

14 October 2019

Resource Upgrade – One of the World's Single Largest Vanadium Resources

62% increase to 2,760Mt with average V2O5 content of 0.30%

- Significant Resource Upgrade has resulted in a 62% increase in size of the Julia Creek Vanadium JORC Resource
- Following the Resource Upgrade, the Project now holds a 2,760Mt Vanadium JORC Resource with an average V2O5 content of 0.30%
- The Julia Creek Vanadium Resource now consists of 220Mt in the Indicated category and 2,540Mt in the Inferred category
- The Project also contains 783MMBBIs of Oil in the 3C category
- QEM's 100% owned Julia Creek Project is now one of the largest vanadium deposits in the world

QEM Limited ("**QEM**", the "**Company**") (**ASX:QEM**) is very pleased to announce a significant Resource Upgrade at the Company's flagship Julia Creek vanadium / oil shale project ("**Project**"), covering 249.6km², in the Julia Creek area of North Western Queensland, Australia. Following the Resource Upgrade, the Project now holds a 2,760Mt Vanadium JORC resource, with an average V2O5 content of 0.30%, making it **one of the largest vanadium deposits in the world**.

The Resource Upgrade has incorporated historic data from drill holes in the newly granted tenement EPM 27057 (ASX Release – 7 May 2019), in addition to the data from the recent 26km 2D seismic survey data completed in May 2019 (ASX Release - 7 May 2019), and seven recently cored holes by QEM (two holes in 2018 and five holes in 2019).

QEM Executive Director, David Fitch, commented: "This resource upgrade is a huge development for the Company, making the Julia Creek vanadium resource one of the largest vanadium deposits in the world. With such a significant resource, we are continuing our metallurgical test work to identify and develop the most efficient and cost effective way to extract saleable products from the project, in the form of vanadium pentoxide, transport fuels and potentially hydrogen."

"QEM is highly committed to providing Innovative Energy Solutions, and we look forward to further advancing the flagship Julia Creek vanadium / oil shale project over the coming months."

John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

				Tot	al					
Resource Class	Strat. Unit	Mass (Mt)	Average Thickness (m)	Insitu Density (gm/cc)	V2O5 (wt%)	Cu (ppm)	Mo (ppm)	Ni (ppm)	Zn (ppm)	Al (ppm)
Indicated	CQLA	73	3.16	2.27	0.25	155	138	123	780	4752
	CQLB	67	2.97	2.24	0.28	182	168	142	890	5706
	OSU	40	1.94	2.08	0.33	223	153	191	1087	55317
	OSL	38	1.87	2.11	0.32	199	149	184	1015	55009
Sub-total		220								
Inferred	CQLA	687	2.57	2.28	0.23	154	139	121	819	2854
	CQLB	874	3.33	2.15	0.38	220	221	201	1184	5323
	OSU	504	2.01	2.11	0.30	232	147	188	1148	62477
	OSL	481	1.98	2.13	0.29	212	134	171	1058	60316
Sub-total		2,540								
Total		2,760		2.18	0.30	201	166	170	1043	26100

Table 1: Summary of JORC Mineral Resource Estimate

Note: 1. The estimate uses a minimum cut-off of 0.2% V_2O_5 for the oil shale units, and minimum cut-off of 0.15% V_2O_5 for the Coquina units.

2. The total resource tonnage reported is rounded to reflect the relative uncertainty in the estimate categories and component horizons may not sum correctly.

	Total					
Strat.Unit	Mass (Mt)	Average Thickness (m)	Oil Yield (L/tonne)	MMBarrels (insitu-PIIP)	MMBarrels 3C	
CQL	1,701	5.93	44	446	401	
OSU	544	2.01	72	231	208	
OSL	518	1.97	63	193	174	
TOTAL	2,760		53	870	783	

Table 2: Summary of SPE-PRMS Contingent Oil Resource

Note: 1. The total resource tonnage reported is rounded to reflect the relative uncertainty in the estimate and component horizons may not sum correctly.

2. The estimated (unrisked) 3C Contingent Oil Resource of 783 MMbbls is derived from the PIIP using a 0.9 recovery factor and is contained within Oil shale in the 2,760Mt of the Mineral Resource estimate. There are no 1C or 2C resources as the points of observation (drill hole spacing and composite intervals) of oil shale grade is insufficient to place reliable confidence on both grade and thickness continuity required for 1C or 2C resources.

John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

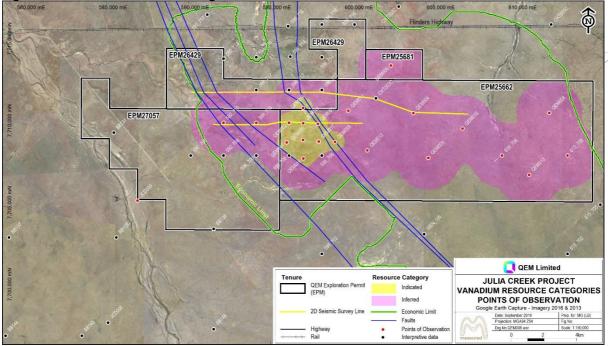


Figure 1: Resource Area and Categories

Listing rule 5.8.1 information is set out below in respect of the vanadium Mineral Resource estimate:

- Geological interpretation sourced from historical mapping, drill cores, geophysical logs, 26km of 2D seismic and assays results.
- Sampling techniques were selected by lithological and geophysical boundaries which were crushed to 2mm and placed in vacuum sealed bags before sending off for analysis
- Drilling technique used was 4C core (100mm) rotary drilled on air.
- Criteria for classification has a minimum spacing between points of observation has been set to 4000m for the inferred category, and 1200m for the indicated category, based on ranges derived from variography.
- Sampling analysis were prepared by Mitra PTS for Oil using Modified Fisher Analysis completed by ALS and metals using ICP assay method completed by Bureau Veritas.
- Estimation methodology used were grid cell sizes of 20 m for the topographic model, 50 m for the structural model and 400 m for the quality model. Ordinary Kriging has been used for interpolation of V2O5 wt%. Linear interpolation (Inverse Distance power 1) was used for other grade parameters including oil grade parameters.
- A cut-off of 0.2 V2O5 wt% was used for the Vanadium resource in the Oil Shale units, and a cutoff of 0.15 V2O5 wt% was used for the Coquina Units.
- Mining parameters used a sale price of V2O5 at \$8.50 USD/lb
- Metallurgical parameters incorporated processing study results showing beneficiation from floatation, wave tables, upflow classifier and Petroteq processing. This is considered a reasonable basis for eventual economic extraction.

QEM Limited

John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

The vanadium Mineral Resource and oil shale Petroleum Resource are hosted by, and co-located within, the Toolebuc Formation and previous work confirms there exists a strong positive correlation between vanadium and oil grade.

At this stage, however, there has been insufficient work completed by the Company to confirm that both the vanadium Mineral Resource and oil shale Petroleum Resource can be recovered from the same ore material (i.e. host rock). As previously announced, the Company is assessing several processing options and technologies to identify the optimum methodology for the recovery of vanadium and oil, in addition to any other potential base metal bi-products (Cu, Mo, Ni and Zn).

As a result, the vanadium Mineral Resource and oil shale Petroleum Resource reported above must stand on their own. Further, it should not be assumed that both resources are currently able to be recovered from the same ore material

About QEM

QEM Limited (ASX:QEM) is a publicly listed company which is focussed on the exploration and development of its flagship Julia Creek Project, cover 249.6km² in the Julia Creek area of North Western Australia.

The Julia Creek vanadium / oil shale project is a unique world class resource with the potential to deliver innovative energy solutions, through the production of energy fuels and vanadium pentoxide. QEM strives to become a leading producer of liquid fuels and in response to a global vanadium deficit, also aims to become a global supplier of high quality vanadium pentoxide, to both the nascent energy storage sector and the Australian steel industry.

This globally significant JORC (2012) Mineral Resource of 2,760 Mt @ 0.30% V2O5 is one of the single largest ASX listed vanadium resource and represents a significant opportunity for development.

The tenements form part of the vast Toolebuc Formation, which is recognised as one of the largest deposits of vanadium and oil shale in the world and located less than 16km east of the township of Julia Creek. In close proximity to all major infrastructure and services, the project is intersected by the main infrastructure corridor of the Flinders Highway and Great Northern Railway, connecting Mt/ Isa to Townsville.

For Further Information

David Fitch **Executive Director** P: +61 7 3303 0161 E: <u>david@qldem.com.au</u> Jane Morgan Investor Relations P: +61405 555 618 E: jm@janemorganmanagement.com.au

QEM Limited Level 11, 216 St Georges Terrace

Perth WA 6000 Australia

John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Competent Person and Qualified Evaluator Statements

The information in this report that relates to Mineral Resources for the Julia Creek Project is based on and fairly represents information complied and reviewed by Mr. Lyon Barrett, who is a Member of the Australasian Institute of Mining and Metallurgy and is a Principal Geologist employed by Measured Group Pty Ltd, independent consultants to QEM.

Lyon Barrett has more than 20 years' experience in the estimation of Mineral Resources both in Australia and overseas. This expertise has been acquired principally through exploration and evaluation assignments at operating mines and exploration areas. This experience is more than adequate to qualify him as a Competent Person for the purpose of Mineral Resource Reporting as defined in the 2012 edition of the JORC Code. Mr Barrett consents to inclusion of the resource estimate and supporting information in the form and context in which they are presented in the announcement.

The information in this announcement that relates to Contingent Resources for the Julia Creek Oil Shale Deposit is based on and fairly represents information compiled by Mr Graham Pope, in accordance with Petroleum Resource Management System guidelines. Mr Pope has a BSc (Applied Geology) and MSc and is a Member of the Australian Institute of Geoscientists, Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Petroleum Exploration Society of Australia, he has more than 30 years' experience in the exploration, development, assessment and evaluation of oil shale deposits and is a qualified person as defined under the ASX Listing Rule 19.12. Mr Pope is an exploration consultant, Brisbane, Australia and is independent of QEM Ltd. Mr Pope consents to the inclusion in this announcement of the matters based on his information in the form and context in which is appears.

The estimates of Mineral Resources and Contingent Resources for the Julia Creek Project presented in this announcement have been carried out in accordance with the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (2012 Edition) and SPE Guidelines for Application of the Petroleum Resources Management System respectively.

QEM Limited Level 11, 216 St Georges Terrace Perth WA 6000 Australia John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Appendix A: JORC Code, 2012 Edition – Table 1

 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample Include reference to of any measurement tools or systems used. Aspects of the determination of any measurement tools or systems used. Aspects of the determination of any measurement tools or systems used. In cases where samples selected following the above assays: including representivity standard coring (4C) and sampling methods have been used. Modified Fischer Assay Inclustry standard work has been done this would be relatively simple (eg 'reverse circulation driling was used to obtain 1 m samples from which 3 key been used. Material to the Public Report. In cases where sure as where sure of the core by a trained geologist during was user of bottoin 1 m samples from which 3 key been used. Modified Fischer Assay Industry standard coring (4C) and sampling methods have been used. Sample (eg 'reverse circulation driling was user of bottoin 1 m samples from which 3 key been used. Modified Fischer Assay Industry standard coring (4C) and sampling more to ensure that samples do not cross unit boundaries and by recording and tracking core recoveries. During the 2018 and 2019 drilling campaign, usampling in order to ensure that samples for which 3 key was envinced for work has been done this would be relatively simple (eg 'reverse circulation driling was user of the core by a trained geologist during ampling in desting was carried out by QEM staff geologists. A similar procedure was followed for the samples form which 3 key and testing was carried out	Criteria	JORC Code Explanation	Details
 channels, random chips, or specific specialised industry standard described below: Testing took place on the Toolebuc Formation which is the target formation. Cored intersections of the target formation were sampled in 0.5 m sections except where samples were terminated against sharp contacts between sedimentary units. All samples were double bagged on site. Samples were assigned individual sample numbers and accompanied by a sample advice sheet. Half cores were delivered to ALS Coal Division laboratory in Townsville Queensland for weighing, rushing, splitting and testing. Sampling was including: Include reference to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of any measurement tools or systems used. Aspects of the determination to a site of 33 elements, the important ones from the projects prospective being Ca, Cu, Mo and V. Combined samples selected following the above assays: Modified Fischer Assay Industry standard work has been done this would be relatively simple (eg 'reverse circulation driling was used to obtain 1 m samples from which 33 kn were mutaction for any measurement industry standard Sample representivity was carried out by QEM staff geologists. A similar procedure was followed for 	Sampling		
 chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning. Include reference to measures taken to ensure stampleng. Include reference to measures taken to ensure sampleng. Include reference to measures taken to ensure sample advices for all samples vere delivered to ALS Coal Division laboratory in Townsville Queensland for weighing, crushing, splitting and testing. Sampling was extensive, with standard tests for all samples including: And contingent Resource Total Moisture; And contingent Resource Total Moisture; Include reference to measures taken to ensure sample Aspects of the appropriate calibration of any measurement tools or systems used. Aspects of the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which is the target formation. Cored intersections of the target formation were samples and tacking core recoveries. Volatile Altering was carried out by QEM staff geologists. A similar procedure was followed for 	techniques	sampling (eg cut	geologists during the 2015 drilling campaign is
 specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure stament tools or system used. Aspects of the appropriate calibration of mineralisation that are Material to the Public Report. In cases where Simple (eg 'reverse circulation drifting was used to obtain 1 m samples from which 33 kerner wintered to this would be relatively simple (eg 'reverse circulation drifting was used to obtain 1 m samples from which 33 kerner wintered to the public Report. In case where Simple (eg 'reverse circulation drifting was used to obtain 1 m samples from which 33 kerner wintered to the public Report. Material to the public Report. In cases where Simple (eg 'reverse circulation drifting was used to obtain 1 m samples from which 33 kerner wintered to this would be relatively simple (eg 'reverse circulation drifting was used to obtain 1 m samples from which 33 kerner wintered to this would be relatively simple (eg 'reverse circulation drifting was used to obtain 1 m samples from which 33 kerner wintered to the public Report. In case where Simple (eg 'reverse circulation drifting was us		channels, random	described below:
 standard measurement tools appropriate to the minerals under investigation, such as down hole gamma down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample Include reference to measures taken to ensure sample Ab Contingent Resource Total Moisture; Include reference to measures taken to ensure sample Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kereation were as a signed to obtain 1 m samples from which 3 		chips, or specific	Testing took place on the Toolebuc Formation which
 measurement tools appropriate to the minerals under investigation, such as sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kn In cases from which 3 kn In case from which 3 kn In the provent was followed for 		specialised industry	is the target formation. Cored intersections of the
 appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where Material to the Public Report. In cases where 'industry standard work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 keys and solve and the solve of the ware muteried for the solve of the solve of the work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 keys ensured to a similar procedure was followed for ware muteried to be availed to obtain 1 m samples from which 3 keys and the solve and the solve		standard	target formation were sampled in 0.5 m sections
 samples were double bagged on site. Samples were assigned individual sample numbers and accompanied by a sample advice sheet. samples were delivered to ALS Coal Division laboratory in Townsville Queensland for weighing, crushing, splitting and testing. Sampling was extensive, with standard tests for all samples including: Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 keys bean used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 keys bean used. Aspects of the determination of mineralisation that are Waterial to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 keys bean was multioned to be avail to obtain 1 m samples from which 3 keys bean was multioned to be avail to be a		measurement tools	except where samples were terminated against
 investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kapes from wh		appropriate to the	sharp contacts between sedimentary units. All
 down hole gamma scompanied by a sample advice sheet. accompanied by a sample advice sheet. Half cores were delivered to ALS Coal Division laboratory in Townsville Queensland for weighing, crushing, splitting and testing. Sampling was extensive, with standard tests for all samples including: Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kapes for w		minerals under	samples were double bagged on site. Samples were
 sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or system used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ko was rubusried is a single single (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 and contingent Resource Total Moisture; Ash Content; UcP-AES analysis. ICPAES analysis included a suite of 33 elements, the important ones from the projects prospective being Ca, Cu, Mo and V. 		investigation, such as	assigned individual sample numbers and
 XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 Iaboratory in Townsville Queensland for weighing, crushing, splitting and testing. Sampling was extensive, with standard tests for all samples including: And contingent Resource Total Moisture; Inherent Moisture; And contingent Resource Total Moisture; Inherent Moisture; Inherent Moisture; IcP-AES analysis. ICPAES analysis included a suite of 33 elements, the important ones from the projects prospective being Ca, Cu, Mo and V. Combined samples selected following the above assays: Modified Fischer Assay Sample representivity was ensured by careful observation of the core by a trained geologist during sampling in order to ensure that samples do not cross unit boundaries and by recording and tracking core recoveries. 		down hole gamma	accompanied by a sample advice sheet.
 These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 karman what for the source taken as a site of an and the source taken as a site of an and the source of the samples from the projects prospective being Ca, Cu, Mo and V. Combined samples selected following the above assays: Modified Fischer Assay Industry standard coring (4C) and sampling methods have been used. Sample representivity was ensured by careful observation of the core by a trained geologist during sampling in order to ensure that samples do not cross unit boundaries and by recording and tracking core recoveries. 		sondes, or handheld	Half cores were delivered to ALS Coal Division
 not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was ensured out procedure was followed for work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was ensured out procedure was followed for work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was ensured out procedure was followed for work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was ensured out by QEM staff geologists. A similar procedure was followed for 		XRF instruments, etc).	laboratory in Townsville Queensland for weighing,
 the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 In was converted to the work of the converted to obtain 1 m samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In was converted to the samples from which 3 In the samples from which 3<!--</td--><th></th><td>These examples should</td><td>crushing, splitting and testing. Sampling was</td>		These examples should	crushing, splitting and testing. Sampling was
 <i>sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3</i> <i>And contingent Resource Total Moisture;</i> And contingent Resource Total Moisture; And contingent Resource Total Moisture; <i>Inherent Moisture;</i> <i>Ash Content;</i> <i>Volatile Matter;</i> <i>ICP-AES analysis. ICPAES analysis included a suite of 33 elements, the important ones from the projects prospective being Ca, Cu, Mo and V.</i> Combined samples selected following the above assays: Modified Fischer Assay Industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 <i>Ra wae nulwarised to</i> 		not be taken as limiting	extensive, with standard tests for all samples
 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was environd to 3 Include reference to measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was environd to 3 In was environd to 3 In samples from which 3 In was environd to 3 In the project prospective being Ca, Cu, Mo and V. Combined samples selected following the above assays: Industry standard coring (4C) and sampling methods have been used. Sample representivity was ensured by careful observation of the core by a trained geologist during sampling in order to ensure that samples do not cross unit boundaries and by recording and tracking core recoveries. During the 2018 and 2019 drilling campaign, sampling and testing was carried out by QEM staff geologists. A similar procedure was followed for 		the broad meaning of	including:
 Measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was enlyweried to Ash Content; Volatile Matter; ICP-AES analysis. ICPAES analysis included a suite of 33 elements, the important ones from the projects prospective being Ca, Cu, Mo and V. Combined samples selected following the above assays: Modified Fischer Assay Industry standard coring (4C) and sampling methods have been used. Sample representivity was ensured by careful observation of the core by a trained geologist during sampling in order to ensure that samples do not cross unit boundaries and by recording and tracking core recoveries. During the 2018 and 2019 drilling campaign, sampling and testing was carried out by QEM staff geologists. A similar procedure was followed for 		. –	-
 ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka wea pulweried to appropriate calibration 			
 ICP-AES analysis. ICPAES analysis included a suite of 33 elements, the important ones from the projects prospective being Ca, Cu, Mo and V. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was pulvarised to ICP-AES analysis. ICPAES analysis included a suite of 33 elements, the important ones from the projects prospective being Ca, Cu, Mo and V. Combined samples selected following the above assays: Modified Fischer Assay Industry standard coring (4C) and sampling methods have been used. Sample representivity was ensured by careful observation of the core by a trained geologist during sampling in order to ensure that samples do not cross unit boundaries and by recording and tracking core recoveries. During the 2018 and 2019 drilling campaign, sampling and testing was carried out by QEM staff geologists. A similar procedure was followed for 		measures taken to	
 a suite of 33 elements, the important ones from the projects prospective being Ca, Cu, Mo and V. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was pulvarised to 		•	
 <i>appropriate cambration</i> <i>of any measurement</i> <i>of any measurement</i> <i>from the projects prospective being Ca, Cu,</i> <i>Mo and V.</i> <i>Aspects of the</i> <i>determination of</i> <i>mineralisation that are</i> <i>Material to the Public</i> <i>Report.</i> <i>In cases where</i> <i>industry standard</i> <i>work has been done</i> <i>this would be relatively</i> <i>simple (eg 'reverse</i> <i>circulation drilling was</i> <i>used to obtain 1 m</i> <i>samples from which 3</i> <i>ka was pulvaried to</i> 			
 Mo and V. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was pulvarised to 			from the music store are obtained by the form
 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was pulverised to 			
 determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was nulvarieed to Assays: Modified Fischer Assay Industry standard coring (4C) and sampling methods have been used. Sample representivity was ensured by careful observation of the core by a trained geologist during sampling in order to ensure that samples do not cross unit boundaries and by recording and tracking core recoveries. During the 2018 and 2019 drilling campaign, sampling and testing was carried out by QEM staff geologists. A similar procedure was followed for 		•	
 Modified Fischer Assay Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was pulverieed to Modified Fischer Assay Industry standard coring (4C) and sampling methods have been used. Sample representivity was ensured by careful observation of the core by a trained geologist during sampling in order to ensure that samples do not cross unit boundaries and by recording and tracking core recoveries. During the 2018 and 2019 drilling campaign, sampling and testing was carried out by QEM staff geologists. A similar procedure was followed for 		•	
 Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was pulverieed to Industry standard coring (4C) and sampling methods have been used. Sample representivity was ensured by careful observation of the core by a trained geologist during sampling in order to ensure that samples do not cross unit boundaries and by recording and tracking core recoveries. During the 2018 and 2019 drilling campaign, sampling and testing was carried out by QEM staff geologists. A similar procedure was followed for 			
 Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was pulveried to In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 			
 In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was pulverieed to Sample representivity was ensured by careful observation of the core by a trained geologist during sampling in order to ensure that samples do not cross unit boundaries and by recording and tracking core recoveries. During the 2018 and 2019 drilling campaign, sampling and testing was carried out by QEM staff geologists. A similar procedure was followed for 			
<i>industry standard'</i> <i>work has been done</i> <i>this would be relatively</i> <i>simple (eg 'reverse</i> <i>circulation drilling was</i> <i>used to obtain 1 m</i> <i>samples from which 3</i> <i>ka, was, pulverieed to</i>			
work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was pulverieed to book vation of the core by a trained geologist daming sampling in order to ensure that samples do not cross unit boundaries and by recording and tracking core recoveries. During the 2018 and 2019 drilling campaign, sampling and testing was carried out by QEM staff geologists. A similar procedure was followed for			
<i>this would be relatively</i> <i>simple (eg 'reverse</i> <i>circulation drilling was</i> <i>used to obtain 1 m</i> <i>samples from which 3</i> <i>ka, was, pulvaried, to ensure that sumples do not</i> <i>cross unit boundaries and by recording and tracking</i> <i>core recoveries.</i> <i>During the 2018 and 2019 drilling campaign,</i> <i>sampling and testing was carried out by QEM staff</i> <i>geologists. A similar procedure was followed for</i>		/	observation of the core by a trained geologist damig
simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 ka was pulverieed to			
<i>circulation drilling was</i> used to obtain 1 m samples from which 3 ka was pulvarieed to			cross and boundaries and by recording and tracking
used to obtain 1 m samples from which 3 ka was pulvericed to			
samples from which 3 kg was pulverieed to geologists. A similar procedure was followed for		5	
ka was pulverised to			
		kg was pulverised to	sampling and analysis, except that the stage 1
produce a 30 g charge analysis step was skipped, and the samples were		produce a 30 g charge	
for fire assay'). In combined into the relevant units (CQU, CQLA, CQLB,		for fire assay'). In	
other cases more OSU and OSL) prior to Provimate Analysis and ICP			
explanation may be			
required, such as			
where there is coarse		where there is coarse	

Section 1 - Sampling Techniques and Data

QEM Limited

Level 11, 216 St Georges Terrace Perth WA 6000 Australia

John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Criteria	JORC Code Explanation	Details
	gold that has inherent	Sampling and testing of the Oxton Downs drillholes;
	sampling problems.	OXT002C, OXT003C and OXT005C was conducted in
	Unusual commodities	1981 by Pacific Coal Pty Ltd is described below:
	or mineralisation types	In general, all of most of the Toolebuc Formation was
	(eg submarine	sampled as well as the top two meters of the
	nodules) may warrant	Wallumbilla Formation. Samples of the Allaru
	disclosure of detailed	Mudstone were also taken in the OXT005C drillhole.
	information.	All retrieved core was sampled (whole core) on site
		and packed into polythene bags.
		Sample divisions were based on lithological
		variations. Maximum sample length was limited to
		two meters. Samples from OXT002C and OXT003C
		were send to ACIRL Rockhampton to be Fischer
		assayed, while samples from OXT005C were sent to
		ACIRL at Dinmore.
		Sampling preparation and analysis carried out by CSR Ltd is described below:
		Where possible cores were sampled at regular two-
		metre intervals with sample lengths shortened
		locally to coincide with lithological contacts. Whole
		core samples were placed in polythene bags and sent
		to ALS in Brisbane, where the entire core sample
		crushed and processed. Left over sample not used in
		the Fischer Analysis was stored as a standard sample
		for control purposes.
		Check assays were carried out by Tosco Laboratories
		in the USA as well as ACIRL in Rockhampton. All
		three laboratories used the Modified Fischer Retort
		Method as outlined in Report R.1. 4477 of the United
		States Bureau of Mines.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast,	2015 drilling programme involved the drilling of 10 drillholes across the tenements. These varied in depth from 72 m (drillhole QEM002) to the deepest hole at 120 m (QEM004), drilled during August 2015.
	<i>auger, Bangka, sonic, etc)</i> <i>and details (eg core diameter, triple or standard tube, depth of</i>	drilling was completed by rotary core drilling, using 4C (100mm) core. The drill diameter for the chipped section of the hole was 124 mm where PCD bit was used for chipping.
	diamond tails, face-	018 QEM commissioned two 4C drill holes (100 mm)
ı	sampling bit or other type, whether core is oriented	core, with non-core sections drilled using 124 mm PCD bits for the dual purpose of infill drilling and to supply material for processing studies.
	and if so, by what method,	2019 QEM commissioned five 4C drill holes (100 mm)
	etc).	core, with non-core sections drilled using 124 mm PCD bits for the dual purpose of infill drilling and to supply material for processing studies.
		drill holes were geological logged on site, photographed, geophysically logged and surveyed. Cores were labelled and boxed before sending off to

QEM Limited

Level 11, 216 St Georges Terrace Perth WA 6000 Australia John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Criteria	JORC Code Explanation	Details
	•	the Laboratory for analysis. The total cumulative drilling was 536m for all seven holes.
		ling of the Oxton Downs holes commenced on 28th October 1981 and was completed on 18th November the same year.
		holes were drilled open to the top of the Toolebuc Formation using water injection or air circulation methods and then cored through the Toolebuc Formation. The weathered section of the Allaru Mudstone was cased off with 125mm diameter PVC. A total of 17 partly cored holes were drilled, all of which intersected the Toolebuc Formation.
		Prior to this drilling, CSR Ltd drilled 16 holes within the confines of the current project extent. Each borehole was drilled open through the Allaru Mudstone at 115mm diameter. A 65mm core was then obtained for the remainder of the hole through the Toolebuc Formation and into the Ranmoor shales.
Drill	• Method of recording	Core loss has been documented in the field during
sample	and assessing core and	logging and sampling of core.
recovery	chip sample recoveries	Calculations have been performed to accumulate
	and results assessed.	total core loss over the sampled interval. The core
	Measures taken to	recovery from the entire Julia Creek Project is
	maximise sample	>90%. Detailed records have been kept of core
	recovery and ensure representative nature	recoveries which have allowed for analysis of the influence of core recovery on quality during resource
	of the samples.	estimation.
	Whether a relationship	
	exists between sample	
	recovery and grade	
	and whether sample	
	bias may have	
	occurred due to	
	preferential loss/gain	
Logging	of fine/coarse material.Whether core and chip	Detailed logging of chips and core was conducted.
Logging	samples have been geologically and geotechnically logged	Chips and core photographs were taken as well. All cores were geologically logged, marked and photographed.
	to a level of detail to support appropriate Mineral Resource	Final drill logs include information on detailed lithological logging of the drill core, geophysical logging, core recoveries, quality and the initial
	estimation, mining studies and metallurgical studies.	interpretation in terms of stratigraphy. All drillhole logs were corrected to down hole geophysics. The detail contained in these logs is considered
	• Whether logging is qualitative or	sufficient for the purpose of resource estimation.
	quantitative in nature. Core (or costean,	

QEM Limited

John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Criteria	JORC Code Explanation	Details
	 channel, etc) photography. The total length and percentage of the relevant intersections logged. 	
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the material being sampled. 	No sub-sampling of the core has been carried out. All QEM core samples were double bagged on site and transported to the laboratories for testing. The labs, ALS and Mitra PTS, comply with Australian Standards for sample preparation and sub-sampling. All samples were subjected to a coarse crush and fine crush. The coarse crush size was -6mm for 70% of the sample. Samples were riffle split into 5 Kg portions. One 5 kg portion was stored and the other 5 Kg portion was subjected to fine crush. Fine crush was -2mm for 70% of the sample. The fine crushed 5 kg portion was split into 2.5 kg portions - one for the proximate analysis and the other for ICP-AES analysis. For the 2015 drilling programme, the proximate analysis was done at ALS Gladstone division and ICP-AES done at Townsville division. For the 2018 and 2019 drilling programmes, ICP-MS and ICP-AES were conducted by Bureau Veritas. For the 2015 drilling programme, following proximate analysis, Gladstone used remaining sample, combined by length density weighting into sedimentary units as instructed by contract geologists, for Modified Fischer Analysis (MFA). For the 2018 and 2019 drilling programmes, sample combination was not required before MFA testing, as original sampling was done to the lithological units. In each case of the CSR Ltd boreholes the entire core was collected for assay and sent to ALS in Brisbane. The entire core sample was: crushed in a 150 mm jaw crusher set at a nominal 50 mm opening subsampled by riffling air dried at 50 degrees centigrade reduced to minus 2 mm by further crushing in a 50 mm jaw crusher set at a nominal 6 mm opening riffled down further to about 500 gm sub-sample homogenised, rolled and dip samples to approximately 100 gm for Fischer Analysis

QEM Limited

Level 11, 216 St Georges Terrace Perth WA 6000 Australia John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Criteria	JORC Code Explanation	Details
		remainder of sample was stored as a standard sample.
		Check assays were carried out by Tosco Laboratories
		in the USA as well as ACIRL in Rockhampton. All three laboratories used the Modified Fischer Retort
		Method as outlined in Report R.1. 4477 of the United
		States Bureau of Mines.
Quality of assay data	• The nature, quality and appropriateness of the	ALS Minerals and Geochemistry Laboratory (ALS Townsville and ALS Gladstone laboratory in
and	assaying and	Queensland) and Mitra PTS adhere to internal QAQC
laboratory tests	laboratory procedures	and inter-laboratory QAQC checks. All
	used and whether the	determinations performed adhere to the American
	technique is	Society for Testing and Materials (ASTM) guidelines.
	considered partial or	ALS and Mitra PTS comply with ASTM standards for
	total.For geophysical tools,	all ore quality tests and are certified by the National Association of Testing Authorities Australia (NATA).
	spectrometers,	ALS laboratories and Mitra PTS are regularly
	handheld XRF	benchmarked by external auditors against the
	instruments, etc, the	highest professional laboratory standard – ISO
	parameters used in	17025.
	determining the	Accreditation to this standard provides assurance
	analysis including instrument make and	that the laboratory systems are robust and
	model, reading times,	maintained at world-class level. Weatherford Wireline Services and Borehole Wireline
	calibrations factors	Pty Ltd performed all downhole geophysical logging.
	applied and their	Down hole sample spacing for all tools is 1 cm.
	derivation, etc.	Density, gamma, calliper, sonic, verticality and
	• Nature of quality	resistivity tools were run.
	control procedures	Weatherford wire line services and Borehole Wireline
	adopted (eg standards,	Pty Ltd are ISO9001 certified and use numerous
	blanks, duplicates, external laboratory	Quality Control procedures, from the set-up and calibration of down hole tools to the final delivery of
	checks) and whether	
	acceptable levels of	
	accuracy (ie lack of	
	bias) and precision	
	have been established.	
Verification of sampling	• The verification of significant	Verification of assay data was performed by means
or sampling	intersections by either	histograms of sedimentary unit composites constructed to check for outliers.
	independent or	No outliers were found. Once imported into
	alternative company	MineScape gridded assay values were visually
	personnel.	inspected to check for anomalies.
	• The use of twinned	The first two 2015 holes drilled (QEM001 and
	holes.	QEM002) were drilled adjacent to old CSR holes
		(597.8_709.9 and 596_710). Intersection depths for

QEM Limited

Level 11, 216 St Georges Terrace Perth WA 6000 Australia John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Criteria	JORC Code Explanation	Details
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	the top of the Coquina agreed with CSR holes to within 1 m. Although, total thickness of the Toolebuc did differ by between 10% and 20%, when the CQU unit is discarded (as it is from the resource) the remaining thickness of the Toolebuc Formation matched the historical holes to within an acceptable margin. All results received from the laboratories were supplied in elemental format (ppm). As the Vanadium price is quoted according to the concentration of the oxide (V ₂ O ₅), assay data in V ppm was converted to wt% oxide prior to importing into the Geological database. The ppm value was firstly divided by 10 000 to convert to wt%. The wt% of the element (V) was then multiplied by 1.7852 to convert to wt% V ₂ O ₅ .
Location of data points	 Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	A differential GPS survey of all collars has been conducted upon completion of drilling by registered surveyors, M.H.Lodewyk Pty Ltd. The grid system used is MGA 94 Zone 54. Old drillhole coordinates are in AMG 84/66 Zone 54 and were transformed into MGA 94 Zone 54 prior to importing into the database. The topography surface was generated from SRTM Worldwide Elevation Data (3-arc-second or 90 m resolution). Although the absolute resolution of the elevation data is low, it is internally consistent, i.e. the degree of departure of elevation from the true elevation within a given area is consistent throughout the data set. This provides an opportunity to calibrate the SRTM data with the more accurate surveyed collar positions. It was noted that the SRTM data shows a consistent +4 m bias compared to the elevation of the surveyed collar position at the 17 drillhole locations. To correct for this bias the SRTM xyz data was adjusted by subtracting 4 m from each SRTM data point z coordinate.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient 	Data spacing is sufficient to establish continuity in both thickness and quality. Sedimentary unit composites of quality have been used in resource estimation.

QEM Limited

Level 11, 216 St Georges Terrace Perth WA 6000 Australia John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

0.11		Detail.
Criteria Orientation of data in relation to geological structure	 JORC Code Explanation to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported 	Details Composites used, therefore orientation of sampling not seen to introduce bias as all drilling is sub- vertical and sediments gently dipping. No bias introduced by orientation of drillholes – MineScape, the 3D modelling software used, takes into account the orientation of the layers in relation to the drilling and determines both true and vertical thickness.
Sample security	<i>if material.</i> • <i>The measures taken to ensure sample security.</i>	Sample security was ensured under a chain of custody between QEM and Contract personnel on site and the laboratories.
Audits or reviews	•The results of any audits or reviews of sampling techniques and data.	No audits of sampling etc. done however a comprehensive set of internal company procedures exist and have been adhered to.

QEM Limited Level 11, 216 St Georges Terrace Perth WA 6000 Australia John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Criteria	JORC Code Explanation	Details
Mineral	• Type, reference	Julia Creek Project covers EPM 25662, EPM 25681
tenement and	name/number,	EPM 26429 and EPM 27057. When combined,
land tenure		
status	location and ownership	these leases cover a total area 249.6 km ² . A digital
	including agreements	version of these concession boundaries were
	or material issues with	downloaded by Measured from the Queensland
	third parties such as	Government Department of Natural Resources and
	joint ventures,	Mines website.
	partnerships,	
	overriding royalties,	
	- , ,	
	native title interests,	
	historical sites,	
	wilderness or national	
	park and	
	environmental	
	settings.	
	,	
	tenure held at the time	
	of reporting along with	
	any known	
	impediments to	
	obtaining a licence to	
	operate in the area.	
Exploration	Acknowledgment and	In 1981 CSR Ltd. drilled a series of exploration
done by other	-	
parties	appraisal of	holes within the current QEM's Julia Creek project
P	exploration by other	for the measurement of oil yield and Vanadium
	parties.	content from the Toolebuc Formation. The
		drillholes reached a total depth of between 46m
		and 161m m, intersecting the Toolebuc Formation
		between 35 m to 142 m.
Geology	• Deposit type,	The Julia Creek Oil Shale deposit was deposited as
Geology		
	geological setting and	the basal layer to the Early Cretaceous Toolebuc
	style of mineralisation.	Formation. The Oil Shale is described as consisting
		of fine grained carbonate-clay-Oil Shale (Coxhell
		and Fehlberg, 2000). The top part of the Toolebuc
		Formation consists of coarse limestone rich clay-
		oil-shale termed as the Coquina Limestone
		(Coxhell and Fehlberg, 2000). The Toolebuc
		Formation forms part of the greater Eromanga
		Basin, which covers a wide structural depression
		within central and northern Queensland. Up to
		100m of Late Cretaceous age Allaru mudstones
		overlie the Coquina Limestone (also part of the
		Eromanga Basin). Weathered mudstones and
		topsoil overly the fresh Allaru mudstones.
		. ,

QEM Limited

Level 11, 216 St Georges Terrace Perth WA 6000 Australia John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Criteria	JORC Code Explanation	Details
		``
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	See appendix C.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate 	Sample results have been composited over full sedimentary unit thickness using length and density weighting. No metal equivalents have been used.

QEM Limited

John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Criteria	JORC Code Explanation	Details
	short lengths of high	
	grade results and	
	longer lengths of low	``,
	grade results, the	
	procedure used for	
	such aggregation	
	should be stated and	
	some typical examples	
	of such aggregations	
	should be shown in	
	detail.	
	• The assumptions used	
	for any reporting of	
	metal equivalent	
	values should be	
	clearly stated.	
Relationship	These relationships are	The orientation of drilling/sampling (sub-vertical)
between	particularly important	is not seen to introduce any bias as all drilling is
mineralisation widths and	in the reporting of	vertical and sediments mostly gently dipping.
intercept	Exploration Results.	
length	• If the geometry of the	
j	mineralisation with	
	respect to the drillhole	
	angle is known, its	
	nature should be	
	reported.	
	• If it is not known and	
	only the down hole	
	lengths are reported,	
	there should be a clear	
	statement to this	
	effect (eg 'down hole	
	length, true width not	
Diaman	known').	Con Figure 1
Diagrams	Appropriate maps and	See Figure 1
	sections (with scales)	
	and tabulations of	
	intercepts should be	
	included for any	
	significant discovery	
	being reported These	
	should include, but not	
	be limited to a plan	
	view of drillhole collar	
	locations and	
	locations and appropriate sectional	

QEM Limited

John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Criteria	JORC Code Explanation	Details
Balanced	Where comprehensive	All exploration results pertaining to holes drilled
reporting	reporting of all	during 2015, 2018 and 2019 drilling at Julia Creek
	Exploration Results is	Project have been fully documented in this report.
	not practicable,	Holes drilled previously have been reported in
	representative	QDEX reports by CSR Ltd.
	reporting of both low	
	and high grades	
	and/or widths should	
	be practiced to avoid	
	misleading reporting of	
	Exploration Results.	
Other	Other exploration	Lithological logging, sampling and assay testing of
substantive		
exploration	data, if meaningful and	the Toolebuc Formation, down hole geophysics
data	material, should be	where available in historic holes and for all QEM
	reported including (but	drilled holes.
	not limited to):	
	geological	
	observations;	
	geophysical survey	
	results; geochemical	
	survey results; bulk	
	samples – size and	
	method of treatment;	
	metallurgical test	
	results; bulk density,	
	groundwater,	
	geotechnical and rock	
	characteristics;	
	potential deleterious	
	or contaminating	
	substances.	
Further work	• The nature and scale	Additional detailed exploration work inclusive of
		additional drilling will be required to increase
	work (eg tests for	confidence in local estimates of tonnes and grade.
	lateral extensions or	Drilling will need to define the LOX line and drill the
	depth extensions or	oxidised material for testing. Updated Higher
	large-scale step-out	
	drilling).	resolution topography duta win be required.
	• Diagrams clearly	
	highlighting the areas	
	of possible extensions,	
	including the main	
	geological	
	interpretations and	
	future drilling areas,	
	provided this	
	information is not	

QEM Limited

John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Criteria	JORC Code Explanation	Details
	commercially	``
	sensitive.	

Section 3 - Estimation and Reporting of Mineral Resources

Criteria	JORC Code Explanation	Details
Database	Measures taken to	All data relevant to previous resource estimates
integrity	ensure that data has	was provided to Measured by QEM. This data was
	not been corrupted by,	provided in the form of Minescape tables and
	for example,	design files, plus a series of Excel spreadsheets,
	transcription or keying	las files etc.
	errors, between its	Measured Group have created a GDB database and
	initial collection and its	loaded all relevant data into that database. GDB is
	use for Mineral	a proprietary database platform, provided by ABB.
	Resource estimation	It includes a standard set of data validation checks
	purposes.	which are tested during the data loading process.
	Data validation	Any data which fails the validation checks cannot
	procedures used.	be loaded into the database.
		In addition to data used for previous resource
		estimates, a large amount of historical and
		regional data was also captured, loaded to the
		database, and validated in a similar manner.
		Having a reliable database as the central
		repository for all relevant drillhole data is a much
		more efficient and secure way to store and access
		relevant data.
Site visits	• Comment on any site	To date, no site visits have been conducted by the
	visits undertaken by	competent person. The competent person is
	the Competent Person	however very familiar with the regional geology,
	and the outcome of	having worked on many projects throughout North
	those visits.	and Central Queensland over the previous 20
	• If no site visits have	years.
	been undertaken	
	indicate why this is the	
	case.	
Geological	• Confidence in (or	The main data sources used in the estimate are
interpretation	conversely, the	the lithological logs, core photographs, down hole
	uncertainty of) the	geophysical logging, and assays for both base
	geological	metals, proximate analysis and oil yield.
	interpretation of the	Confidence in the sedimentary correlations is
	, mineral deposit.	considered high as they are based on downhole
	• Nature of the data	geophysics, assays and core photographs. A
	<u> </u>	, . ,

QEM Limited

John Foley Chairman Level 11, 216 St Georges Terrace Daniel Harris Non-Executive Director David Fitch Executive Director

Criteria	JORC Code Explanation	Details
Criteria	used and of any	secondary confirmation of the interpretation is the
	assumptions made.	gridded model itself which shows good continuity
	• The effect, if any, of	between data points. Therefore, the current
	alternative	drilling density is considered sufficient for seam
	interpretations on	thickness and quality and has been confirmed with
	Mineral Resource	geostatistics for the resource classifications
	estimation.	assigned. Closer spaced drilling will be required to
	• The use of geology in	upgrade the degree of resource confidence.
	guiding and controlling	
	Mineral Resource	
	estimation.	
	• The factors affecting	
	continuity both of	
	grade and geology.	
Dimensions	• The extent and	See Figure 1
	variability of the	Target for the Resource (Toolebuc Formation)
	Mineral Resource	extends across the entire project area. The project
	expressed as length	area is approximately 30km wide by 12km. Target
	(along strike or	horizon (Toolebuc) found at depths of between 35
	otherwise), plan	m and 140 m below surface. The Toolebuc
	width, and depth	Formation is centred around a regional basement
	below surface to the	high known as the St Elmo Structure.
	upper and lower limits	
	of the Mineral	
	Resource.	
Estimation	• The nature and	The FEM interpolator was used for surface
and modelling	appropriateness of the	elevation, thickness and trend. Ordinary Kriging
techniques	estimation	has been used for interpolation of V2O5 wt%.
	technique(s) applied	Linear interpolation (Inverse Distance power 1)
	and key assumptions,	was used for other grade parameters including oil
	including treatment of	grade parameters
	extreme grade values,	
	domaining,	Grid cell sizes of 20 m for the topographic model,
	interpolation	50 m for the structural model and 400 m for the
	parameters and	quality model were used.
	<i>.</i> <i>maximum distance of</i>	. ,
	extrapolation from	No assumptions have been made regarding
	data points. If a	correlation between grade variables or selective
	computer assisted	mining units in regard to modelling techniques,
	estimation method	however there is good evidence to suggest that
	was chosen include a	high V2O5 is related to high Oil content. Both
	description of	variables are related to organic matter.
	computer software	Visual validation of all model grids performed to
	and parameters used.	ensure extreme values have not influenced any of
	• The availability of	
	 The availability of check estimates, 	domain for each sedimentary unit in terms of unit
	previous estimates,	thickness and grade.
	previous estimates	

QEM Limited

Level 11, 216 St Georges Terrace Perth WA 6000 Australia John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Criteria	JORC Code Explanation Details
	and/or mine
	production records
	and whether the
	Mineral Resource
	estimate takes
	appropriate account of
	such data.
	• The assumptions
	made regarding
	, , ,
	products.
	• Estimation of
	deleterious elements
	or other non-grade
	variables of economic
	significance (eg
	sulphur for acid mine
	drainage
	characterisation).
	• In the case of block
	model interpolation,
	the block size in
	relation to the average
	sample spacing and
	the search employed.
	Any assumptions
	behind modelling of
	selective mining units.
	Any assumptions
	about correlation
	between variables.
	Description of how the
	geological
	interpretation was
	used to control the
	resource estimates.
	Discussion of basis for
	using or not using
	grade cutting or
	capping.
	• The process of
	validation, the
	checking process
	used, the comparison
	of model data to
	drillhole data, and use
	of reconciliation data if

QEM Limited

John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Critoria	10BC Code Explanation	Detaile
Criteria	JORC Code Explanation	Details
N4 - 1 - 1	available.	
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	All tonnages have been adjusted to insitu density, using the Preston Sanders method. 6% insitu moisture has been assumed, based on values for total moisture obtained from recent drilling, and documentation from historical reports (Coxhell and Fehlberg, 2000).
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	The Mineral Resources contained in this report are confined within the concession boundaries. No minimum thickness cut off was used for calculating resources. No oil yield cut-off was applied to the oil shale estimate. A cutoff of 0.2 V2O5 wt% was used for the Vanadium resource in the Oil Shale units, and a cutoff of 0.15 V2O5 wt% was used for the Coquina Units. The lower cutoff for the Coquina units is based on recent and historical processing studies, which show that the limestone portion of the Coquina units can be separated from the oil shale portion of the coquina units through the use of simple beneficiation techniques. This simple beneficiation can upgrade Vanadium grade up to 3.5 times.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not 	Open pit mining methods are envisaged. A high level pit optimisation study has been undertaken, based on production of a Vanadium product only. A sale price of \$8.50 USD/lb was assumed, which is considered to be sustainable (perhaps conservative), given the high price of Vanadium over the past 3 years. Mining, processing and transport costs and parameters were built into the optimisation using estimates based on current open cut operations in the region. The study resulted in a series of shells showing positive, break even and negative margins. The negative 15% margin shell was chosen as the limit defining "reasonable prospects of eventual economic extraction". This negative margin shell was chosen, as it represents the reasonable prospect that the sale price of Vanadium could eventually improve by 7.5% and/or the cost of mining could eventually decrease by 7.5%. Although not considered in the Pit Optimisation study, it is possible that additional by-products (other than V2O5) such as oil from oil shale, other

QEM Limited

Level 11, 216 St Georges Terrace Perth WA 6000 Australia John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Criteria	JORC Code Explanation Details	
Criteria Metallurgical factors or assumptions	JORC Code ExplanationDetails always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.base metals, and cement products could produced as part of the Vanadium process improduced as part of the basis for assumptions or predictions regarding 	sing, enue leted and d on the wave The shale is nent. d as dium ith a ganic 24% (first 46% pined into pined pined pined into pined pined into pined pined into pined pined into pined pined into pined pined into pined pined into pined pined into pined pined into pined pined into pined pined into pined pined into pined pined into pined pined into pined pined into pined pined into pined pined into into pined into pined into pined into pined into into into into into into into into

QEM Limited

Level 11, 216 St Georges Terrace Perth WA 6000 Australia

John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Criteria	JORC Code Explanation	Details
		 Petroteq: Extracted 65% of the oil and retained the all the metals in the residual material which is 20% of the mass. Optimisation works are still ongoing, looking at two stage processes, Upflow Classifier→Table or Upflow Classifier→Float Previously published work by CSR (CR24927) in 1973 indicated that hydrothermal leaching of Oil Shales at 340° C recovered about 12% of the Vanadium. Hydrothermal leaching at 300° C with additives sodium bicarbonate and sodium carbonate in concentrations equivalent to 5 lbs Na₂O per lb V₂O₅ showed extraction efficiencies up to 90%. CRA took up a large tenement position around Julia Creek between 1991 and 1993. CRA drilled an additional 5 holes, compiled a database and summary report on previous Oil Shale exploration (CR24927) and conducted several technical studies into potential beneficiation options for the Oil Shale deposit. CRA concluded that treating the Oil Shales for crude oil was at that stage not a viable option given that estimated best case costs of between AUD 42 – AUD 48 per barrel were around AUD 10 – AUD 16 above the then projected long term oil price at the time. Detailed metallurgical studies will be required to identify the optimum treatment methodology for the recovery of oil and Vanadium in addition to any other potential base metal biproducts (Cu, Mo, Ni and Zn).
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and 	Measured has not conducted any environmental assessment in the concession area.

QEM Limited

John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Criteria	JORC Code Explanation	Details
	processing operation.	,
	While at this stage the	
	determination of	``,
	potential	
	<i>.</i> <i>environmental</i>	
	impacts, particularly	
	for a greenfields	
	-	
	always be well	
	advanced, the status	
	of early consideration	
	of these potential	
	environmental impacts	
	should be reported.	
	Where these aspects	
	have not been	
	considered this should	
	be reported with an	
	explanation of the	
	environmental	
	assumptions made.	
Bulk density	Whether assumed or	All tonnages have been adjusted to insitu density.
built denotey	determined. If	6% insitu moisture has been assumed, based on
	assumed, the basis for	values for total moisture obtained from recent
		drilling, and documentation from historical reports
	determined, the	(Coxhell and Fehlberg, 2000). The Preston
	method used, whether	Sanders method has been used to convert air dried
	wet or dry, the	density to in-situ density.
	frequency of the	
	measurements, the	
	nature, size and	
	representativeness of	
	the samples.	
	• The bulk density for	
	bulk material must	
	have been measured	
	by methods that	
	adequately account for	
	void spaces (vugs,	
	porosity, etc),	
	moisture and	
	differences between	
	rock and alteration	
	zones within the	
	deposit.	
	Discuss assumptions for hulls density	
	for bulk density	

QEM Limited

John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Criteria	JORC Code Explanation	Details
	estimates used in the	· · · · · · · · · · · · · · · · · · ·
	evaluation process of	``
	the different materials.	
Classification	• The basis for the	Resource classification is based on an assessment
	classification of the	of the variability of critical variables (Vanadium
	Mineral Resources into	grade, oil grade and sedimentary unit thickness)
	varying confidence	through statistical analysis, geostatistical analysis
	categories.	and by an assessment of the degree of geological
	Whether appropriate	complexity (general dip and structure).
	account has been	The presence of assay results for Vanadium has
	taken of all relevant	been set as the minimum requirement for a point
	factors (ie relative	of observation.
	confidence in	Minimum spacing between points of observation
	tonnage/grade	has been set to 4000m for the inferred category,
	estimations, reliability	
		and 1200m for the indicated category, based on ranges derived from variography. No attempt has
		been made to classify the resource at measured
	continuity of geology	status, at this stage of the project. Further
	and metal values,	acquisition of data (infill drilling) will be required
	quality, quantity and	to obtain an upgrade in confidence of the
	distribution of the	Vanadium Resource.
	data).	
	• Whether the result	
	appropriately reflects	
	the Competent	
	Person's view of the	
	deposit.	
Audits or	• The results of any	No audits or reviews of this estimate have been
reviews	audits or reviews of	done to date.
	Mineral Resource	
	estimates.	
Discussion of	• Where appropriate a	The resource classification is considered to address
relative	statement of the	the level of confidence in thickness and base
accuracy/	relative accuracy and	metal/oil yield variability across the deposit on a
confidence	confidence level in the	global basis.
	Mineral Resource	Faults have been well defined in the indicated
	estimate using an	portion of the deposit through use of a number of
	approach or procedure	techniques, including Drilling, 2D Seismic and
	deemed appropriate	analysis of regional topography.
	by the Competent	
	Person. For example,	
	the application of	
	statistical or	
	geostatistical	
	procedures to quantify	
	the relative accuracy	
	of the resource within	

QEM Limited

John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

Criteria	JORC Code Explanation	Details
	stated confidence	
	limits, or, if such an	``,
	approach is not	``
	deemed appropriate, a	
	qualitative discussion	
	of the factors that	
	could affect the	
	relative accuracy and	
	confidence of the	
	estimate.	
	• The statement should	
	specify whether it	
	relates to global or	
	local estimates, and, if	
	local, state the	
	relevant tonnages,	
	which should be	
	relevant to technical	
	and economic	
	evaluation.	
	Documentation should	
	include assumptions	
	made and the	
	procedures used.	
	• These statements of	
	relative accuracy and	
	confidence of the	
	estimate should be	
	compared with	
	production data,	
	where	
	• available.	

QEM Limited Level 11, 216 St Georges Terrace Perth WA 6000 Australia John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

APPENDIX B: SPE-PRMS PETROLEUM RESOURCE ESTIMATE – JULIA CREEK

The SPE-PRMS estimate for the Julia Creek Oil Shale deposit was issued in September 2019. The underlying criteria and assumptions which underpin the estimate are set out in Appendix A and constraints listed below. The Contingent Resource upgrade has incorporated historic data from drill holes in the newly granted tenement EPM 27057 (ASX Release – 7 May 2019), in addition to the data from the recent 26km 2D seismic survey data completed in May 2019 (ASX Release - 7 May 2019), and seven recently cored holes by QEM (two holes in 2018 and five holes in 2019).

The Petroleum Resource estimate is based on the discovered Petroleum Initially in Place (PIIP); estimated using a stratigraphic grid model. The methodology used is a deterministic method. The estimate is based on the following constraints and data:

- Interpretation of intersected stratigraphy and assay data in 22 pre-collared cored drill holes drilled to a maximum depth of 151 metres below surface for an aggregate of 1,934 metres.
- The maximum depth for the estimate is 120 metres.
- Oil grade has been determined by modified Fischer Assay (ASTM D3940-90) on 114 core samples representing approximately 290.7m metres of cored material.
- No grade cut-off grade has been applied to the oil grade.
- The resource is contained within an elongate surface area of 139 square kilometres within Exploration Permits for Minerals 25622, 25681, 26429 and 27057.
- A recovery factor of 0.90 has been applied to the PIIP estimate based on published recovery data from a number of conventional retort technologies both operating and under development.
- The total estimate as at 30 September 2019 are entirely 3C resources. The exploration drilling spacing and composited stratigraphic intervals for sampling is not sufficient define 1C or 2C resources (Table 1). Accordingly no 1C or 2C resources are reported, future exploration may result in 1C and/or 2C estimates that being of higher confidence.

RESOURCES	Area Sq.Km	1C MMbls	2C MMbls	3C MMbls
EPM 25622	105.03	-	-	578
EPM 25681	6.41	-	-	29
EPM 26429	12.72	-	-	78
EPM 27057	15.3			96
TOTAL	139.46	-	-	783

Table 1 SPE-PRMS Contingent Petroleum Resource Estimate.

Contingent Resources are those quantities of petroleum estimated, as of the estimate date, to be potentially recoverable from known accumulations using established technology or technology under development. Commercial recovery of oil from Julia Creek shale has not been established and as such the contingent resources cannot be classified as petroleum reserves. At Julia Creek, resource

John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

development is considered unclarified or not viable based on the current immature state of knowledge of commercial recovery due to one or more of the following contingencies.

- Development requires the application and grant of a mining lease and environmental approvals from the Queensland Government based on a commercial mine and processing proposal; i.e. legal, environmental, social and governmental factors for development have not been either established or approved.
- A commercial mine and processing development has not at this time been assessed against any current and forecast economic conditions to support commercial viability. As such, no cut-off grade has been established for future commercial recovery.
- Commercial recovery is dependent on the suitability of Julia Creek oil shale to be processed in current retorting technology or technology under development.

<u>Note</u>: The Petroleum Resource found in the Julia Creek Project is unconventional as it is hosted as a solid hydrocarbon (kerogen) in the Toolebuc Formation oil shales. This type of Petroleum Resource is not evaluated in the same way as conventional oil and gas, and methods used to explore and estimate this style of Petroleum Resource are similar to that of a 'hard rock' Mineral Resource. Hence, the methodology for assessment and reporting the geology and exploration results of an oil shale unconventional Petroleum Resource is more akin to JORC Code, 2012, when compared to conventional oil and gas reporting.

Appendix C:				
Drill Hole			Elevation	Depth
Data Holename	Easting	Northing	(m)	(m)
589_717	588545.4263	7716840.79	129.49	88.68
590_708	590122.4028	7708175.864	130	129.7
591_717	591134.407	7716779.773	128.63	57.91
592_708	592122.3911	7708175.854	135	95.6
592_710	592122.3911	7710175.847	140	72.9
592_714	592120.3956	7714091.81	136.21	54.7
594_708	594122.3711	7708175.834	135	72.9
594_710	594121	7710175.827	140	56.4
594_712	594122.3794	7712175.81	144	46.6
594_714	594121	7714175	135.17	14
596_708	596122.3594	7708175.814	140	61.5
596_712	596122.3677	7712175.8	141	49.4
596_714	596200.3651	7714211.786	136.16	45
596_716	596066.3701	7716073.767	138.59	40.72
598_702	598122.3312	7702175.815	142	94

QEM Limited

Level 11, 216 St Georges Terrace Perth WA 6000 Australia John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director

598_712 598 598_714 598 598_716 598 600_716 609 609_708 609 613_702 613 615_705 61 BB131 585	122.3395 122.3477 122.3477 0122.336 122.2628 122.2229 122.2312 5122.203 422.4447 022.4821	7708175.804 7712175.79 7714175.783 7716175.776 7716175.776 7708175.724 7702175.706 7708175.694 7705175.675 7709575.899	142 141 142 142 143 143.5 150.3 147 146.5	91.9 52.4 50.6 45.8 59.7 86.7 94.8 84.7
598_714 598 598_716 598 600_716 609 609_708 609 613_702 613 613_708 613 615_705 61 BB131 585	122.3477 122.3477 0122.336 122.2628 122.229 122.2312 5122.203 422.4447	7714175.783 7716175.776 7716175.776 7708175.724 7702175.706 7708175.694 7705175.675	142 142 143 143.5 150.3 147	50.6 45.8 59.7 86.7 94.8 84.7
598_716 598 600_716 609 609_708 609 613_702 613 613_708 613 615_705 61 BB131 585	122.3477 0122.336 122.2628 122.2229 122.2312 5122.203 422.4447	7716175.776 7716175.776 7708175.724 7702175.706 7708175.694 7705175.675	142 143 143.5 150.3 147	45.8 59.7 86.7 94.8 84.7
600_716 60 609_708 609 613_702 613 613_708 613 615_705 61 BB131 585	0122.336 122.2628 122.2229 122.2312 5122.203 422.4447	7716175.776 7708175.724 7702175.706 7708175.694 7705175.675	143 143.5 150.3 147	59.7 86.7 94.8 84.7
609_708609613_702613613_708613615_70561BB131585	122.2628 122.2229 122.2312 5122.203 422.4447	7708175.724 7702175.706 7708175.694 7705175.675	143.5 150.3 147	86.7 94.8 84.7
613_702 613 613_708 613 615_705 61 BB131 585	122.2229 122.2312 5122.203 422.4447	7702175.706 7708175.694 7705175.675	150.3 147	94.8 84.7
613_708613615_70561BB131585	122.2312 5122.203 422.4447	7708175.694 7705175.675	147	84.7
615_705 61 BB131 585	5122.203 422.4447	7705175.675		
BB131 585	422.4447		146.5	
		7709575.899		133.7
BB137 579	022.4821		121.9	154.5
		7703175.962	138.7	183.5
BB138 585	572.4366	7703175.912	134.1	177.4
BB139 591	522.3905	7703695.866	128	141.4
BB144 578	812.4852	7697175.983	126.5	186.5
BB145 583	472.4509	7697175.943	137.2	209.4
BB146 591	522.3822	7697575.882	129.5	172.8
JCD006 585	072.4416	7697975.93	134	207.5
JCD009 586	872.4352	7705425.904	124	161.7
OXT002C 602	822.3141	7717275.742	148	106.66
OXT003C 601	422.3181	7711675.772	142	101.36
OXT005C 612	122.2494	7716175.696	142	166.59
QEM001 5	97885.22	7710104.42	139.33	90
QEM002 5	96122.23	7710174.63	139.89	72
QEM003 5	98926.75	7709002.55	140.14	79.15
QEM004 6	03710.49	7710765.38	151.03	120
QEM005 5	96976.27	7709123.7	141.42	79
QEM006 6	02341.49	7713669.43	148.52	114
QEM007 5	95976.84	7708972.07	140.55	78
QEM008 6	12012.51	7710771.56	143.1	96
QEM009 6	04630.41	7708033.64	150.73	108
QEM010 6	06710.69	7709818.82	144.48	102
QEM011 5	99744.72	7710909.29	139.72	90
QEM012	600902.2	7708493.37	146.4	108
QEM013 6	10783.17	7706998.07	148.22	96
QEM014 5	96978.19	7711082.97	136.28	66
QEM015	596986.8	7710142.57	138.47	75
QEM016	596993	7707990.01	140.77	75
	97941.96	7709036.66	141.59	84
WEN_1W 604	372.2937	7703375.761	147	104
WEN_2E 610	622.2396	7701575.718	152	104

QEM Limited

Level 11, 216 St Georges Terrace Perth WA 6000 Australia John Foley Chairman Daniel Harris Non-Executive Director David Fitch Executive Director