

25 October 2019

Highlights (All figures expressed in Australian dollars unless stated otherwise)

- Quarterly gold production of 87,633 oz (Jun 19: 90,966 oz).
- Pre-royalty cash cost (CC) for the quarter of \$914/oz and AISC of \$1,234/oz (Jun 19: CC \$949/oz and AISC \$1,189/oz).
- Full Year Guidance remains unchanged including production of 340,000-370,000 oz at an AISC range of \$1,125-\$1,195/oz.
- Cash flow from operations of \$82.5m for the September 2019 quarter (Jun 19: \$85.2m).
- Declared FY19 net profit of \$163.1m after tax in August 2019 with a further \$40.7m in fully franked dividends paid in September 2019.
- Cash and bullion of \$147.4m at the end of the quarter (Jun 19: \$205.3m), after payment of \$40.7m in dividends, \$20m to triple the Company's landholding in the Duketon Greenstone Belt, \$30.6m in capitalised mining costs, \$10.1m on exploration and feasibility projects, \$13.3m in income tax payments and \$5.7m on land acquisitions in NSW.
- A major lift in exploration driven growth potential resulting from the acquisition of a large strategic tenement holding in the Duketon Greenstone Belt for \$20m cash and up to \$5m in contingent payments.
- Good progress of underground mine development at Rosemont decline with first ore from development achieved.
- McPhillamys Development Application submitted along with the Environmental Impact Statement for appraisal and assessment by the Department of Planning, Industry and Environment in NSW.
- Garden Well underground target drilling continued to extend gold mineralisation at depth with exciting results including 11m @ 7.9 g/t and 3m @ 6.9 g/t gold. First stage modelling of mineralisation with potential for underground mining has been completed. A scoping study is underway examining underground mine design options.
- Significant drill intercepts at the Baneygo underground target supporting the view of potential underground resources. Results include 2m @ 18.9 g/t, 5m @ 5.6 g/t and 5m @ 9.8 g/t gold.
- High grade drill intercepts in shallow oxide material at Idaho show potential for further extension to open pit resources with 3m @ 16.8g/t and 15m @ 57.1 g/t gold.
- Early drill testing of the Gloster underground target continues to deliver high grade drill intercepts. Results included 4m @ 9 g/t and 1.48m @ 16.4 g/t gold.
- Release of the Company's inaugural Sustainability Report after quarter end.

Comment

Regis Resources Managing Director, Jim Beyer, said: "Another solid and reliable performance by the Regis Team delivering production of 87,633 ounces for the quarter. We also saw good progress on a number of our future growth related projects while continuing to pay a dividend".

The Company delivered a major milestone with the formal Development Application for McPhillamys submitted in July. The Rosemont underground decline is tracking well and reached first ore this quarter. Very strong exploration results continued to support the concept of underground potential at Baneygo and Garden Well and work continued on our broader greenfield exploration work across our Duketon tenements.

Our organic growth potential through exploration was given a major boost when the Company acquired a large strategic tenement holding across the Duketon Greenstone Belt. This acquisition tripled the Company's landholding and means that Regis now controls approximately 90% of the gold rights in the highly prospective belt.

It is also very pleasing to have released the Company's inaugural Sustainability Report after the end of the reporting quarter. This report forms a key part of demonstrating we operate responsibly and with transparency and that doing so is an important element of maintaining our social license to operate.

Looking forward we expect reliable performance from the existing Duketon Operations and a gradual introduction of new production coming from Rosemont Underground and new satellite pits. With this work and the Company's transformational McPhillamys Gold Project in New South Wales making steady progress, the outlook for our Company is very exciting".

The Duketon Gold Project, located in Western Australia, returned a solid performance in the September 2019 quarter with production of 87,633 ounces of gold (June 19: 90,966 ounces).

The cash cost before royalties for the quarter was \$914 per ounce (June 19: \$949 per ounce) and the AISC was \$1,234 per ounce (June 19: \$1,189 per ounce).

The decrease in cash cost has been driven by a greater proportion of costs associated with new satellite pits being classified as capital in the September quarter.

The marginal increase in AISC has largely been driven by:

- a temporary reduction in grade due to short term variations in the mine schedule; and
- the reduction in mill throughput impacted by an unplanned maintenance shutdown at Garden Well.

AISC* guidance for the year ending 30 June 2020 remains unchanged at \$1,125-\$1,195 per ounce.

*assumes a \$0.70 exchange rate, diesel prices as at 30 June 2019 and a \$1,750/oz gold price.

Operating results are summarised in Table 1 below.

	FY 20 September Quarter		FY19Q4	
	DNO	DSO	TOTAL	Total
Ore mined (Mbcm)	0.30	0.77	1.07	1.03
Waste mined (Mbcm)	1.77	5.24	7.01	7.46
Stripping ratio (w:o)	5.9	6.8	6.6	7.2
Ore mined (Mtonnes)	0.67	1.89	2.56	2.51
Ore milled (Mtonnes)	0.70	1.61	2.31	2.33
Head grade (g/t)	1.12	1.33	1.26	1.29
Recovery (%)	91.0%	94.6%	93.6%	94.3%
Gold production (ounces)	22,743	64,890	87,633	90,966
Cash cost (\$/oz)	1,035	871	914	949
Cash cost inc royalty (\$/oz)	1,128	955	1,000	1,041
All in Sustaining Cost (\$/oz) ¹	1,236	1,233	1,234	1,189

Table 1: Operating results for the September 2019 quarter

Duketon Northern Operations (DNO)

DNO produced 22,743 ounces of gold at an AISC of \$1,236 per ounce in the September 2019 quarter. Whilst DNO production for the quarter increased, the winding down of the growth capital phase and a subsequent transition to sustaining capital, has driven a small increase in AISC.


Duketon Southern Operations (DSO)

DSO produced 64,890 ounces of gold at an AISC of \$1,233 per ounce in the September 2019 quarter. Gold production at DSO was 8% lower than the previous quarter primarily as a result of lower throughput driven by an unplanned maintenance shutdown of the Garden Well mill for approximately 6 days.

ROSEMONT UNDERGROUND PROJECT

Rosemont underground mine development continues at pace with over 1,200 lineal metres of development for the quarter, approximately 550m of which was in the north and south declines.

As indicated in the last quarterly report, first ore development was expected this quarter. Actual development ore mined for this quarter was significantly above expectation at 10kt of ore, all of which has been hauled to the Rosemont run of mine stockpile for processing. The planned increased development rate for the mine requires a second development jumbo which has been mobilised and will be put into operation in the December quarter.

Figure 1: Underground mining progress showing decline advance (in red) for Sept quarter 2019.

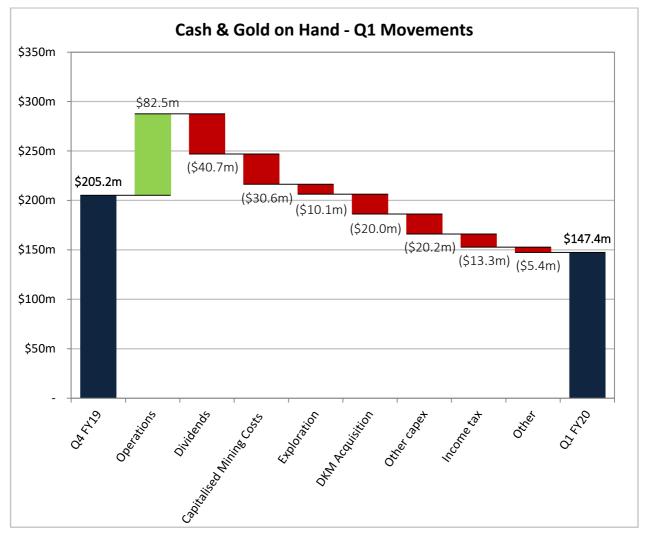
The first phase of stope definition diamond drilling was completed with drilling concentrated on the upper section of the South Zone. The drilling results are being evaluated and used for detailed ore development and stope design. First stoping ore is planned for the March 2020 quarter.

Diamond drilling is underway using available underground drill positions to further define the Central Zone.

CORPORATE

Financial Results and Dividend

In August 2019, Regis announced solid financial results for the 2019 financial year with a net profit after tax of \$163.1 million. Regis paid a fully franked final dividend of 8 cents per share (\$40.7 million) in September 2019 taking total FY2019 dividends to 16 cents per share (\$81.3 million). This is a record full year dividend payment and represents a payout ratio of 49.8% of net profit after tax for FY2019.


Cash Position and Gold Sales

The Duketon Gold Project generated operating cash flow of \$82.5 million in the September 2019 quarter a slight decrease from the \$85.2 million recorded in the previous quarter. During the quarter, Regis sold 71,702 ounces of gold at an average price of \$2,000 per ounce compared to 106,628 ounces at \$1,832 per ounce in the June 2019 quarter. Physical gold sales were lower than the previous quarter due to the timing of gold deliveries at the end of the month which resulted in a significant increase in gold on hand at the end of the September quarter. There was a total of 23,815 ounces of gold on hand at the end of the quarter which was subsequently sold in October 2019. The gold on hand at the end of June 2019 was 7,886 ounces.

At the end of the quarter Regis had \$147.4 million in cash and bullion, a decrease of \$57.9 million from the \$205.3 million held at 30 June 2019. This was after expenditure on the following significant items:

- \$40.7 million in fully franked dividends;
- \$20 million to triple the Company's landholding in the highly prospective Duketon Greenstone Belt;
- \$30.6 million on capitalised mining costs;
- \$10.1 million on exploration and feasibility projects;
- \$13.3 million on income tax payments;
- \$5.7 million on land acquisitions; and
- \$2.6 million on TSF development.

Graph 1 illustrates the movement in Regis' cash reserves over the quarter.

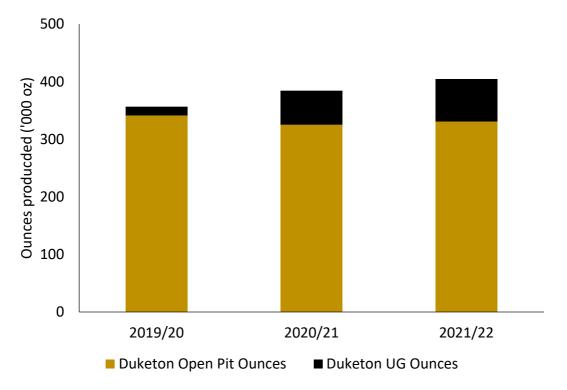
Graph 1: Waterfall graph illustrating key changes in cash and gold on hand in the September quarter

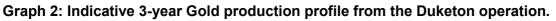
Hedging

The Company delivered gold into a combination of spot deferred contracts and at the prevailing spot price during the September 2019 quarter. The total hedging position at the end of the September quarter was 438,510 ounces, down from 451,514 ounces at the end of the June quarter with an increase in the average delivery price from \$1,611 per ounce at the end of June to \$1,615 per ounce at the end of the September quarter. These hedges are all on a spot deferred basis, meaning there is no fixed maturity date obligating a sale.

As previously noted Regis is undertaking a strategy to reduce the exposure to approximately 200,000 ounces of its lowest priced hedges. It is doing this by delivering into these hedges at a rate of at least 10,000 ounces per quarter. The Company plans to continue this approach for the near future. Factors that may drive a review of this approach include the prevailing AUD gold price, Company cash balances and potential upcoming capital requirements.

Board and Senior Management changes


As previously announced to the ASX (see release 31 July 2019), Mr Jon Latto was appointed Chief Financial Officer of the Company. Further to this, Mr Paul Thomas retired from the Board of the Company on 19 August 2019 and completed his tenure as Chief Operating Officer on 30 September 2019. (see release 19 August 2019)


MEDIUM TERM OUTLOOK

With the information provided by the 2019 Resource and Reserve update (see ASX release 19 July 2019) and the pending commencement of production from the Rosemont underground, the Company is confident in providing further insight into the outlook for production and costs over the coming years.

With the increase in high grade material from the Rosemont underground and currently planned open pits, gold production over the next 3 years is expected to lift, by approximately 10% above the current level to ~400,000 ounces by FY22 (Graph 2).

Beyond this timeframe the production profile will be impacted largely by the timing of McPhillamys, additional underground production for example Garden Well, exploration success, reserves depletion and business development initiatives.

The relevant proportions of Mineral Resources and Ore Reserves underpinning the production target in the preceding graph comprises 92% Ore Reserves and 8% Inferred Mineral Resources. The Inferred Mineral Resources within the production targets are wholly contained within the Rosemont Underground Resources. For the reasons set out in previous announcements to the ASX (see release 15 April 2019), the Board believes that it has reasonable grounds to include a component of Inferred Resources in the production targets contained in this announcement.

There is a low level of geological confidence associated with Inferred Mineral Resources and there is no certainty that further exploration work with result in the determination of Indicated Mineral Resources or that the production target itself with be realised.

The production targets are derived from the estimated Ore Reserves and/or Mineral Resources prepared by a Competent Person in accordance with the JORC Code 2012.

McPHILLAMYS GOLD PROJECT

The 100% Regis owned McPhillamys Gold Project, located in New South Wales, is one of Australia's largest undeveloped open pittable gold resources. The Project is located 250 kilometres west of Sydney in a well-established mining district. In July 2019 Regis announced an updated Ore Reserve of 60.8 Mt @ 1.04 g/t gold for 2.02 Moz (see ASX release 19 July 2019).

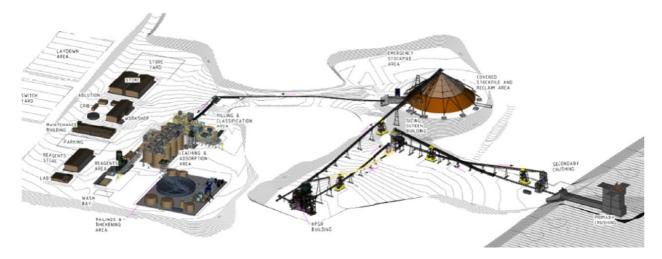


Figure 2: McPhillamys Gold Project current site layout.

Development Application (DA) and Environmental Impact Statement (EIS)

Regis submitted the McPhillamys DA along with the EIS for appraisal and assessment by the NSW Department of Planning, Industry and Environment (DPIE) in July 2019. The EIS was then reviewed by DPIE before being placed on public exhibition on 12 September 2019 for a period of 42 days during which time authorities, interest groups and the community are able to make submissions. This public exhibition period closed at midnight on 24 October 2019.

Regis continues to undertake its extensive community consultation through the Community Consultative Committee, direct community information sessions, meetings, distribution of community information sheets and a number of events in the local and wider community to ensure that stakeholders can understand the Project details, approvals process and outcomes relating to the Project's benefits and impacts.

Development Outlook

The Definitive Feasibility Study (DFS) is progressing and will be completed subsequent to the submission of the EIS as it needs to incorporate any additional requirements for Project development emanating from the DA process. The DFS will update and further refine the operating parameters, estimated capital and operating costs and a development timetable (subject to completion of permitting).

Regis continued to progress the water supply agreement and refine the pipeline route access to utilise recycled water from the Mt Piper Power Station and Centennial Mine near Lithgow.

An additional change in scope for the DFS is the consideration in the study of the potential Discovery Ridge satellite project (located 32 kilometres away from McPhillamys) where recent drilling confirmed the significant potential of this Project. Discovery Ridge continues to shape up as a very significant additional value proposition for the McPhillamys Project and work is currently underway on a maiden reserve estimate.

DUKETON EXPLORATION

The September quarter saw a key element in the renewed exploration driven growth strategy delivered with a major lift in exploration potential resulting from the acquisition by Regis that has significantly increased it's landholding to cover 90% of the Duketon Greenstone Belt (DGB). This has been delivered via the acquisition of Duketon Mining Ltd tenements on the 23rd August 2019. The previous tenement holding encompassed 194 granted exploration, prospecting and mining leases, across 991km² and 4 exploration licence applications over 227km². The new expanded holdings result in a contiguous tenement area over 3,265km². (Figure 3). Regis has commenced reviewing the extensive data package including advanced gold prospects and is undertaking a methodical but aggressive exploration program during the December quarter of regional surface sampling and will commence drill testing the best gold targets as soon as practical.

During the September 2019 quarter a total of 49,876 drill metres was completed. This work focused on drilling at depth for extensions to gold mineralisation beneath existing gold deposits at Garden Well South, Gloster, Moolart Well, Baneygo and also regional exploration drilling at Murphy Hills, Fisher Well, Matt's Bore, Little Well and other gold prospects shown in Figure 3.

Rosemont Deep Exploration. Drilling to test controls on Gold Mineralisation in the Quartz Dolerite 1km below surface.

The two dimensional (2D) high resolution seismic reflection survey completed at Rosemont in the December 2018 quarter produced exciting results. The seismic survey identified a strong, moderate east dipping reflector that intersects the interpreted depth extension of the mineralised quartz dolerite at approximately 1km below surface. The reflector is interpreted to be a low angle fault and potentially the feeder structure that provided a pathway for gold mineralising fluids at Rosemont.

The first of two diamond drill holes (RRLRMDD040) was completed to test the strong seismic reflector (Figure 4). The hole was completed at 1,741m and intersected a fractured zone with quartz veins and alteration at the predicted depth of the seismic reflector. A number of decimetre thick quartz dolerite units were intersected between 1,541m and 1,685m down hole. The diamond hole has been sampled and assay results are pending. A downhole seismic survey will be completed during the December 2019 quarter to correlate the geological sequence with the seismic response and confirm the location and nature of the strong seismic reflector.

The second diamond hole (RRLRMDD041) has been planned to test the geological sequence on the western side of the Rosemont gold deposit and the gold mineralised quartz dolerite above the intersection point of the seismic reflector (Figure 4). The target position is located 700m below surface and 600m below current mine development. This drill hole is expected to provide sufficient information to finalise a comprehensive 3D geological and gold mineralisation model for the Rosemont gold deposit.

These diamond holes are the deepest holes drilled in the Duketon Greenstone Belt, and contribute to the broader architectural model for the Duketon Greenstone Belt. The drilling is co-funded as part of the Western Australian State Government Exploration Incentive Scheme.

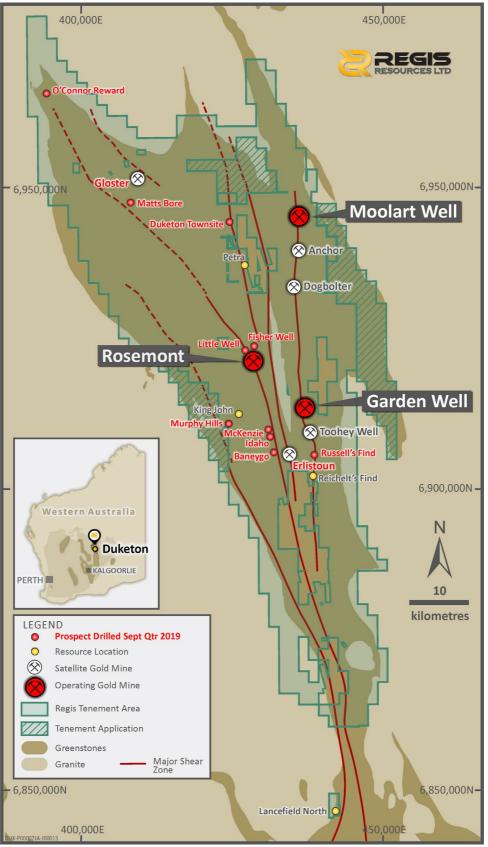


Figure 3: Satellite deposits and gold prospects of the Duketon tenement package. Prospects marked in red were drilled during the September 2019 quarter.

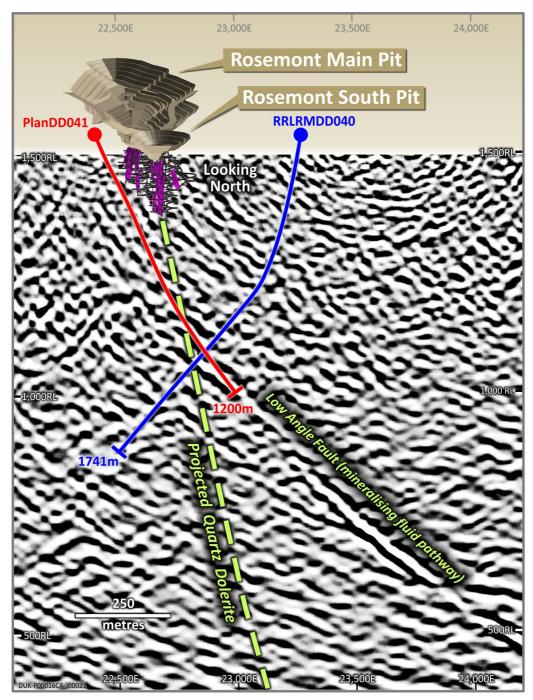


Figure 4: Seismic Section across Rosemont South shows the strong, moderate east dipping reflector and drill holes targeting the potential gold feeder structure and the quartz dolerite.

Garden Well. Deep diamond drilling confirms continuity of gold mineralisation over 600m strike beneath the pit.

Diamond drilling continued at the southern end of Garden Well open pit mine to test the down plunge continuity of high grade gold mineralisation at depth, on a spacing of 80m x 40m. Infill drilling was also carried out within the high grade shoot on a 40m x 20m spacing as required.

Drilling to date has identified a high grade gold shoot plunging moderately to the south, extending from the southern end of the open pit (Figure 5). The high grade gold shoot currently measures 4-10m true width across strike and 80-100m in height.

First stage modelling of Garden Well mineralisation with potential for underground mining has been completed. A Scoping Study is underway examining underground mine design options with results expected in the new calendar year.

The results of drilling this quarter has extended the length of the shoot to over 600m north-south along strike. The currently known zones of mineralisation sit between 100-500m below surface, dip to the east and are open at depth to the south (Figure 5).

A total of 12 diamond holes (RRLGDDD139-146) were completed including 4 parent-daughter wedged holes during the quarter for 4,908m along the southern high grade shoot. Assay results were received for RRLGDDD134-137, 139-142 and assay results for RRLGDDD142W-146 are pending.

Results continue to show significant widths and grades of gold mineralisation, demonstrating the potential for a maiden underground resource. Drilling will continue into the December quarter to test the extension of mineralisation at depth to the south and to infill existing drilling up plunge to the north to provide additional information for a maiden underground resource estimate.

Significant results from diamond drilling for the September 2019 quarter include:

- 1 metres @ 13.8 g/t gold from 369 m
- 1 metres @ 15.8 g/t gold from 396 m
- 7.82 metres @ 4.7 g/t gold from 400 m
- 7.25 metres @ 4.0 g/t gold from 443.75 m F
- 3 metres @ 4.3 g/t gold from 476 m
- 3.59 metres @ 3.8 g/t gold from 496.41 m
- 5.5 metres @ 4.3 g/t gold from 514.5 m
- 11 metres @ 7.9 g/t gold from 579 m
 Incl 4m @ 9.4 g/t gold from 580m
- 3 metres @ 6.9 g/t gold from 564 m
- 1.65 metres @ 6.1 g/t gold from 601.35 m

Hole azimuths and dips for all holes are in Appendix 2 to this report. All intercepts calculated using a 2.0 g/t gold lower cut, no upper cut, maximum 2m internal dilution. All diamond drill assays determined on half core (NQ2) samples by fire assay.

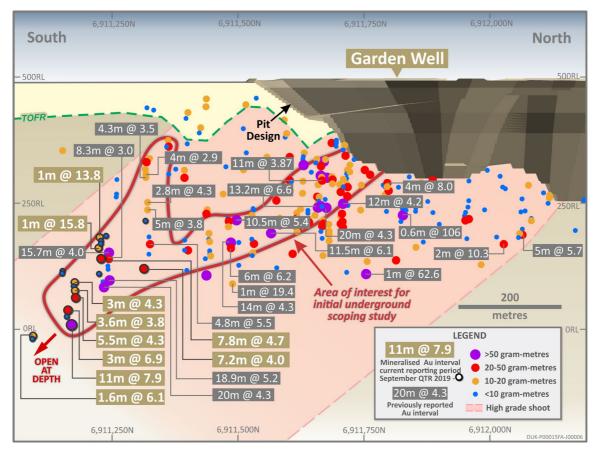


Figure 5: Garden Well long section looking west with high grade intercepts beneath South end of the current pit design.

Page 10

RRLGDDD140 RRLGDDD140 RRLGDDD140 RRLGDDD141

RRLGDDD141W1 RRLGDDD142

RRLGDDD134 RRLGDDD134 RRLGDDD135 RRLGDDD136

Moolart Well Gold Mine. Testing the gold mineralised system at depth.

Diamond drilling during the June 2019 quarter was undertaken to test the stratigraphy and gold mineralised structures beneath existing oxide pits. Previous exploration at Moolart Well targeted shallow oxide gold mineralisation suitable for open pit development while gold mineralisation in fresh rock remained largely untested. Five diamond holes RRLMWDD140-144 for 2,861m were drilled during the June 2019 quarter over a strike distance of 3.5km.

Very encouraging gold assay results have been received for the diamond hole drilled beneath the central laterite pit at the Moolart Well deposit, RRLMWDD141 intersected 1 metre @ 8 g/t gold from 281m. This hole is located 1.2km south along strike of RRLMWDD140 which reported last quarter 1m @ 11.4 g/t gold from 319m. This supports the view that there are gold mineralised structures in fresh rock at Moolart Well. The Moolart Well Gold deposit has economic gold oxide mineralisation over 4km strike and has only been well tested to 150m below surface. Detailed geological studies will continue in order to better understand controls on hypergene gold mineralisation and generate targets to test the potential for economic gold mineralisation in fresh rock.

Baneygo Area Project. Testing for additional oxide and underground resources.

The Baneygo Area Project (Baneygo) is located 15 km south and along strike of the Rosemont Gold Mine and the current Mineral Resource is 11.4 Mt @ 0.99 g/t gold for 363 koz, including Ore Reserves of 3.4 Mt @ 1.3 g/t gold for 142 koz (see ASX release 19 July 2019). Gold mineralisation at Baneygo extends over 5 strike kms and is hosted in quartz dolerite which has intruded a sequence of mafic-ultramafic-sedimentary units. The deposits are similar in style to the Rosemont Gold deposit, with gold mineralisation confined to the quartz dolerite.

Drilling during the September 2019 quarter targeted strike extensions to shallow oxide resources and multiple high grade gold shoots in fresh rock at Baneygo (Figure 6 and 7). At Baneygo Central high grade gold shoots beneath pit designs have been identified across 1km strike and are open down plunge. Drilling to date indicates the high grade shoots measure up to 7m true width across strike and 50m down dip.

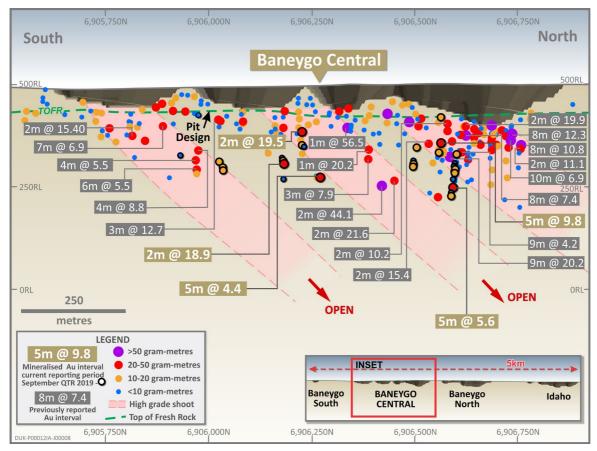
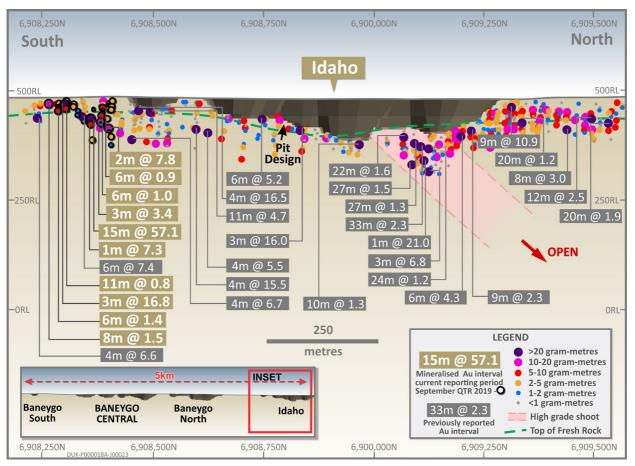


Figure 6: Long section looking west. Baneygo Central with significant intercepts beneath pit designs.


Drilling at Idaho tested the extension of gold mineralisation in shallow oxide material 250m south of the Idaho pit design.

Very encouraging results from the area tested at Baneygo include:

- 2 metres @ 18.9 g/t gold from 245 m
- 5 metres @ 4.4 g/t gold from 289 m
- 2 metres @ 19.5 g/t gold from 174 m
- 5 metres @ 5.6 g/t gold from 276 m
- 5 metres @ 9.8 g/t gold from 171 m
- 3 metres @ 16.8 g/t gold from 12 m
- 15 metres @ 57.1 g/t gold from 43 m
 Including 7 metres @ 121.6 g/t gold
- RRLBYRC632 RRLBYRC633 RRLBYRC662 RRLBYRC664 RRLIHRC253 RRLIHRC258

RRLBYRC631

Hole azimuths and dips for all holes are in Appendix 2 to this report. Baneygo intercepts calculated using a 2.0 g/t gold lower cut, no upper cut, maximum 2m internal dilution. Idaho intercepts calculated using a 0.5 g/t gold lower cut, no upper cut, maximum 2m internal dilution All assays determined on 1m split samples by fire assay.

Figure 7: Long section looking west. Idaho gold deposit with significant intercepts outside mine design.

Drilling beneath the final pit designs will continue at Baneygo in order to further assess the grade and thickness of multiple high grade shoots and their suitability for underground development. An early stage Scoping Study is proposed for completion in the March 20 quarter.

Gloster. Testing for underground resources.

The Gloster gold deposit is hosted in a package of intermediate volcanics and intrusives. Gold mineralisation is interpreted to be associated with low angle quartz veins, dipping moderately to the north east. The vein system is constrained to the southwest and northeast by two steeply dipping north-northwest trending shears. Previous drilling at Gloster was targeting shallow oxide gold mineralisation suitable for open pit development while gold mineralisation in fresh rock remains largely untested.

Exploration drilling continued beneath the open pit at Gloster to determine the extent of the gold mineralised system at depth in fresh rock and the potential for an underground resource. 19 RC holes were drilled for 4,860m to assess the grade of gold bearing guartz veins beneath the pit. Two diamond holes (RRLGDDD006 & RRLGDDD008) were drilled during the June 2019 to test the geological and mineralisation model. Visible gold was noted in diamond drill core 200m below the pit design and high grade confirmatory assay results are listed below:

- 1 metres @ 24.9 g/t gold from 234 m RRLGLDD006 •
- 1.48 metres @ 16.4 g/t gold from 363 m •
- RRLGLDD006

RRLGLDD008 (vis gold)

- 0.8 metres @ 37.0 g/t gold from 431.4 m •
 - RRLGLDD006 (vis gold) 0.62 metres @ 28.7 g/t gold from 440.3 m RRLGLDD006 (vis gold)
- 1.65 metres @ 19.8 g/t gold from 346.8 m •

Encouraging assay results for RC drilling are listed below and shown on Figure 8.

4 metres @ 5.3 g/t gold from 257 m

•

- 5 metres @ 5.7 g/t gold from 200 m •
- 4 metres @ 5.1 g/t gold from 256 m •
- 4 metres @ 9.0 g/t gold from 158 m •
- 2 metres @ 60.1 g/t gold from 179 m •
- 1 metres @ 38.4 g/t gold from 297 m •
- 4 metres @ 6.0 g/t gold from 340 m

Hole azimuths and dips for all holes are in Appendix 2 to this report. All intercepts calculated using a 2.0 g/t gold lower cut, no upper cut, maximum 2m internal dilution. All assays determined on 1m split samples by fire assay.

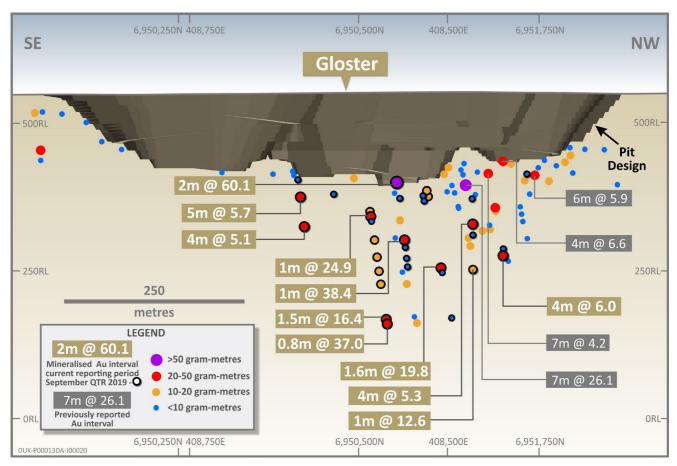


Figure 8: Long section looking south west. Gloster with significant intercepts beneath the pit design.

RRLGLRC436 RRLGLRC437 RRLGLRC437 RRLGLRC446 RRLGLRC446 RRLGLRC446 RRLGLRC447

Greenfields Exploration. Duketon belt scale strategy.

During the September 2019 quarter 347 AC or RC holes were drilled for 30,421m across high priority regional targets searching for new gold deposits. The majority of drilling was undertaken on the poorly explored western margin of the Duketon Greenstone Belt testing the western shear trend at the Murphy Hills prospect, and north along strike of Rosemont at Fisher Well and Matt's Bore prospects (Figure 3).

As part of Regis' growth strategy, exploration not only continues to test extensions to existing deposits but has commenced a belt scale campaign of collecting consistent baseline lithochemistry and building a geological and mineralisation model for the Duketon Greenstone Belt.

As part of this work, a significant surface lag sampling program has commenced on the newly acquired tenements, on a 400m x 100m grid. This data will then be merged with Regis' existing geochemical database to provide a continuum of surface geochemistry across the entire belt, that can be used for generating new gold drill targets. In addition, regional AC and RC drilling will continue in underexplored areas across the Duketon Greenstone Belt.

Drilling and sample details for all gold deposits and other gold prospects drilled during the September 2019 quarter are included in Appendix 1. Anomalous assays received for all gold deposits and other gold prospects drilled during the June 2019 and September 2019 quarters are included in Appendix 2.

COMPETENT PERSON STATEMENT

The information in this report that relates to exploration results is based on and fairly represents information and supporting documentation that has been compiled by Ms Tara French who is a member of the Australian Institute of Geoscientists. Ms French has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which she is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ms French is a full-time employee of Regis Resources Ltd and consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

The information in this report that relates to the Company's Resources and Ore Reserves (other than Rosemont Underground Resource and Ore Reserve) is extracted from the ASX announcement released on 19 July 2019 entitled "Mineral Resource and Ore Reserve Statement as at 31 March 2019". Competent Person's consent was obtained for the announcement.

The reports are available to view on the ASX website and on the Company's website at <u>www.regisresources.com.au</u>. The Company confirms it is not aware of any new information or data that materially affects the information included in the original market announcement, and, in the case of estimates of Mineral Resources and Ore Reserves, that all market assumptions and technical assumptions underpinning the estimates in the relevant market announcement continue to apply and have not materially changed.

The Competent Person's consents remain in place for subsequent releases by the Company of the same information in the same form and context, until the consent is withdrawn or replaced by a subsequent report and accompanying consent.

FORWARD LOOKING STATEMENTS

This ASX announcement may contain forward looking statements that are subject to risk factors associated with gold exploration, mining and production businesses. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially, including but not limited to price fluctuations, actual demand, currency fluctuations, drilling and production results, Reserve estimations, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory changes, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimates.

Forward-looking statements, including projections, forecasts and estimates, are provided as a general guide only and should not be relied on as an indication or guarantee of future performance and involve known and unknown risks, uncertainties and other factors, many of which are outside the control of Regis Resources Ltd. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward looking statements or other forecast.

CORPORATE DIRECTORY

Regis Resources Ltd (ACN 009 174 761)

Registered Office

Second Floor, 516 Hay Street Subiaco, WA Australia 6008 Tel +618 9442 2200

Website www.regisresources.com

enquiries@regisresources.com

Directors

Email

Mr Jim Beyer (Managing Director) Mr James Mactier (Non-Executive Chairman) Mr Ross Kestel (Non-Executive Director) Mrs Fiona Morgan (Non-Executive Director) Mr Steve Scudamore (Non-Executive Director)

Company Secretary

Mr Jon Latto

Share Registry

Computershare Ltd GPO Box D182 Perth WA 6840 Shareholder Enquiries: 1300 557 010 (local) +613 9415 4000 (international)

ASX Listed Securities (as at 30 September 2019)

Security	Code	No. Quoted
Ordinary Shares	RRL	508,180,460

REGIS

APPENDIX 1

JORC Code, 2012 Edition – Table 1 report template Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling Nature and quality of sampling (e.g. cut techniques channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Gold Projects Baneygo/Idaho/McKenzie The Baneygo gold deposit was sampled using Reverse Circulation (RC) drill holes on a nominal 40m north by 40m or 20m east grid spacings angled -48° to -80° to 074° and 254°. The mineralised quartz dolerite strikes 344° and is subvertical, therefore drilling was directed from the east or west where access could be gained around historical infrastructure such as pits and waste dumps. Garden Well The Garden Well gold deposit was sampled using PQ3 and NQ2 Diamond drill (DD) holes or Reverse Circulation (RC) drill holes on a nominal 20m or 40m east by 40m or 80m north grid spacing angled -60° towards 270° azimuth designed to drill perpendicular to the strike of mineralisation.	
		Gloster The Gloster gold deposit was sampled using Reverse Circulation (RC) drill holes. RC holes were drilled on a nominal spacing 30m to 80m apart along strike angled at -60° to -75° towards 246° azimuth designed to drill perpendicular to the strike of mineralisation.
		Moolart Well The Moolart Well gold deposit was sampled using Reverse Circulation (RC) drill holes. 16 Holes were drilled for additional metallurgical test work across new reserves estimated during the March Q. Drill holes were angled at -60° towards 270° azimuth designed to drill perpendicular to the strike of mineralisation. RRLMWRC1812 was drilled at -90° from in pit.
		Rosemont The Rosemont gold deposit was sampled using HQ and NQ diamond drill (DD) hole. One deep diamond hole was drilled to test a strong seismic reflector and the stratigraphic sequence, collared at -78° to 235°.
		Other Regional Prospects Duketon Townsite, Fisher Well, Little Well, Matts Bore, McKenzie, Murphy Hills, O'Connor Reward, Russells Find. The Regional Prospects were sampled using Air Core (AC) and Reverse Circulation (RC) drill holes on various grid spacings angled -60° towards varying azimuths designed to drill as close as possible to perpendicular to the strike of mineralisation.

Criteria	JORC Code explanation	Commentary
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	All Gold Projects AC, RC, DD Regis drill hole collar locations were picked up by an independent registered consulting surveyor or site-based authorised surveyors using Trimble RTK GPS. Downhole surveying was measured by using either a Reflex EZ-Shot Downhole Survey Instrument or North Seeking Gyro based tool where magnetic host rock would affect azimuth readings. The surveys were completed every 30m down each drill hole.
		Diamond drill core is aligned and measured by tape, comparing back to down hole core blocks consistent with industry practice.
		Regis drill hole sampling had certified standards and blanks inserted every 20 th sample (DD only) or every 25 th sample (RC and AC) to assess the accuracy and methodology of the external laboratories, and field duplicates (RC and AC only) were inserted every 20 th sample to assess the repeatability and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 15 th sample to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. Results of the QAQC sampling were considered acceptable.
		Regional Prospects AC Regis drill hole collar locations were picked up by handheld GPS. Hole azimuths were measured at the collar using a Suunto sighting compass.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would	All Gold Projects AC and RC Drilling For the Regis RC drilling, and AC drilling 1m samples were obtained by cone splitter (2.5kg – 3.0kg) and were utilised for lithology logging and assaying. The drilling samples were dried, crushed and pulverised to get 85% passing 75µm and were al Fire Assayed using a 50g charge.
	be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse	All Gold Projects DD Diamond drilling completed to industry standard using varying sample lengths (0.2 to 1.3m through the gold mineralized zones) based on geological intervals, which are then dried, crushed and pulverised to get 85% passing 75µm and were all Fire Assayed using a 50g charge (Bureau Veritas). Outside mineralized areas 1m samples to 4m composite samples were collected
	gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Regional Prospects AC For AC drilling 1m spear samples were composited to 4m intervals to obtain a 2.5kg – 3.0kg sample. The drilling samples were dried, crushed and pulverised to get 85% passing 75µm and were all Fire Assayed using a 50g charge (Bureau Veritas). Anomalous results from 4m AC drill composites were spear sampled at 1m intervals. These drill samples were dried, crushed and pulverised to get 85% passing 75µm and were all Fire Assayed using a 50g charge.

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of	All Gold Projects/Prospects RC and AC drilling RC drilling completed with a 139mm or 143mm diameter face sampling hammer. AC drilling was completed with an 89mm diameter AC blade bit.
	diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	All Gold Projects DD Surface diamond drilling carried out by using PQ3, or HQ3 (triple tube) and HQ2, NQ, or NQ2 (standard tube) techniques. Core is routinely orientated by REFLEX ACT III tool.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	All Gold Projects/Prospects RC and AC drilling RC and AC recovery was visually assessed, with recovery being excellent except in some wet intervals which are recorded on logs. 2.1% AC, 0% RC within the mineralised zones (>0.5g/t) have been recorded as wet.
		All Gold Projects DD DD core was measured and compared to the drilled intervals, and recorded as a percentage recovery. Average recovery of 96% was recorded through the mineralised zones (>0.5g/t).
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	All Gold Projects/Prospects RC and AC drilling AC and RC samples were visually checked for recovery, moisture and contamination. The drilling contractor utilised a cone splitter to provide uniform sample size, and these were cleaned routinely (cleaned at the end of each rod and more frequently in wet conditions). A booster was also used in conjunction with the RC drill rig to ensure dry samples are achieved.
		All Gold Projects DD The target mineralised zones are located in competent fresh rock, where the DD method provided high recovery.
	Whether a relationship exists between	All Gold Projects/Prospects RC and AC drilling
	sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse	Sample recoveries for RC and AC drilling are visually estimated to be medium to high. No significant bias is expected in the mineralised zone, although no recovery and grade correlation study was completed.
	material.	All Gold Projects DD The DD drill sample recovery in the transitional and fresh rock zones is very high, and no significant bias is expected. Recoveries in the oxidised rock were lower.

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All Gold Projects/Prospects RC and AC drilling Lithology, alteration, veining, mineralisation and, on some holes, magnetic susceptibility were logged from the RC and AC chips and saved in the database. Chips from every interval are also placed in chip trays and stored in a designated building at site for future reference.
		All Gold Projects DD Lithology, alteration, veining, mineralisation and geotechnical information were logged from the DD core and saved in the database. Half cores from every interval are also retained in the core trays and stored in a designated building at site for future reference.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	All logging is qualitative except for magnetic susceptibility and geotechnical measurements. Wet and dry photographs were completed on the core.
	The total length and percentage of the relevant intersections logged.	All drill holes are logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Rosemont Gold Project DD Core within the gold mineralised zone was half cut with an almonte diamond core saw with the same half always sampled and the surplus retained in the core trays. Core outside the gold mineralised zone in weathered material was chip sample composited to 4m samples, in fresh rock 25cm half core samples were collected each metre and composited to represent 4m samples.
		All Other Gold Projects DD Core was half cut with an almonte diamond core saw with the same half always sampled and the surplus retained in the core trays.
	<i>If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.</i>	All Gold Projects/Prospects RC and AC drilling RC and AC drilling utilised a cyclone and cone splitter to consistently produce 0.5kg to 3.0kg dry samples.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples are dried, crushed to 10mm, and then pulverised to 85% passing 75 μ m. This is considered acceptable.

Criteria	JORC Code explanation	Commentary
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	-
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	 Regional Prospects AC Field duplicates were taken at the rig from a second chute on the cone splitter allowing for the duplicate and main sample to be the same size and sampling technique. Field duplicates are taken every 50th sample. Laboratory duplicates (sample preparation split) were also completed roughly every 15th sample. All Gold Projects DD Field duplicates on diamond core, i.e. other half of cut core, have not been routinely assayed.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes (1.0kg to 3kg) are considered to be a sufficient size to accurately represent the gold mineralisation based on the mineralisation style (hypogene associated with shearing, and supergene enrichment), the width and continuity of the intersections, the sampling methodology, the coarse gold variability and the assay ranges for the gold.
		Field duplicates have routinely been collected to ensure monitoring of the sub-sampling quality. Acceptable precision and accuracy are noted in the field duplicates albeit the precision is marginally acceptable and consistent with coarse gold deposits.
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is	All Gold Projects AC and RC All gold assaying was completed by external commercial laboratories (Bureau Veritas) using a 50g charge for fire assay analysis with AAS finish. This technique is industry standard for gold and considered appropriate.
tests	considered partial or total.	All Gold Projects DD All gold assaying was completed by commercial laboratories (Bureau Veritas) using a 50g charge for fire assay analysis with AAS finish. This technique is industry standard for gold and considered appropriate.
		Regional Prospects AC All gold assaying was completed by commercial laboratories (Bureau Veritas) using a 50g charge for fire assay analysis for 4m composite AC samples. 1m AC re-samples are assayed by a commercial laboratory (Bureau Veritas) using a 50g charge for fire assay analysis with AAS finish.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc	Apart from magnetic susceptibility in targeted zones, no other geophysical measurements were routinely made.

Criteria	JORC Code explanation	Commentary
	adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been	All Gold Projects AC and RC
		Certified Reference Material (CRM or standards) and blanks were inserted every 25th sample to assess the assaying accuracy of the external laboratories. Field duplicates (RC, AC) were inserted every 20th sample to assess the repeatability from the field and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 15th sample to assess the precision of assaying.
	cotabilitical	All Gold Projects DD
		Certified Reference Material (CRM or standards) and blanks were inserted every 20 th and 25 th sample to assess the assaying accuracy of the external laboratories. Field duplicates on diamond core, i.e. other half of cut core, have not been routinely assayed. Laboratory duplicates were also completed approximately every 15th sample to assess the precision of assaying.
		Regional Prospects AC and RC Certified Reference Material (CRM or standards) and blanks were inserted every 50 th sample (samples ending in 25 and 75) to assess the assaying accuracy of the external laboratories. Field duplicates were taken every 50 th sample (samples ending in 00 and 50) to assess the repeatability from the field and variability of the gold mineralisation. Laboratory duplicates (sample preparation split) were also completed roughly every 15th sample.
		All Sample Results
		Evaluation of both the Regis submitted standards, and the internal laboratory quality control data, indicates assaying to be accurate and without significant drift for significant time periods. Excluding obvious errors, the vast majority of the CRM assaying report shows no consistent positive or negative overall mean bias. Duplicate assays show high levels of correlation and no apparent bias between the duplicate pairs. Field duplicate samples show marginally acceptable levels of correlation and no relative bias.
		Results of the QAQC sampling were considered acceptable for the gold deposits and regional prospects. Substantial focus has been given to ensuring sampling procedures met industry best practise to ensure acceptable levels of accuracy and precision were achieved in a coarse gold environment.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	No independent personnel have visually inspected the significant intersections in RC chips or diamond drill core. Numerous highly qualified and experienced company personnel from exploration and mine production positions have visually inspected the significant intersections in AC chips, RC chips and diamond drill core.
	The use of twinned holes.	No twinning of holes was completed in the current quarter.
		Several DD holes were drilled at Garden Well in close proximity to RC holes.
		In all cases gold grades and widths of mineralisation were considered comparable between drill sample types.

Criteria	JORC Code explanation	Commentary
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All geological and field data is entered into Logchief commercial software only allowing data to be entered using the Regis geological code system and sample protocol. Logchief data is validated and uploaded directly to the Datashed database.
	Discuss any adjustment to assay data.	For the purpose of resource estimation any samples not assayed (i.e. destroyed in processing, listed not received) have had the assay value converted to a -9 in the database. Any samples assayed below detection limit (0.01 ppm Au) have been converted to 0.005 ppm (half detection limit) in the database.
Location of	Accuracy and quality of surveys used to	All Gold Projects
data points	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource	Regis drill hole collar locations were picked up by site-based authorized surveyors, or using Trimble RTK GPS, calibrated to a base station (expected accuracy of 20mm).
	estimation.	Downhole surveying was measured by using either a Reflex EZ-Shot Downhole Survey Instrument or North Seeking Gyro based tool where magnetic host rock would affect azimuth readings
		The surveys were completed every 30m down each drill hole.
		Regional Prospects
		Regis drill hole collar locations were picked up by handheld GPS. Hole azimuths were measured at the collar using a Suunto sighting compass.
	Specification of the grid system used.	All Gold Projects
		The grid system is AMG Zone 51 (AGD 84) for surveying pickups. Modelling at the Rosemont, Baneygo and Gloster Area is completed using a local grid, with conversion of digital data from AMG to local completed using macros.
		Regional Prospects
		The grid system set in the handheld GPS unit is AMG Zone 51 (AGD 84). Hole azimuths were measured at the collar using a Suunto sighting compass.
		All location data is reported in accordance with DMP reporting guidelines in MGA Zone 51 (GDA 94). Grid conversions are performed in RRLs Datashed database.
	Quality and adequacy of topographic control.	The topographic surface for all projects were derived from a combination of the primary drill hole pickups and the pre-existing photogrammetric contouring.

Criteria	JORC Code explanation	Commentary
Data spacing	Data spacing for reporting of Exploration	All Gold Projects
and distribution	Results.	Baneygo/Idaho/McKenzie The Baneygo gold deposit was sampled on a nominal 40m north by 40m or 20m east grid spacings.
		Garden Well The Garden Well gold deposit was sampled on a nominal 20m or 40m east by 40m or 80m north grid spacing.
		Gloster The Gloster gold deposit was sampled on a nominal spacing 30m to 80m apart along strike
		Regional Prospects
		Regional Prospects are generally drilled on a broad line spacing 320m to 160m with drill holes spacing from 80m to 20m depending on the style of mineralisation and width of target.
	Whether the data spacing and distribution	All Gold Projects
	is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The planned data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised domains to support the definition of Inferred and Indicated Mineral Resources under the 2012 JORC code once all other modifying factors have been addressed.
	Whether sample compositing has been applied.	All Gold Projects No sample compositing has been applied in the field within the mineralised zones.
		Regional Prospects
		All first pass AC drill samples were collected at 1m samples and composited to 4m intervals.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling on all projects is orientated to best suit the mineralisation to be closely perpendicular to both the strike and dip of the mineralisation. Intercepts are close to true-width in most cases. In the case of the Baneygo Area drill programs, the orientation of mineralisation is sub vertical, as such the current drilling is designed to assist in refining ore geometry and therefore a more accurate estimate of true thickness. Drill orientation at the Baneygo Area was adjusted as required to facilitate drilling around historical mine site infrastructure, and in some instances drill holes are at a high angle to the dip of mineralisation.

Criteria	JORC Code explanation	Commentary
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	It is not believed that drilling orientation has introduced a sampling bias.
Sample security	The measures taken to ensure sample security.	Samples are securely sealed and stored onsite, until delivery to Perth laboratories via contract freight Transport. Chain of custody consignment notes and sample submission forms are sent with the samples. Sample submission forms are also emailed to the laboratory and are used to keep track of the sample batches.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No external audits on sampling techniques and data have been completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Section 2 contains relevant data on projects and prospects discussed in the main body text of the September 2019 Quarterly Report, or those included in Appendix 2 and considered to be material.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Baneygo Area M38/344 – Reg Holders, Regis Resources Ltd & Duketon Resources Pty Ltd; Area 980.45ha; granted 23 April 1993; 2% Franco Nevada Royalty; no Native Title claims Garden Well The Garden Well gold deposit is located on M38/1249, M38/1250, M38/283. Current registered holders of the tenements are: M38/1249 Regis Resources Ltd; M38/1250 and M38/283 Regis Resources Ltd and Duketon resources Pty Ltd (100% subsidiary of Regis Resources Ltd); 2% Royalty to Franco Nevada. Area = 2,739 ha. Normal Western Australian state royalties apply. There are no registered Native Title Claims. Gloster The Gloster prospect is located on M38/1268. Current registered holders are M38/1268 – Regis Resources Ltd; 2% Royalty to William Robert Richmond. Normal Western Australian state royalties apply. There are no registered native title claims Moolart Well The Moolart Well Gold deposit is located on M38/498, M38/499, and M38/500. Current registered holders of the tenements are Regis Resources Ltd and Duketon Resources Pty Ltd (100% subsidiary of Regis Resources Ltd); Area = 2,267 ha. Normal Western Australian state royalties apply plus a 2% Royalty to Franco Nevada. There are no registered holders of the tenements are Regis Resources Ltd and Duketon Resources Pty Ltd (100% subsidiary of Regis Resources Ltd); Area = 2,267 ha. Normal Western Australian state royalties apply plus a 2% Royalty to Franco Nevada. There are no registered holders.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Baneygo Area Shallow drilling (less than 100m vertical depth) was completed by Aurora, Ashton and Johnsons Well Mining in the 1990's. Garden Well Minor amounts of drilling was completed by Ashton and Johnsons Well Mining although it was mainly shallow and not extensive enough to properly define the mineralisation.
		Gloster Gloster was discovered in 1902, with no modern exploration work completed until Hillmin Gold Mines Pty Ltd and Aurotech NL conducted mapping, RC drilling, DD and RAB in the mid 1980's, culminating in Resource Estimates and feasibility studies.

Criteria	JORC Code explanation	Commentary
		Leader Resources NL, Maiden Gold NL and Johnsons Well Mining conducted RC, DD and RAB drilling in the 1990s to infill and extend the resource.
		Moolart Well Discovery drill holes by Normandy in the early 2000s, Resource development drilling conducted by Newmont in early 2000s.
Geology	Deposit type, geological setting and style of mineralisation.	Baneygo Area Gold is hosted in a steeply east dipping 345° trending quartz-dolerite unit intruding an ultramafic sequence. Gold mineralisation is associated with quartz-albite-sericite-carbonate-sulphide alteration and is restricted to the quartz dolerite unit which is generally ≈ 80m wide. Weathering depths vary from 20m to 80m vertical depth.
		Garden Well Gold is hosted in a moderate east to steeply dipping shear zone trending N-S. Gold mineralisation within ultramafic is associated with quartz, fuchsite, sericite, carbonate, sulphides. Gold mineralisation within chert, shale and BIF is associated with brecciated zones including elevated sulphides and quartz veins.
		Moolart Well Primary gold mineralisation at Moolart Well is associated with moderately east dipping N-S trending shear zones. The shear zones are closely related to diorite intrusives and rheology contrasts between units within the mine sequence of basalts/sediments, ultramafics, and dolerite sills.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Refer to body of announcement and Appendix 2.
	easting and northing of the drill hole collar	
	elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
	dip and azimuth of the hole	
	down hole length and interception depth	
	hole length.	

Criteria	JORC Code explanation	Commentary
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	 Baneygo, Garden Well, Gloster Reported intercepts include a minimum of 2.0 g/t Au value over a minimum distance of 0.1m with a maximum 2m consecutive internal waste. No upper cuts have been applied. All other Gold Projects and Prospects reported intercepts include a minimum of 0.5 g/t Au value over a minimum distance of 1m with a maximum 2m consecutive internal waste. No upper cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Appendix 2 All assay results above 1 g/t gold are reported.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results.	344° and is subvertical. Some intercepts reported are close to true width, steep angled holes are not true width where the
widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	mineralisation is sub vertical Garden Well The Garden Well gold deposit was drilled at -60° dip towards 270° designed to drill perpendicular to the strike of
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g.	mineralisation. The mineralised zone is moderately east dipping, and the intercepts reported are close to true width.
		The Gloster gold deposit was drilled at -60° to 75° towards 246° designed to drill perpendicular to the strike of mineralisation. The mineralised zone is moderately north-east dipping. The intercepts reported are close to true width.

Criteria	JORC Code explanation	Commentary
		Moolart Well The Moolart Well gold deposit was drilled at -60° towards 270° and designed to drill perpendicular to the strike of mineralisation. The mineralized zone is moderately east dipping. The intercepts reported are close to true width. RRLMWRC1812 was drilled at -90° from in pit, as such mineralised widths will be reported slightly greater than true width. Regional Prospects The Regional Prospects were drilled at -60° towards varying azimuths designed to drill as close as possible to perpendicular to the strike of mineralisation.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to the body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	A list of all holes drilled during the quarter attached in Appendix 2 . All assay results above 1 g/t have been reported. Assay results below 1 g/t are not considered material and are reported as such.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other material exploration data to report.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or	Rosemont A second deep diamond drill hole will be completed to test the strong reflective unit identified in the 2D seismic survey and the gold mineralised quartz dolerite will be tested between 600m to 800m vertical depth below surface.

Criteria	JORC Code explanation	Commentary
	depth extensions or large-scale step- out drilling).	Other Gold Projects Infill drilling will occur where appropriate, and extensional drilling will be conducted along strike and at depth beneath existing deposits where gold mineralisation may be of sufficient grade and thickness for underground development. Regional Prospects Drilling of high priority regional prospects will continue in 2019. Follow up drilling will be conducted where anomalous results are identified in first pass drill testing.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	

APPENDIX 2

		Baneygo Co	ollar Lo	cation			Intersection >1.0 ppm Au and >1g/t Au*m			
Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLBYRC631	6906306	432345	497	-50	75	294	192	193	1	2.09
RRLBYRC631							211	213	2	2.5
RRLBYRC631							218	220	2	1.15
RRLBYRC631							225	226	1	6.19
RRLBYRC631							233	238	5	3.42
RRLBYRC631							242	247	5	8.46
RRLBYRC631							253	254	1	1.25
RRLBYRC631							283	284	1	6.36
RRLBYRC632	6906381	432317	498	-46	74	318	263	264	1	3.74
RRLBYRC632							289	300	11	2.75
RRLBYRC633	6906344	432321	498	-46	74	324	170	171	1	1.02
RRLBYRC633							174	176	2	19.51
RRLBYRC633							180	182	2	1.16
RRLBYRC633							187	188	1	3.18
RRLBYRC633							193	194	1	1.82
RRLBYRC633							206	207	1	1.14
RRLBYRC633							214	215	1	13.8
RRLBYRC633							221	225	4	1.77
RRLBYRC634	6906145	432583	494	-60	254	156	85	89	4	2.16
RRLBYRC634							94	95	1	2.35
RRLBYRC634							101	104	3	1.31
RRLBYRC634							107	116	9	1.2
RRLBYRC634							132	136	4	1.16

Hole ID	Y	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLBYRC656	6906045	432668	493	-60	254	258	208	209	1	1.86
RRLBYRC657	6907903	432088	492	-62	254	240	189	191	2	5.47
RRLBYRC657							230	231	1	1.18
RRLBYRC661	6906778	432447	503	-67	253	360	191	195	4	4.31
RRLBYRC661							211	216	5	1.62
RRLBYRC661							220	222	2	3.68
RRLBYRC661							234	239	5	2.04
RRLBYRC661							256	257	1	2.78
RRLBYRC661							261	262	1	1.08
RRLBYRC661							294	295	1	1.67
RRLBYRC661							304	305	1	1.38
RRLBYRC662	6906783	432450	503	-68	244	332	221	222	1	8.8
RRLBYRC662							229	230	1	15.9
RRLBYRC662							233	240	7	3.44
RRLBYRC662							243	245	2	1.07
RRLBYRC662							253	254	1	5.23
RRLBYRC662							276	282	6	4.83
RRLBYRC662							286	289	3	3.02
RRLBYRC662							292	300	8	2.32
RRLBYRC662							324	325	1	3.78
RRLBYRC662							329	330	1	3.24
RRLBYRC663	6906684	432522	502	-60	251	300	187	188	1	13
RRLBYRC663							225	226	1	6.56
RRLBYRC663							235	237	2	5.27
RRLBYRC663							241	247	6	4.27

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
RRLBYRC664	6906741	432462	502	-60	252	228	80	84	4	2.66
RRLBYRC664	0500741	452462	502	00	232	220	160	161	1	1.37
RRLBYRC664							165	166	1	1.03
RRLBYRC664							171	180	9	5.89
RRLBYRC664							184	186	2	2.5
RRLBYRC664							190	191	1	1.04
RRLBYRC664							195	201	6	2.02
RRLBYRC665	6906746	432465	502	-68	254	312	213	215	2	2.66
RRLBYRC665							229	243	14	1.38
RRLBYRC665							246	253	7	1.12
RRLBYRC665							295	297	2	1.62
RRLBYRC666	6906153	432391	494	-50	74	318	212	213	1	2.27
RRLBYRC666							223	226	3	1.2
RRLBYRC666							236	241	5	2.4
RRLBYRC667	6906056	432415	494	-50	74	299	209	210	1	1.13
RRLBYRC667							214	215	1	5.02
RRLBYRC667							223	224	1	1.14
RRLBYRC667							251	252	1	1.26
RRLBYRC668	6908198	431831	488	-60	255	36		No signific	ant Intercept	
RRLBYRC669	6908202	431844	488	-60	253	48	25	26	1	1.34
RRLBYRC670	6908207	431862	488	-60	254	54		No signific	ant Intercept	
RRLBYRC671	6908221	431828	488	-60	253	36		No signific	ant Intercept	
RRLBYRC672	6908236	431813	487	-60	254	24		No signific	ant Intercept	
RRLBYRC673	6908255	431806	487	-60	254	24		No signific	ant Intercept	
RRLBYRC674	6906147	432361	495	-48	74	281	268	269	1	2.07
RRLBYRC674							272	279	7	4.8
RRLBYRC675	6906104	432434	496	-50	74	240	140	141	1	2.02
RRLBYRC675							160	164	4	1.89

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
RRLBYRC675	6906104	432434	496	-50	74	240	191	192	1	1.01
	C	Ouketon Towr	Inters	ection >1.0 pp	m Au and >1g/t	Au*m				
Hole ID	Y	X	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLDTRC001	6946439	428089	500	-60	270	102		No signific	ant Intercept	
RRLDTRC002	6946439	428129	500	-60	269	126		No signific	ant Intercept	
RRLDTRC003	6946359	428079	500	-60	270	90		No signific	ant Intercept	
RRLDTRC004	6946359	428119	500	-60	270	120	68	72	4	3.15
RRLDTRC005	6946279	428118	500	-60	270	96		No signific	ant Intercept	
RRLDTRC006	6946279	428159	500	-60	270	138		No signific	ant Intercept	
		Erlistoun	Collar Lo	cation			Inters	ection >1.0 pp	m Au and >1g/t	Au*m
Hole ID	Y	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLERLRC1091 RRLERLRC1091	6905379	434864	436	-61.8	91	66	8 43	11 44	3 1	1.2 7.19
RRLERLRC1093 RRLERLRC1093 RRLERLRC1093	6905419	434853	435	-72	90	66	46 52 60	47 57 61	1 5 1	3.92 6.51 1.24
RRLERLRC1094 RRLERLRC1094 RRLERLRC1094 RRLERLRC1094	6905459	434847	435	-61.6	90	72	48 54 58 68	49 55 63 69	1 1 5 1	2.7 2.45 1.71 4.84
RRLERLRC1095 RRLERLRC1095	6905479	434866	435	-63.6	90	78	40 53	43 54	3 1	3.79 2.35
RRLERLRC1096 RRLERLRC1096	6905479	434861	435	-90	0	78	49 63	50 64	1 1	1.91 1.08

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au	
RRLERLRC1097	6905499	434871	435	-90	0	78	17	18	1	ppm 1.28	
RRLERLRC1097	0505455	434071	433	-50	0	78	43	44	1	1.15	
RRLERLRC1097							50	51	1	2.29	
RRLERLRC1097							55	59	4	2.76	
RRLERLRC1100	6905999	434936	455	-64	90	42	No significant Intercept				
RRLERLRC1101	6905999	434922	455	-80	90	54	20	21	1	9.44	
RRLERLRC1101							34	38	4	1.14	
RRLERLRC1102	6906059	434978	455	-90	0	36	10	20	10	3.18	
RRLERLRC1103	6906059	434958	455	-61	90	48	18	21	3	1.36	
RRLERLRC1103							24	25	1	3.61	
RRLERLRC1104	6906059	434949	455	-75	90	48	29	30	1	1.31	
RRLERLRC1105	6906059	434939	455	-90	0	48	34	35	1	3.19	
RRLERLRC1105							40	41	1	3.22	
		Fisher Wel	l Collar Lo	ocation			Intersection >1.0 ppm Au and >1g/t Au*m				
Hole ID	Y	х	z	Dip	Azimuth	Total Depth (m)	From	To (m)	Interval	Au	
RRLFWAC004	6926000	429000	500	-60	270	99	(m)	(m)	(m) ant Intercept	ppm	
				-60		95					
RRLFWAC005	6926000	429160	500		270			0	ant Intercept		
RRLFWAC006	6926000	429320	500	-60	270	88			ant Intercept		
RRLFWAC007	6926000	429481	500	-60	271	76			ant Intercept		
RRLFWAC008	6926000	429641	500	-60	270	84	No significant Intercept				
RRLFWAC009	6926000	429800	500	-60	270	68	No significant Intercept				
RRLFWAC010	6926000	429960	500	-60	270	19	No significant Intercept				
RRLFWAC011	6926000	430120	500	-60	271	26	No significant Intercept				
RRLFWAC012	6926000	430280	500	-60	270	53		No signific	ant Intercept		

Hole ID	Y	x	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLFWAC013	6926000	430440	500	-60	270	14		No signific	ant Intercept	
RRLFWAC014	6926000	430600	500	-60	270	23		No signific	ant Intercept	
RRLFWAC015	6926000	430760	500	-60	270	70		No signific	ant Intercept	
RRLFWAC016	6926000	430921	500	-60	271	43		No signific	ant Intercept	
RRLFWAC017	6926000	431081	500	-60	270	56		No signific	ant Intercept	
RRLFWAC018	6926000	431240	500	-60	270	22		No signific	ant Intercept	
RRLFWAC019	6926000	431400	500	-60	270	71		No signific	ant Intercept	
RRLFWAC020	6926000	431560	500	-60	270	23		No signific	ant Intercept	
RRLFWAC021	6926000	431720	500	-60	270	44		No signific	ant Intercept	
RRLFWAC022	6926000	431880	500	-60	270	60		No signific	ant Intercept	
RRLFWAC023	6926000	432040	500	-60	270	63		No signific	ant Intercept	
RRLFWAC024	6926000	432200	500	-60	270	65		No signific	ant Intercept	
RRLFWAC025	6926000	432361	500	-60	270	80		No signific	ant Intercept	
RRLFWAC026	6926000	432521	500	-60	270	82		No signific	ant Intercept	
RRLFWAC027	6925080	428790	500	-60	270	111		No signific	ant Intercept	
RRLFWAC028	6925080	428950	500	-60	270	115		No signific	ant Intercept	
RRLFWAC029	6925080	429110	500	-60	270	97		No signific	ant Intercept	
RRLFWAC030	6925080	429271	500	-60	270	62		No signific	ant Intercept	
RRLFWAC031	6925080	429536	500	-60	270	82		No signific	ant Intercept	
RRLFWAC032	6925080	429621	500	-60	270	70		No signific	ant Intercept	
RRLFWAC033	6925080	429700	500	-60	270	94		No signific	ant Intercept	
RRLFWAC034	6925080	429781	500	-60	270	33		No signific	ant Intercept	
RRLFWAC035	6925080	429860	500	-60	270	36		No signific	ant Intercept	
RRLFWAC036	6925080	429941	500	-60	270	33		No signific	ant Intercept	
RRLFWAC037	6925080	430020	500	-60	270	29		No signific	ant Intercept	

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm	
RRLFWAC038	6925080	430100	500	-60	270	45		No signific	ant Intercept		
RRLFWAC039	6925080	430180	500	-60	270	57		No signific	ant Intercept		
RRLFWAC040	6925080	430260	500	-60	270	65	No significant Intercept				
RRLFWAC041	6925080	430340	500	-60	270	48		No signific	ant Intercept		
RRLFWAC042	6925080	430420	500	-60	270	59		No signific	ant Intercept		
RRLFWAC043	6925080	430501	500	-60	270	70		No signific	ant Intercept		
RRLFWAC044	6925080	430580	500	-60	270	68		No signific	ant Intercept		
RRLFWAC045	6924560	427040	500	-60	270	56		No signific	ant Intercept		
RRLFWAC046	6924560	427201	500	-60	270	76		No signific	ant Intercept		
RRLFWAC047	6924560	427361	500	-60	270	55					
RRLFWAC048	6924560	427522	500	-60	270	93		No signific	ant Intercept		
RRLFWAC049	6924560	427680	500	-60	270	109	32	36	4	1.42	
RRLFWAC050	6924560	427842	500	-60	270	74		No signific	ant Intercept		
RRLFWAC051	6924560	428002	500	-60	270	66		No signific	ant Intercept		
RRLFWAC052	6924560	428162	500	-60	270	79		No signific	ant Intercept		
RRLFWAC053	6924560	428320	500	-60	270	79		No signific	ant Intercept		
RRLFWAC054	6924560	428481	500	-60	270	79		No signific	ant Intercept		
RRLFWAC055	6924560	428641	500	-60	270	85		No signific	ant Intercept		
RRLFWAC056	6924560	428801	500	-60	270	104		No signific	ant Intercept		
RRLFWAC057	6924560	428882	500	-60	270	109	No significant Intercept				
RRLFWAC058	6924560	428961	500	-60	270	100	No significant Intercept				
RRLFWAC059	6924560	429041	500	-60	270	109	No significant Intercept				
RRLFWAC060	6924560	429122	500	-60	270	119		No signific	ant Intercept		

Hole ID	Y	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm	
RRLFWAC061	6924560	429201	500	-60	270	80		No signific	ant Intercept		
RRLFWAC062	6924560	429282	500	-60	270	86		No signific	ant Intercept		
RRLFWAC063	6924560	429361	500	-60	270	107		No signific	ant Intercept		
RRLFWAC064	6924560	429442	500	-60	270	140		No signific	ant Intercept		
RRLFWAC065	6925080	430662	500	-60	270	56		No signific	ant Intercept		
RRLFWAC066	6924560	429551	500	-60	270	135		No signific	ant Intercept		
RRLFWAC067	6924560	429602	500	-60	270	140		ant Intercept			
RRLFWAC068	6924560	429681	500	-60	270	88		ant Intercept			
RRLFWAC069	6924560	429762	500	-60	270	50		ant Intercept			
RRLFWAC070	6924560	429842	500	-60	270	42		ant Intercept			
RRLFWAC071	6924560	429921	500	-60	270	54		ant Intercept			
RRLFWAC072	6924560	430002	500	-60	270	11		No signific	ant Intercept		
RRLFWAC073	6924560	430081	500	-60	270	72		No signific	ant Intercept		
RRLFWAC074	6924560	430162	500	-60	270	74		No signific	ant Intercept		
RRLFWAC075	6924560	430322	500	-60	270	75		No signific	ant Intercept		
RRLFWAC076	6924560	430482	500	-60	270	50		No signific	ant Intercept		
RRLFWAC077	6924560	430641	500	-60	270	75		No signific	ant Intercept		
RRLFWAC078	6924560	430801	500	-60	270	67					
RRLFWAC079	6924560	430961	500	-60	270	86	No significant Intercept				
RRLFWAC080	6924560	430003	500	-60	270	69	No significant Intercept				
RRLFWAC081	6924060	427362	500	-60	270	54	No significant Intercept				
RRLFWAC082	6924060	427522	500	-60	270	80	No significant Intercept				

Hole ID	Y	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLFWAC083	6924060	427682	500	-60	270	80		No signific	ant Intercept	
RRLFWAC084	6924060	427842	500	-60	270	45		No signific	ant Intercept	
RRLFWAC085	6924060	428001	500	-60	270	68		No signific	ant Intercept	
RRLFWAC086	6924060	428161	500	-60	270	86		No signific	ant Intercept	
RRLFWAC087	6924060	428321	500	-60	270	77		No signific	ant Intercept	
RRLFWAC088	6924060	428481	500	-60	270	114		No signific	ant Intercept	
RRLFWAC089	6924060	428641	500	-60	270	146		ant Intercept		
RRLFWAC090	6924060	428802	500	-60	270	142		ant Intercept		
RRLFWAC091	6924060	428962	500	-60	270	141		ant Intercept		
RRLFWAC092	6924060	429122	500	-60	270	131		ant Intercept		
RRLFWAC093	6923560	427642	500	-60	270	104		ant Intercept		
RRLFWAC094	6923560	427802	500	-60	270	115		No signific	ant Intercept	
RRLFWAC095	6923560	427961	500	-60	270	125		No signific	ant Intercept	
RRLFWAC096	6923560	428121	500	-60	270	85		No signific	ant Intercept	
RRLFWAC097	6923560	428281	500	-60	270	65		No signific	ant Intercept	
RRLFWAC098	6923560	428441	500	-60	270	101		No signific	ant Intercept	
RRLFWAC099	6923560	428601	500	-60	270	122		No signific	ant Intercept	
RRLFWAC100	6923560	428760	500	-60	270	134				
RRLFWAC101	6923160	427942	500	-60	270	83	No significant Intercept			
RRLFWAC102	6923160	428102	500	-60	270	87	No significant Intercept			
RRLFWAC103	6923160	428262	500	-60	270	83	No significant Intercept			
RRLFWAC104	6923160	428352	500	-60	270	100	No significant Intercept			

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
RRLFWAC105	6923560	429242	500	-60	270	96		No signific	ant Intercept	
RRLFWAC106	6923560	429321	500	-60	270	78		No signific	ant Intercept	
RRLFWAC107	6923560	429402	500	-60	270	87		No signific	ant Intercept	
RRLFWAC108	6923560	429481	500	-60	270	92		No signific	ant Intercept	
RRLFWAC109	6923560	429562	500	-60	270	95		No signific	ant Intercept	
RRLFWAC110	6923560	429640	500	-60	270	100		No signific	ant Intercept	
RRLFWAC111	6923560	429720	500	-60	269	62		ant Intercept		
RRLFWAC112	6923560	429800	500	-60	271	59		ant Intercept		
RRLFWAC113	6923560	429880	500	-60	270	107		ant Intercept		
RRLFWAC114	6923560	429960	500	-60	270	83		ant Intercept		
RRLFWAC115	6923560	430040	500	-60	270	105		ant Intercept		
RRLFWAC116	6923560	430121	500	-60	270	97		No signific	ant Intercept	
RRLFWAC117	6923560	430200	500	-60	270	83		No signific	ant Intercept	
RRLFWAC118	6923560	430360	500	-60	272	84		No signific	ant Intercept	
RRLFWAC119	6923560	430520	500	-60	271	72		No signific	ant Intercept	
RRLFWAC120	6923560	430680	500	-60	270	97		No signific	ant Intercept	
RRLFWAC121	6923560	430840	500	-60	269	74		No signific	ant Intercept	
RRLFWAC122	6923560	431001	500	-60	270	102		ant Intercept		
RRLFWAC123	6923160	428701	500	-60	270	100				
RRLFWAC124	6923160	428861	500	-60	270	83		No signific	ant Intercept	
RRLFWAC125	6923160	429020	500	-60	271	104		No signific	ant Intercept	
RRLFWAC126	6923160	429180	500	-60	272	73		No signific	ant Intercept	

Hole ID	Y	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLFWAC127	6923160	429340	500	-60	272	98		No signific	cant Intercept	
RRLFWAC128	6923160	429420	500	-60	270	37	36	37	1	1.12
RRLFWAC129	6923160	429511	500	-60	268	90		No signific	cant Intercept	
RRLFWAC130	6923160	429587	500	-60	271	82		No signific	cant Intercept	
RRLFWAC131	6923160	429660	500	-60	270	63		No signific		
RRLFWAC132	6923160	429741	500	-60	270	61		No signific		
RRLFWAC133	6923160	429820	500	-60	268	43		No signific		
RRLFWAC134	6923160	429901	500	-60	270	45		No signific		
RRLFWAC135	6923160	429980	500	-60	272	93		No signific	cant Intercept	
RRLFWAC136	6923160	430060	500	-60	269	107		No signific	cant Intercept	
RRLFWAC137	6923160	430140	500	-60	270	106		No signific	cant Intercept	
RRLFWAC138	6923160	430300	500	-60	270	89		No signific	cant Intercept	
RRLFWAC139	6923160	430461	500	-60	270	70		No signific	cant Intercept	
RRLFWAC140	6923160	430621	500	-60	270	98		No signific	cant Intercept	
RRLFWAC141	6922500	429745	500	-60	270	65		No signific	cant Intercept	
RRLFWAC142	6922500	429901	500	-60	270	75		No signific	cant Intercept	
RRLFWAC143	6922500	430061	500	-60	270	59		No signific	cant Intercept	
RRLFWAC144	6922500	428620	500	-60	270	80		No signific	cant Intercept	
RRLFWAC145	6922500	428780	500	-60	270	73		No signific	cant Intercept	
RRLFWAC146	6922500	428940	500	-60	270	113		No signific	cant Intercept	
RRLFWAC147	6922500	429100	500	-60	270	123		No signific	cant Intercept	
RRLFWAC148	6922500	429260	500	-60	270	130		No signific	cant Intercept	

Hole ID	Y	x	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm	
RRLFWAC149	6922500	429420	500	-60	270	108		No significa	nt Intercept		
RRLFWAC150	6922500	429580	500	-60	270	63		No significa	nt Intercept		
RRLFWAC151	6921861	429240	500	-60	270	133		No significa	nt Intercept		
RRLFWAC152	6921861	429400	500	-60	270	131	No significant Intercept				
RRLFWAC153	6921861	429560	500	-60	270	89	No significant Intercept				
RRLFWAC154	6921861	429720	500	-60	270	71	No significant Intercept				
RRLFWAC155	6921861	429880	500	-60	270	68	No significant Intercept				
RRLFWAC156	6921861	430040	500	-60	270	30	No significant Intercept No significant Intercept				
RRLFWAC157	6921861	430200	500	-60	270	78		No significa	nt Intercept		
RRLFWAC158	6921861	430360	500	-60	270	34		No significa	nt Intercept		
RRLFWAC159	6921861	430521	500	-60	270	105		No significa	nt Intercept		
RRLFWAC160	6921861	430681	500	-60	270	119		No significa	nt Intercept		
		Garden We	ll Collar L	ocation			Interse	ection >1.0 ppr	n Au and >1g/t	Au*m	
Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm	
RRLGDDD134	6911394	437415	494	-60	270	444.52	266.86	267.36	0.5	8.56	
RRLGDDD134							275.94	277	1.06	1.42	
RRLGDDD134							282.93	287	4.07	1.26	
RRLGDDD134							290.07	290.84	0.77	1.54	
RRLGDDD134							295	296.97	1.97	2.08	
RRLGDDD134							300.13	300.43	0.3	6.38	
RRLGDDD134							311.9	315	3.1	1.8	

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLGDDD134	6911394	437415	494	-60	270	444.52	367	373	6	2.96
RRLGDDD134							396	397	1	15.8
RRLGDDD135	6911395	437457	494	-60	270	470.02	360.39	361.36	0.97	7.43
RRLGDDD135							367.14	372	4.86	2.62
RRLGDDD135							382.2	382.99	0.79	2.64
RRLGDDD135							391	392	1	2.66
RRLGDDD135							400	407.82	7.82	4.7
RRLGDDD135							439	440	1	5.33
RRLGDDD135							451	455	4	1.06
RRLGDDD136	6911476	437512	494	-60	270	531.31	427	428	1	1.23
RRLGDDD136							434.35	435	0.65	1.36
RRLGDDD136							436	458.95	22.95	1.93
RRLGDDD136							486	488	2	1.37
RRLGDDD136							508	509	1	1.06
RRLGDDD137A	6911478	437427	494	-60	270	483.46	318	319	1	1.02
RRLGDDD137A							325.07	329	3.93	2.33
RRLGDDD137A							331.92	333	1.08	4.47
RRLGDDD137A							335.52	336	0.48	5.43
RRLGDDD137A							354.07	355.07	1	2.5
RRLGDDD137A							363.7	364.77	1.07	1.2
RRLGDDD137A							372.13	372.59	0.46	3.12
RRLGDDD137A							398	402	4	1.5

Hole ID	Y	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLGDDD138	6911561	437394	493	-60	270	411.1	311	312	1	1.36
RRLGDDD138							319	321	2	1.84
RRLGDDD138							323.82	325	1.18	2.12
RRLGDDD138							329	330.58	1.58	1.62
RRLGDDD138							334	335	1	1.14
RRLGDDD138							351.5	352	0.5	1.3
RRLGDDD138							366	370	4	1.78
RRLGDDD138							380	381	1	1.34
RRLGDDD139	6911397	437614	494	-61	270	600.43	150.42	151.24	0.82	2.34
RRLGDDD139							261.11	261.97	0.86	1.1
RRLGDDD139							280.16	281	0.84	1.98
RRLGDDD139							326	327	1	2.06
RRLGDDD139							348.89	350.04	1.15	1.15
RRLGDDD139							352.89	357.54	4.65	1.88
RRLGDDD139							545	546.06	1.06	1.46
RRLGDDD139							551.06	551.96	0.9	1.58
RRLGDDD139							557.09	558.07	0.98	1.65
RRLGDDD140	6911322	437596	495	-60	270	630.38	467	468	1	1.38
RRLGDDD140							476	479	3	4.27
RRLGDDD140							483	484	1	2.22
RRLGDDD140							488	490	2	3.51
RRLGDDD140							496	500	4	3.59
RRLGDDD140							503	504	1	2.02
RRLGDDD140							510	520	10	2.86

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLGDDD140	6911322	437596	495	-60	270	630.38	524	525	1	1.59
RRLGDDD140							564	566	2	1.5
RRLGDDD140W1	6911322	437596	495	-60	270	591.44	389	390	1	2.2
RRLGDDD140W1							436.51	437.09	0.58	3.78
RRLGDDD140W1							468	476	8	1.36
RRLGDDD140W1							479	480.23	1.23	4.28
RRLGDDD140W1							487	488	1	1.38
RRLGDDD140W1							491	492.05	1.05	1.66
RRLGDDD140W1							503	504	1	1.7
RRLGDDD140W1							510	511	1	3.19
RRLGDDD140W1							537	540	3	1.91
RRLGDDD141	6911319	437677	494	-61	270	663.43	556	557	1	1.61
RRLGDDD141							567.4	573	5.6	1.03
RRLGDDD141							575.55	576.5	0.95	4.23
RRLGDDD141							579	592.8	13.8	6.46
RRLGDDD141							622	625	3	1.86
RRLGDDD141W1	6911319	437677	494	-61	270	665.36	389	390	1	1.22
RRLGDDD141W1							553	555	2	1.81
RRLGDDD141W1							558	567	9	2.98
RRLGDDD141W1							582	584	2	4.36
RRLGDDD141W1							615	616	1	1.37
RRLGDDD141W1							620	623	3	1.36

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLGDDD142	6911239	437698	495	-61	270	705.4	158	159	1	1.03
RRLGDDD142							184	185	1	1.11
RRLGDDD142							213	214	1	1.75
RRLGDDD142							550	551	1	1.44
RRLGDDD142							558	560	2	1.85
RRLGDDD142							579	584.1	5.1	1.39
RRLGDDD142							593	594	1	2.16
RRLGDDD142							601.35	603	1.65	6.08
RRLGDDD142							607.27	609	1.73	4.23
RRLGDDD142							624.6	625.8	1.2	1.23
RRLGDDD142							636	638	2	1.36
RRLGDDD142							642.32	643.1	0.78	1.41
RRLGDDD142W1	6911239	437698	495	-61	270	693.46	526	527	1	1.28
RRLGDDD142W1							529	530	1	1.17
RRLGDDD142W1							559	560	1	1.28
RRLGDDD142W1							626	627	1	2.25
RRLGDDD142W1							630	631	1	1.86
RRLGDDD143	6911158.878	437682.457	495	-59	270	666.23		Awaitin	g Results	
RRLGDDD144	6911238.878	437617.456	495	-60	270	606.45		Awaitin	g Results	
RRLGDDD145	6911158.878	437788.457	495	-59	270	713.24		Awaitin	g Results	
RRLGDDD145W1	6911158.878	437788.457	495	-59	270	409.4		Awaitin	g Results	

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLGDDD146	6911398.879	437449.456	495	-61	270	464.3		Awaitin	g Results	
RRLGDDD147	6911318.878	437761.457	495	-60	270	199		Awaitin	g Results	
RRLGDDD148	6911398.879	437523.456	495	-60	270	164.8		Awaitin	g Results	
		Gloster Col	lar Loca	tion			Interse	ection >1.0 ppr	m Au and >1g/t	Au*m
Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLGLDD006	6950819	408923	551	-60	246	537.7	171	172	1	1.86
RRLGLDD006							193	195	2	3.12
RRLGLDD006							200	201	1	1.19
RRLGLDD006							204	205	1	1.09
RRLGLDD006							220	221	1	1.03
RRLGLDD006							227	228	1	11
RRLGLDD006							234	235	1	24.9
RRLGLDD006							244	245	1	6.95
RRLGLDD006							278	281.43	3.43	4.49
RRLGLDD006							291	292	1	2.42
RRLGLDD006							296	300.1	4.1	1.74
RRLGLDD006							306.5	306.85	0.35	1.21
RRLGLDD006							310.5	313.4	2.9	6.61
RRLGLDD006							338.25	338.75	0.5	18.9
RRLGLDD006							357	358	1	1.3
RRLGLDD006							363	364.48	1.48	16.41
RRLGLDD006							379.47	380	0.53	1.3

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au
RRLGLDD006	RRLGLDD006	6950819	408923	551	-60	246	537.7	384.9	0.9	ppm 3.32
RRLGLDD006		0550015	100525	551	00	210	393.55	394	0.45	1.16
RRLGLDD006							406.5	407.19	0.69	3.64
RRLGLDD006							431.4	432.2	0.8	37
RRLGLDD006							440.3	440.92	0.62	28.7
RRLGLDD006							490.6	491	0.4	1
RRLGLDD007	6950906	408870	553	-60	245	75.6			nt Intercept	
RRLGLDD008	6950907	408871	553	-60	246	509	191.16	200.34	9.18	1.51
RRLGLDD008							203	206.42	3.42	3.42
RRLGLDD008							229.9	231.12	1.22	1.16
RRLGLDD008							238	239	1	3.95
RRLGLDD008							244	247.44	3.44	1.17
RRLGLDD008							258	259	1	4.86
RRLGLDD008							270	271	1	1.4
RRLGLDD008							318.55	321.72	3.17	2.11
RRLGLDD008							346.8	348.45	1.65	19.76
RRLGLDD008							352.06	352.55	0.49	1.76
RRLGLDD008							355.7	356.15	0.45	15.9
RRLGLDD008							372	373	1	1.17
RRLGLDD008							375.76	376.8	1.04	1.72
RRLGLDD008							397	399.75	2.75	1.12
RRLGLDD008							404.56	407.2	2.64	1.42
RRLGLDD008							429	431	2	2.27
RRLGLDD008							442	443	1	6.79
RRLGLDD008							491	492	1	1.26

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLGLRC434	6950896	408581	475	-60	246	203	3	4	1	1.69
RRLGLRC434							61	62	1	1.42
RRLGLRC434							74	75	1	5.65
RRLGLRC434							100	101	1	1.28
RRLGLRC434							124	125	1	2.13
RRLGLRC435	6950844	408610	470	-60	246	209	13	14	1	1.97
RRLGLRC435							27	28	1	1.38
RRLGLRC435							32	34	2	1.62
RRLGLRC435							46	47	1	1.29
RRLGLRC435							95	96	1	1.14
RRLGLRC436	6950952	408797	554	-60	244	401	146	148	2	2.07
RRLGLRC436							209	211	2	3.29
RRLGLRC436							220	224	4	1.28
RRLGLRC436							229	230	1	1.6
RRLGLRC436							257	261	4	5.29
RRLGLRC436							268	269	1	1.15
RRLGLRC436							274	275	1	2.85
RRLGLRC436							280	281	1	5.78
RRLGLRC436							329	330	1	3.7
RRLGLRC436							335	337	2	1.14
RRLGLRC436							347	349	2	7.27
RRLGLRC436							353	354	1	1.35
RRLGLRC436							359	360	1	1.02
RRLGLRC436							364	365	1	3.69

Hole ID	Y	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLGLRC437	6950694	408958	552	-60	246	389	114	115	1	1.38
RRLGLRC437							163	164	1	2.11
RRLGLRC437							166	167	1	1.03
RRLGLRC437							170	171	1	5.76
RRLGLRC437							179	180	1	1.62
RRLGLRC437							184	185	1	1.95
RRLGLRC437							200	206	6	4.99
RRLGLRC437							229	230	1	1.26
RRLGLRC437							256	260	4	5.07
RRLGLRC437							311	312	1	1.09
RRLGLRC437							361	362	1	1.43
RRLGLRC437							372	373	1	2.97
RRLGLRC438	6950792	408743	470	-60	246	78	32	33	1	1.26
RRLGLRC439	6950793	408742	470	-60	246	258	63	64	1	2.48
RRLGLRC439							79	80	1	4
RRLGLRC439							109	111	2	2.77
RRLGLRC439							115	119	4	2.55
RRLGLRC439							145	146	1	3.47
RRLGLRC439							152	153	1	1.34
RRLGLRC439							169	170	1	3.31
RRLGLRC439							175	176	1	1.78
RRLGLRC439							188	189	1	1.23
RRLGLRC439							217	218	1	1.54

Hole ID	Y	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
RRLGLRC440	6950645	408846	470	-60	246	198	9	10	1	1.49
RRLGLRC440							20	21	1	1.77
RRLGLRC440							24	26	2	1.25
RRLGLRC440							36	39	3	3.33
RRLGLRC440							45	46	1	1.11
RRLGLRC440							55	56	1	2.38
RRLGLRC440							65	67	2	3.02
RRLGLRC440							89	90	1	1.18
RRLGLRC440							114	115	1	1.81
RRLGLRC440							169	170	1	2.32
RRLGLRC441	6950657	408812	470	-60	246	210	3	4	1	1.16
RRLGLRC441							31	33	2	6.33
RRLGLRC441							37	40	3	2.3
RRLGLRC441							60	61	1	2.52
RRLGLRC441							99	100	1	2.7
RRLGLRC441							106	107	1	8.72
RRLGLRC441							119	120	1	1.38
RRLGLRC441							135	136	1	1.62
RRLGLRC441							144	145	1	2.11
RRLGLRC441							160	161	1	1.08
RRLGLRC441							176	177	1	1.61
RRLGLRC442	6950591	408828	470	-60	246	210	3	4	1	1.04
RRLGLRC442							23	25	2	2.64
RRLGLRC442							78	79	1	3.04
RRLGLRC442							82	84	2	2.17

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLGLRC443	6950625	408797	470	-60	245	150	11	13	2	3.16
RRLGLRC443							20	22	2	7.15
RRLGLRC443							30	33	3	1.11
RRLGLRC443							37	38	1	2.36
RRLGLRC443							72	73	1	1.38
RRLGLRC444	6950819	408614	466	-68	245	162	1	2	1	1.89
RRLGLRC444							42	45	3	6.33
RRLGLRC444							64	65	1	1.56
RRLGLRC444							69	73	4	1.03
RRLGLRC445	6950764	408930	553	-60	246	432	64	65	1	2.78
RRLGLRC445							87	88	1	1.19
RRLGLRC445							92	93	1	1.1
RRLGLRC445							126	127	1	1.09
RRLGLRC445							164	166	2	1.67
RRLGLRC445							254	255	1	2.45
RRLGLRC445							260	261	1	1.49
RRLGLRC445							295	296	1	4.98
RRLGLRC445							327	329	2	1.82
RRLGLRC445							338	339	1	1.73
RRLGLRC445							364	367	3	1.15
RRLGLRC445							426	427	1	2.02
RRLGLRC446	6950854	408882	554	-60	244	474	124	125	1	1.04
RRLGLRC446							133	134	1	1.76
RRLGLRC446							154	162	8	5.56
RRLGLRC446							179	181	2	60.09

Hole ID	Y	x	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
RRLGLRC446	6950854	408882	554	-60	244	474	195	199	4	1.12
RRLGLRC446							204	205	1	2.36
RRLGLRC446							214	217	3	2.67
RRLGLRC446							252	254	2	2.04
RRLGLRC446							286	288	2	1.06
RRLGLRC446							297	298	1	38.4
RRLGLRC446							301	302	1	3.15
RRLGLRC446							312	313	1	6.52
RRLGLRC446							333	335	2	4.22
RRLGLRC446							344	345	1	4.17
RRLGLRC446							348	351	3	2.98
RRLGLRC446							367	370	3	1.48
RRLGLRC446							390	392	2	1.81
RRLGLRC446							432	433	1	2.19
RRLGLRC447	6950992	408767	550	-60	246	366	150	151	1	1.25
RRLGLRC447							190	194	4	1.35
RRLGLRC447							203	204	1	4.58
RRLGLRC447							244	245	1	1.49
RRLGLRC447							289	290	1	1.37
RRLGLRC447							330	332	2	3.18
RRLGLRC447							340	344	4	6.03
RRLGLRC447							359	360	1	1.43
RRLGLRC448	6950910.899	408637.744	465.017	-75	263	270		Awaitir	ng Results	
RRLGLRC449	6950873.022	408678.352	465	-60	248	210		Awaitir	ng Results	

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
RRLGLRC450	6950855.022	408706.353	465	-70	248	240		Awaitir	ng Results	
RRLGLRC451	6950676.021	408974.353	550	-60	248	366		Awaitir	ng Results	
RRLGLRC452	6950610.021	409016.354	550	-60	249	294		Awaitir	ng Results	
RRLGLRC453	6950572.021	409099.354	550	-60	248	240		Awaitir	ng Results	
RRLGLRC454	6950528.021	409129.354	550	-60	246	216		Awaitir	ng Results	
RRLGLRC455	6950835.022	408716.353	551	-70	245	270		Awaitir	ng Results	
RRLGLRC456	6950479.021	409158.354	470	-60	246	216		Awaitir	ng Results	
		Idaho Coll	ar Locat	ion			Interse	ction >1.0 pp	om Au and >1g/t	: Au*m
Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLIHRC250	6908426	431754	484	-60	254	42	10	16	6	1.85
RRLIHRC251	6908445	431749	484	-60	254	42	19	20	1	1.18
RRLIHRC252	6908447	431755	484	-75	254	42	9	10	1	1.29
RRLIHRC252							14	15	1	1.02
RRLIHRC252							26	28	2	2.55
RRLIHRC252							31	32	1	1.14
RRLIHRC253	6908464	431738	484	-60	254	42	8	9	1	4.32
RRLIHRC253							12	14	2	24.76
RRLIHRC254	6908465	431745	484	-80	254	60	21	25	4	1.21
RRLIHRC254							27	30	3	1.06
RRLIHRC255	6908482	431735	484	-60	254	42	14	16	2	1.84
RRLIHRC255							20	21	1	1.22
RRLIHRC256	6908493	431750	484	-60	254	60		No signific	ant Intercept	
RRLIHRC257	6908523	431729	484	-60	255	54		No signific	ant Intercept	

Hole ID	Y	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
RRLIHRC258	6908527	431747	484	-60	254	72	44	55	11	77.65
RRLIHRC258							66	67	1	7.33
RRLIHRC259	6908549	431745	484	-60	254	84	24	26	2	2.06
RRLIHRC259							42	47	5	1.03
RRLIHRC259							61	63	2	4.66
RRLIHRC259							68	69	1	1.32
RRLIHRC260	6908563	431714	484	-60	254	78	12	14	2	1.53
RRLIHRC260							18	19	1	1.4
RRLIHRC260							52	53	1	3.1
RRLIHRC261	6908569	431736	484	-60	254	90	5	8	3	1.33
RRLIHRC261							28	31	3	1.12
RRLIHRC261							76	77	1	15
RRLIHRC262	6908574	431772	484	-60	254	144	119	120	1	1.81
RRLIHRC263	6908537	431784	484	-60	254	150	109	110	1	4.98
RRLIHRC264	6908496	431788	484	-60	254	102		No signific	ant Intercept	
RRLIHRC265	6908509	431763	484	-60	254	90	60	61	1	1.36
RRLIHRC266	6908531	431765	484	-60	254	96		No signific	ant Intercept	
		Ingijingi (Collar Loc	ation			Interse	ction >1.0 pp	om Au and >1g/t	Au*m
Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
RRLIJAC063	6948504	425140	540	-60	88	84		No signific	ant Intercept	
RRLIJAC064	6948504	425060	540	-60	90	80		No signific	ant Intercept	
RRLIJAC065	6948504	424980	540	-60	90	85		No signific	ant Intercept	
RRLIJAC066	6948504	424900	540	-60	90	98		No signific	ant Intercept	

Hole ID	Y	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
RRLIJAC067	6948504	424820	540	-60	90	83		No signifi	cant Intercept	
RRLIJAC068	6948504	424740	540	-60	90	109		No signifi	cant Intercept	
RRLIJAC069	6948504	424660	540	-60	90	96		No signifi	cant Intercept	
RRLIJAC070	6948504	424580	540	-60	90	122		No signifi	cant Intercept	
RRLIJAC071	6948504	424500	540	-60	90	130		No signifi	cant Intercept	
RRLIJAC072	6948504	424420	540	-60	90	107	No significant Intercept			
RRLIJAC073	6948504	424340	540	-60	90	94	No significant Intercept			
RRLIJAC074	6948504	424260	540	-60	90	75	No significant Intercept			
RRLIJAC075	6948504	424100	540	-60	90	93		No signifi	cant Intercept	
RRLIJAC076	6948504	423940	540	-60	90	83		No signifi	cant Intercept	
RRLIJAC077	6948504	423780	540	-60	90	97		No signifi	cant Intercept	
RRLIJAC078	6947940	425180	540	-60	90	80	48	52	4	1.46
RRLIJAC079	6947940	425100	540	-60	90	109		No signifi	cant Intercept	
RRLIJAC080	6947940	425020	540	-60	90	100		No signifi	cant Intercept	
RRLIJAC081	6947940	424940	540	-60	89	103		No signifi	cant Intercept	
RRLIJAC082	6947935	424850	540	-60	89	97		No signifi	cant Intercept	
RRLIJAC083	6947940	424780	540	-60	92	106		No signifi	cant Intercept	
RRLIJAC084	6947940	424700	540	-60	88	131	No significant Intercept			
RRLIJAC085	6947940	424620	540	-60	91	132	80 84 4 1.99			
RRLIJAC086	6947940	424540	540	-60	92	105	No significant Intercept			
RRLIJAC087	6947940	424380	540	-60	89	108	No significant Intercept			
RRLIJAC088	6947940	424220	540	-60	92	122	No significant Intercept			

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLIJAC089	6947940	424060	540	-60	90	138	124	128	4	2.67
RRLIJAC090	6947940	423900	540	-60	87	116		No signific	cant Intercept	
RRLIJAC091	6947460	425200	540	-60	90	83		No signific	cant Intercept	
RRLIJAC092	6947460	425040	540	-60	91	107		No signific	cant Intercept	
RRLIJAC093	6947460	424880	540	-60	90	113		No signific	cant Intercept	
RRLIJAC094	6947460	424720	540	-60	90	124		No signific	cant Intercept	
RRLIJAC095	6947460	424560	540	-60	93	143	No significant Intercept			
RRLIJAC096	6947460	424400	540	-60	89	134	No significant Intercept No significant Intercept			
RRLIJAC097	6947460	424240	540	-60	90	87		No signific	cant Intercept	
RRLIJAC098	6947160	425900	540	-60	91	94	No significant Intercept No significant Intercept			
RRLIJAC099	6947160	425740	540	-60	90	112		No signific	cant Intercept	
RRLIJAC100	6947160	425580	540	-60	90	107		No signific	cant Intercept	
RRLIJAC101	6947160	425420	540	-60	90	98		No signific	cant Intercept	
RRLIJAC102	6947160	425260	540	-60	90	79		No signific	cant Intercept	
RRLIJAC103	6947160	425100	540	-60	90	105		No signific	cant Intercept	
RRLIJAC104	6947160	424940	540	-60	90	105		No signific	cant Intercept	
		Little Well Co	ollar Loc	ation			Inters	ection >1.0 p	om Au and >1g/t	Au*m
Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From To Interval Au (m) (m) (m) ppm			
RRLLWAC183	6922234.997	426944.918	500	-60	256	53	Awaiting Results			
RRLLWAC184	6922280.002	427100.716	500	-60	256	52	Awaiting Results			
RRLLWAC185	6922325	427255.168	500	-60	256	81	Awaiting Results			

Hole ID	Y	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLLWAC186	6922370.002	427405.586	500	-60	256	108		Awaiti	ng Results	
RRLLWAC187	6922414.999	427560.042	500	-60	256	107		Awaiti	ng Results	
RRLLWAC188	6922299.995	427174.593	500	-60	256	68		Awaiti	ng Results	
RRLLWAC189	6922514.998	426775.041	500	-60	256	33		Awaiti	ng Results	
RRLLWAC190	6922560.001	426925.459	500	-60	256	49		Awaiti	ng Results	
RRLLWAC191	6922604.998	427079.916	500	-60	256	120		Awaiti	ng Results	
RRLLWAC192	6922650.003	427235.718	500	-60	256	119	Awaiting Results			
RRLLWAC193	6922694.999	427390.176	500	-60	256	92	Awaiting Results			
RRLLWAC194	6922315.997	427214.859	500	-60	256	86	Awaiting Results Awaiting Results			
RRLLWAC195	6922589.999	427026.188	500	-60	256	60	Awaiting Results Awaiting Results			
RRLLWAC196	6922804.996	426599.713	500	-60	257	26	Awaiting Results Awaiting Results			
RRLLWAC197	6922849.999	426750.135	500	-60	256	51		Awaiti	ng Results	
RRLLWAC198	6922894.996	426904.594	500	-60	255	128		Awaiti	ng Results	
RRLLWAC199	6922875.002	426857.623	500	-60	256	80		Awaiti	ng Results	
RRLLWAC200	6922870.003	426830.743	500	-60	256	108		Awaiti	ng Results	
RRLLWAC201	6922940.001	427060.4	500	-60	256	141		Awaiti	ng Results	
RRLLWAC202	6922985	427220.243	500	-60	256	92		Awaiti	ng Results	
RRLLWAC203	6923085.003	426425.784	500	-60	256	19		Awaiti	ng Results	
RRLLWAC204	6923124.999	426580.276	500	-60	256	72	Awaiting Results			
RRLLWAC205	6923169.997	426734.738	500	-60	256	89	Awaiting Results			
RRLLWAC206	6923215.002	426890.546	500	-60	256	99	Awaiting Results			
RRLLWAC207	6923259.996	427039.629	500	-60	256	101	Awaiting Results			
RRLLWAC208	6923149.996	426659.509	500	-60	256	104	Awaiting Results			

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm	
RRLLWAC209	6923369.995	426254.507	500	-60	256	32		Awaiti	ng Results		
RRLLWAC210	6923415.001	426410.317	500	-60	256	61		Awaiti	ng Results		
RRLLWAC211	6923435	426485	505	-60	256	68		Awaiti	ng Results		
RRLLWAC212	6923455	426560	505	-60	256	101	Awaiting Results				
RRLLWAC213	6923500	426715	505	-60	256	94	Awaiting Results				
RRLLWAC214	6923397	426352	505	-60	256	26	Awaiting Results				
RRLLWAC215	6923545	426870	505	-60	256	101		Awaiti	ng Results		
RRLLWAC216	6923680	426070	505	-60	256	50		Awaiti	ng Results		
RRLLWAC217	6923705	426145	505	-60	256	51		Awaiti	ng Results		
RRLLWAC218	6923725	426225	505	-60	256	31		Awaiti	ng Results		
RRLLWAC219	6923750	426300	505	-60	256	83		Awaiti	ng Results		
RRLLWAC220	6923770	426375	505	-60	256	109		Awaiti	ng Results		
RRLLWAC221	6923814	426529	505	-60	256	106		Awaiti	ng Results		
RRLLWAC222	6923858	426683	505	-60	256	75		Awaiti	ng Results		
RRLLWAC223	6923910	425845	505	-60	256	17		Awaiti	ng Results		
RRLLWAC224	6923932	425922	505	-60	256	42		Awaiti	ng Results		
		Matts Bore C	ollar Loo	ation			Intersection >1.0 ppm Au and >1g/t Au*m				
Hole ID	Y	x	Z	Dip	Azimuth	Total Depth (m)	From To Interval Au (m) (m) (m) ppm				
RRLMBAC001	6945699	408429	500	-60	230	100	No significant Intercept				
RRLMBAC002	6945802	408553	500	-60	230	78	No significant Intercept				

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLMBAC003	6945905	408674	500	-60	230	85		No signifi	cant Intercept	
RRLMBAC004	6946007	408798	500	-60	230	59		No signifi	cant Intercept	
RRLMBAC005	6946110	408920	500	-60	230	64		No signifi	cant Intercept	
RRLMBAC006	6946213	409041	500	-60	230	68		No signifi	cant Intercept	
RRLMBAC007	6946316	409165	500	-60	230	54		No signifi	cant Intercept	
RRLMBAC008	6946419	409287	500	-60	230	46		No signifi	cant Intercept	
RRLMBAC009	6946522	409410	500	-60	230	41		No signifi	cant Intercept	
RRLMBAC010	6946631	409540	500	-60	230	109		No signifi	cant Intercept	
RRLMBAC011	6946734	409663	500	-60	230	65		No signifi	cant Intercept	
RRLMBAC012	6946830	409777	500	-60	230	91	24	32	8	1.35
RRLMBAC013	6946933	409900	500	-60	230	97		No signifi	cant Intercept	
RRLMBAC014	6947036	410024	500	-60	231	93		No signifi	cant Intercept	
RRLMBAC015	6947139	410146	500	-60	229	84		No signifi	cant Intercept	
RRLMBAC016	6946600	408509	500	-60	230	83		No signifi	cant Intercept	
RRLMBAC017	6946703	408631	500	-60	229	77		No signifi	cant Intercept	
RRLMBAC018	6946806	408753	500	-60	230	81		No signifi	cant Intercept	
RRLMBAC019	6946189	408018	500	-60	230	67		No signifi	cant Intercept	
RRLMBAC020	6946292	408140	500	-60	229	59		No signifi	cant Intercept	
RRLMBAC021	6946395	408264	500	-60	230	88		No signifi	cant Intercept	
RRLMBAC022	6946498	408385	500	-60	231	71		No signifi	cant Intercept	
RRLMBAC023	6946908.995	408875.854	500	-60	230	103		Await	ing Results	
RRLMBAC024	6947011.994	408997.773	500	-60	231	69		Await	ing Results	
RRLMBAC025	6947117.996	409125.067	500	-60	230	84		Await	ing Results	

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLMBAC026	6947218	409243	500	-60	231	95		No signific	ant Intercept	
RRLMBAC027	6947320	409366	500	-60	229	99		No signific	ant Intercept	
RRLMBAC028	6947423	409490	500	-60	231	115		No signific	ant Intercept	
RRLMBAC029	6947526	409611	500	-60	230	83		No signific	ant Intercept	
RRLMBAC030	6947629	409735	500	-60	230	59		No signific	ant Intercept	
RRLMBAC031	6946662	407606	500	-60	230	78		No signific	ant Intercept	
RRLMBAC032	6946782	407729	500	-60	231	58		No signific	ant Intercept	
RRLMBAC033	6946885	407853	500	-60	230	51		ant Intercept		
RRLMBAC034	6946988	407975	500	-60	230	56		ant Intercept		
RRLMBAC035	6947091	408097	500	-60	230	80		ant Intercept		
RRLMBAC036	6947194.003	408219.813	500	-60	230	77		ng Results		
RRLMBAC037	6947289.994	408341.783	500	-60	230	75		ng Results		
RRLMBAC038	6947398.995	408463.658	500	-60	229	101		Awaiti	ng Results	
RRLMBAC039	6947501.996	408586.928	500	-60	230	65		Awaiti	ng Results	
RRLMBAC040	6947611	408717	500	-60	230	62		No signific	ant Intercept	
RRLMBAC041	6947707.999	408832.126	500	-60	230	108		Awaiti	ng Results	
RRLMBAC042	6947810.999	408955.402	500	-60	230	89		Awaiti	ng Results	
RRLMBAC043	6947913.998	409077.333	500	-60	230	91		Awaiti	ng Results	
RRLMBAC044	6948016.001	409200.62	500	-60	230	79	Awaiting Results			
RRLMBAC045	6948119	409322.555	500	-60	230	90	Awaiting Results			
RRLMBAC046	6947169.999	407195.308	500	-60	230	149	Awaiting Results			
RRLMBAC047	6947272	407318.574	500	-60	231	92	Awaiting Results			
RRLMBAC048	6947374.999	407440.485	500	-60	230	74		Awaiti	ng Results	

Hole ID	Y	x	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm	
RRLMBAC049	6947478.004	407563.746	500	-60	230	65		Awaiti	ng Results		
RRLMBAC050	6947581.003	407685.662	500	-60	230	53		Awaiti	ng Results		
RRLMBAC051	6947683.995	407807.58	500	-60	231	59		Awaitii	ng Results		
RRLMBAC052	6947786.994	407929.5	500	-60	230	74		Awaiti	ng Results		
RRLMBAC053	6947889.996	408052.769	500	-60	230	110		Awaiti	ng Results		
RRLMBAC054	6947991.999	408176.05	500	-60	230	89		Awaiti	ng Results		
RRLMBAC055	6948101.998	408306.012	500	-60	230	97		Awaiti	ng Results		
RRLMBAC056	6948198	408421.251	500	-60	230	97	Awaiting Results				
RRLMBAC057	6948279.005	408525.817	500	-60	230	103	Awaiting Results				
RRLMBAC058	6948404.002	408666.461	500	-60	230	78	Awaiting Results				
RRLMBAC059	6947866.002	407029.555	500	-60	230	80		Awaiti	ng Results		
RRLMBAC060	6947968.002	407151.478	500	-60	230	74		Awaiti	ng Results		
RRLMBAC061	6948071.004	407274.743	500	-60	230	53		Awaiti	ng Results		
RRLMBAC062	6948174.003	407396.663	500	-60	230	38		Awaitii	ng Results		
RRLMBAC063	6948276.995	407518.584	500	-60	230	107		Awaitii	ng Results		
		McKenzie Co	ollar Loca	ation			Interse	ection >1.0 pp	om Au and >1g/t	Au*m	
Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm	
RRLMKRC063	6909967	431270	480	-60	254	30		No signific	ant Intercept		
RRLMKRC064	6909971	431283	480	-60	254	48	21	22	1	3.17	
RRLMKRC064							26 27 1 2.59				
RRLMKRC065	6910002	431261	480	-60	254	30	No significant Intercept				
RRLMKRC066	6910006	431275	480	-60	254	48	No significant Intercept				

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm	
RRLMKRC067	6910042	431253	480	-60	254	48		No signific	ant Intercept		
RRLMKRC068	6910047	431272	480	-60	255	66	45	46	1	1.06	
RRLMKRC068							51	53	2	1.19	
RRLMKRC069	6910053	431293	480	-60	254	90	64	69	5	4.02	
RRLMKRC069							73	75	2	2.22	
		Murphys Bo	re Collar	Locatio	า		Interse	ection >1.0 pp	om Au and >1g/t	Au*m	
Hole ID	Y	x	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm	
RRLMUAC001	6907399	424798	510	-60	269	157		No signific	ant Intercept		
RRLMUAC002	6907399	425118	510	-60	270	159		No signific	ant Intercept		
RRLMUAC003	6907399	425438	510	-60	270	129		No significant Intercept No significant Intercept			
RRLMUAC004	6908039	424798	510	-60	270	160		No signific	ant Intercept		
RRLMUAC005	6908039	425118	510	-60	270	137		No signific	ant Intercept		
RRLMUAC006	6908039	425438	510	-60	270	131		No signific	ant Intercept		
RRLMUAC007	6908039	425757	510	-60	270	164		No signific	ant Intercept		
RRLMUAC008	6908039	426077	510	-60	270	77		No signific	ant Intercept		
RRLMUAC009	6908039	426397	510	-60	270	153		No signific	ant Intercept		
RRLMUAC010	6908679	424798	510	-60	270	102		No signific	ant Intercept		
RRLMUAC011	6908679	425118	510	-60	270	130		No signific	ant Intercept		
RRLMUAC012	6908679	425438	510	-60	270	164		No signific	ant Intercept		
RRLMUAC013	6908679	425758	510	-60	270	164		No signific	ant Intercept		
RRLMUAC014	6908679	426077	510	-60	270	164		No signific	ant Intercept		
RRLMUAC015	6909319	424798	510	-60	270	62		No signific	ant Intercept		

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLMUAC016	6909319	425117	510	-60	270	159		No signific	ant Intercept	
RRLMUAC017	6909319	425438	510	-60	270	161		No signific	ant Intercept	
RRLMUAC018	6909319	425758	510	-60	270	161		ant Intercept		
RRLMUAC019	6909315	426035	510	-60	270	88		No signific	ant Intercept	
RRLMUAC020	6909939	425118	510	-60	269	161		ant Intercept		
RRLMUAC021	6909939	425438	510	-60	269	123		ant Intercept		
RRLMUAC022	6908039	427038	510	-60	270	145		ant Intercept		
RRLMUAC023	6908039	426717	510	-60	271	161		No signific	ant Intercept	
RRLMUAC024	6909939	425758	510	-60	270	161		No signific	ant Intercept	
RRLMUAC025	6911239	423197	510	-60	268	7		No signific	ant Intercept	
RRLMUAC026	6911239	423517	510	-60	269	137		No signific	ant Intercept	
RRLMUAC027	6911239	423837	510	-60	270	106		No signific	ant Intercept	
RRLMUAC028	6911239	424157	510	-60	270	68		No signific	ant Intercept	
RRLMUAC029	6911239	424478	510	-60	270	152		No signific	ant Intercept	
RRLMUAC030	6911239	424798	510	-60	271	144		No signific	ant Intercept	
RRLMUAC031	6911239	425118	510	-60	269	152		No signific	ant Intercept	
RRLMUAC032	6910599	424478	510	-60	272	101		No signific	ant Intercept	
RRLMUAC033	6910599	424798	510	-60	270	126		No signific	ant Intercept	
RRLMUAC034	6910599	425118	510	-60	270	131	No significant Intercept			
RRLMUAC035	6911879	423197	510	-60	270	141	No significant Intercept			
RRLMUAC036	6911874	423517	510	-60	270	105	No significant Intercept			
RRLMUAC037	6911879	423837	510	-60	270	88		No signific	ant Intercept	

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm	
RRLMUAC038	6911879	424157	510	-60	270	110		No signifi	cant Intercept		
RRLMUAC039	6911874	424478	510	-60	269	144		No signifi	cant Intercept		
RRLMUAC040	6911879	424798	510	-60	270	200		No signifi	cant Intercept		
RRLMUAC041	6912519	423197	510	-60	270	104	No significant Intercept				
RRLMUAC042	6912519	423517	510	-60	270	67	No significant Intercept				
RRLMUAC043	6912519	423837	510	-60	269	134	No significant Intercept				
RRLMUAC044	6912519	424157	510	-60	270	156	No significant Intercept				
RRLMUAC045	6912519	424478	510	-60	270	142	No significant Intercept				
RRLMUAC046	6913159	423197	510	-60	269	83	No significant Intercept				
RRLMUAC047	6913159	423513	510	-60	269	141		No signifi	cant Intercept		
RRLMUAC048	6913159	423837	510	-60	272	176		No signifi	cant Intercept		
RRLMUAC049	6913159	424157	510	-60	270	188		No signifi	cant Intercept		
RRLMUAC050	6913159	424477	510	-60	270	119		No signifi	cant Intercept		
RRLMUAC051	6913799	423837	510	-60	270	140		No signifi	cant Intercept		
RRLMUAC052	6913799	424157	510	-60	270	79		No signifi	cant Intercept		
RRLMUAC053	6913799	424477	510	-60	270	118	80	84	4	1.83	
RRLMUAC054	6914439	423197	510	-60	270	125	No significant Intercept				
RRLMUAC055	6914439	423517	510	-60	270	147	No significant Intercept				
RRLMUAC056	6914439	423837	510	-60	270	131	No significant Intercept				
RRLMUAC057	6914439	424157	510	-60	270	87	No significant Intercept				
RRLMUAC058	6915079	423197	510	-60	270	133	No significant Intercept				

Hole ID	Y	x	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm	
RRLMUAC059	6915079	423517	510	-60	270	88		No significa	int Intercept		
RRLMUAC060	6915079	423837	510	-60	270	78		No significa	int Intercept		
RRLMUAC061	6915079	424157	510	-60	270	90		No significa	int Intercept		
RRLMUAC062	6915609	421717	510	-60	270	148		No significa	int Intercept		
RRLMUAC063	6915719	421926	510	-60	270	134		No significa	int Intercept		
RRLMUAC064	6915719	422237	510	-60	270	107		No significa	int Intercept		
RRLMUAC065	6915719	422557	510	-60	270	191	No significant Intercept				
RRLMUAC066	6915719	422877	510	-60	270	77	No significant Intercept				
RRLMUAC067	6915719	423197	510	-60	270	149	No significant Intercept				
RRLMUAC068	6915719	423517	510	-60	270	128		No significa	int Intercept		
RRLMUAC069	6916309	422237	510	-60	270	80		No significa	int Intercept		
RRLMUAC070	6916319	422557	510	-60	270	61		No significa	int Intercept		
RRLMUAC071	6916256	422877	510	-60	270	117		No significa	int Intercept		
RRLMUAC072	6916256	422877	510	-60	270	67		No significa	int Intercept		
RRLMUAC073	6916359	423517	510	-60	270	83		No significa	int Intercept		
RRLMUAC074	6916359	423837	510	-60	270	108		No significa	int Intercept		
		Moolart We	ell Collar L	ocation			Intersection >1.0 ppm Au and >1g/t Au*m				
Hole ID	Y	x	Z	Dip	Azimuth	Total Depth (m)	From To Interval Au (m) (m) (m) ppm				
RRLMWDD141 RRLMWDD141	6946359	436078	541	-60	270	549.75	244.63244.930.32.4224925011.12				

Hole ID	Y	x	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLMWDD141							263	264	1	1.52
RRLMWDD141							268	269	1	3.18
RRLMWDD141							370	372	2	1.07
RRLMWDD141							431	433.82	2.82	1.7
RRLMWDD142	6945958	436124	542	-60	270	612.68	170	171	1	1.19
RRLMWDD142							281	282	1	8
RRLMWDD142							286	287	1	1.53
RRLMWDD142							313	314	1	1.12
RRLMWDD142							372	373	1	2.02
RRLMWDD142							378	380	2	2.31
RRLMWDD143	6944757	436166	555	-60	270	599.95	78	82	4	1.86
RRLMWDD143							295.7	296.3	0.6	1.15
RRLMWDD143							299	302	3	1.64
RRLMWDD143							358	360	2	2.22
RRLMWDD143							364	365	1	1.77
RRLMWDD143							377	378	1	2.32
RRLMWDD144	6944709	435681	542	-65	270	543.2	84	88	4	1.7
RRLMWDD144							131	132.12	1.12	1.54
RRLMWDD144							226	227	1	1.99
RRLMWDD144							250	250.46	0.46	1.38
RRLMWDD144							254	255	1	1.1

Hole ID	Y	X	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLMWDD144	6944709	435681	542	-65	270	543.2	308	312	4	1.85
RRLMWDD144							360	364	4	1.34
RRLMWRC1804	6945883	435961	542	-60	270	174	118	119	1	32.7
RRLMWRC1804							133	135	2	5.65
RRLMWRC1804							145	146	1	1.58
RRLMWRC1804							164	168	4	3.3
RRLMWRC1805	6947805	435669	533	-60	270	126		No significa	ant Intercept	
RRLMWRC1806	6947682	435706	534	-60	270	138	90	91	1	1
RRLMWRC1806							133	134	1	2.82
RRLMWRC1807	6947607	435717	534	-60	270	150	107	112	5	2.16
RRLMWRC1807							117	123	6	2.64
RRLMWRC1808	6947458	435748	535	-60	270	150	45	46	1	1.35
RRLMWRC1808							100	101	1	1.16
RRLMWRC1809	6947408	435775	535	-60	270	132	35	36	1	1.3
RRLMWRC1809							38	39	1	2.02
RRLMWRC1809							83	85	2	2.54
RRLMWRC1810	6947359	435648	534	-60	270	84	47	48	1	5.17
RRLMWRC1811	6947312	435583	534	-60	265	66	62	63	1	1.7
RRLMWRC1812	6946734	435560	523	90	0	66	33	34	1	1.12
RRLMWRC1812							40	43	3	3.97
RRLMWRC1812							62	64	2	1.51
RRLMWRC1813	6947234	435568	523	-60	267	48	34	35	1	1
RRLMWRC1813							36	37	1	1.6

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLMWRC1814	6947650	435533	522	-60	269	24		No signific	ant Intercept	
RRLMWRC1815	6947557	435535	523	-60	268	48		No signific	ant Intercept	
RRLMWRC1816	6945735	435397	538	-60	268	96	79	80	1	1.26
RRLMWRC1816							94	96	2	5.8
RRLMWRC1817	6945511	435397	539	-60	267	78	32	33	1	1.73
RRLMWRC1817							69	72	3	2.85
	0	Connors Rew	ard Colla	ar Locati	ion		Inters	ection >1.0 pp	om Au and >1g/t	Au*m
Hole ID	Y	x	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLOCRC001	6965300	396017	500	-60	90	80		No signific	ant Intercept	
RRLOCRC002	6965300	395697	500	-60	90	80		No signific	ant Intercept	
RRLOCRC003	6965300	395377	500	-60	90	80		No signific	ant Intercept	
RRLOCRC004	6965300	395057	500	-60	90	80		No signific	ant Intercept	
RRLOCRC005	6965300	394737	500	-60	90	90		No signific	ant Intercept	
RRLOCRC006	6965300	394417	500	-60	92	84		No signific	ant Intercept	
RRLOCRC007	6965300	394157	500	-60	92	84		No signific	ant Intercept	
RRLOCRC008	6965298	393781	500	-60	88	84		No signific	ant Intercept	
RRLOCRC009	6966097	396020	500	-60	90	84		No signific	ant Intercept	
RRLOCRC010	6966100	395698	500	-60	90	84		No signific	ant Intercept	
RRLOCRC011	6966096	395378	500	-60	90	84		No signific	ant Intercept	
RRLOCRC012	6966097	395055	500	-60	91	84		No signific	ant Intercept	
RRLOCRC013	6966098	394735	500	-60	89	84		No signific	ant Intercept	

Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm	
RRLOCRC014	6966099	394416	500	-60	90	84		No significa	ant Intercept		
RRLOCRC015	6966099	394103	500	-60	89	84		No significa	ant Intercept		
RRLOCRC016	6966102	393762	500	-60	90	90		No significa	ant Intercept		
RRLOCRC017	6966100	393459	500	-60	90	84	No significant Intercept				
RRLOCRC018	6966096	393143	500	-60	91	84	No significant Intercept				
RRLOCRC019	6965292	393457	500	-60	90	84	No significant Intercept				
RRLOCRC020	6965299	393137	500	-60	90	84	No significant Intercept				
		Petra Co	ollar Loca	tion			Intersection >1.0 ppm Au and >1g/t Au*m				
Hole ID	Y	Х	Z	Dip	Azimuth	Total Depth (m)	From To Interval A (m) (m) (m) pr				
RRLPTRAC767	6934450	427385	535	-60	90	94		No significa	ant Intercept		
RRLPTRAC768	6934450	427305	535	-60	90	95		No significa	ant Intercept		
RRLPTRAC769	6934450	427225	535	-60	89	103		No significa	ant Intercept		
RRLPTRAC770	6934445	427145	535	-60	91	91		No significa	ant Intercept		
RRLPTRAC771	6934450	427065	535	-60	90	78		No significa	ant Intercept		
RRLPTRAC772	6934450	426985	535	-60	89	71		No significa	ant Intercept		
RRLPTRAC773	6934060	427908	535	-60	85	83		No significa	ant Intercept		
RRLPTRAC774	6934060	427828	535	-60	88	80		No significa	ant Intercept		
RRLPTRAC775	6934060	427748	535	-60	90	73	No significant Intercept				
RRLPTRAC776	6934060	427668	535	-60	90	98	No significant Intercept				
RRLPTRAC777	6934060	427588	535	-60	90	79	No significant Intercept				
RRLPTRAC778	6934060	427508	535	-60	90	89	No significant Intercept				
RRLPTRAC779	6934060	427428	535	-60	90	86		No significa	ant Intercept		

Hole ID	Y	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm
RRLPTRAC780	6934060	427348	535	-60	90	81		No signific	ant Intercept	
RRLPTRAC781	6934060	427268	535	-60	90	80		No signific	ant Intercept	
RRLPTRAC782	6934060	427188	535	-60	90	93		No signific	ant Intercept	
RRLPTRAC783	6934060	427108	535	-60	90	82		No signific	ant Intercept	
RRLPTRAC784	6934060	427028	535	-60	90	83		No signific	ant Intercept	
RRLPTRAC785	6934060	426948	535	-60	90	89		No signific	ant Intercept	
RRLPTRAC786	6934060	426868	535	-60	90	86		No signific	ant Intercept	
RRLPTRAC787	6934060	426788	535	-60	90	78		No signific	ant Intercept	
RRLPTRAC788	6934060	426708	535	-60	90	71		No signific	ant Intercept	
		Russells C	Collar Loc	ation			Inters	ection >1.0 pp	m Au and >1g/t	Au*m
Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From (m)	To (m)	Interval (m)	Au ppm
RRLRFAC034	6905894	438768	525	-60	256	24		No signific	ant Intercept	
RRLRFAC035	6905909	438847	525	-60	256	69	36	40	4	1.75
RRLRFAC036	6905929	438922	525	-60	256	98		No signific	ant Intercept	
RRLRFAC037	6905949	439002	525	-60	256	83		No signific	ant Intercept	
RRLRFAC038	6905989	439157	525	-60	256	35		No signific	ant Intercept	
RRLRFAC039	6906119	438827	525	-60	256	63		No signific	ant Intercept	
RRLRFAC040	6906139	438907	525	-60	256	99		No signific	ant Intercept	
RRLRFAC041	6906159	438982	525	-60	256	125		No signific	ant Intercept	
RRLRFAC042	6906194	439137	525	-60	256	105		No signific	ant Intercept	
RRLRFRC147 RRLRFRC147	6905455	438764	530	-73	254	120	60 99	67 104	7 5	5.86 3.03

Hole ID	Y	Х	Z	Dip	Azimuth	Total Depth (m)	From (m)	То (m)	Interval (m)	Au ppm	
RRLRFRC148	6906024	438437	525	-60	256	84		No signific	ant Intercept		
RRLRFRC149	6906064	438592	525	-60	253	84	No significant Intercept				
RRLRFRC150	6906099	438747	525	-60	258	76	No significant Intercept				
RRLRFRC151	6905814	438457	525	-60	256	96	No significant Intercept				
RRLRFRC152	6905854	438613	525	-60	257	84		No signific	ant Intercept		
RRLRFRC153	6905874	438692	525	-60	256	84		No signific	ant Intercept		
		Rosemont	Collar Lo	ocation			Interse	ection >1.0 pp	om Au and >1g/t	Au*m	
Hole ID	Y	х	Z	Dip	Azimuth	Total Depth (m)	From To Interval Au (m) (m) (m) ppm				
RRLRMDD040	6919200	429656	505	-78	235	1740.6	Awaiting Results				