

Mathinna Gold Project – Tasmania

Grant of Mathinna Exploration Licence Covering High-Grade Gold Mine Paves Way for Maiden Drill Program

Reported historical hard-rock production of 289,000oz with 254,000oz produced from the Golden Gate Mine at an average grade of 26g/t gold¹

Highlights

- Exploration Licence covering the high-grade New Golden Gate Gold Mine, part of the Mathinna Gold Project in Tasmania, has been granted.
- Review of previous exploration activities highlight shallow, wide and high-grade mineralisation which remains open at depth and along strike. Intersections include:
 - <u>11m @ 8.6 g/t gold</u> from 59m down-hole including:
 - o 6m @ 11.5g/t gold from 64m;
 - <u>10m @ 8.8 g/t gold</u> from 45m down-hole including:
 3m @ 23.0 g/t gold from 46m;
 - <u>16m @ 4.8 g/t gold</u> from 32m downhole including:
 - 8m @ 8.5 g/t gold from 40m;
 - <u>7m @ 10.6 g/t gold</u> from 110m downhole;
 - 17m @ 3.7 g/t gold from 14m downhole; and
 - Numerous additional 3-4m wide intersections of greater than 10 g/t gold
- > Environmental baseline studies have been completed.
- > Drill planning and permitting well advanced with the Company's maiden drill programmes expected to commence next month.

Stavely Minerals Limited (ASX Code: **SVY** – "Stavely Minerals") is pleased to advise that it has been granted an Exploration Licence (EL) covering a prolific high-grade goldfield in Tasmania, representing an exciting addition to its East Coast exploration portfolio (Figure 1).

The Company has been informed by the Tasmanian Department of State Growth (Mineral Resources Tasmania) that its wholly-owned subsidiary, Stavely Tasmania Pty Ltd, has been granted the exploration licence 19/2018 covering the New Golden Gate and Tasmanian Consols Gold Mines in north-eastern Tasmania.

The tenement has been granted for an initial term of four years.

As previously announced, the Company has also secured the priority application rights over two additional areas (EL4/2019 & EL6/2019) which cover the majority of the Mathinna – Alberton goldfield after submitting a tender for the properties (see Figure 2).

These two Exploration Licences are expected to be granted in the coming months.

¹ Tasmania Department of Mines – Report 1992/10, *Northeast Goldfields: A Summary of the Tower Hill, Mathinna and Dans Rivulet Goldfields*, Taheri and Findlay, 1992

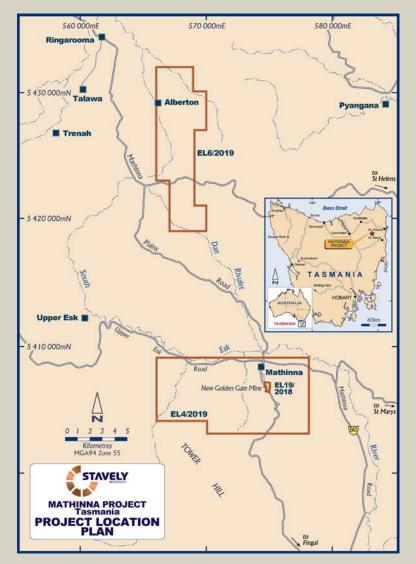


Figure 1. Project location map.

Upon securing EL19/2018 and the priority rights to EL4/2019, the Company has undertaken a comprehensive review of previous exploration work undertaken in the area.

This review has highlighted the outstanding potential of the Project and concluded that, since mining ceased in 1932, there has been very little modern exploration on the Project.

The limited exploration that has been completed was successful in identifying a number of mineralised trends that have not been mined and highlighted significant potential for extensions to the known mineralised trends within the near-mine environment.

No effective regional exploration has been undertaken along strike of the main controlling structural trends and no exploration has been undertaken targeting structural repeats of the known mineralised trends.

The data review identified a number of shallow, wide and high-grade drill intersections that need to be followed up.

Drill intersections with greater than 50 gram*metres include:

11m @ 8.6 g/t gold from 59m down-hole in MT028, including:
 6m @ 11.5g/t gold from 64m;

- 10m @ 8.8 g/t gold from 45m down-hole in MT055, including:
 3m @ 23.0 g/t gold from 46m;
- 16m @ 4.8 g/t gold from 32m down-hole in PDH5, including:
 8m @ 8.5 g/t gold from 40m;
- 7m @ 10.6 g/t gold from 110m down-hole in MT050;
- 17m @ 3.7 g/t gold from 14m down-hole in MT052;
- 4m @ 15.4 g/t gold from 51m down-hole in MT039;
- 4m @ 14.7 g/t gold from 92m down-hole in MT046;
- 4m @ 13.9 g/t gold from 33m down-hole in MT029, and
- 4m @ 13.2 g/t gold from 220m down-hole in MT075.



Figure 2. Structure and geology of the Mathinna / Tower Hill / Alberton gold trend.

A full list of significant (+2.0g/t gold) intersections are included in Table 1 and drill-hole collar details included in Table 2. See Figure 3 for a collar plan of historical drilling and Figures 4 and 5 for drill intercepts at the New Golden Gate and the unmined Sophie's and Dylan's Reefs respectively. Figure 6 shows a typical cross-section through the mineralised lodes.

With the review of previous exploration on the Mathinna tenements nearing completion, the focus has moved from data review to preparations to commence ground-based exploration activities.

These preparations have included the completion of an environmental baseline study over the Project area to determine the extent of historical disturbance and to identify and protect any flora or fauna of significance in the area. This study has identified that there were no threatened Flora within the area.

The study identified a number of endangered or vulnerable species which could occur within the lease. Most of these are birds, which could populate parts of the forestry reserves within region. Additional environmental studies will be undertaken as exploration activities progress.

Drill planning and permitting is well advanced with diamond drilling on the Project expected to commence next month.

Stavely Minerals' Executive Chairman, Mr Chris Cairns, said: "The historical production of 254,000 ounces of gold from the New Golden Gate Mine was primarily sourced from four main high-grade ore shoots of around 50,000 ounces each with a vertical extent of between 150m and 300m. The potential to extend the known mineralisation along strike and at depth is considered excellent and, as at least two of the productive reefs had no surface expression, the potential to discover additional reefs is also considered very high. We are very excited to be planning our first drill campaign and hope to be drilling next month."

A summary of the Mathinna Goldfield is included at the back of this announcement. Additional information will be released as it becomes available.

Yours sincerely,

Q.C.

Chris Cairns Executive Chairman

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr Chris Cairns, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Cairns is a full-time employee of the Company. Mr Cairns is the Executive Chairman of Stavely Minerals Limited, is a substantial shareholder of the Company and is an option holder of the Company. Mr Cairns has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Cairns consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

For Further Information, please contact:

Stavely Minerals Limited Phone: 08 9287 7630 Email: info@stavely.com.au Media Inquiries: Nicholas Read – Read Corporate Phone: 08 9388 1474

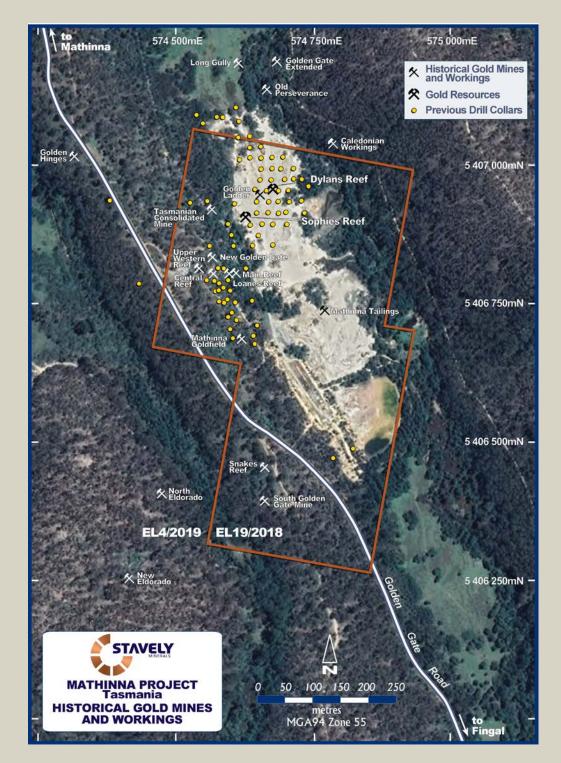


Figure 3. Tenement outline and drill collar locations at Mathinna.

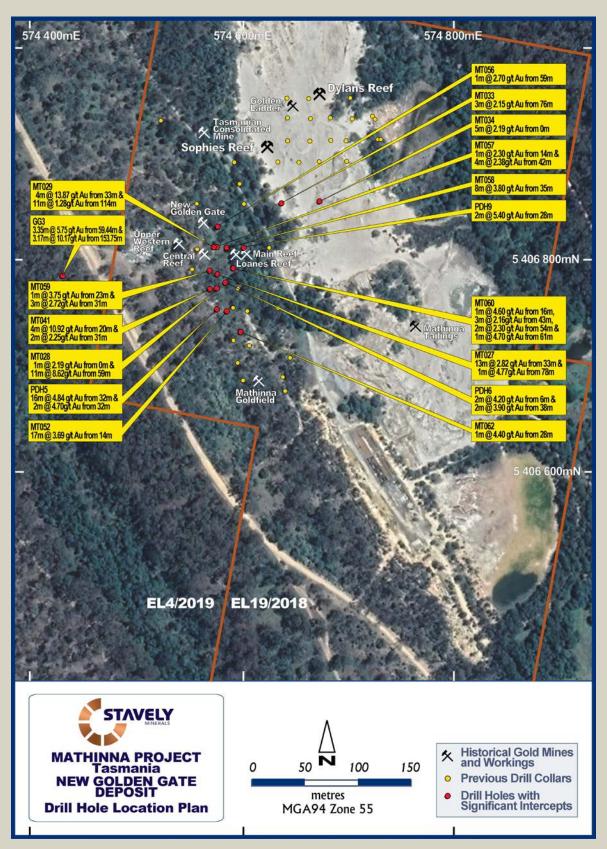


Figure 4. Drill intercepts at the New Golden Gate Gold Mine.

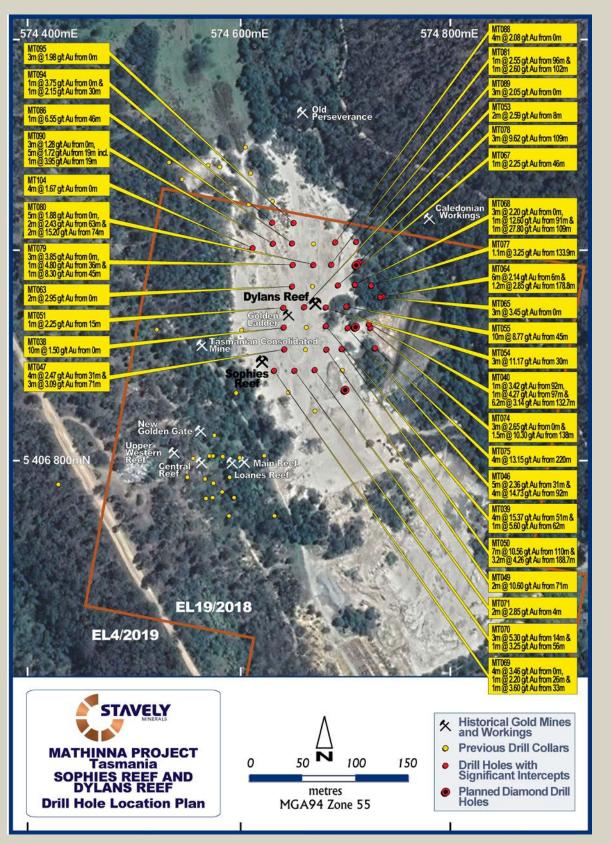


Figure 5. Drill intercepts at Dylan's and Sophie's Reefs.

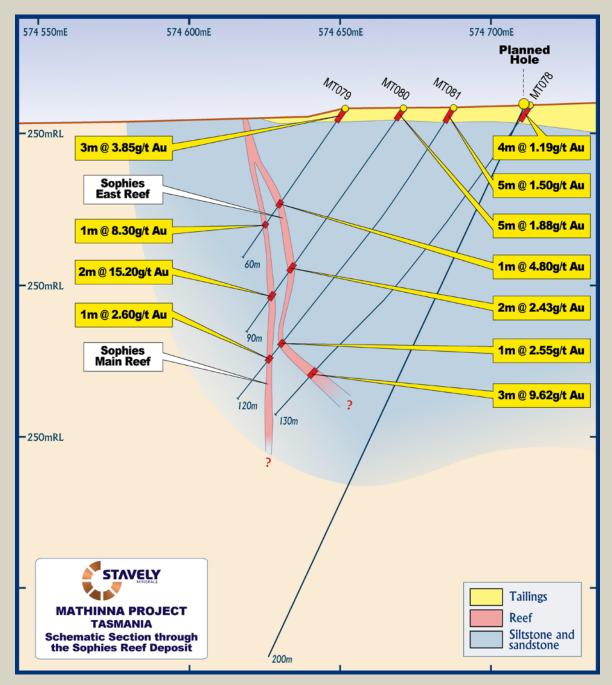


Figure 6. A typical drill section at Mathinna – note the tailings mineralisation at surface.

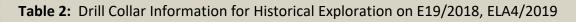
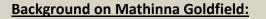

				-			
Hole #	From	То	Interval	Grade	Grade x	Prospect	Comments
GG3	59.44	62.79	3.35	5.75	19.26	New Golden Gate	
GG3	153.75	156.92	3.17	10.87	34.46	New Golden Gate	
MT001	21	22	1	2.46	2.46	Regional	
MT002	4	5	1	13.60	13.60	Regional	
MT027	33	46	13	2.82	36.65	New Golden Gate	
MT027	78	79	1	4.77	4.77	New Golden Gate	
MT028	0	1	1	2.19	2.19	New Golden Gate	
MT028	59	70	11	8.62	94.79	New Golden Gate	
inc	64	70	6	11.49	68.93		
MT029	33	37	4	13.87	55.48	New Golden Gate	
MT029*	114	125	11	1.28	14.03		
inc	114	115	1	2.55	2.55		
and	120	121	1	2.52	2.52		
and	124	125	1	2.09	2.09		
MT033	76	79	3	2.15	6.45	New Golden Gate	
MT034	0	5	5	2.19	10.93	New Golden Gate	
MT038*	0	10	10	1.50	15.00	New Golden Gate	
MT039	51	55	4	15.37	61.48	New Golden Gate	
MT039	62	63	1	5.60	5.60	New Golden Gate	
MT040	92	93	1	3.42	3.42	New Golden Gate	
MT040	97	98	1	4.27	4.27	New Golden Gate	
MT040	132.7	138.9	6.2	3.14	19.47	New Golden Gate	
MT041	20	24	4	10.92	43.68	New Golden Gate	
MT041	31	33	2	2.25	4.50	New Golden Gate	
MT046	82	87	5	2.36	11.80	New Golden Gate	
MT046	92	96	4	14.73	58.90	New Golden Gate	
MT047	31	35	4	2.47	9.87	New Golden Gate	
MT047	109	112	3	3.09	9.26	New Golden Gate	
MT049	71	73	2	10.60	21.20	New Golden Gate	
MT050	110	117	7	10.56	73.93	New Golden Gate	
MT050	188.7	191.9	3.2	4.26	13.62	New Golden Gate	
MT051	15	16	1	2.25	2.25	New Golden Gate	
MT052	14	31	17	3.69	62.78	New Golden Gate	
MT053	8	10	2	2.59	5.17	New Golden Gate	
MT054	30	33	3	11.17	33.50	New Golden Gate	
MT055	45	55	10	8.77	87.68	New Golden Gate	
inc	46	49	3	23.05	69.15		
MT056	59	60	1	2.70	2.70	New Golden Gate	
MT056	70	73	3	2.23	6.70	New Golden Gate	
MT056	80	87	7	3.46	24.22	New Golden Gate	
MT057	14	15	1	2.30	2.30	New Golden Gate	
MT057	42	46	4	2.38	9.52	New Golden Gate	
MT058	35	43	8	3.80	30.41	New Golden Gate	
MT059	23	24	1	3.75	3.75	New Golden Gate	
MT059	31	34	3	2.72	8.16	New Golden Gate	
MT060	16	17	1	4.60	4.60	New Golden Gate	
MT060	43	46	3	2.16	6.48	New Golden Gate	

Table 1: Significant (+2.0g/t) Gold Intersections from Mathinna Data Review (intersections greater than 20 gram*metres are highlighted in Bold Text)

Hole #	From	То	Interval	Grade	Grade x	Prospect	Comments
MT060	54	56	2	2.30	4.60	New Golden Gate	
MT060	61	62	1	4.70	4.70	New Golden Gate	
MT062	28	29	1	4.40	4.40	New Golden Gate	
MT063	0	2	2	2.95	5.90	New Golden Gate	
MT064	0	6	6	2.14	12.86	New Golden Gate	
MT064	178.8	180	1.2	2.85	3.42	New Golden Gate	
MT065	0	3	3	3.45	10.35	New Golden Gate	
MT067	46	47	1	2.25	2.25	New Golden Gate	
MT068	0	3	3	2.20	6.60	New Golden Gate	
MT068	91	92	1	12.60	12.60	New Golden Gate	
MT068	109	110	1	27.80	27.80	New Golden Gate	
MT069	0	4	4	3.46	13.82	New Golden Gate	
MT069	26	27	1	2.20	2.20	New Golden Gate	
MT069	33	34	1	3.60	3.60	New Golden Gate	
MT070	14	17	3	5.30	15.90	New Golden Gate	
MT070	56	57	1	3.25	3.25	New Golden Gate	
MT071	4	6	2	2.85	5.70	New Golden Gate	
MT074	0	3	3	2.65	7.95	New Golden Gate	
MT074	138	139.5	1.5	10.30	15.45	New Golden Gate	
MT074	220	224	4	13.15	52.60	New Golden Gate	EOH
MT077	133.9	135	1.1	3.25	3.57	New Golden Gate	
MT077	109	112	3	9.62	28.85	New Golden Gate	
MT079	0	3	3	3.85	11.55	New Golden Gate	
MT079	36	37	1	4.80	4.80	New Golden Gate	
MT079	45	46	1	8.30	8.30	New Golden Gate	
MT080	43	40 5	5	1.88	9.41	New Golden Gate	
MT080	63	65	2	2.43	4.85	New Golden Gate	
MT080	74	76	2	15.20	30.40	New Golden Gate	
MT081	96	97	1	2.55	2.55	New Golden Gate	
						New Golden Gate	
MT081	102	103	1	2.60	2.60		
MT086	46	47	1	6.55	6.55	New Golden Gate	
MT088	0	4	4	2.08	8.32	New Golden Gate	
MT089	0	3	3	2.05	6.15	New Golden Gate	
MT090*	0	3	3	1.28	3.84	New Golden Gate	
MT090	19	20	1	3.95	3.95	New Golden Gate	
MT090	19	24	5	1.72	8.59	New Golden Gate	
MT094	0	1	1	3.75	3.75	New Golden Gate	
MT094	30	31	1	2.15	2.15	New Golden Gate	
MT095	0	3	3	1.98	5.94	New Golden Gate	
MT104	0	4	4	1.67	6.68	New Golden Gate	
PDH10	3	4	1	2.40	2.40	New Golden Gate	
PDH5	32	48	16	4.84	77.40	New Golden Gate	
inc	40	48	8	8.50	68.00		
PDH5	68	70	2	4.70	9.40	New Golden Gate	EOH
PDH6	6	8	2	4.20	8.40	New Golden Gate	
PDH6	38	40	2	3.90	7.80	New Golden Gate	
PDH9	28	30	2	5.40	10.80	New Golden Gate	

STAVELY


Note: Some intersections fall below 2.0 g/t cut-off due however to their location and continuity are still considered significant

Hole #	East	North	RL	DIP	Azimuth	Hole Type	Total Depth	RC Depth	PROSPECT	Tenement
GG1	574812	5406483	318	-50	0	DDH	152.22	0	NEW GOLDEN GATE	E18/2019
GG2	574777	5406463	328	-50	0	DDH	203.48	0	NEW GOLDEN GATE	E18/2019
GG3	574427	5406783	349	-53	0	DDH	313.28	0	NEW GOLDEN GATE	E18/2019
PDH1	574588	5406721	335	-60	270	RC	60	60	NEW GOLDEN GATE	E18/2019
PDH2	574603	5406716	333	-60	270	RC	82	82	NEW GOLDEN GATE	E18/2019
PDH3	574592	5406699	340	-60	270	RC	58	58	NEW GOLDEN GATE	E18/2019
PDH4	574641	5406704	327	-60	270	RC	88	88	NEW GOLDEN GATE	E18/2019
PDH5	574573	5406750	334	-60	277	RC	70	70	NEW GOLDEN GATE	E18/2019
PDH6	574581	5406775	328	-60	270	RC	98	98	NEW GOLDEN GATE	E18/2019
PDH7	574555	5406807	337	-60	275	RC	76	76	NEW GOLDEN GATE	E18/2019
PDH8	574631	5406751	324	-60	269	RC	62	62	NEW GOLDEN GATE	E18/2019
PDH9	574599	5406807	328	-60	280	RC	65	65	NEW GOLDEN GATE	E18/2019
PDH10	574588	5406752	329	-60	255	RC	80	80	NEW GOLDEN GATE	E18/2019
PDH11	574636	5406673	332	-60	270	RC	86	86	NEW GOLDEN GATE	E18/2019
MT001	574243	5407886	308	-60	90	RC	79	79	REGIONAL	ELA04/2019
MT002	574280	5407893	313	-60	90	RC	84	84	REGIONAL	ELA04/2019
MT003	574380	5407983	309	-60	90	RC	85	85	REGIONAL	ELA04/2019
MT004	574408	5408183	287	-60	90	RC	85	85	REGIONAL	ELA04/2019
MT005	574307	5408383	292	-60	90	RC	67	67	REGIONAL	ELA04/2019
MT006	574337	5408376	292	-60	90	RC	60	60	REGIONAL	ELA04/2019
MT007	574312	5408268	295	-60	90	RC	84	84	REGIONAL	ELA04/2019
MT008	574480	5408183	283	-60	270	RC	63	63	REGIONAL	ELA04/2019
MT009	574377	5408183	288	-60	270	RC	77	77	REGIONAL	ELA04/2019
MT010	574300	5408168	291	-60	90	RC	79	79	REGIONAL	ELA04/2019
MT011	574437	5407288	311	-50	270	RC	85	85	REGIONAL	ELA04/2019
MT012	574492	5407768	310	-50	270	RC	85	85	REGIONAL	ELA04/2019
MT013	574402	5407518	329	-58	270	RC	88	88	REGIONAL	ELA04/2019
MT014	574299	5407983	310	-60	90	RC	79	79	REGIONAL	ELA04/2019
MT015	574262	5407988	309	-55	90	RC	97	97	REGIONAL	ELA04/2019
MT016	574227	5407998	305	-55	90	RC	79	79	REGIONAL	ELA04/2019
MT017	575173	5405848	394	-57.5	235	RC	99	99	JUBILEE WEST	ELA04/2019
MT018	574288	5408088	303	-55	90	RC	77	77	REGIONAL	ELA04/2019
MT019	574248	5408093	301	-57	90	RC	70	70	REGIONAL	ELA04/2019
MT020	574367	5408376	292	-60	90	RC	54	54	REGIONAL	ELA04/2019
MT021	574394	5408376	292	-60	90	RC	67	67	REGIONAL	ELA04/2019
MT022	575141	5404923	391	-56	235	RC	90	90	JUBILEE WEST	ELA04/2019
MT023	575168	5404892	390	-55.5	235	RC	58	58	JUBILEE WEST	ELA04/2019
MT024	574377	5406934	344	-50	90	RC	124	124	REGIONAL	ELA04/2019
MT025	575125	5404960	381	-56.5	235	RC	75	75	JUBILEE WEST	ELA04/2019
MT026	573520	5410083	354	-50	90	RC	90	90	REGIONAL	ELA04/2019
MT027	574574	5406783	328	-60	290	RC	91	91	NEW GOLDEN GATE	E18/2019
MT028	574573	5406770	329	-60	270	RC	80	80	NEW GOLDEN GATE	E18/2019
MT029	574573	5406809	329	-60	270	RC	139	139	NEW GOLDEN GATE	E18/2019
MT030	574550	5406789	341	-60	270	RC	73	73	NEW GOLDEN GATE	E18/2019
MT031	574556	5406850	330	-55	270	RC	109	109	NEW GOLDEN GATE	E18/2019
MT032	574600	5406849	320	-55	270	DDH - 11 -	152.5	97	NEW GOLDEN GATE	E18/2019

Hole #	East	North	RL	DIP	Azimuth	Hole Type	Total Depth	RC Depth	PROSPECT	Tenement
MT033	574636	5406850	319	-55	270	RC	97	97	NEW GOLDEN GATE	E18/2019
MT034	574671	5406850	316	-55	270	RC	135	135	NEW GOLDEN GATE	E18/2019
MT035	574522	5406928	320	-55	270	RC	103	103	NEW GOLDEN GATE	E18/2019
MT036	574553	5406929	316	-55	270	RC	79	79	NEW GOLDEN GATE	E18/2019
MT037	574603	5406927	311	-55	270	RC	96	96	NEW GOLDEN GATE	E18/2019
MT038	574642	5406929	312	-55	270	RC	135	91	NEW GOLDEN GATE	E18/2019
MT039	574682	5406930	310	-55	270	RC	183	85	NEW GOLDEN GATE	E18/2019
MT040	574723	5406930	308	-50	270	DDH	149.8	41.8	NEW GOLDEN GATE	E18/2019
MT041	574567	5406769	330	-50	270	RC	79	79	NEW GOLDEN GATE	E18/2019
MT042	574593	5406769	328	-60	270	DDH	129	108.5	NEW GOLDEN GATE	E18/2019
MT043	574922	5404771	392	-50	210	RC	78	78	JUBILEE WEST	E18/2019
MT044	574942	5404805	392	-50	210	RC	102	102	JUBILEE WEST	E18/2019
MT045	574663	5406929	311	-55	270	RC	67	67	NEW GOLDEN GATE	E18/2019
MT046	574703	5406928	309	-55	270	RC	103	103	NEW GOLDEN GATE	E18/2019
MT047	574642	5406908	313	-55	270	RC	114	114	NEW GOLDEN GATE	E18/2019
MT048	574663	5406908	313	-55	270	RC	85	85	NEW GOLDEN GATE	E18/2019
MT049	574682	5406908	311	-55	270	RC	109	109	NEW GOLDEN GATE	E18/2019
MT050	574697	5406908	311	-57	270	DDH	205.9	127	NEW GOLDEN GATE	E18/2019
MT051	574642	5406948	312	-55	270	RC	43	43	NEW GOLDEN GATE	E18/2019
MT052	574582	5406748	329	-50	270	RC	109	109	NEW GOLDEN GATE	E18/2019
MT053	574662	5406948	310	-55	270	RC	67	67	NEW GOLDEN GATE	E18/2019
MT054	574682	5406948	309	-55	270	RC	40	40	NEW GOLDEN GATE	E18/2019
MT055	574701	5406948	309	-55	270	RC	115	115	NEW GOLDEN GATE	E18/2019
MT056	574575	5406828	329	-50	270	RC	114	114	NEW GOLDEN GATE	E18/2019
MT057	574571	5406809	329	-50	270	RC	115	115	NEW GOLDEN GATE	E18/2019
MT058	574583	5406808	329	-60	270	RC	85	85	NEW GOLDEN GATE	E18/2019
MT059	574566	5406787	329	-50	270	RC	85	85	NEW GOLDEN GATE	E18/2019
MT060	574589	5406789	328	-60	270	RC	103	103	NEW GOLDEN GATE	E18/2019
MT061	574601	5406748	329	-50	270	RC	90	90	NEW GOLDEN GATE	E18/2019
MT062	574596	5406728	329	-50	270	RC	90	90	NEW GOLDEN GATE	E18/2019
MT063	574650	5406968	309	-55	270	RC	55	55	NEW GOLDEN GATE	E18/2019
MT064	574737	5406956	309	-60	265	DDH	195	145	NEW GOLDEN GATE	E18/2019
MT065	574736	5406956	309	-50	265	RC	114	114	NEW GOLDEN GATE	E18/2019
MT066	574670	5406968	309	-55	270	RC	85	85	NEW GOLDEN GATE	E18/2019
MT067	574694	5406968	307	-54	270	RC	97	97	NEW GOLDEN GATE	E18/2019
MT068	574710	5406969	306	-55	270	RC	121	121	NEW GOLDEN GATE	E18/2019
MT069	574632	5406888	314	-55	270	RC	85	85	NEW GOLDEN GATE	E18/2019
MT070	574652	5406888	314	-55	270	RC	79	79	NEW GOLDEN GATE	E18/2019
MT071	574671	5406888	313	-55	270	RC	103	103	NEW GOLDEN GATE	E18/2019
MT072	574697	5406888	311	-54	270	RC	133	133	NEW GOLDEN GATE	E18/2019
MT073	574646	5406868	316	-50	270	DDH	119.5	82	NEW GOLDEN GATE	E18/2019
MT074	574724	5406928	309	-59	270	DDH	189	102	NEW GOLDEN GATE	E18/2019
MT075	574728	5406908	310	-56	270	DDH	226.9	114	NEW GOLDEN GATE	E18/2019
MT076	574729	5406908	310	-65	270	DDH	279.3	103	NEW GOLDEN GATE	E18/2019
MT077	574725	5406968	307	-59	270	DDH	174	90	NEW GOLDEN GATE	E18/2019
MT078	574711	5406989	307	-57	270	RC	130	130	NEW GOLDEN GATE	E18/2019
MT079	574652	5406988	308	-55	270	RC	60	60	NEW GOLDEN GATE	E18/2019

Hole #	East	North	RL	DIP	Azimuth	Hole Type	Total Depth	RC Depth	PROSPECT	Tenement
MT080	574671	5406988	308	-55	270	RC	90	90	NEW GOLDEN GATE	E18/2019
MT081	574688	5406988	308	-58	270	RC	120	120	NEW GOLDEN GATE	E18/2019
MT082	574634	5406686	329	-55	270	RC	96	96	NEW GOLDEN GATE	E18/2019
MT083	574598	5406683	339	-55	266	RC	103	103	NEW GOLDEN GATE	E18/2019
MT084	574672	5406682	324	-55	270	RC	91	91	NEW GOLDEN GATE	E18/2019
MT085	574623	5406808	321	-50	270	RC	90	90	NEW GOLDEN GATE	E18/2019
MT086	574651	5407008	307	-55	270	RC	64	64	NEW GOLDEN GATE	E18/2019
MT087	574671	5407008	307	-55	270	RC	94	94	NEW GOLDEN GATE	E18/2019
MT088	574692	5407009	308	-55	270	RC	121	121	NEW GOLDEN GATE	E18/2019
MT089	574712	5407009	306	-55	270	RC	6	6	NEW GOLDEN GATE	E18/2019
MT090	574633	5407008	308	-55	270	RC	49	49	NEW GOLDEN GATE	E18/2019
MT091	574576	5406828	329	-60	270	RC	133	133	NEW GOLDEN GATE	E18/2019
MT092	574596	5406868	319	-56	270	RC	121	121	NEW GOLDEN GATE	E18/2019
MT093	574591	5406889	319	-66	270	RC	103	103	NEW GOLDEN GATE	E18/2019
MT094	574632	5407028	307	-55	270	RC	42	42	NEW GOLDEN GATE	E18/2019
MT095	574652	5407028	305	-55	270	RC	60	60	NEW GOLDEN GATE	E18/2019
MT096	574632	5407048	307	-55	270	RC	36	36	NEW GOLDEN GATE	ELA04/2019
MT104	574613	5407004	309	-60	270	RC	49	49	NEW GOLDEN GATE	E18/2019
MT105	574610	5407045	306	-60	270	RC	19	19	NEW GOLDEN GATE NORTH	E18/2019
MT106	574612	5407075	306	-60	270	RC	30	30	NEW GOLDEN GATE NORTH	ELA04/2019
MT107	574607	5407099	306	-60	270	RC	30	30	NEW GOLDEN GATE NORTH	ELA04/2019
MT108	574583	5407082	306	-60	270	RC	3	3	NEW GOLDEN GATE NORTH	ELA04/2019
MT109	574572	5407083	306	-60	264	RC	2	2	NEW GOLDEN GATE NORTH	ELA04/2019
MT110	574547	5407071	306	-60	274	RC	30	30	NEW GOLDEN GATE NORTH	ELA04/2019
MT111	574535	5407087	307	-60	260	RC	19	19	NEW GOLDEN GATE NORTH	ELA04/2019

Numerous Tasmanian Department of Mines and Geological Survey reports detail the mining and mineralisation of the Mathinna Goldfield, which was particularly prolific prior to the first World War (Figure B1). Official records detail production of 289,000 ounces of gold up to 1932¹. However, official records almost certainly significantly underestimate actual gold production from the Mathinna district given that estimates did not include alluvial production and a 1914 Geological Survey of Tasmania report² estimated that production to date had been between 300,000 and 320,000 ounces.

Since that time there has been very little modern exploration.

1. New Golden Gate and Tasmanian Consols Mines.

Figure B1. Frontispiece to the 1914 Tasmania Department of Mines – Geological Survey Report No. 5: *On Some Gold-mining at Mathinna* by W. H. Twelvetrees, Government Geologist.

The Mathinna Goldfield is hosted in a thick sequence of bedded fine- to medium-grained quartz-rich turbidites with shale tops considered as southern analogues to the units within the Melbourne Zone in Victoria that hosts the Walhalla and Woods Point Goldfields. The host units are intruded by I and S-type granites and are folded along a north-northwest trending axis.

Mineralisation is interpreted to be hosted within dextral strike-slip shear zones with righthand jogs creating dilatant zones that host the structurally controlled quartz vein arrays

¹ Tasmania Department of Mines – Report 1992/10, *Northeast Goldfields: A Summary* of the Tower Hill, Mathinna and Dans Rivulet Goldfields, Taheri and Findlay, 1992

 ² Tasmania Department of Mines – Report No. 5. On Some Gold-mining at Mathinna, W. H. Twelvetrees, Government Geologist.

(Figure B2). Mineralisation is described as being hosted in quartz veins of variable width from a few centimetres to 10m and ranging in strike length from 5m to over 300m.

The majority of gold productive veins are reported to be 1 - 10 m wide and between 30m to 300m in strike length. The maximum vertical strike extent for a single vein is 336m at the New Golden Gate Mine (Figure B2).

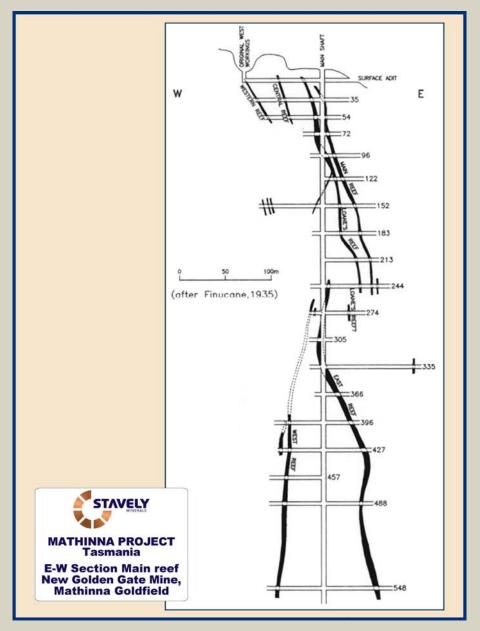
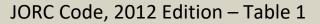
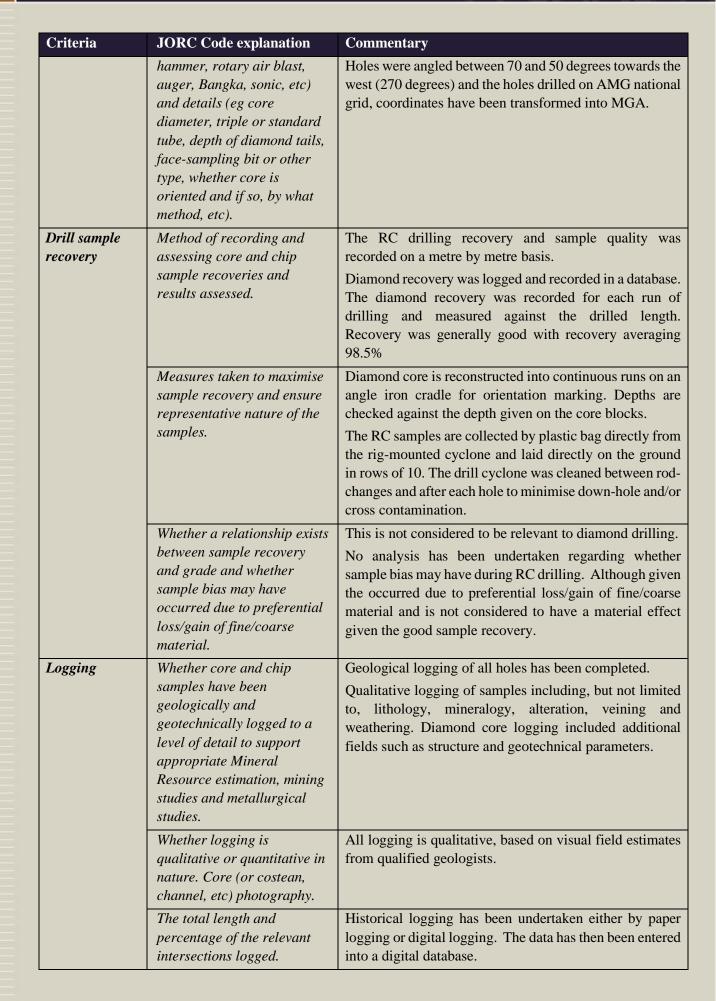



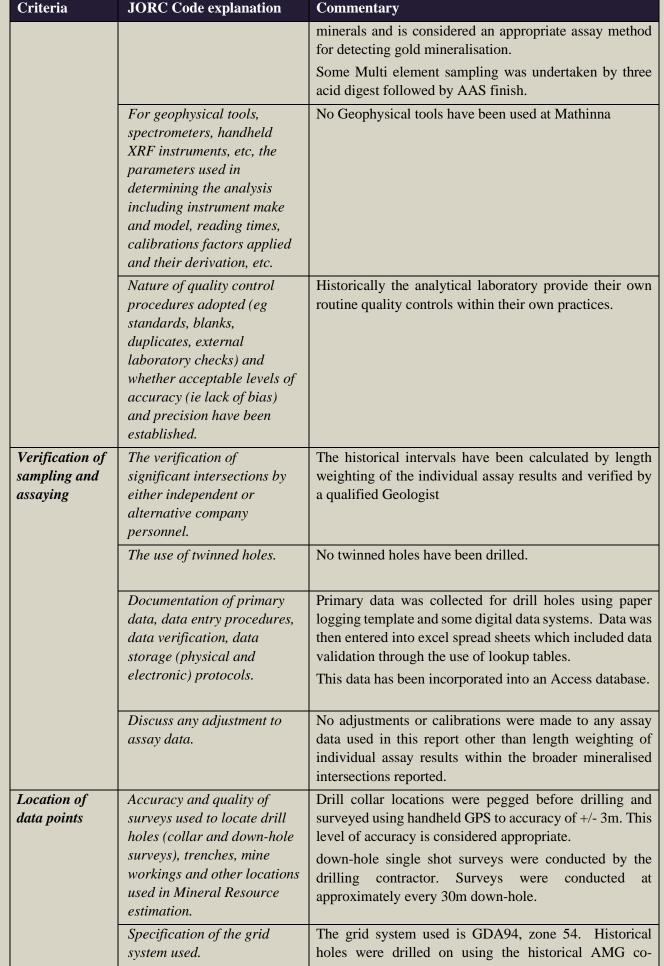
Figure B2. Cross section of the New Golden Gate Mine.

Gold mineralisation is reported to be in the form of free gold, is non-refractory and is associated with low abundance of \sim 1-2% sulphides including arsenopyrite, galena, sphalerite and chalcopyrite.


There is a large volume of historical mine tailings in the valley below the mine workings. These tailings are of unknown volume and grade given a portion was treated with a mobile gold plant approximately 10 years ago.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)


Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Mathinna Project Reverse Circulation (RC) percussion drilling was used to produce a 1m bulk sample (~25kg) which was collected in plastic bags and representative 1m split samples (12.5% or nominally 3kg) were collected using a 50mm PVC spear and placed in a calico bag where spear samples returned anomalous gold, they were resampled using a riffle splitter. The cyclone was cleaned out with compressed air at the end of each hole and periodically during the drilling. The 1m split samples were submitted for analysis. The diamond core was sampled to geological boundaries with sample lengths generally between 50 cm and 2.0 m, the core was cut on site and half core sampled.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	QA / QC information is not available for the historical drilling, however analysis was undertaken at an independent and certified laboratory which included repeat sampling procedures for anomalous sample results, internal lab standards and QA/QC procedures.
	Aspects of the determination of mineralisation that are Material to the Public Report - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases	 Drill sampling techniques are considered industry standard. RC drilling and percussion drilling was sampled using 1 metre samples (which were composited together to up to 2m) anomalous samples were then individually sampled and assayed. Diamond core was cut on site and half core sampled. The historical analysis was undertaken either at Analabs in Bernie with some analysis undertaken at ALS Bernie. Analysis for gold has been by fire assay (with selected
	more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	screen fire assay) using 50g charge with an AAS finish to a detection limit of 10ppb. Multi element analysis was undertaken by three acid digest with an AAS finish to 2ppm Cu, 3ppm Pb, 2ppm Zn 1ppm Ag and 1ppm As.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole	Industry standard RC and Diamond drilling techniques were used

	STAVELV
1 1	

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample	If core, whether cut or sawn and whether quarter, half or all core taken.	half core for the HQ diameter core was sampled on site using a core saw.
preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Splitting of RC samples occurred via spear sampling methods, with anomalous intersections then riffle split and resampled.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Historical reports show industry standard procedures were used to ensure sub-sampling adequacy and consistency.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	The QA/QC procedures followed for historical drilling is unknown at this stage. Screen fire assays checks have been undertaken which showed good correlation between the two methods.
		Bulk leach and tail sampling has also been undertaken to verify the initial fire assay results. This suggested some of the fire assay samples were reporting slightly low (3.9% low) relative to bulk leach and tail assay check samples.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Comparisons between fire assays and bulk leach and tails sampling suggests that the sampling is representative No duplicate sample has been undertaken from the half core not sampled.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly represent the sought mineralisation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The core samples and 1m RC split samples were analysed by fire assay with an AAS finish (50g charge). Up to a 50g sample is fused at approximately 1,100°C with alkaline fluxes including lead oxide. During the fusion process lead oxide is reduced to molten lead which acts as a collector for gold. When the fused mass is cooled the lead separates from the impurities (slag) and is placed in a cupel in a furnace at approximately 900°C. The lead oxidizes to lead oxide, being absorbed by the cupel, leaving a bead (prill) of gold, silver (which is added as a collector) and other precious metals. The prill is dissolved in aqua regia with a reduced final volume. Gold content is determined by flame AAS using matrix matched standards. For samples which are difficult to fuse a reduced charge may be used to yield full recovery of gold. This technique approaches total dissolution of most

Criteria	JORC Code explanation	Commentary
		ordinate system. These have been transformed into MGA.
	Quality and adequacy of topographic control.	Topographic control is achieved via use of DTM developed from a 2012 airborne LiDAR survey conducted by Optech Gemini for the Tasmanian Government
Data spacing and	Data spacing for reporting of <i>Exploration Results</i> .	Refer to figures in text and Drill Hole Collar Table included in this report.
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	No Mineral Resource and Ore Reserve estimation procedure(s) and classifications apply to the exploration data being reported.
	Whether sample compositing has been applied.	Sample intervals were based on lithology but in general were 1m. No intervals were less than 0.5m or greater than 2m.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The orientation of RC and diamond drill holes is tabulated in the Drill Hole Collar Table included in this report. As best as practicable, drill holes were designed to intercept targets and structures at a high angle. Some practical limitations apply in the context of collars being sited to avoid unnecessary environmental clearing or areas historical disturbance or infrastructure.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	From the information available there is no evidence that the drilling orientation has resulted in any sampling bias.
Sample security	The measures taken to ensure sample security.	Sampling was undertaken on site and samples transported to the laboratory in Bernie. The exact details of efforts made to ensure sample security are unknown.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews of the data management system has been carried out.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Mathinna ProjectThe diamond drilling and RC drilling at Mathinna has been largely focused on drilling area surrounding the Golden Gate mine located on EL 19/2018, which forms part of the Mathinna Project.The mineralisation at is situated within exploration licence EL 19/2018.The Mathinna Project was applied for by Stavely Minerals and granted in July 2019 for an initial 4 year term. Stavely Minerals hold 51% ownership of the Mathinna Project tenement and is earning up to an 85% interest over the next two years. The Mathinna Project is on a timber reserves and minor crown land and not subject to Native Title claims.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	EL 19/2018 was granted on 30 th July 2019 for an initial term of 4 years. The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Mathinna Project Golden Gate Mine Area The Golden Gate Mine operated from the late 1890's to 1932. Tasmanian government reports indicate production of 288,986 oz of gold from 1880 to 1932. Some government reports indicate that "official returns" of between 300,000 and 320,000 oz until 1914. Since the mine closed, there has been sporadic exploration in the area by a number of companies including Epoch Minerals Exploration NL (1989), Resolute Samantha Limited (1995), Defiance Mining (1998 – 2000) and Cala Resources Limited (2004). All historical exploration records are publicly available via the Tasmanian Government websites including Land Information System Tasmania (thelist.tas.gov.au) All work conducted by previous operators at Mathinna is considered to be of a reasonably high quality with information incorporated into annual technical reports. Very little exploration has been undertaken outside the immediate Golden Gate Mine / Tasman Consol. Mine area.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	The Mathinna project is located in the north east of Tasmania E 18/2018 lies near the southern end of the 90-km long, north-north-west trending, line of gold deposits that extend from Mangana in the south to Lyndhurst on the north coast. The gold deposits occur as auriferous quartz reefs, hosted in the Mathinna Beds, a folded sequence of Silurian-Ordovician age sediments. The Mathinna beds are intruded by younger, Devonian-Carboniferous age granites and are in part overlain by Permo-Triassic glacial marine sediments, Jurassic dolerites and Tertiary basalts. The gold bearing veins are structurally controlled and occur in a range of orientations and forms within zones of shearing and tectonic deformation. This overall geological setting is very similar to the high grade, quartz vein style mineralisation in the slate belts of central and eastern Victoria which have historical production of approximately 80 Mozs
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.	production of approximately 80 Mozs Included in the drill hole table in the body of the report.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	No material drill hole information has been excluded.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations	Exploration results are nominally reported where gold grades are greater than 2.0 g/t gold over a down-hole width of a minimum of 1m. No edge dilution has been applied and a maximum of 4m of internal waste included.

Criteria	JORC Code explanation	Commentary
	(eg cutting of high grades) and cut-off grades are usually Material and should be stated.	No top-cutting of high grade assay results have been applied, nor was it deemed necessary for the reporting of significant intersections.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	In reporting exploration results, length weighted averages are used for any non-uniform intersection sample lengths. Length weighted average is (sum product of interval x corresponding interval grade) divided by sum of interval length.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	There is insufficient drilling data to date to demonstrate continuity of mineralised domains and determine the relationship between mineralisation widths and intercept lengths.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	There is insufficient information available to determine true widths. As a result, down hole interval lengths are reported. Refer to the Tables and Figures in the text.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures in the text. A plan view of the drill hole collar locations is included.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading	All gold values considered to be significant have been reported. Some subjective judgement has been used.

Criteria	JORC Code explanation	Commentary
	reporting of Exploration Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All relevant exploration data is shown on figures and discussed in the text.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	As discussed in the body of the report, diamond drilling has been planned to target the area for structural repetitions of the New Golden Gate mineralisation. This drilling has been planned north and south of the historical mine. Additional drilling has been planned to test for extensions of mineralised lodes between the New Golden Gate mine and the Tasman Consol. Mine.