
BSMD081	13.6	14.2	0.6	10.1	Saprolith
BSMD081	14.2	14.9	0.6	7.0	Saprolith
BSMD081	14.9	15.6	0.7	9.6	Saprolith
BSMD081	15.6	16.5	0.9	7.6	Saprolith
BSMD081	16.5	17.4	1.0	10.0	Saprolith
BSMD081	17.4	18.0	0.6	4.7	Saprolith
BSMD081	18.0	19.3	1.4	5.6	Saprolith
BSMD081	19.3	19.9	0.5	6.8	Saprolith
BSMD081	19.9	20.6	0.7	3.9	Saprolith
BSMD081	20.6	21.5	0.9	1.9	Saprolith
BSMD081	21.5	22.5	1.0	2.1	Saprolith
BSMD081	22.5	23.3	0.8	2.8	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD081	23.3	24.3	1.0	2.7	Graphitic Gneiss
BSMD081	24.3	25.1	0.8	1.7	Graphitic Gneiss
BSMD081	25.1	26.3	1.2	2.5	Graphitic Gneiss
BSMD082	4.9	5.8	0.9	< 0.05	Saprolith
BSMD082	5.8	6.2	0.5	0.3	Saprolith
BSMD082	6.2	7.5	1.3	0.3	Saprolith
BSMD082	7.5	8.4	0.9	3.6	Saprolith
BSMD082	8.4	8.8	0.4	0.1	Saprolith
BSMD082	8.8	9.4	0.6	2.6	Saprolith
BSMD082	9.4	10.1	0.7	1.2	Saprolith
BSMD082	10.1	10.9	0.8	1.1	Saprolith
BSMD082	10.9	11.6	0.8	3.8	Saprolith
BSMD082	11.6	12.6	0.9	1.0	Saprolith
BSMD082	12.6	13.9	1.3	6.2	Saprolith
BSMD082	13.9	14.7	0.8	7.7	Saprolith
BSMD082	14.7	16.4	1.8	6.4	Saprolith
BSMD082	16.4	17.2	0.8	5.3	Saprolith
BSMD082	17.2	18.0	0.8	8.5	Saprolith
BSMD082	18.0	18.9	0.9	4.8	Saprolith
BSMD082	18.9	19.8	0.9	5.3	Saprolith
BSMD082	19.8	20.4	0.6	5.4	Saprolith
BSMD082	20.4	21.5	1.1	2.4	Graphitic Gneiss
BSMD082	21.5	22.5	1.0	2.4	Graphitic Gneiss
BSMD082	22.5	23.4	0.9	1.9	Graphitic Gneiss
BSMD082	23.4	24.4	1.0	2.3	Graphitic Gneiss
BSMD083	9.3	9.8	0.5	0.2	Saprolith
BSMD083	9.8	10.2	0.4	5.6	Saprolith
BSMD083	10.2	10.6	0.4	1.0	Saprolith
BSMD083	10.6	11.4	0.8	10.9	Saprolith
BSMD083	11.4	11.7	0.4	4.9	Saprolith
BSMD083	11.7	12.2	0.5	7.4	Saprolith
BSMD083	12.2	12.7	0.5	4.0	Saprolith
BSMD083	12.7	13.1	0.4	12.0	Saprolith
BSMD083	13.1	13.8	0.7	5.7	Saprolith
BSMD083	13.8	14.5	0.7	12.6	Saprolith
BSMD083	14.5	15.2	0.7	8.9	Saprolith
BSMD083	15.2	15.9	0.7	8.9	Saprolith
BSMD083	15.9	16.6	0.7	8.1	Saprolith
BSMD083	16.6	17.3	0.7	11.3	Saprolith
BSMD083	17.3	18.2	0.9	7.3	Saprolith
BSMD083	18.2	19.0	0.8	5.9	Saprolith
BSMD083	19.0	19.9	0.9	7.8	Saprolith
BSMD083	19.9	20.9	1.0	4.9	Saprolith
BSMD083	20.9	21.9	1.0	5.9	Saprolith
BSMD083	21.9	22.8	0.9	7.7	Saprolith
BSMD083	22.8	23.6	0.8	6.5	Saprolith
BSMD083	23.6	24.5	0.9	0.7	Saprolith
BSMD083	24.5	25.5	1.0	2,3	Saprolith
BSMD083	25.5	26.4	0.9	2.7	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD083	26.4	27.4	1.0	2.2	Saprolith
BSMD083	27.4	28.0	0.6	1.4	Saprolith
BSMD083	28.0	29.0	1.0	2.7	Saprolith
BSMD083	29.0	30.0	0.9	1.8	Saprolith
BSMD083	30.0	31.1	1.1	6.8	Saprolith
BSMD083	31.1	32.3	1.2	10.8	Saprolith
BSMD083	32.3	33.3	1.0	8.7	Saprolith
BSMD083	33.3	34.3	1.1	9.7	Saprolith
BSMD083	34.3	35.0	0.7	9.6	Saprolith
BSMD083	35.0	36.4	1.4	5.8	Saprolith
BSMD083	36.4	37.4	1.0	4.8	Saprolith
BSMD083	37.4	38.4	1.0	6.6	Saprolith
BSMD083	38.4	39.5	1.0	4.3	Saprolith
BSMD083	39.5	40.1	0.7	4.0	Saprolith
BSMD083	40.1	40.9	0.7	5.3	Saprolith
BSMD083	40.9	41.6	0.7	6.1	Saprolith
BSMD083	41.6	41.9	0.4	6.6	Saprolith
BSMD083	41.9	42.8	0.8	5.7	Saprolith
BSMD083	42.8	43.8	1.0	5.4	Saprolith
BSMD083	43.8	44.6	0.9	4.2	Saprolith
BSMD083	44.6	45.5	0.8	8.7	Saprolith
BSMD083	45.5	46.5	1.0	5.8	Graphitic Gneiss
BSMD083	46.5	47.3	0.9	6.8	Graphitic Gneiss
BSMD084	6.9	7.7	0.8	0.1	Pedolith
BSMD084	7.7	8.6	0.8	0.7	Saprolith
BSMD084	8.6	9.3	0.8	6.2	Saprolith
BSMD084	9.3	10.2	0.9	9.3	Saprolith
BSMD084	10.2	10.7	0.5	8.0	Saprolith
BSMD084	10.7	11.4	0.7	10.1	Saprolith
BSMD084	11.4	12.3	0.9	6.0	Saprolith
BSMD084	12.3	13.1	0.9	6.3	Saprolith
BSMD084	13.1	13.9	0.8	11.9	Saprolith
BSMD084	13.9	14.8	0.9	3.4	Saprolith
BSMD084	14.8	15.7	0.9	5.6	Saprolith
BSMD084	15.7	16.3	0.6	6.6	Saprolith
BSMD084	16.3	17.0	0.7	5.6	Saprolith
BSMD084	17.0	17.7	0.7	6.1	Saprolith
BSMD084	17.7	18.4	0.7	7.0	Saprolith
BSMD084	18.4	18.7	0.3	0.2	Saprolith
BSMD084	18.7	19.3	0.6	1.4	Saprolith
BSMD084	19.3	20.0	0.7	2.5	Saprolith
BSMD084	20.0	20.8	0.7	3.0	Saprolith
BSMD084	20.8	21.7	0.9	3.0	Saprolith
BSMD084	21.7	22.6	1.0	1.7	Saprolith
BSMD084	22.6	23.3	0.7	0.9	Saprolith
BSMD084	23.3	23.9	0.6	1.2	Saprolith
BSMD084	23.9	24.6	0.7	2.4	Saprolith
BSMD084	24.6	25.3	0.6	1.8	Saprolith
BSMD084	25.3	26.0	0.8	10.2	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD084	26.0	27.6	1.6	5.2	Saprolith
BSMD084	27.6	28.9	1.4	8.9	Saprolith
BSMD084	28.9	29.6	0.6	18.4	Saprolith
BSMD084	29.6	30.7	1.2	7.7	Saprolith
BSMD084	30.7	31.3	0.5	4.2	Saprolith
BSMD084	31.3	31.9	0.6	4.3	Saprolith
BSMD084	31.9	32.6	0.7	5.8	Graphitic Gneiss
BSMD084	32.6	33.5	0.9	4.5	Graphitic Gneiss
BSMD084	33.5	34.3	0.9	2.0	Graphitic Gneiss
BSMD084	34.3	35.3	0.9	1.9	Graphitic Gneiss
BSMD089	5.5	6.7	1.2	0.4	Saprolith
BSMD089	6.7	7.3	0.6	1.9	Saprolith
BSMD089	7.3	8.3	0.9	2.9	Saprolith
BSMD089	8.3	8.9	0.6	2.2	Saprolith
BSMD089	8.9	9.3	0.5	3.7	Saprolith
BSMD089	9.3	9.9	0.6	3.6	Saprolith
BSMD089	9.9	10.5	0.6	3.7	Saprolith
BSMD089	10.5	11.3	0.8	5.9	Saprolith
BSMD089	11.3	11.9	0.6	4.7	Saprolith
BSMD089	11.9	12.6	0.6	4.6	Saprolith
BSMD089	12.6	13.2	0.7	5.7	Saprolith
BSMD089	13.2	13.8	0.6	6.9	Saprolith
BSMD089	13.8	14.3	0.5	7.7	Saprolith
BSMD089	14.3	14.9	0.5	8.1	Saprolith
BSMD089	14.9	15.3	0.5	6.6	Saprolith
BSMD089	15.3	15.9	0.6	4.6	Saprolith
BSMD089	15.9	17.1	1.2	2.0	Saprolith
BSMD089	17.1	18.2	1.1	1.7	Graphitic Gneiss
BSMD089	18.2	19.1	0.9	0.1	Gneiss
BSMD089	19.1	20.0	0.9	1.8	Graphitic Gneiss
BSMD089	20.0	21.2	1.2	0.7	Graphitic Gneiss
BSMD089	21.2	22.1	0.9	1.5	Graphitic Gneiss
BSMD089	22.1	23.1	1.0	0.9	Graphitic Gneiss
BSMD089	23.1	24.3	1.2	1.7	Graphitic Gneiss
BSMD090	5.9	7.4	1.5	1.1	Saprolith
BSMD090	7.4	8.5	1.2	2.5	Saprolith
BSMD090	8.5	9.6	1.1	2.6	Saprolith
BSMD090	9.6	10.7	1.1	3.5	Saprolith
BSMD090	10.7	11.2	0.5	2.9	Saprolith
BSMD090	11.2	12.4	1.1	6.3	Saprolith
BSMD090	12.4	13.3	1.0	6.9	Saprolith
BSMD090	13.3	14.0	0.6	6.5	Saprolith
BSMD090	14.0	14.7	0.7	8.3	Saprolith
BSMD090	14.7	15.4	0.7	7.0	Saprolith
BSMD090	15.4	15.6	0.2	4.2	Saprolith
BSMD090	15.6	16.5	0.9	3.9	Saprolith
BSMD090	16.5	17.4	0.8	2.0	Saprolith
BSMD090	17.4	18.1	0.7	1.5	Saprolith
BSMD090	18.1	19.4	1.3	0.0	Saprolith

BSM090 19.4 20.4 1.1 1.6 Saprolith BSM090 20.4 21.5 1.1 0.8 Saprolith BSM090 21.5 22.5 1.0 1.1 Saprolith BSM090 22.5 23.5 1.0 1.1 Saprolith BSM090 23.5 24.5 1.0 1.2 Saprolith BSM090 23.5 24.5 1.0 1.2 Saprolith BSM090 25.5 26.4 1.0 4.3 Graphtic Greiss BSM098 4.4 6.0 1.6 0.0 Saprolith BSM086 6.0 6.5 7.6 1.2 1.5 Saprolith BSM087 1.9 2.3 0.4 6.2 Saprolith BSM087 1.9 2.3 2.8 0.5 0.9 Saprolith BSM087 2.3 2.8 0.4 0.6 3.3 Saprolith BSM087 3.4 4.3 0.9 3.0 Sap	Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD090 20.4 21.5 1.1 0.8 Seprolith BSMD090 21.5 22.5 1.0 1.1 Saprolith BSMD090 22.5 23.5 1.0 1.1 Saprolith BSMD090 24.5 25.5 1.0 1.1 Saprolith BSMD090 24.5 25.5 1.0 1.2 Saprolith BSMD090 26.4 27.4 0.9 5.2 Graphitic Gneiss BSMD086 6.0 6.5 0.5 1.5 Saprolith BSMD086 6.5 7.6 1.2 1.5 Saprolith BSMD087 1.9 2.3 0.4 6.2 Saprolith BSMD087 2.8 3.4 0.6 3.3 Saprolith BSMD087 2.8 3.4 0.6 2.1 Saprolith BSMD087 5.0 5.6 0.6 2.1 Saprolith BSMD087 5.0 5.6 1.8 Saprolith BSMD087 <td>BSMD090</td> <td>19.4</td> <td>20.4</td> <td>1.1</td> <td>1.6</td> <td>Saprolith</td>	BSMD090	19.4	20.4	1.1	1.6	Saprolith
BSMD090 21.5 22.5 1.0 1.2 Seprolith BSMD090 22.5 23.5 1.0 1.1 Saprolith BSMD090 23.5 24.5 1.0 1.1 Saprolith BSMD090 24.5 25.5 1.0 1.2 Saprolith BSMD090 26.4 27.4 0.9 5.2 Graphitic Gneiss BSMD086 6.0 6.5 0.5 1.5 Saprolith BSMD086 6.0 6.5 0.5 1.5 Saprolith BSMD087 1.1 1.9 0.8 0.2 Pedolith BSMD087 1.9 2.3 0.4 6.2 Saprolith BSMD087 2.8 3.4 0.6 3.3 Saprolith BSMD087 2.8 3.4 0.6 2.3 Saprolith BSMD087 5.0 5.6 0.6 2.1 Saprolith BSMD087 5.0 5.6 0.6 2.1 Saprolith	BSMD090	20.4	21.5	1.1	0.8	Saprolith
BSM0990 22.5 23.5 1.0 1.1 Seprolith BSM0900 23.5 24.5 1.0 1.1 Saprolith BSM0900 24.5 25.5 1.0 1.2 Saprolith BSM0900 26.4 27.4 0.9 5.2 Graphitic Gneiss BSM086 6.0 6.5 0.5 1.5 Saprolith BSM086 6.0 6.5 7.6 1.2 1.5 Saprolith BSM087 1.1 1.9 0.8 0.2 Pedolith BSM087 2.3 2.8 0.5 0.9 Saprolith BSM087 2.3 2.8 0.5 0.9 Saprolith BSM087 2.3 2.8 0.6 2.1 Saprolith BSM087 3.4 4.3 0.9 3.0 Saprolith BSM087 5.0 5.6 0.6 2.1 Saprolith BSM087 7.0 7.5 0.5 1.8 Saprolith	BSMD090	21.5	22.5	1.0	1.2	Saprolith
BSM0990 23.5 24.5 1.0 1.1 Saprolith BSM0900 24.5 25.5 1.0 1.2 Saprolith BSM0900 25.5 26.4 1.0 4.3 Graphitic Gneiss BSM0906 4.4 6.0 1.6 0.0 Saprolith BSM0986 6.0 6.5 0.5 1.5 Saprolith BSM0986 6.5 7.6 1.2 1.5 Saprolith BSM0987 1.1 1.9 0.8 0.2 Pedolith BSM0987 1.3 2.8 0.5 0.9 Saprolith BSM0987 2.3 2.8 0.5 0.9 Saprolith BSM087 3.4 4.3 0.6 3.3 Saprolith BSM087 5.0 5.6 0.6 2.1 Saprolith BSM087 5.6 6.3 0.7 1.5 Saprolith BSM087 7.0 7.5 0.5 1.8 Saprolith	BSMD090	22.5	23.5	1.0	1.1	Saprolith
BSMD090 24.5 25.5 1.0 1.2 Saprolith BSMD090 25.5 26.4 1.0 4.3 Graphitic Gneiss BSMD086 4.4 6.0 1.6 0.0 Saprolith BSMD086 6.0 6.5 0.5 1.5 Saprolith BSMD086 6.0 6.5 7.6 1.2 1.5 Saprolith BSMD087 1.9 2.3 0.4 6.2 Saprolith BSMD087 2.8 3.4 0.6 3.3 Saprolith BSMD087 2.8 3.4 0.6 3.3 Saprolith BSMD087 2.8 3.4 0.6 2.1 Saprolith BSMD087 5.0 5.6 0.6 2.1 Saprolith BSMD087 5.0 5.6 0.6 2.1 Saprolith BSMD087 7.0 7.7 0.8 Saprolith BSMD087 7.0 0.7 0.8 Saprolith BSMD087	BSMD090	23.5	24.5	1.0	1.1	Saprolith
BSMD090 25.5 26.4 1.0 4.3 Graphitc Gneiss BSMD096 26.4 27.4 0.9 5.2 Graphitc Gneiss BSMD086 4.4 6.0 1.6 0.0 Saprolith BSMD086 6.0 6.5 0.5 1.5 Saprolith BSMD087 1.1 1.9 0.8 0.2 Pedolith BSMD087 1.9 2.3 0.4 6.2 Saprolith BSMD087 2.8 3.4 0.6 3.3 Saprolith BSMD087 2.8 3.4 0.6 3.3 Saprolith BSMD087 3.4 4.3 0.9 3.0 Saprolith BSMD087 5.6 6.3 0.7 1.5 Saprolith BSMD087 5.6 6.3 0.7 1.5 Saprolith BSMD087 7.0 7.5 0.5 1.8 Saprolith BSMD087 7.8 8.3 0.5 1.0 Saprolith	BSMD090	24.5	25.5	1.0	1.2	Saprolith
BSM0090 26.4 27.4 0.9 5.2 Graphtic Gneiss BSM086 4.4 6.0 1.6 0.0 Saprolith BSM096 6.0 6.5 0.5 1.5 Saprolith BSM0986 6.5 7.6 1.2 1.5 Saprolith BSM0987 1.1 1.9 0.8 0.2 Pedolith BSM0987 1.9 2.3 0.4 6.2 Saprolith BSM0987 2.8 3.4 0.6 3.3 Saprolith BSM0987 3.4 4.3 0.9 3.0 Saprolith BSM0987 5.0 5.6 0.6 2.1 Saprolith BSM0987 5.6 6.3 0.7 1.5 Saprolith BSM0987 7.0 7.5 0.5 1.8 Saprolith BSM0987 7.0 7.5 0.5 1.8 Saprolith BSM0987 7.5 7.8 0.3 1.5 Saprolith BSM	BSMD090	25.5	26.4	1.0	4.3	Graphitic Gneiss
BSMD086 4.4 6.0 1.6 0.0 Saprolith BSMD086 6.0 6.5 0.5 1.5 Saprolith BSMD087 1.1 1.9 0.8 0.2 Pedolith BSMD087 1.9 2.3 0.4 6.2 Saprolith BSMD087 2.3 2.8 0.5 0.9 Saprolith BSMD087 2.8 3.4 0.6 3.3 Saprolith BSMD087 2.8 3.4 0.6 3.3 Saprolith BSMD087 3.4 4.3 0.9 3.0 Saprolith BSMD087 5.6 0.6 2.1 Saprolith Saprolith BSMD087 5.6 6.3 0.7 1.5 Saprolith BSMD087 7.0 7.5 0.5 1.8 Saprolith BSMD087 7.8 8.3 0.5 1.8 Saprolith BSMD087 8.8 9.3 0.5 1.0 Saprolith BSM	BSMD090	26.4	27.4	0.9	5.2	Graphitic Gneiss
BSMD086 6.0 6.5 0.5 1.5 Saprolith BSMD086 6.5 7.6 1.2 1.5 Saprolith BSMD087 1.1 1.9 0.8 0.2 Pedolith BSMD087 1.9 2.3 0.4 6.2 Saprolith BSMD087 2.3 2.8 0.5 0.9 Saprolith BSMD087 2.8 3.4 0.6 3.3 Saprolith BSMD087 3.4 4.3 0.9 3.0 Saprolith BSMD087 5.0 5.6 0.6 2.1 Saprolith BSMD087 5.0 5.6 6.6 3 0.7 1.5 Saprolith BSMD087 6.3 7.0 0.7 0.8 Saprolith BSMD087 7.8 Saprolith BSMD087 7.8 8.3 0.5 1.8 Saprolith BSMD087 7.8 8.3 0.5 1.2 Saprolith BSMD087 9.3 9.9 </td <td>BSMD086</td> <td>4.4</td> <td>6.0</td> <td>1.6</td> <td>0.0</td> <td>Saprolith</td>	BSMD086	4.4	6.0	1.6	0.0	Saprolith
BSMD086 6.5 7.6 1.2 1.5 Saprolith BSMD087 1.1 1.9 0.8 0.2 Pedolith BSMD087 1.9 2.3 0.4 6.2 Saprolith BSMD087 2.3 2.4 0.5 0.9 Saprolith BSMD087 2.8 3.4 0.6 3.3 Saprolith BSMD087 2.8 3.4 0.6 3.3 Saprolith BSMD087 2.8 3.4 0.6 3.3 Saprolith BSMD087 4.3 5.0 0.7 2.3 Saprolith BSMD087 5.0 5.6 0.6 2.1 Saprolith BSMD087 7.0 7.5 0.5 1.8 Saprolith BSMD087 7.8 8.3 0.5 1.8 Saprolith BSMD087 7.8 8.3 0.5 1.2 Saprolith BSMD087 9.9 0.4 0.5 1.2 Saprolith BSMD087 </td <td>BSMD086</td> <td>6.0</td> <td>6.5</td> <td>0.5</td> <td>1.5</td> <td>Saprolith</td>	BSMD086	6.0	6.5	0.5	1.5	Saprolith
BSMD087 1.1 1.9 0.8 0.2 Pedolith BSM0087 1.9 2.3 0.4 6.2 Saprolith BSM0087 2.8 0.5 0.9 Saprolith BSM0087 2.8 3.4 0.6 3.3 Saprolith BSM0087 3.4 4.3 0.9 3.0 Saprolith BSM0087 3.4 4.3 0.9 3.0 Saprolith BSM0087 5.0 5.6 0.6 2.1 Saprolith BSM0087 5.6 6.3 0.7 1.5 Saprolith BSM0087 7.0 7.5 0.5 1.8 Saprolith BSM0087 7.5 7.8 0.3 1.5 Saprolith BSM0087 7.8 8.3 0.5 1.8 Saprolith BSM0087 9.3 0.5 1.0 Saprolith BSM0087 9.9 0.5 1.2 Saprolith BSM0087 10.4 1.6 1.2<	BSMD086	6.5	7.6	1.2	1.5	Saprolith
BSMD087 1.9 2.3 0.4 6.2 Saprolith BSMD087 2.3 2.8 0.5 0.9 Saprolith BSMD087 2.8 3.4 0.6 3.3 Saprolith BSMD087 3.4 4.3 0.9 3.0 Saprolith BSMD087 5.0 5.6 0.6 2.1 Saprolith BSMD087 5.0 5.6 6.3 0.7 1.5 Saprolith BSM0087 5.6 6.3 0.7 1.5 Saprolith Saprolith BSM0087 7.0 7.5 0.5 1.8 Saprolith Saprolith BSM0087 7.8 8.3 0.5 1.8 Saprolith Saprolith BSM0087 8.3 8.8 0.5 1.8 Saprolith Saprolith BSM0087 9.3 9.9 0.5 1.2 Saprolith BSM0087 9.9 10.4 0.5 1.2 Saprolith BSM0087 12.0 <td>BSMD087</td> <td>1.1</td> <td>1.9</td> <td>0.8</td> <td>0.2</td> <td>Pedolith</td>	BSMD087	1.1	1.9	0.8	0.2	Pedolith
BSMD087 2.3 2.8 0.5 0.9 Saprolith BSMD087 2.8 3.4 0.6 3.3 Saprolith BSMD087 2.8 3.4 0.6 3.3 Saprolith BSMD087 2.8 3.4 0.9 3.0 Saprolith BSMD087 4.3 5.0 0.7 2.3 Saprolith BSMD087 5.0 5.6 0.6 2.1 Saprolith BSMD087 5.0 5.6 0.3 0.7 1.5 Saprolith BSMD087 7.0 7.5 0.5 1.8 Saprolith Saprolith BSMD087 7.8 8.3 0.5 1.8 Saprolith Saprolith BSMD087 8.3 8.8 0.5 1.2 Saprolith Saprolith BSMD087 9.3 9.9 0.5 1.2 Saprolith Saprolith BSMD087 10.4 1.6 1.2 1.5 Saprolith BSMD087 12.0 <td>BSMD087</td> <td>1.9</td> <td>2.3</td> <td>0.4</td> <td>6.2</td> <td>Saprolith</td>	BSMD087	1.9	2.3	0.4	6.2	Saprolith
BSMD087 2.8 3.4 0.6 3.3 Saprolith BSMD087 3.4 4.3 0.9 3.0 Saprolith BSMD087 4.3 5.0 0.7 2.3 Saprolith BSMD087 5.6 0.6 2.1 Saprolith BSMD087 5.6 6.3 0.7 1.5 Saprolith BSMD087 6.3 7.0 0.7 0.8 Saprolith BSMD087 7.5 7.8 0.3 1.5 Saprolith BSMD087 7.8 8.3 0.5 1.8 Saprolith BSMD087 7.8 8.3 0.5 1.8 Saprolith BSMD087 8.8 9.3 0.5 1.0 Saprolith BSMD087 9.9 10.4 0.5 1.2 Saprolith BSMD087 10.4 11.6 1.2 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith BSMD087 12.6 <t< td=""><td>BSMD087</td><td>2.3</td><td>2.8</td><td>0.5</td><td>0.9</td><td>Saprolith</td></t<>	BSMD087	2.3	2.8	0.5	0.9	Saprolith
BSMD087 3.4 4.3 0.9 3.0 Saprolith BSMD087 4.3 5.0 0.7 2.3 Saprolith BSMD087 5.0 5.6 0.6 2.1 Saprolith BSMD087 5.6 6.3 0.7 1.5 Saprolith BSMD087 6.3 7.0 0.7 0.8 Saprolith BSMD087 7.0 7.5 0.5 1.8 Saprolith BSMD087 7.8 8.3 0.5 0.8 Saprolith BSMD087 7.8 8.3 0.5 1.8 Saprolith BSMD087 8.8 9.3 0.5 1.2 Saprolith BSMD087 9.9 10.4 0.5 1.2 Saprolith BSMD087 10.4 11.6 1.2 1.5 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith B	BSMD087	2.8	3.4	0.6	3.3	Saprolith
BSMD087 4.3 5.0 0.7 2.3 Saprolith BSMD087 5.0 5.6 0.6 2.1 Saprolith BSMD087 5.6 6.3 0.7 1.5 Saprolith BSMD087 5.6 6.3 0.7 0.8 Saprolith BSMD087 7.0 7.5 0.5 1.8 Saprolith BSMD087 7.5 7.8 0.3 1.5 Saprolith BSMD087 7.8 8.3 0.5 0.8 Saprolith BSMD087 8.8 9.3 0.5 1.0 Saprolith BSMD087 9.3 9.9 0.5 1.2 Saprolith BSMD087 9.9 10.4 0.5 1.2 Saprolith BSMD087 10.4 11.6 1.2 1.5 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith B	BSMD087	3.4	4.3	0.9	3.0	Saprolith
BSMD087 5.0 5.6 0.6 2.1 Saprolith BSMD087 5.6 6.3 0.7 1.5 Saprolith BSMD087 6.3 7.0 0.7 0.8 Saprolith BSMD087 7.0 7.5 0.5 1.8 Saprolith BSMD087 7.5 7.8 0.3 1.5 Saprolith BSMD087 7.8 8.3 0.5 0.8 Saprolith BSMD087 7.8 8.3 0.5 1.0 Saprolith BSMD087 8.3 8.8 0.5 1.2 Saprolith BSMD087 9.3 9.9 0.5 1.2 Saprolith BSMD087 10.4 11.6 1.2 Saprolith BSMD087 11.6 12.0 0.4 2.7 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith BSMD087 12.0 13.3 0.4 1.0 Saprolith BSMD087	BSMD087	4.3	5.0	0.7	2.3	Saprolith
BSMD087 5.6 6.3 0.7 1.5 Saprolith BSMD087 6.3 7.0 0.7 0.8 Saprolith BSMD087 7.0 7.5 0.5 1.8 Saprolith BSMD087 7.0 7.5 7.8 0.3 1.5 Saprolith BSMD087 7.8 8.3 0.5 0.8 Saprolith BSMD087 8.8 9.3 0.5 1.0 Saprolith BSMD087 8.8 9.3 0.5 1.2 Saprolith BSMD087 9.3 9.9 0.5 1.2 Saprolith BSMD087 9.9 10.4 0.5 1.2 Saprolith BSMD087 10.4 11.6 1.2 1.5 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith BSMD087 12.6 12.9 0.3 1.4 Saprolith BSMD087 13.3 14.0 0.6 2.6 Saprolith	BSMD087	5.0	5.6	0.6	2.1	Saprolith
BSMD087 6.3 7.0 0.7 0.8 Saprolith BSMD087 7.0 7.5 0.5 1.8 Saprolith BSMD087 7.0 7.5 7.8 0.3 1.5 Saprolith BSMD087 7.5 7.8 0.3 1.5 Saprolith BSMD087 8.3 8.8 0.5 1.8 Saprolith BSMD087 8.3 8.8 0.5 1.8 Saprolith BSMD087 9.3 9.9 0.5 1.2 Saprolith BSMD087 9.3 9.9 0.5 1.2 Saprolith BSMD087 10.4 11.6 1.2 Saprolith BSMD087 11.6 12.0 0.4 2.7 Saprolith BSMD087 12.6 12.9 0.3 1.4 Saprolith BSMD087 12.9 13.3 0.4 1.0 Saprolith BSMD087 14.0 14.7 0.8 1.8 Saprolith <t< td=""><td>BSMD087</td><td>5.6</td><td>6.3</td><td>0.7</td><td>1.5</td><td>Saprolith</td></t<>	BSMD087	5.6	6.3	0.7	1.5	Saprolith
BSMD087 7.0 7.5 0.5 1.8 Saprolith BSMD087 7.5 7.8 0.3 1.5 Saprolith BSMD087 7.8 8.3 0.5 0.8 Saprolith BSMD087 8.3 8.8 0.5 1.8 Saprolith BSMD087 8.3 8.8 0.5 1.0 Saprolith BSMD087 9.3 9.9 0.5 1.2 Saprolith BSMD087 9.3 9.9 0.5 1.2 Saprolith BSMD087 9.9 10.4 0.5 1.2 Saprolith BSMD087 10.4 11.6 1.2 1.5 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith BSMD087 12.6 12.9 0.3 1.4 Saprolith BSMD087 13.3 14.0 0.6 2.6 Saprolith BSMD087 14.7 15.3 0.6 1.0 Saprolith <	BSMD087	6.3	7.0	0.7	0.8	Saprolith
BSMD087 7.5 7.8 0.3 1.5 Saprolith BSMD087 7.8 8.3 0.5 0.8 Saprolith BSMD087 8.3 8.8 0.5 1.8 Saprolith BSMD087 8.3 8.8 0.5 1.0 Saprolith BSMD087 8.8 9.3 0.5 1.0 Saprolith BSMD087 9.3 9.9 0.5 1.2 Saprolith BSMD087 9.9 10.4 0.5 1.2 Saprolith BSMD087 10.4 11.6 1.2 Saprolith BSMD087 10.4 11.6 1.2 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith BSMD087 12.6 12.9 0.3 1.4 Saprolith BSMD087 13.3 14.0 0.6 2.6 Saprolith BSMD087 14.7 15.3 0.6 1.0 Saprolith BSMD087 15.3	BSMD087	7.0	7.5	0.5	1.8	Saprolith
BSMD087 7.8 8.3 0.5 0.8 Saprolith BSMD087 8.3 8.8 0.5 1.8 Saprolith BSMD087 8.8 9.3 0.5 1.0 Saprolith BSMD087 8.8 9.3 0.5 1.0 Saprolith BSMD087 9.3 9.9 0.5 1.2 Saprolith BSMD087 9.9 10.4 0.5 1.2 Saprolith BSMD087 10.4 11.6 1.2 1.5 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith BSMD087 12.6 12.9 0.3 1.4 Saprolith BSMD087 12.9 13.3 0.4 1.0 Saprolith BSMD087 14.0 14.7 0.8 1.8 Saprolith BSMD087 14.0 14.7 0.8 1.8 Saprolith BSMD087 15.3 15.9 0.6 2.1 Saprolith	BSMD087	7.5	7.8	0.3	1.5	Saprolith
BSMD087 8.3 8.8 0.5 1.8 Saprolith BSMD087 8.8 9.3 0.5 1.0 Saprolith BSMD087 9.3 9.9 0.5 1.2 Saprolith BSMD087 9.3 9.9 0.5 1.2 Saprolith BSMD087 9.9 10.4 0.5 1.2 Saprolith BSMD087 10.4 11.6 1.2 Saprolith BSMD087 10.4 11.6 1.2 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith BSMD087 12.6 12.9 0.3 1.4 Saprolith BSMD087 12.9 13.3 0.4 1.0 Saprolith BSMD087 13.3 14.0 0.6 2.6 Saprolith BSMD087 14.7 15.3 0.6 1.0 Saprolith BSMD087 15.3 15.9 0.6 2.1 Saprolith BSMD087 15.3 <td>BSMD087</td> <td>7.8</td> <td>83</td> <td>0.5</td> <td>0.8</td> <td>Saprolith</td>	BSMD087	7.8	83	0.5	0.8	Saprolith
BSMD087 8.8 9.3 0.5 1.0 Saprolith BSMD087 9.3 9.9 0.5 1.2 Saprolith BSMD087 9.9 10.4 0.5 1.2 Saprolith BSMD087 10.4 11.6 1.2 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith BSMD087 12.6 12.9 0.3 1.4 Saprolith BSMD087 12.9 13.3 0.4 1.0 Saprolith BSMD087 14.0 14.7 0.8 1.8 Saprolith BSMD087 15.3 15.9 0.6 2.1 Saprolith BSMD087 15.9 16.4 0.5 2.9 Saprolith BSMD087 16.4 17.3 0.	BSMD087	8.3	8.8	0.5	1.8	Saprolith
BSMD087 9.3 9.9 0.5 1.2 Saprolith BSMD087 9.9 10.4 0.5 1.2 Saprolith BSMD087 10.4 11.6 1.2 1.5 Saprolith BSMD087 10.4 11.6 1.2 1.5 Saprolith BSMD087 11.6 12.0 0.4 2.7 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith BSMD087 12.6 12.9 0.3 1.4 Saprolith BSMD087 12.9 13.3 0.4 1.0 Saprolith BSMD087 13.3 14.0 0.6 2.6 Saprolith BSMD087 14.0 14.7 0.8 1.8 Saprolith BSMD087 15.3 15.9 0.6 2.1 Saprolith BSMD087 15.3 15.9 0.6 2.1 Saprolith BSMD087 15.3 15.9 0.6 2.1 Saprolith <t< td=""><td>BSMD087</td><td>8.8</td><td>93</td><td>0.5</td><td>1.0</td><td>Saprolith</td></t<>	BSMD087	8.8	93	0.5	1.0	Saprolith
BSMD087 9.9 10.4 0.5 1.2 Saprolith BSMD087 10.4 11.6 1.2 1.5 Saprolith BSMD087 11.6 12.0 0.4 2.7 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith BSMD087 12.6 12.9 0.3 1.4 Saprolith BSMD087 12.6 12.9 0.3 1.4 Saprolith BSMD087 12.9 13.3 0.4 1.0 Saprolith BSMD087 14.0 14.7 0.8 1.8 Saprolith BSMD087 14.7 15.3 0.6 1.0 Saprolith BSMD087 15.3 15.9 0.6 2.1 Saprolith BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 16.4 17.3 0.8 1.4 Saprolith BSMD087 18.1 18.9 0.8 1.4 Saprolith	BSMD087	93	9.9	0.5	1.2	Saprolith
BSMD087 10.4 11.6 1.2 1.5 Saprolith BSMD087 11.6 12.0 0.4 2.7 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith BSMD087 12.6 12.9 0.3 1.4 Saprolith BSMD087 12.9 13.3 0.4 1.0 Saprolith BSMD087 13.3 14.0 0.6 2.6 Saprolith BSMD087 14.0 14.7 0.8 1.8 Saprolith BSMD087 14.7 15.3 0.6 1.0 Saprolith BSMD087 15.3 15.9 0.6 2.1 Saprolith BSMD087 16.4 0.5 2.9 Saprolith BSMD087 18.1 18.9 0.8 1.4 Saprolith BSMD087 18.1 18.9 0.5 0.7 Saprolith BSMD	BSMD087	9.9	10.4	0.5	1.2	Saprolith
BSMD087 11.6 12.0 0.4 2.7 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith BSMD087 12.6 12.9 0.3 1.4 Saprolith BSMD087 12.6 12.9 0.3 1.4 Saprolith BSMD087 12.9 13.3 0.4 1.0 Saprolith BSMD087 13.3 14.0 0.6 2.6 Saprolith BSMD087 14.0 14.7 0.8 1.8 Saprolith BSMD087 14.0 14.7 0.8 1.8 Saprolith BSMD087 14.7 15.3 0.6 1.0 Saprolith BSMD087 15.9 16.4 0.5 2.9 Saprolith BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 18.1 18.9 0.8 1.4 Saprolith BSMD087 18.9 19.5 0.5 0.7 Saprolith	BSMD087	10.4	11.6	1.2	1.5	Saprolith
BSMD087 12.0 12.6 0.7 1.2 Saprolith BSMD087 12.0 12.6 0.7 1.2 Saprolith BSMD087 12.6 12.9 0.3 1.4 Saprolith BSMD087 12.9 13.3 0.4 1.0 Saprolith BSMD087 13.3 14.0 0.6 2.6 Saprolith BSMD087 14.0 14.7 0.8 1.8 Saprolith BSMD087 14.0 14.7 0.8 1.8 Saprolith BSMD087 14.7 15.3 0.6 1.0 Saprolith BSMD087 15.3 15.9 0.6 2.1 Saprolith BSMD087 16.4 0.5 2.9 Saprolith BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 18.1 18.9 0.8 1.4 Saprolith BSMD087 19.5 0.5 0.7 Saprolith BSMD087 2	BSMD087	11.6	12.0	0.4	2.7	Saprolith
BSMD087 12.6 12.9 0.3 1.4 Saprolith BSMD087 12.9 13.3 0.4 1.0 Saprolith BSMD087 12.9 13.3 0.4 1.0 Saprolith BSMD087 13.3 14.0 0.6 2.6 Saprolith BSMD087 14.0 14.7 0.8 1.8 Saprolith BSMD087 14.7 15.3 0.6 1.0 Saprolith BSMD087 15.3 15.9 0.6 2.1 Saprolith BSMD087 15.9 16.4 0.5 2.9 Saprolith BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 19.5 0.5 0.7 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD	BSMD087	12.0	12.6	0.7	1.2	Saprolith
DSND007 12.9 13.3 0.4 1.0 Saprolith BSMD087 12.9 13.3 0.4 1.0 Saprolith BSMD087 13.3 14.0 0.6 2.6 Saprolith BSMD087 14.0 14.7 0.8 1.8 Saprolith BSMD087 14.7 15.3 0.6 1.0 Saprolith BSMD087 15.3 15.9 0.6 2.1 Saprolith BSMD087 15.9 16.4 0.5 2.9 Saprolith BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 18.1 18.9 0.8 1.4 Saprolith BSMD087 18.1 18.9 0.5 0.7 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 21.0 21.9 1.0 2.0 Saprolith	BSMD087	12.6	12.0	0.3	1 4	Saprolith
BSMD087 13.3 14.0 0.6 2.6 Saprolith BSMD087 13.3 14.0 0.6 2.6 Saprolith BSMD087 14.0 14.7 0.8 1.8 Saprolith BSMD087 14.7 15.3 0.6 1.0 Saprolith BSMD087 15.3 15.9 0.6 2.1 Saprolith BSMD087 15.3 15.9 0.6 2.1 Saprolith BSMD087 16.4 0.5 2.9 Saprolith BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 18.1 18.9 0.8 1.4 Saprolith BSMD087 18.1 18.9 0.5 0.7 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 21.0 21.9 1.0 Saprolith BSMD087	BSMD087	12.0	13.3	0.5	1.0	Saprolith
BSMD087 14.0 14.7 0.8 1.8 Saprolith BSMD087 14.0 14.7 0.8 1.8 Saprolith BSMD087 14.7 15.3 0.6 1.0 Saprolith BSMD087 15.3 15.9 0.6 2.1 Saprolith BSMD087 15.9 16.4 0.5 2.9 Saprolith BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 18.1 18.9 0.8 1.4 Saprolith BSMD087 18.1 18.9 0.5 0.7 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 21.0 21.0 0.9 1.0 Saprolith BSMD087 21.0 21.9 0.9 2.0 Saprolith	BSMD087	13.3	14.0	0.6	2.6	Saprolith
BSMD007 14.7 15.3 0.6 1.0 Saprolith BSMD087 14.7 15.3 0.6 1.0 Saprolith BSMD087 15.3 15.9 0.6 2.1 Saprolith BSMD087 15.9 16.4 0.5 2.9 Saprolith BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 16.4 17.3 0.8 1.4 Saprolith BSMD087 18.1 18.9 0.8 1.4 Saprolith BSMD087 18.9 19.5 0.5 0.7 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 21.0 21.0 0.9 1.0 Saprolith BSMD087 21.0 21.9 1.0 2.0 Saprolith BSMD087 21.9 22.9 0.9 2.0 Saprolith	BSMD007 BSMD087	13.5	14.0	0.0	1.8	Saprolith
BSMD007 14.7 13.5 0.0 1.0 Suprofith BSMD087 15.3 15.9 0.6 2.1 Saprolith BSMD087 15.9 16.4 0.5 2.9 Saprolith BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 18.1 18.9 0.8 1.4 Saprolith BSMD087 18.1 18.9 0.5 0.7 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 21.0 21.0 0.9 1.0 Saprolith BSMD087 21.0 21.9 1.0 2.0 Saprolith BSMD087 21.9 22.9 0.9 2.0 Saprolith	BSMD087	14.7	15.3	0.6	1.0	Saprolith
BSHD007 13.3 13.3 0.0 2.1 Support BSMD087 15.9 16.4 0.5 2.9 Saprolith BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 17.3 18.1 0.9 1.4 Saprolith BSMD087 18.1 18.9 0.8 1.4 Saprolith BSMD087 18.9 19.5 0.5 0.7 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 20.0 21.0 0.9 1.0 Saprolith BSMD087 21.0 21.9 1.0 2.0 Saprolith BSMD087 21.9 22.9 0.9 2.0 Saprolith BSMD087 22.9 24.0 1.1 1.4 Saprolith <	BSMD087	15.3	15.9	0.6	2.1	Saprolith
BSMD007 13.5 10.4 0.5 2.5 Support BSMD087 16.4 17.3 0.8 3.1 Saprolith BSMD087 17.3 18.1 0.9 1.4 Saprolith BSMD087 18.1 18.9 0.8 1.4 Saprolith BSMD087 18.1 18.9 0.5 0.7 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 20.0 21.0 0.9 1.0 Saprolith BSMD087 21.0 21.9 1.0 2.0 Saprolith BSMD087 21.9 22.9 0.9 2.0 Saprolith BSMD087 22.9 24.0 1.1 1.4 Saprolith BSMD087 24.0 24.8 0.8 1.7 Saprolith <	BSMD087	15.9	16.4	0.0	2.1	Saprolith
BSMD007 10.4 17.3 17.3 0.6 5.1 Support BSMD087 17.3 18.1 0.9 1.4 Saprolith BSMD087 18.1 18.9 0.8 1.4 Saprolith BSMD087 18.9 19.5 0.5 0.7 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 20.0 21.0 0.9 1.0 Saprolith BSMD087 21.0 21.9 1.0 2.0 Saprolith BSMD087 21.9 22.9 0.9 2.0 Saprolith BSMD087 22.9 24.0 1.1 1.4 Saprolith BSMD087 24.0 24.8 0.8 1.7 Saprolith BSMD087 24.8 25.6 0.8 6.6 Graphiti	BSMD007	16.4	17.3	0.5	3.1	Saprolith
BSMD087 18.1 18.9 0.8 1.4 Saprolith BSMD087 18.1 18.9 0.8 1.4 Saprolith BSMD087 18.9 19.5 0.5 0.7 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 20.0 21.0 0.9 1.0 Saprolith BSMD087 21.0 21.9 1.0 2.0 Saprolith BSMD087 21.9 22.9 0.9 2.0 Saprolith BSMD087 22.9 24.0 1.1 1.4 Saprolith BSMD087 24.0 24.8 0.8 1.7 Saprolith BSMD087 24.8 25.6 0.8 6.6 Graphitic Gneiss BSMD087 24.8 25.6 0.8 6.1 Graphitic Gneiss	BSMD087	17.3	17.5	0.0	1.4	Saprolith
BSMD007 18.1 10.5 0.6 1.4 Saprolith BSMD087 18.9 19.5 0.5 0.7 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 20.0 21.0 0.9 1.0 Saprolith BSMD087 21.0 21.9 1.0 2.0 Saprolith BSMD087 21.9 22.9 0.9 2.0 Saprolith BSMD087 22.9 24.0 1.1 1.4 Saprolith BSMD087 24.0 24.8 0.8 1.7 Saprolith BSMD087 24.8 25.6 0.8 6.6 Graphitic Gneiss BSMD087 24.8 25.6 0.8 6.6 Graphitic Gneiss	BSMD087	18.1	18.0	0.5	1.4	Saprolith
BSHD007 19.5 19.5 0.5 0.7 Support BSMD087 19.5 20.0 0.6 1.4 Saprolith BSMD087 20.0 21.0 0.9 1.0 Saprolith BSMD087 21.0 21.9 1.0 2.0 Saprolith BSMD087 21.9 22.9 0.9 2.0 Saprolith BSMD087 22.9 24.0 1.1 1.4 Saprolith BSMD087 22.9 24.0 1.1 1.4 Saprolith BSMD087 24.0 24.8 0.8 1.7 Saprolith BSMD087 24.8 25.6 0.8 6.6 Graphitic Gneiss BSMD087 24.8 25.6 0.8 6.6 Graphitic Gneiss	BSMD087	18.9	19.5	0.0	0.7	Saprolith
BSMD007 13.5 20.0 0.0 1.4 Support BSMD087 20.0 21.0 0.9 1.0 Saprolith BSMD087 21.0 21.9 1.0 2.0 Saprolith BSMD087 21.9 22.9 0.9 2.0 Saprolith BSMD087 22.9 24.0 1.1 1.4 Saprolith BSMD087 22.9 24.0 1.1 1.4 Saprolith BSMD087 24.0 24.8 0.8 1.7 Saprolith BSMD087 24.8 25.6 0.8 6.6 Graphitic Gneiss BSMD087 25.6 26.4 0.8 2.1 Graphitic Gneiss	BSMD087	10.5	20.0	0.5	1 /	Saprolith
BSMD007 21.0 21.0 0.9 1.0 Sappoint BSMD087 21.0 21.9 1.0 2.0 Saprolith BSMD087 21.9 22.9 0.9 2.0 Saprolith BSMD087 22.9 24.0 1.1 1.4 Saprolith BSMD087 24.0 24.8 0.8 1.7 Saprolith BSMD087 24.8 25.6 0.8 6.6 Graphitic Gneiss BSMD087 25.6 26.4 0.8 2.1 Graphitic Gneiss	BSMD007	20.0	20.0	0.0	1.4	Saprolith
BSMD087 21.9 21.9 1.0 2.0 Saprolith BSMD087 21.9 22.9 0.9 2.0 Saprolith BSMD087 22.9 24.0 1.1 1.4 Saprolith BSMD087 24.0 24.8 0.8 1.7 Saprolith BSMD087 24.8 25.6 0.8 6.6 Graphitic Gneiss BSMD087 25.6 26.4 0.8 2.1 Graphitic Gneiss	BSMD007	20.0	21.0	1.0	2.0	Saprolith
BSMD007 21.9 22.9 0.9 2.0 Saprolith BSMD087 22.9 24.0 1.1 1.4 Saprolith BSMD087 24.0 24.8 0.8 1.7 Saprolith BSMD087 24.8 25.6 0.8 6.6 Graphitic Gneiss BSMD087 25.6 26.4 0.8 2.1 Graphitic Gneiss	BSMD007	21.0	21.3	1.0	2.0	Saprolith
DSMD007 22.9 24.0 1.1 1.4 Saprolith BSMD087 24.0 24.8 0.8 1.7 Saprolith BSMD087 24.8 25.6 0.8 6.6 Graphitic Gneiss BSMD087 25.6 26.4 0.8 2.1 Graphitic Gneiss		21.3	22.3	1 1	1 4	Saprolith
BSHD007 24.0 24.0 0.0 1.7 Sapronul BSMD087 24.8 25.6 0.8 6.6 Graphitic Gneiss BSMD087 25.6 26.4 0.8 2.1 Graphitic Gneiss		22.9	24.U 24.Q	1.1	1.4	Saprolith
BSMD087 25.6 26.4 0.9 2.1 Craphitic Greiss		24.0	24.0	0.0	1./	Graphitic Choice
		24.0	23.0 26 4	0.0	0.0 2 1	Graphitic Choice

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD087	26.4	27.4	1.0	2.5	Graphitic Gneiss
BSMD087	27.4	28.2	0.8	2.7	Graphitic Gneiss
BSMD087	28.2	29.3	1.1	3.8	Graphitic Gneiss
BSMD088	5.6	6.3	0.7	0.1	Saprolith
BSMD088	6.3	7.4	1.1	3.3	Saprolith
BSMD088	7.4	8.4	1.0	4.3	Saprolith
BSMD088	8.4	9.4	1.0	4.5	Saprolith
BSMD088	9.4	10.6	1.2	3.1	Saprolith
BSMD088	10.6	11.7	1.1	3.0	Saprolith
BSMD088	11.7	13.2	1.6	0.0	Dolerite
BSMD088	13.2	14.9	1.7	0.0	Dolerite
BSMD088	14.9	16.5	1.6	0.0	Dolerite
BSMD088	16.5	17.6	1.1	2.4	Saprolith
BSMD088	17.6	18.4	0.9	4.9	Saprolith
BSMD088	18.4	19.4	1.0	3.0	Saprolith
BSMD088	19.4	20.3	0.9	1.5	Saprolith
BSMD088	20.3	20.9	0.6	0.5	Saprolith
BSMD088	20.9	22.4	1.5	2.7	Saprolith
BSMD088	22.4	23.4	1.0	1.6	Saprolith
BSMD088	23.4	24.1	0.7	2.1	Saprolith
BSMD088	24 1	24.9	0.8	3.0	Saprolith
BSMD088	24.9	25.3	0.4	1 5	Saprolith
BSMD088	25.3	25.9	0.1	0.7	Saprolith
BSMD088	25.5	25.5	0.0	1.0	Saprolith
BSMD088	25.5	20.7	0.0	1.5	Saprolith
BSMD088	20.7	27.4	0.8	1.7	Saprolith
BSMD088	27.4	20.4	0.9	2.7	Saprolith
BSMD088	28.4	20.9	0.0	3.0	Saprolith
BSMD000	20.5	29.0	1.1	2.0	Graphitic Groups
	29.0	21.7	1.1	6.5	Graphitic Gneiss
	21.7	22.4	0.9	2.0	Graphitic Greiss
	51.7	JZ.4	0.7	3.2	Graphilic Grieiss
BSMD091	0.3	7.0	1.4	1.5	Saprolith
BSMD091	7.0	8.3	0.7	3.5	Saprolith
BSMD091	8.3	8.8	0.6	3.9	Saprolith
BSMD091	8.8	9.8	1.0	9.1	Saprolith
BSMD091	9.8	10.2	0.4	4.6	Saprolith
BSMD091	10.2	10.8	0.6	5./	Saprolith
BSMD091	10.8	11./	0.9	4.0	Saprolith
BSMD091	11.7	12.7	1.0	3.1	Saprolith
BSMD091	12./	13.5	0.8	8./	Saprolith
BSMD091	13.5	13.8	0.3	9.9	Saprolith
BSMD091	13.8	14.8	1.0	3.6	Saprolith
BSMD091	14.8	15.9	1.1	4.2	Saprolith
BSMD091	15.9	16.6	0.7	2.7	Saprolith
BSMD091	16.6	17.2	0.6	1.9	Saprolith
BSMD091	17.2	17.9	0.7	3.5	Saprolith
BSMD091	17.9	18.6	0.7	5.2	Saprolith
BSMD091	18.6	19.3	0.7	4.4	Saprolith
BSMD091	19.3	20.0	0.7	5.2	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD091	20.0	20.6	0.7	4.5	Saprolith
BSMD091	20.6	21.4	0.8	4.7	Saprolith
BSMD091	21.4	22.4	1.0	6.2	Saprolith
BSMD091	22.4	23.6	1.2	4.3	Saprolith
BSMD091	23.6	24.6	1.0	5.3	Saprolith
BSMD091	24.6	25.6	1.0	5.4	Saprolith
BSMD091	25.6	26.5	1.0	6.9	Saprolith
BSMD091	26.5	27.6	1.1	5.2	Saprolith
BSMD091	27.6	28.3	0.7	3.3	Saprolith
BSMD091	28.3	29.1	0.8	4.1	Saprolith
BSMD091	29.1	30.0	0.9	5.6	Saprolith
BSMD091	30.0	30.8	0.8	6.8	Saprolith
BSMD091	30.8	31.9	1.1	5.9	Saprolith
BSMD091	31.9	32.6	0.8	4.9	Saprolith
BSMD091	32.6	33.2	0.6	5.1	Saprolith
BSMD091	33.2	33.5	0.4	3.5	Saprolith
BSMD091	33.5	34.5	1.0	2.4	Saprolith
BSMD091	34.5	35.2	0.7	0.1	Saprolith
BSMD091	35.2	35.7	0.5	1.5	Saprolith
BSMD091	35.7	37.0	1.3	0.5	Saprolith
BSMD091	37.0	38.0	1.0	1.0	Saprolith
BSMD091	38.0	39.1	1.1	2.6	Saprolith
BSMD091	39.1	39.8	0.8	2.5	Saprolith
BSMD091	39.8	40.7	0.9	1.0	Graphitic Gneiss
BSMD091	40.7	41.5	0.9	1.6	Graphitic Gneiss
BSMD091	41.5	42.5	0.9	1.8	Graphitic Gneiss
BSMD091	42.5	43.4	0.9	1.7	Graphitic Gneiss
BSMD092	3.7	4.3	0.6	0.1	Saprolith
BSMD092	4.3	5.1	0.8	5.0	Saprolith
BSMD092	5.1	5.9	0.8	4.9	Saprolith
BSMD092	5.9	6.9	1.0	8.8	Saprolith
BSMD092	6.9	7.6	0.7	6.1	Saprolith
BSMD092	7.6	8.4	0.8	6.3	Saprolith
BSMD092	8.4	9.0	0.6	2.9	Saprolith
BSMD092	9.0	9.7	0.7	0.3	Saprolith
BSMD092	9.7	10.1	0.4	2.5	Saprolith
BSMD092	10.1	10.7	0.7	0.1	Saprolith
BSMD092	10.7	11.2	0.4	0.8	Saprolith
BSMD092	11.2	11.9	0.7	1.4	Saprolith
BSMD092	11.9	12.9	1.0	1.0	Saprolith
BSMD092	12.9	14.0	1.1	0.7	Saprolith
BSMD092	14.0	14.9	0.9	1.0	Saprolith
BSMD092	14.9	15.6	0.7	0.8	Saprolith
BSMD092	15.6	16.4	0.8	1.1	Saprolith
BSMD092	16.4	17.0	0.5	0.8	Saprolith
BSMD092	17.0	18.3	1.4	1.3	Saprolith
BSMD092	18.3	19.4	1.1	1.5	Saprolith
BSMD092	19.4	20.1	0.6	3.3	Saprolith
BSMD092	20.1	20.8	0.7	1.3	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD092	20.8	21.3	0.5	1.1	Saprolith
BSMD092	21.3	22.1	0.8	1.6	Saprolith
BSMD092	22.1	22.8	0.8	2.2	Saprolith
BSMD092	22.8	23.9	1.0	1.2	Saprolith
BSMD092	23.9	24.7	0.8	1.0	Saprolith
BSMD092	24.7	25.7	1.0	1.3	Saprolith
BSMD092	25.7	26.7	0.9	3.0	Saprolith
BSMD092	26.7	27.6	1.0	2.2	Saprolith
BSMD092	27.6	28.6	1.0	2.1	Saprolith
BSMD092	28.6	29.7	1.1	2.8	Saprolith
BSMD092	29.7	31.6	1.9	0.1	Dolerite
BSMD092	31.6	33.4	1.8	0.0	Dolerite
BSMD092	33.4	35.3	1.9	0.1	Dolerite
BSMD092	35.3	36.4	1.1	1.6	Saprolith
BSMD092	36.4	37.4	1.0	1.6	Saprolith
BSMD092	37.4	38.4	1.0	2.6	Saprolith
BSMD092	38.4	39.4	1.0	0.8	Saprolith
BSMD092	39.4	40.5	1.1	2.0	Saprolith
BSMD092	40.5	41.3	0.8	4.9	Saprolith
BSMD092	41.3	42.0	0.8	3.4	Saprolith
BSMD092	42.0	42.9	0.8	1.4	Saprolith
BSMD092	42.9	43.9	1.0	0.9	Saprolith
BSMD092	43.9	44.8	0.9	2.3	Saprolith
BSMD092	44.8	45.4	0.6	0.9	Saprolith
BSMD093	0.0	0.7	0.7	5.0	Saprolith
BSMD093	0.7	1.6	0.8	2.8	Saprolith
BSMD093	1.6	2.2	0.6	1.5	Saprolith
BSMD093	2.2	3.0	0.8	2.0	Saprolith
BSMD093	3.0	3.5	0.5	1.7	Saprolith
BSMD093	3.5	4.0	0.5	4.0	Saprolith
BSMD093	4.0	5.2	1.2	1.9	Saprolith
BSMD093	5.2	5.8	0.6	1.5	Saprolith
BSMD093	5.8	6.7	1.0	5.6	Saprolith
BSMD093	6.7	7.5	0.8	2.4	Saprolith
BSMD093	7.5	8.2	0.7	2.6	Saprolith
BSMD093	8.2	9.0	0.7	2.5	Saprolith
BSMD093	9.0	9.5	0.6	2.9	Saprolith
BSMD093	9.5	9.9	0.4	2.3	Saprolith
BSMD093	9.9	11.0	1.0	3.3	Saprolith
BSMD093	11.0	12.0	1.0	2.8	Saprolith
BSMD093	12.0	13.0	1.0	3.0	Saprolith
BSMD093	13.0	14.0	1.0	2.8	Saprolith
BSMD093	14.0	15.0	0.9	2.3	Graphitic Gneiss
BSMD093	15.0	15.9	0.9	1.9	Graphitic Gneiss
BSMD093	15.9	16.8	0.9	2.7	Graphitic Gneiss
BSMD093	16.8	18.5	1.7	0.0	Dolerite
BSMD093	18.5	20.3	1.8	0.0	Dolerite
BSMD093	20.3	22.0	1.7	0.0	Dolerite
BSMD093	22.0	23.8	1.8	0.0	Dolerite

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD093	23.8	25.5	1.7	0.0	Dolerite
BSMD093	25.5	27.3	1.8	0.0	Dolerite
BSMD093	27.3	29.1	1.9	0.0	Dolerite
BSMD093	29.1	29.9	0.8	1.4	Graphitic Gneiss
BSMD093	29.9	30.8	0.8	1.7	Graphitic Gneiss
BSMD093	30.8	31.5	0.8	1.7	Graphitic Gneiss
BSMD093	31.5	32.2	0.7	0.8	Graphitic Gneiss
BSMD093	32.2	32.8	0.6	3.1	Graphitic Gneiss
BSMD093	32.8	33.5	0.7	2.7	Graphitic Gneiss
BSMD094	5.0	6.0	1.0	0.6	Saprolith
BSMD094	6.0	6.8	0.7	1.1	Saprolith
BSMD094	6.8	7.8	1.1	2.1	Saprolith
BSMD094	7.8	8.3	0.4	0.6	Saprolith
BSMD094	8.3	8.8	0.6	0.6	Saprolith
BSMD094	8.8	11.0	2.2	2.0	Saprolith
BSMD094	11.0	11.9	0.9	8.3	Saprolith
BSMD094	11.9	12.9	1.0	1.6	Saprolith
BSMD094	12.9	13.7	0.8	0.6	Saprolith
BSMD094	13.7	14.7	1.0	0.8	Saprolith
BSMD094	14.7	15.5	0.8	0.7	Saprolith
BSMD094	15.5	16.5	1.0	2.7	Saprolith
BSMD094	16.5	17.1	0.5	0.7	Saprolith
BSMD094	17.1	18.0	0.9	1.6	Saprolith
BSMD094	18.0	19.2	1.2	1.4	Saprolith
BSMD094	19.2	19.5	0.3	5.1	Saprolith
BSMD094	19.5	20.3	0.8	7.7	Saprolith
BSMD094	20.3	21.2	0.9	7.0	Saprolith
BSMD094	21.2	22.0	0.8	4.7	Saprolith
BSMD094	22.0	23.2	1.2	2.9	Saprolith
BSMD094	23.2	24.5	1.4	2.6	Saprolith
BSMD094	24.5	25.3	0.8	4.3	Saprolith
BSMD094	25.3	26.0	0.8	2.6	Saprolith
BSMD094	26.0	26.9	0.9	3.3	Saprolith
BSMD094	26.9	28.1	1.2	2.5	Graphitic Gneiss
BSMD094	28.1	29.1	1.1	1.2	Graphitic Gneiss
BSMD094	29.1	30.8	1.7	0.0	Dolerite
BSMD094	30.8	32.5	1.7	0.0	Dolerite
BSMD094	32.5	34.3	1.8	0.0	Dolerite
BSMD094	34.3	35.9	1.6	0.0	Dolerite
BSMD094	35.9	36.5	0.6	0.4	Graphitic Gneiss
BSMD094	36.5	37.5	1.0	0.0	Gneiss
BSMD095A	10.8	11.0	0.3	1.1	Saprolith
BSMD095A	11.0	11.7	0.7	2.5	Saprolith
BSMD095A	11.7	12.5	0.7	3.6	Saprolith
BSMD095A	12.5	13.2	0.7	4.0	Saprolith
BSMD095A	13.2	13.5	0.4	4.4	Saprolith
BSMD095A	13.5	14.5	0.9	3.8	Saprolith
BSMD095A	14.5	15.1	0.6	3.6	Saprolith
BSMD095A	15.1	16.3	1.2	4.1	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD095A	16.3	17.1	0.8	2.3	Saprolith
BSMD095A	17.1	18.0	0.8	1.7	Saprolith
BSMD095A	18.0	18.5	0.5	4.4	Saprolith
BSMD095A	18.5	19.0	0.5	2.1	Saprolith
BSMD095A	19.0	19.6	0.5	0.5	Saprolith
BSMD095A	19.6	20.4	0.8	6.8	Saprolith
BSMD095A	20.4	20.9	0.5	10.9	Saprolith
BSMD095A	20.9	21.6	0.7	11.3	Saprolith
BSMD095A	21.6	22.3	0.7	10.5	Saprolith
BSMD095A	22.3	23.4	1.1	7.6	Saprolith
BSMD095A	23.4	24.4	1.0	13.5	Saprolith
BSMD095A	24.4	25.0	0.6	8.4	Saprolith
BSMD095A	25.0	25.7	0.7	5.6	Saprolith
BSMD095A	25.7	26.2	0.5	5.8	Saprolith
BSMD095A	26.2	26.5	0.3	0.0	Saprolith
BSMD095A	26.5	27.4	0.9	0.3	Saprolith
BSMD095A	27.4	28.3	0.8	0.0	Dolerite
BSMD095A	28.3	29.1	0.9	0.0	Dolerite
BSMD095A	29.1	29.9	0.8	0.0	Dolerite
BSMD095A	29.9	30.8	0.8	0.0	Dolerite
BSMD095A	30.8	31.6	0.9	0.1	Dolerite
BSMD095A	31.6	32.2	0.6	6.4	Saprolith
BSMD095A	32.2	33.0	0.9	5.8	Saprolith
BSMD095A	33.0	33.8	0.8	4.9	Saprolith
BSMD095A	33.8	34.7	0.8	4.0	Saprolith
BSMD095A	34.7	35.5	0.8	3.3	Saprolith
BSMD095A	35.5	37.1	1.7	4.6	Saprolith
BSMD095A	37.1	38.1	0.9	6.1	Saprolith
BSMD095A	38.1	39.0	0.9	6.4	Saprolith
BSMD095A	39.0	40.1	1.1	6.6	Saprolith
BSMD095A	40.1	40.5	0.5	6.0	Saprolith
BSMD095A	40.5	41.3	0.8	6.7	Saprolith
BSMD095A	41.3	42.0	0.7	4.8	Saprolith
BSMD095A	42.0	42.8	0.7	4.2	Graphitic Gneiss
BSMD095A	42.8	43.4	0.6	3.4	Graphitic Gneiss
BSMD095A	43.4	44.0	0.7	2.9	Graphitic Gneiss
BSMD096	5.8	6.4	0.6	0.2	Saprolith
BSMD096	6.4	7.1	0.7	1.5	Saprolith
BSMD096	7.1	7.6	0.5	3.6	Saprolith
BSMD096	7.6	8.1	0.5	3.8	Saprolith
BSMD096	8.1	8.8	0.7	3.4	Saprolith
BSMD096	8.8	9.6	0.8	1.5	Saprolith
BSMD096	9.6	10.3	0.7	2.1	Saprolith
BSMD096	10.3	11.1	0.7	0.1	Saprolith
BSMD096	11.1	12.0	0.9	1.0	Saprolith
BSMD096	12.0	12.7	0.7	0.8	Saprolith
BSMD096	12.7	13.1	0.4	0.9	Saprolith
BSMD096	13.1	14.0	0.9	1.5	Saprolith
BSMD096	14.0	14.6	0.6	0.2	Dolerite

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD096	14.6	15.2	0.6	1.4	Saprolith
BSMD096	15.2	15.8	0.6	1.2	Dolerite
BSMD096	15.8	17.3	1.5	0.0	Dolerite
BSMD096	17.3	19.0	1.6	0.0	Dolerite
BSMD096	19.0	19.6	0.6	3.6	Saprolith
BSMD096	19.6	20.5	0.9	3.5	Saprolith
BSMD096	20.5	21.4	0.9	1.9	Saprolith
BSMD096	21.4	22.3	0.9	2.0	Saprolith
BSMD096	22.3	23.3	1.0	4.4	Graphitic Gneiss
BSMD096	23.3	24.3	0.9	1.6	Graphitic Gneiss
BSMD096	24.3	26.2	2.0	0.0	Dolerite
BSMD096	26.2	28.0	1.8	0.0	Dolerite
BSMD096	28.0	29.7	1.8	0.5	Dolerite
BSMD096	29.7	30.2	0.5	2.6	Graphitic Gneiss
BSMD096	30.2	30.8	0.5	3.2	Graphitic Gneiss
BSMD096	30.8	31.3	0.6	3.5	Graphitic Gneiss
BSMD097	0.0	0.8	0.8	9.6	Saprolith
BSMD097	0.8	1.3	0.5	2.8	Saprolith
BSMD097	1.3	2.0	0.8	16.1	Saprolith
BSMD097	2.0	3.5	1.5	1.4	Saprolith
BSMD097	3.5	3.7	0.2	8.0	Saprolith
BSMD097	3.7	4.3	0.6	7.1	Saprolith
BSMD097	4.3	4.7	0.4	3.8	Saprolith
BSMD097	4.7	5.4	0.7	8.2	Saprolith
BSMD097	5.4	6.3	0.8	7.1	Saprolith
BSMD097	6.3	7.2	1.0	5.4	Saprolith
BSMD097	7.2	8.3	1.0	7.4	Saprolith
BSMD097	8.3	9.4	1.1	3.2	Saprolith
BSMD097	9.4	10.4	1.0	3.8	Saprolith
BSMD097	10.4	11.0	0.7	4.2	Saprolith
BSMD097	11.0	12.0	1.0	2.3	Saprolith
BSMD097	12.0	13.6	1.6	5.0	Saprolith
BSMD097	13.6	14.2	0.7	5.5	Saprolith
BSMD097	14.2	15.0	0.8	3.6	Saprolith
BSMD097	15.0	15.9	0.9	2.8	Saprolith
BSMD097	15.9	16.6	0.7	3.2	Saprolith
BSMD097	16.6	17.5	0.9	2.1	Saprolith
BSMD097	17.5	18.5	1.0	3.6	Graphitic Gneiss
BSMD097	18.5	19.4	0.9	2.5	Graphitic Gneiss
BSMD097	19.4	20.3	0.9	2.3	Graphitic Gneiss
BSMD097	20.3	22.5	2.2	0.0	Dolerite
BSMD097	22.5	24.3	1.8	0.0	Dolerite
BSMD097	24.3	26.6	2.3	0.0	Dolerite
BSMD097	26.6	28.2	1.6	0.0	Dolerite
BSMD097	28.2	30.1	1.9	0.0	Dolerite
BSMD097	30.1	32.0	1.9	0.0	Dolerite
BSMD097	32.0	32.6	0.7	2.8	Graphitic Gneiss
BSMD097	32.6	33.5	0.9	2.1	Graphitic Gneiss

JORC CODE, 2012 EDITION - TABLE 1

Discussion and results within this appendix relate to Mahefedok Deposit.

Section 1 Sampling Techniques and Data

Criteria	Commentary
Sampling techniques	Diamond drilling was used to obtain NTW size core, with the core split (either manually hand split or sawn using a circular saw) 50:50 to collect samples in 1-metre intervals. Samples were taken along the depth intervals and lithological sub-division mark-ups to gather representative samples.
	mineralization prior to sampling and assaying.
	Whole core samples were removed for bulk density testing before splitting and sampling. Upon completion of bulk density measurements, the whole core samples were placed back.
	Samples were collected within lithological sub-divisions only and not across geological boundaries
	A total of 34 diamond holes were completed and 1,092 metres were drilled in the northern zone of the Mahafedok deposit.
	Samples were collected and included composite samples of the graphite bearing host rocks. Visual estimation of graphite percentages and flake sizes have been used to define mineralisation prior to return of assays. The samples were oven dried, crushed to -2mm, split twice through a 50/50 riffle splitter to obtain a representative sub-sample, weighing between 100-150g and then pulverized that 85% pass -75µm. The pulp samples were sent to the Bass Metals in-house laboratory for preliminary Fixed Carbon (FC) analysis and to a SANAS accredited laboratory (SGS) in South Africa for Graphitic Carbon (GC), Total Carbon (TC) and Sulphur (S) analysis.
Drilling techniques	Conventional wireline diamond drilling was used to obtain all drill core and drilling was undertaken with an EP200 man portable drilling rig. The nominal core diameter was 56.2 mm (NTW). Coring was completed with appropriate diamond impregnated tungsten carbide drilling bits.
	Drill holes were inclined at -60 °, direction East and three drill holes were drilled vertical -90 °. The core was not orientated as the material recovered was predominantly soft saprolitic material not conducive to orientation.
Drill sample recovery	At the completion of each drill run the steel splits containing the core were pumped out of the retrieved core tube. Core was then carefully transferred from the core barrel into plastic sleeves, which were transferred to core trays for recovery measurements and calculations recorded by both the driller and the Company geologist.
	Drilling, orientated perpendicular to the orebody, was conducted with specific drilling mud additives to aid drill hole wall integrity, along with slow drilling rates to maximize sample recovery and ensure representative nature of the samples.
	An overall core recovery of >90% was achieved for all sampled core. One drill hole BSMD095 was re-drilled due to poor core recovery and/or core loss within mineralisation zones. There is no known relationship that exists between sample recovery and grade at this time.
	Inconsequential sample bias would have occurred due to preferential loss/gain of fine/coarse material.

Logging	Drill core were geologically logged, and the recording of relevant data was captured on Bass Metals logging templates. All data was codified to a set company codes system as per sampling and logging procedures, which are in place. This offers sufficient detail for the purposes of geological interpretation, further studies and resource estimation where continuity of the orebody needs to be proved and understood. All logging included lithological features, estimates of graphite percentages and flake sizes, which is quantitative and is recorded on the logging sheets. All drill core was photographed prior to geological logging and after sampling and images were digitally catalogued. Photographs have been taken as a qualitative check on logging when the need arises. All drill core intersections (100%) were logged by experienced, competent geoscientists are considered to be reliable and reproducible semi-quantitative estimates of the abundance of minerals present in samples when referenced to past drilling assay data and current mining operations undertaken by the
	Company in the same style of mineralisation.
	The NTW core was manually hand split and where appropriate sawn to produce half core (50:50) samples. All equipment was cleaned according to best practise procedures prior to cutting and sampling. Appropriate and documented techniques were used to collect samples in 1-metre intervals. Samples were taken along the depth intervals and lithological sub-division mark-ups to gather representative samples.
Sub-sampling techniques and sample preparation	The samples were oven dried, crushed to -2mm, split twice through a 50/50 riffle splitter to obtain a representative sub-sample, weighing between 100-150g and then pulverized that 85% pass -75µm. The pulp samples were sent to the Bass Metals inhouse laboratory for preliminary Fixed Carbon (FC) analysis and to a SANAS accredited laboratory (SGS) in South Africa for Graphitic Carbon (GC), Total Carbon (TC) and Sulphur (S) analysis.
	Certified graphite standards (GC-09 and GC-11) and silica blanks (AMIS0484 and AMIS0439) and duplicates (a second sample of the same interval) were inserted with the dispatch of the samples to the SANAS accredited laboratory (SGS) in South Africa. The insertion rate of standards/blanks were 1 in 20, and duplicates were 2 in 100. The SANAS Laboratory will insert check samples (blanks, standards and duplicates) to maintain QAQC standards.
	Samples were analysed at the Bass Metals in-house laboratory for a preliminary evaluation of the carbon grade. The Muffle Furnace method was used to determine Loss on Ignition (LoI), Volatile Matter (VM) and Fixed Carbon (FC). LoI Test: a crucible is placed on an electronic balance, primarily zeroed and the weight recorded. 1 gram +- 0.01 of the sample are added, the weight of crucible + sample are recorded. The crucible is placed in the Muffle Furnace at 950°C +-25°C for 8 hours continuously. After the crucible is removed and cooled, the ash + crucible is then weighed and recorded. The LoI % is calculated as follows: LOI % = (1 - $\frac{\text{Weight of ash}}{\text{Weigh of original sample}}$) × 100
Quality of assay data and laboratory tests	VM Test: a crucible is placed on an electronic balance, primarily zeroed and the weight recorded. 2 grams +- 0.01 of the sample are added, the weight of crucible + sample are recorded. The crucible is placed in the Muffle Furnace at 950°C +- 25°C for 7 minutes. After the crucible is removed and cooled, the ash + crucible is then weighed and recorded. The VM % is calculated as follows: V M % = $(1 - \frac{Weight of ash}{Weigh of original sample}) \times 100$
	The FC % of the sample is calculated as follows: FC % = (LOI % - VM %)

	Analysis by the SANAS Accredited Laboratory (SGS) in South Africa may include sub- sample preparation included sorting and pulverizing such that 80% of the sample is -75 micron or less in size. A split of the sub-sample will be analysed using a LECO Analyser to determine Total Carbon (TC), Sulphur (S) and Graphitic Carbon (GC) contents (these are considered both partial and total digestion analyses). For TC and S, a stream of oxygen passes through a prepared sample (2g), it is heated in a furnace to approximately 1350°C and the sulphur dioxide and carbon dioxide released from the sample are measured with infrared detection. For GC, a 0.2g sample is leached with dilute hydrochloric acid to remove inorganic carbon. After filtering, washing and drying, the remaining sample residue is roasted at 425°C to remove organic carbon. The roasted residue is analysed for Carbon - High temperature LECO furnace with infra-red detection. Internal Laboratory check samples (blanks, standards and duplicates) are also analysed as per normal laboratory standards, blanks and duplicate results were reviewed. Performance of the accredited laboratory (SGS) across all assay batches were within acceptable tolerance levels.
Verification of sampling and assaying	All work was completed by Bass Metals personnel. Significant mineralization intersections were verified by an external consultant and by internal peer review. No twinned holes were drilled. All data was collected initially on paper log sheets by Bass Metals personnel. This data was hand entered into spreadsheets and validated by an external consultant. All paper log sheets were scanned, and electronic spreadsheets stored together with the photographs of the geological features logged. The master collar, geotechnical, density, lithology and assay database with all photographs are backed-up and stored on an external hard drive. No adjustments were made to the data.
Location of data points	DGPS's were used to locate collar locations, and final location coordinates were completed with estimated positional errors between 15 and 30 centimetres. The WGS84 UTM Zone 39S projection system is used at the Mahafedok Project.
Data spacing and distribution	Collars were spaced along a 50m north orientated grid, with drill hole inclination and strike aligned perpendicular to the orebody orientation. The data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Sample compositing has not been applied.
Orientation of data in relation to geological structure	Drilling was approx. orientated perpendicular to the estimated dip and strike of the mineralization to limit bias. Drill holes were inclined at -60 °, direction East and three drill holes were drilled vertical -90 °. Subsequent samples are deemed to be unbiased in terms of known structures and the deposit type.
Sample security	Samples were stored in a secure storage area at the Bass Metals sample storage facility. Samples bags were sealed as soon as sampling was completed and stored securely until dispatch to the preparation laboratory in Antananarivo and after to the laboratory (SGS) in South Africa via courier.
Audits or reviews	The sampling techniques and data were reviewed by an external consultant and internally peer reviewed. It is considered by the Company that industry best practice methods have been implemented by the Company at all stages of exploration.

Section 2 Reporting of Exploration Results

Criteria listed in the preceding section also applies to this section.

Criteria	Commentary
Mineral tenement and land tenure status	Exploitation permit no PE 26670 is located in the Toamasina Province of Madagascar and held by the Malagasy company, Graphmada SARL which is a wholly owned subsidiary of the ASX listed company, Bass Metals Ltd. Permit no PE 26670 was granted on 21/01/2008and is valid for 40 years.
	The permit is in good standing, and all statuary approvals are in place to conduct exploration and exploitation activities throughout this permit area, including mining.
Exploration done by other parties	Mahefedok – Prior to the Company's ownership, Graphmada SARL excavated 4 pits in the northern part of the Mahefedok Deposit in 2013, which revealed significant regolith-hosted graphite mineralization at depth.
	These pits were excavated over a north-south distance (and along strike of the Mahefedok Orebody) of approx. 70 meters and Graphmada's in-house laboratory analysis of the pit samples returned up to 3 m @ 7.04 % Total Carbon (TC).
	In 2015, Stratmin Global Resources PLC, through its subsidiary Graphmada SARL, collected 34 outcrop samples over PE 26670. Also, in 2015 ground magnetic, self-potential, induced polarization and electric resistivity surveys were completed and 75 pits (up to depths of 5.9m) and 6 trenches (up to depths of 6.0m) were excavated over the Mahefedok Deposit.
	For the ground magnetic survey, a Geotron G5 magnetometer was used and readings were recorded every 10 m in nanotesla (nT). A base station was set-up using a second Geotron G5 magnetometer and readings were recorded every 30 seconds in nT. Diurnal drift corrections were completed using Geotron Dump G5 software. The corrected ground magnetic data were processed (including, gridding, filtering, and contouring) using Encom DiscoverTM (v12) software. The processing methodology involved gridding the diurnally corrected data using the Inverse Distance Weighting (IDW2) interpolation algorithm (to the power of 2), a search distance of 200 m and a spatial resolution / cell size of 5 m. Filtering involved the application of a 3x3 cell averaging filter and contouring was at an interval of 25 m.
	For the ground self-potential (SP) survey a pair of non-polarising electrodes (e.g. IRIS copper-sulphate pots), a reel of insulated wire and a high impedance voltmeter were used. Procedures for SP surveys involved a series of parallel lines orientated perpendicular to the strike direction of the anticipated mineralization and spaced to suit the required resolution. For the Mahefedok surveys, line and station spacing was 10 m and the surveys were conducted using the fixed-base procedure. Data at each station included the distance from line base (m), normal voltage (mV), resistance (Kilohms), and base revolving pot drift voltage (mV). To obtain the absolute voltage of a station relative to the survey base there were two corrections: the drift correction, and the base tie-in correction. The absolute voltage for any other station on a line was determined by adding the normal voltage at that station to the appropriate drift and tie-in corrections. The corrected SP data were processed using Geosoft Oasis Montaj software and involved using the Kriging technique with a grid size of 20 m.
	For the ground induced polarization (IP) and electric resistivity (ERT) surveys an IRIS SYSCAL R2 Resistivity and IP system, consisting of multinodes, a battery, 32 stainless- steel electrodes, and electrode reel wires were used. Procedures for IP/ERT surveys involve a series of lines over identified SP anomalies. For the Mahefedok surveys, lines were approx. 150 m in length and station spacing of 5 m. The surveys were conducted using a time domain Wenner / Schlumberger sequence array with a depth penetration of approx. 25 m. All measurements (chargeability and resistivity) were recorded automatically after uploading the sequence array using the IRIS ELECTRE software, and all data was downloaded after the survey using the IRIS PROSYS software. The resistivity of the sub-surface was calculated (in ohm), and the IP response was also recorded, and the chargeability calculated (in milliseconds). Processing was done using the GEOTOMO

	RES2DINV software, and the program used the smoothness-constrained Gauss-Newton least-squares inversion technique to produce an inverted depth-section of the subsurface from the apparent electrical chargeability and resistivity data. The results of the programs delineated at least three anomalies over a strike distance of approx. 1.6 km for follow up drilling.
	In 2016, a trial pit at Mahefedok was mined to provide a bulk sample to the existing Graphmada processing plant. Approx. 8,751 tonnes of mined material were processed and produced approx. 135 tonnes of graphite, with graphite purities varying between 78.14 and 89.89 % (corresponding to an average of 83.52 %). Flake size distribution testing completed on the graphite produced yielded the following flake sizes: 21.95 % jumbo (+50 mesh / >300 microns); 28.18 % large (+80 mesh / 180-300 microns); 17.84 % medium (+100 mesh / 150-180 microns) and 31.19 % fine (-100 mesh / <150 microns).
	The Company is currently mining the Mahefedok North Pit having estimated a Maiden Mineral Resource of 3.5 Mt at 4.2% Total Graphitic Carbon (TGC) in June 2017.
Geology	Crystalline "hard rock" flake graphite deposits occur in graphitic gneisses within Neoproterozoic metasedimentary type rocks and include accessory minerals of biotite (± sillimanite / kyanite, ± garnet).
	Due to the tropical climate and because graphite is comparatively inert, weathering of the "hard rock" graphitic gneiss units further concentrate the graphite to form residual regolith-hosted accumulations within the weathered profile.
	Regolith refers to weathered material that occurs above unweathered bedrock. Two primary subdivisions are the pedolith (PED) and the saprolith (SAP). Secondary subdivisions of the pedolith, from the surface downwards, include soil (SL), ferruginous zone (FZ), and the mottled zone (MZ). Secondary subdivisions of the saprolith, include saprolite (SP) and saprock (SR).
	The Mahafedok deposit contains 3 broad north-south striking graphite mineralisation zones; the northern zone has a strike length of approximately 500 m, the centre zone approximately 850 m, and the southern zone approximately 300 m for a cumulative strike of approximately 1,650 m. The deposit dips to the west at between 30° and 45°. It consists up to seven lenses in the northern and central zones of the deposit, and three in the southern zone. Individual lenses are nominally between 2 m and 14 m in true thickness.
	The Mahela Project contains at least 3 lenticular bodies of flake graphite within the weathered profile described above. The 3 parallel striking graphitic units strike approx. northwest - southeast and is open ended in to the north and south.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of visually logged data is supplied in the above announcement.
Data aggregation methods	Samples has been reported as in-situ Total Graphitic Carbon (TGC) grades as analysed by the SANAS accredited (SGS) laboratory in South Africa.
	No Metal Equivalents have been stated.
Relationship between mineralisation widths and intercept lengths	The mineralization is hosted within a weathered regolith profile and the main mineralized lenses / horizons dip towards the west at between 30° and 45°. Only the down hole lengths are reported - true width has not been estimated and tables
	have been annotated in the above announcement.
Diagrams	This information has been accurately represented in the announcement and contains all relevant information required for the reader to understand the nature of the graphitic mineralization.
Balanced reporting	The Company believes visual inspections of a fully complete drilling program by experienced, competent geoscientists are considered to be reliable and reproducible semi- quantitative estimates of the abundance of minerals present in samples when referenced to past drilling assay data and current mining operations undertaken by the Company in the same style of mineralisation.
	As such, the circumstances warrant that the Company complies with the ASX Listing Rules mandate that appropriate disclosure of these drilling results is made and confirms that the results were not derived solely from a visual inspection of core samples alone.

	The Company has stated the samples are yet to be assayed and analysed and has made no comments about the grade or quality of the mineralisation in the absence of any assay data and has outlined the timing of full assay results and the preliminary nature of the inspection within the announcement.
Other substantive exploration data	Previous exploration by the Company has demonstrated widespread mineralization at Mahela and Mahefedok, with mining now underway at Mahefedok. Please reference ASX releases: 11/06/19 'Diamond drilling commences at Mahela prospect.' 03/06/19 'Significant Exploration Program to commence at Graphmada.' 09/04/19 'Bass progresses exploration at Graphmada Graphite Mine.' 14/12/19 'Bass completes Capital Raising for Expansion and Drilling.'
Further work	Further exploration will be planned for both deposits, in addition to further work in estimating flake size distribution and metallurgical testing.