

QUARTERLY ACTIVITIES REPORT – for quarter ended 30 September 2019

Image Resources NL ABN 57 063 977 579

ASX Code:

Contact Details

Ground Floor, 23 Ventnor Avenue, West Perth WA 6005

T: +61 8 9485 2410 E:info@imageres.com.au W: imageres.com.au

Issued Capital

Shares – Quoted 980,979,899 As at 30 September 2019

Board Members

Robert Besley (Non-Executive Chairman) Patrick Mutz (Managing Director) Chaodian Chen (Non-Executive Director) Aaron Chong Veov Soo (Non-Executive Director) Huangcheng Li (Non-Executive Director) George Sakalidis (Executive Director) Peter Thomas (Non-Executive Director) Eddy Wu

(Non-Executive Director)

HIGHLIGHTS

- Third full quarter as an operational mining company at 100%-owned Boonanarring Mineral Sands Project located 80km north of Perth, WA
- ➤ CY19 guidance is lifted reflecting the better than expected operational performance experienced throughout the quarter
- Strong operating margins continued with operating cash flow of A\$13m for the quarter and a cash position of A\$36m at guarter end
- ➤ HMC sales remain in line with expectations with routine monthly shipments to offtake partners Natfort and Wensheng

Summary Statistics

-	Mar Q	Jun Q	Sep Q	YTD	Prior Guidance	Updated Guidance
Production						
HMC Production (kt)	68.7	66.4	66.3	201.4	240-260	260-280
HMC Sales (kt)	47.9	68.2	58.8	175.0	230-250	No Change
HMC Realised Price (A\$/t HMC)	517	624	639	599	568-592	590-610
Unit Costs (HMC sold)						
C1 Cash Costs (A\$/t HMC) ₁	371	280	344	329	320-350	No Change
AISC (A\$/t HMC) ₂	427	337	410	390	na	370-390

Notes:

- 1 C1 cash costs include mining, processing, general and admin and concentrate transport costs
- 2 All-in sustaining cash costs (AISC) include C1 plus royalties, sustaining capital and corporate overheads
- Production of 66.3kt HMC for the quarter and 201.4kt HMC for the year to date with full year guidance lifted to 260-280kt HMC.
- Ore processing rates have benefited significantly from the installation of a larger trommel at the feed preparation plant (FPP) in August. Ore processed during the quarter was 874Kt, up 11% on the prior quarter.
- Positive grade reconciliations continued throughout the quarter, however mining was focused almost exclusively on the Western Strand, which does not experience the same magnitude of positive reconciliation as the Eastern Strand and its high-grade core. Consequently, the overall ore processed grade fell quarter on quarter.
- > Strong operating margins were maintained with C1 operating costs of A\$344/t HM and a realised price of A\$639/t HMC.
- Operating cash flow of A\$13.1m and closing cash of A\$35.8m despite payment of A\$12.3m for final shipment of 19.4kt being subsequently received in October.
- The benchmark price for zircon remained unchanged during the quarter and the USD/AUD foreign exchange rate remained very positive and ended the guarter below 0.68.
- Finished HMC inventory at end of the quarter was 46kt DMT with an estimated sales value of A\$32m.

ACTIVITIES REPORT

High Level Summary

Image Resources ("IMA" or the "Company") (IMA.ASX) is pleased to report a further strong quarter in its inaugural year of production at its 100%-owned, high-grade, zircon-rich Boonanarring mineral sands project, located 80km north of Perth in the North Perth Basin in WA.

Managing Director and CEO Patrick Mutz said "the delivery of the Boonanarring minerals sands project has been nothing short of exceptional. It is a testament to the quality of the asset, proper plant and equipment selection and the strong capability of the team that the operational performance continues to exceed expectations. Overall performance for CY2019 has maintained Image's reputation for delivery on its representations to its shareholders. It is pleasing to be delivering a high quality heavy mineral concentrate product to our offtake partners and generating strong operational cashflow this early into our journey from 'Australia's newest mineral sands miner' to 'rapidly growing mid-tier prospect'".

Operational performance for the quarter and year to date has been very positive and has led to strong operating cash flow. Operational throughput benefited from the installation of a larger trommel at the feed preparation plant (FPP) which significantly increased processing rates. Positive grade reconciliations continued for the quarter, however mining was focused on the Western Strand which does not experience the same magnitude of positive reconciliation as the Eastern Strand and its high-grade core. Consequently, the overall ore processed grade fell quarter on quarter. This trend will likely reverse in the December quarter as mining will move to Boonanarring Block B starting on the high-grade Eastern Strand in November 2019.

Infill drilling to delineate the high-grade core of the Eastern Strand was completed during the quarter and all assays have now been received. The results are currently being modelled with the Company expecting to release updated Mineral Resources, Ore Reserves, and updated production plan and economic forecast for Boonanarring during the December quarter.

Photo 1 – HMC loading at Boonanarring for haulage

Details

Safety

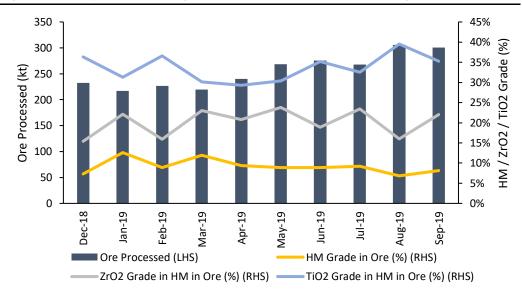
There was one Lost Time Injury (LTI) recorded during the quarter. This is the first LTI the Company has experienced following 18 months of site activities including project construction, commissioning and operations. This LTI was reported by the mining contractor and falls under the rapidly evolving and critically important category of mental health.

Image remains committed to the promotion of a safety culture including safety programmes and procedures that encourage job safety analysis and planning as well as active incident reporting for the purpose of continual improvement of the health, safety and well-being of all employees, contractors, visitors and members of the community as well as protection of the environment.

As part of the Company's safety, health and wellbeing initiatives, Image held several mental health suicide awareness sessions delivered by the Regional Men's Health Initiative during the quarter. The sessions focused on suicide warning signs and prevention avenues.

Mining and Processing

Boonanarring produced 66.3kt of HMC. Following sustained production performance, full year guidance has been lifted to 260-280kt HMC.


Mining and processing tonnages increased in the September quarter. The feed processing rate benefited from the installation of a larger trommel in August which significantly improved throughput. Positive grade reconciliations continued, although mining focused on the Western Strand which does not experience the same magnitude of positive reconciliation as the Eastern Strand and its high-grade core. Consequently, the processed grade fell guarter on guarter.

Subsequent to the end of quarter, pre-stripping commenced over the Eastern Strand in Block B. Block B is the next mining area and is located north of the current mining area Block C. The ore grade in Block B is expected to be higher than in Block C. Production will commence from this block following relocation of the feed preparation plant (FPP) which is scheduled to occur in November.

		Mar Quarter	Jun Quarter	Sept Quarter	YTD
Mining					
Ore	kt	673	763	908	2,344
Waste	kt	5,437	5,540	6,428	17,406
Processing					
Ore Processed	kt	664	784	874	2,323
Grade Processed	HM%	11.1%	9.1%	8.0%	9.2%
	ZrO2%	21%	21%	21%	21%
	TiO ₂ %	32%	32%	36%	33%
Recovery	HM%	86%	82%	86%	85%
	ZrO ₂ %	98%	97%	98%	97%
	TiO ₂ %	92%	87%	86%	88%
HMC Produced	Kt	68.7	66.4	66.3	201.4
HMC Grade	HM%	92%	88%	91%	90%
	ZrO2%	24%	25%	24%	24%
	TiO ₂ %	32%	32%	35%	33%

Notes: ZrO₂% and TiO₂% grades reported as a proportion of HM%

Figure 1: Monthly ore processing rate (kt) and contained HM/ZrO₂/TiO₂ grades (%)

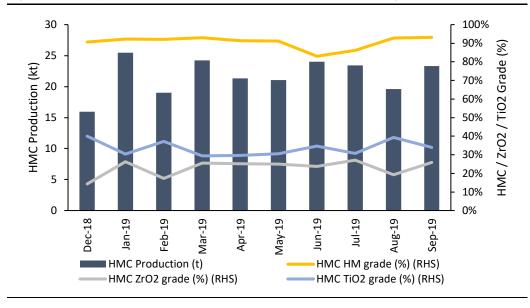


Figure 2: Monthly HMC production (kt) and contained HM/ZrO₂/TiO₂ grades (%)

Costs

C1 cash costs were A\$344/t HMC sold, and with All-in Sustaining Costs (AISC) at A\$410/t HMC sold. September quarter unit costs were higher than the preceding quarter as a result of lower HM ore grades. Full year C1 guidance of A\$320-350/t HMC is unchanged.

	Mar Quarter	Jun Quarter	Sept Quarter	YTD
Costs (A\$/t HMC produced)				
Mining	162	155	154	156
Deferred Mining	0	0	14	5
Processing	37	48	60	49
Site Support	12	12	11	12
Logistics	48	73	66	64
C1 Cash Costs	259	288	305	286
Royalties	17	30	27	25
Sustaining Capital	4	15	14	12
Corporate	18	13	18	16
AISC	298	346	364	339
Costs (A\$/t HMC sold)				
C1 Cash Costs	371	280	344	329
AISC	427	337	410	390

Sales

HMC sales were 58.8kt, full year guidance is unchanged at 230-250kt. Realised HMC price was A\$639/t HMC, full year guidance has been lifted to A\$590-610/t HMC due to higher than expected ZrO₂ grades.

A total of three bulk shipments of HMC were completed for the quarter. All shipments were to existing offtake partners and reflected market pricing for the 30 days leading up to the time of each shipment. HMC inventory at quarter end was 46kt with an estimated sales value of A\$32m.

		Mar Quarter	Jun Quarter	Sept Quarter	YTD
Sales					
HMC sold	kt	47.9	68.2	58.8	175.0
ZrO ₂ in HMC	%	18%	22%	22%	21%
TiO ₂ in HMC	%	30%	27%	30%	29%
Average price realised	A\$/t HMC	517	623	639	599
HMC Revenue ₁	A\$m	24.8	42.5	37.6	104.9
Stockpiles					
HMC for shipping	kt	38.5	38.2	46.4	na

Notes: 1 – including A\$12.3m from the sale of a 19.4kt shipment which sailed on 30-Sep-19 and for which funds were received in early October.

Corporate Summary

Revenue

Total revenue for the quarter was A\$37.6m and year to date of A\$104.9m, both of which exclude the shipment of 19.4kt HMC which sailed on 30th September and for which proceeds were received in early October.

Operating Costs

Cost of goods sold for the quarter was A\$20.2m and year to date was A\$57.1m. Project cost guidance for full CY2019 of A\$75-85m is unchanged.

The C1 cash cost per tonne of HMC sold during the quarter was A\$344/t HMC. All-in sustaining cost per tonne of HMC sold during the quarter was A\$410/t HMC. C1 cash cost guidance for CY2019 of A\$320-350/t is unchanged.

Operating Margin and EBITDA

The AISC margin, per tonne of HMC sold was A\$228/t. Project EBITDA of A\$19.1m was marginally down on the prior quarter reflecting lower average HM ore grades. Project EBITDA guidance is increased to A\$60-70m.

Cash

Cash at quarter end of A\$35.8m, excludes A\$12.3m from HMC shipment No. 9 of 19.4kt HMC which sailed on 30th September.

Guidance

		Prior CY19 Guidance	Updated CY19 Guidance	CY20 Guidance2
Ore Processed	kt	3,100-3,300	3,100-3,300	3,500-3,700
HMC Produced	kt	240-260	260-280	280-300
HMC Sold	kt	230-250	230-250	280-300
Revenue	A\$m	130-145	140-150	180-200
HMC Realised Price	A\$/t HMC	568-592	590-610	600-650
Project Operating Costs ₁	A\$m	75-85	75-85	85-95
C1 Cash Costs (HMC sold)	A\$/t HMC	320-350	320-350	310-330
AISC Cash Costs (HMC sold)	A\$/t HMC	na	370-390	na
Project EBITDA	A\$m	55-65	60-70	90-100

Notes: 1 – cost of production after stock adjustments.

2 – based on 3 Aug 2017 Ore Reserve and 28 Jun 2018 financial modelling, to be updated in the December quarter to reflect updated Ore Reserve and financial modelling.

Exploration

Exploration Highlights

- A 579-hole infill drilling programme totalling 24,642m (averaging 43m per hole) and 9,713 assays has been completed over Blocks A, B, C and D over the Boonanarring Deposit (Table 1). The dimensions of the Eastern Strand high-grade core within Block A, B, C and D with ore grades greater than 30% heavy mineral (HM) are summarised in Table 2. This shows an arithmetic average for all the drill lines within each block which range in width from 14.4m to 35.9m, range in thickness from 1.3m to 3.0m and range in ore grade from an exceptional 36.0%HM to 45.3%HM. The Block A eastern strand has the best width (35.9m), best thickness (3.0m), and best grade (45.3%) of all the mining Blocks at Boonanarring (Table 2).
- An initial programme has been completed over a 1.3km length of the Boonanarring Northern Extension Area (NEA) with 82 holes totaling 3,129m (averaging 38m per hole). This programme has shown that the high-grade core within the eastern strand would also extend under the Brand Highway into the NEA. Additional drilling is being planned to determine the exact position of the deposit relative to the Brand Highway and will require drilling to the east of the highway.
- A roadside drilling programme of 130 holes totaling 5,200m (subject to Main Roads and POW approval) and a drilling
 programme on land to the east side of the Brand highway and opposite the NEA, of 86 holes totaling 3,440m (subject to the
 finalisation of an access agreement) will add significantly to the delineation of mineralization in the NEA. In addition, a 69hole, 2,070m programme at a newly defined area in the western portion of the NEA is to commence at the end of October
 (Figure 7).
- A total of 26,311m of drilling is planned on exploration projects over the next 5 months as shown in Table 1. Note this does not include additional drilling planned at Bidaminna (90 holes for 4,700m) shown in Figure 10 and Reagans Ford (79 holes 2,704m) which are both subject to access agreements.

Metres Holes Metres Holes Metres Holes **Project** Complete Remaining Complete Remaining Total **Total** E70/3100 82 Quinns Hill 3,129 272 10,320 354 13,449 E70/3720 Blue Lake 13 390 13 390 E/U/3U41 & **Boonanarring West** 1.794 13 181 90 1.975 77 E70/4689 M70/1311 24,642 579 24,642 Boonanarring 579 E70/3041 **Boonanarring South** 43 852 59 1,272 102 2,124 E/U/3298, 2844, 28 1,564 78 106 Bidaminna 3,794 5,358 4794, 4779 E70/4244 Woolka 94 3,760 94 3,760 E/U/2898, 399/, Atlas 65 631 65 631 P70/1516 R70/51 Hyperion 78 1,062 78 1,062 M70/1192 Red Gully 58 1,701 58 1,701 E70/3997 Munbinia 160 3.200 160 3.200 809 31.981 26,311 Total: 919 1.699 58,292

Table 1 - Drilling Programmes Completed and Planned

Boonanarring Mine Infill Drilling

Close-spaced infill drilling has confirmed the existence of a very high-grade core within the Eastern Strand of Image's 100%-owned, high-grade, zircon-rich Boonanarring project.

All the drilling has now been completed for Blocks A, B, C and D and totalled 579 holes for 24,642m (Table 1). All lab results have been completed with 9,713 assays received.

Initial confirmation of the existence of a high-grade core in the eastern strand at Boonanarring came from assay results from early stage drilling in Block C (current mining block) and was announced to the ASX on 15 July 2019 ("Image Resources Confirms Existence of High-Grade Core in Eastern Strand at Boonanarring"). Secondary confirmation came from assay results from drilling in Block B and were announced 2 September 2019 ("Confirmation of Continuity of very High-Grade Core in Eastern Strand in Block B at Boonanarring"). Assay results from the next stage of drilling in Block A were announced to the ASX on 23 September 2019 (Confirmation of Continuation of Very High-Grade Core in Block A Eastern Strand At Boonanarring), and confirm the continuation of the high-grade core over the full length (1.4km) of Block A. The total length of the high-grade core stretches over 5.4km within Blocks A, B and C, with Block C currently being mined, and with mining to commence in Block B in the December quarter 2019.

This large, close-spaced drilling programme was designed to re-assess the Mineral Resources and Ore Reserves at Boonanarring, as announced to the ASX on 14 March 2019 ("Targeting Ore Reserve Upgrade at Boonanarring in Response to Higher than Expected Ore Grades"). The full drilling program included close-spaced, infill drilling to delineate the full extent of the high-grade core in the eastern strand across Blocks A, B, C and D.

At least 130 composites are expected to be made up covering all the Blocks. At the same time mineralogical studies are aimed at defining premium zircon areas and lateritic zones.

Figure 1 is a grade-thickness contour map which shows the presence of a very high-grade core greater than 150 GT (grade-thickness as HM% x ore thickness in meters and shown as purple triangles), and greater than 200 GT shown as yellow triangles, which extends largely the full length of the eastern strand within Block A, Block B and the northern half of Block C, over a >5km length. There is a general grade, width and thickness increase from Block D up to Block A as summarised in Figure 1 and Table 2. In the area to the south of 30800N, the drilling was not able to be fully completed due to the presence of solar evaporation cells used to dewater slimes tailings.

Eastern Strand High-Grade Core Dimensions and Grade (visual and assays)								
Block A Block B Block C Bloc								
Width	35.9m	23.3m	25.3m	14.4m				
Thickness	3.0m	2.3m	2.4m	1.3m				
Average Ore Grade (%HM)	45.3%	44.5%	41.3%	36.0%				

Table 2 – Eastern Strand High-Grade Core Block Comparisons

The dimensions of the eastern high-grade core within Block A, B, C and D greater than 30% HM is summarised in Table 2. This shows an arithmetic average for all the drill lines within each block which range in width from 14.4m to 35.9m, range in thickness from 1.3m to 3.0m and range in ore grade from an exceptional 36.0%HM to 45.3%HM. The Block A eastern strand has the best average width (35.9m), thickness (3.0m), and grade (45.3%HM) of all the mining Blocks at Boonanarring (Table 2).

Sets of assays are presented by means of cross-sections showing assay results from the drilling used to determine the initial Mineral Resources and Ore Reserves, compared to cross-sections showing assay results from the recently completed close-spaced infill drilling (Figures 2-5).

These cross-section comparisons showing HM grades before and after the infill drilling, clearly show the presence of substantial high and very high-grade core material that was not identified in the initial Ore Reserves drilling results. These results should not be used to imply any potential quantitative change to the Mineral Resources and Ore Reserves. The target date for re-estimation of the Mineral Resources and Ore Reserves is in the December Quarter 2019.

Out of 9,713 single metre laboratory assays from Blocks A, B, C & D received to-date, 864 assays are \geq 10% & <20% HM, 310 \geq 20% & <30% HM, 152 \geq 30% & <40% HM, 89 \geq 40% & <50% HM, 75 \geq 50% & <60% HM, 40 \geq 60% & <70% HM, 38 \geq 70% & <80% HM and 14 \geq 80% HM.

Table 3 shows the exceptionally high-grade intersections greater than 50% heavy minerals (HM) with 57 intersections (ranging from 2m to 5m thickness). Table 4 shows all the 255 high-grade results intersections (ranging from 2 to 25m thickness) greater than 10% HM from the current close-spaced infill drilling program.

The southern part of Block C and northern part of Block D may require further drilling within the western strand as the drill density is low compared to the northern part of Block C where the grades appear to be higher. The western strand produces around 60% of the ore feed (tonnes) and any further continuity southwards could be significant to overall average ore tonnes.

Also, the continuity south of the high-grade eastern strand into Block E over a 3km distance is planned to be tested by 29 drill holes totalling 1,450m (subject to access) and a further 9 holes totalling 406m in Block D (Figure 6).

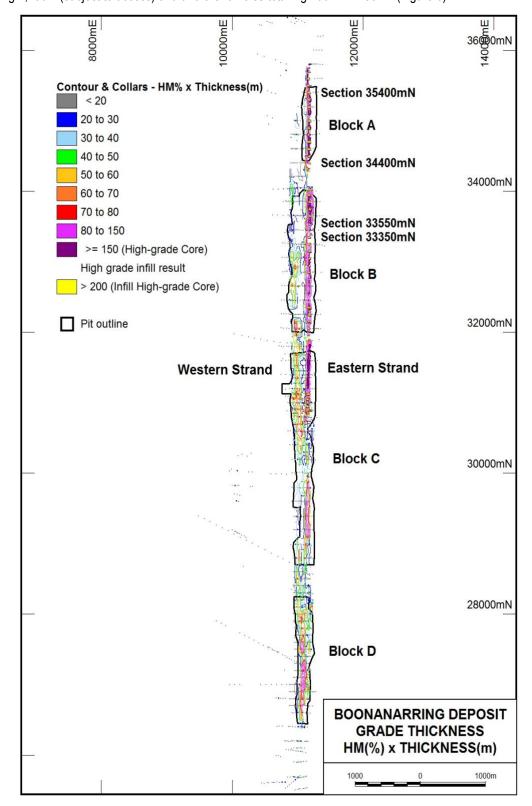


Figure 1 – Boonanarring Deposit showing grade-thickness contours within Blocks A, B, C and D.

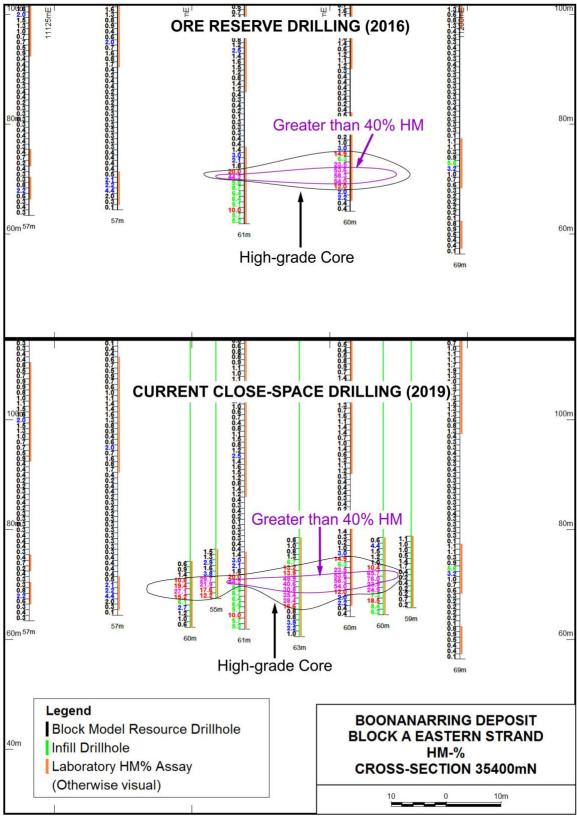


Figure 2 – Block A Section 35400mN Eastern Strand comparison of before and after infill drilling showing greater extent of high-grade core.

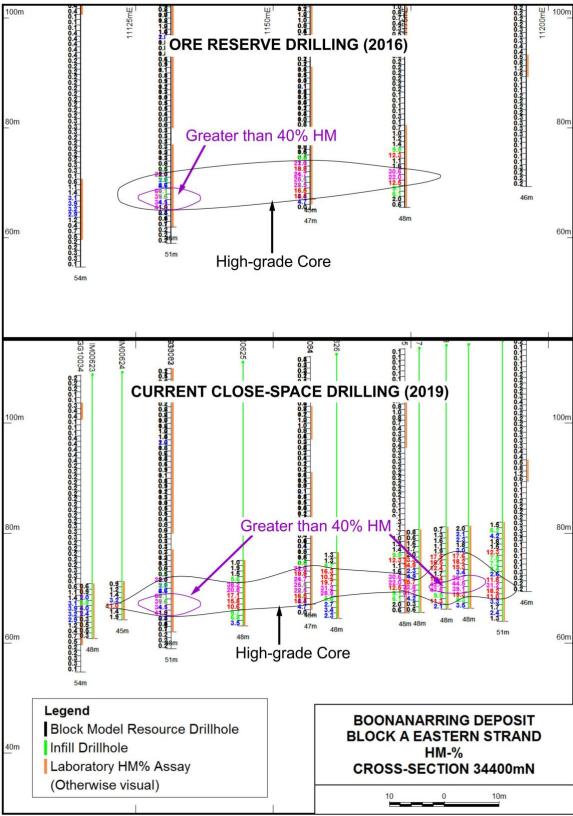


Figure 3 – Block A Section 34400mN Eastern Strand comparison of before and after infill drilling showing greater extent of high-grade core.

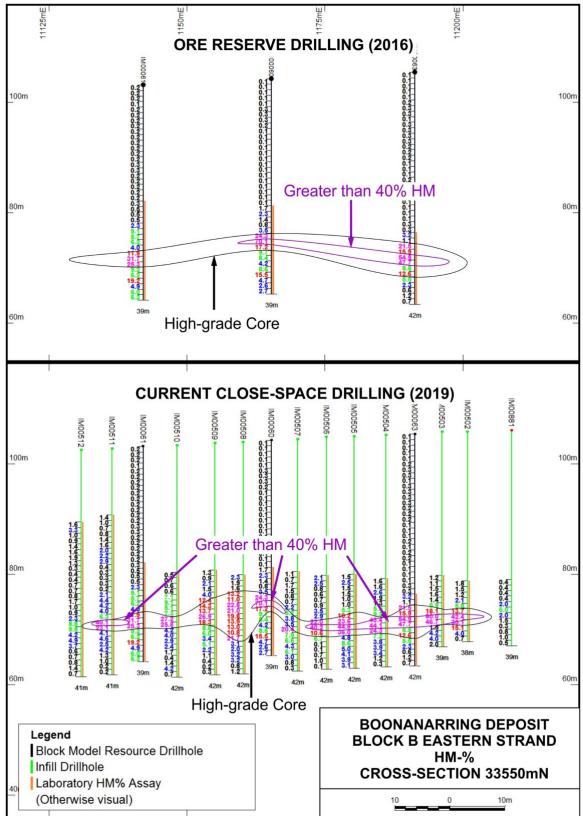


Figure 4 – Block B Section 33550mN Eastern Strand comparison of before and after infill drilling showing greater extent of high-grade core

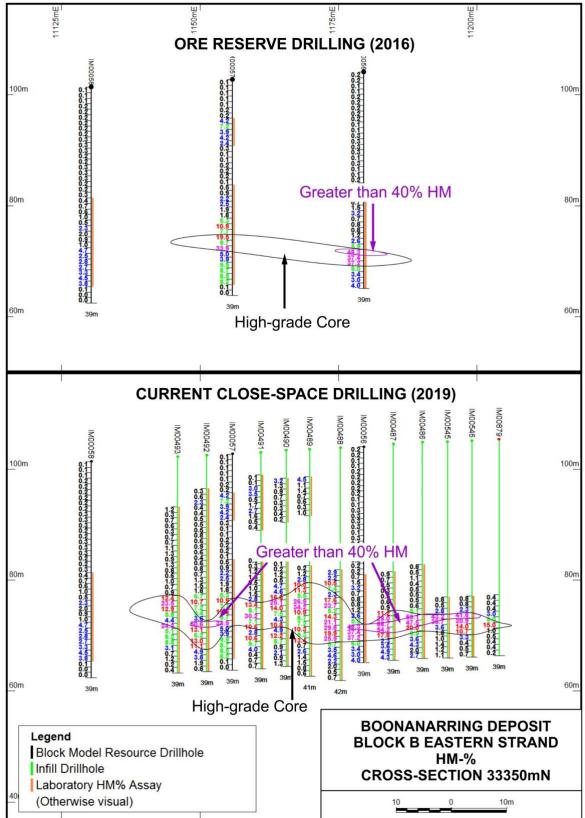


Figure 5 – Section 33350mN Eastern Strand comparison of before and after infill drilling showing greater extent of high-grade core.

A total of 65 air-core holes for 3,101m are planned to test the Block D (13 holes 583m) and E (52 holes 2,518m) southern extension and to extend the infill drilling to the south. It will be testing for a third strand at the 73 to 75 RL which is higher up on the scarp than the main 65RL of the Boonanarring deposit. This newly identified mineralised strand opens the scope of the southern part of Boonanarring, which hasn't been drill tested adequately.

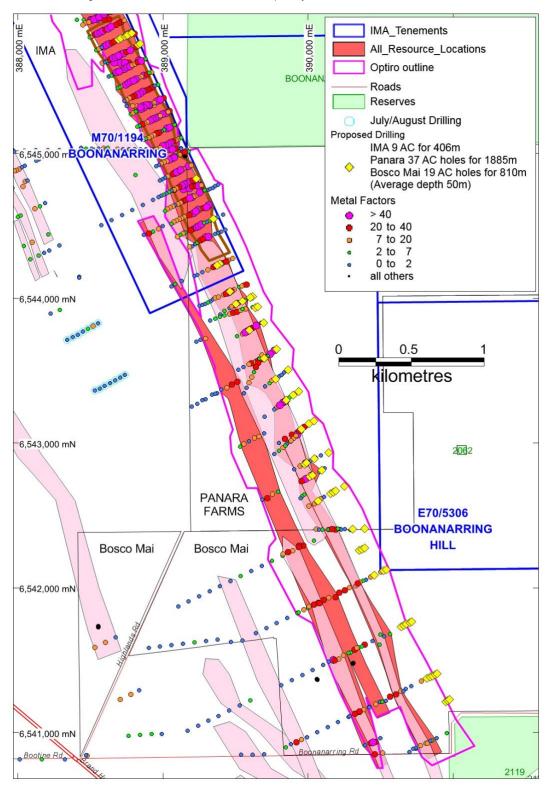


Figure 6 – Boonanarring Southern Extension Infill Drilling Blocks D and E within IMA, Panara Farms and Bosco Mai. Boonanarring Northern Extension drilling

An initial programme has been completed over the Boonanarring Northern Extension Area with 82 holes totaling 3,129m (averaging 38m per hole) with assay results pending.

In addition, a roadside drilling programme of 130 holes totaling 5,200m (subject to Main Roads and POW approval) and a drilling programme on land on the east side of the Brand highway and opposite the NEA, of 86 holes totaling 3,440m (subject to the finalisation of an access agreement) will add significantly to the delineation of mineralization in the NEA Northern Extension drilling. Also, in addition, a 69-hole, 2,070m programme at the newly defined area in the western portion of the NEA Boonanarring Northwestern Extension is planned and the POW has just been granted. A drill programme is set to commence start on 29th the end of October (Figure 7).

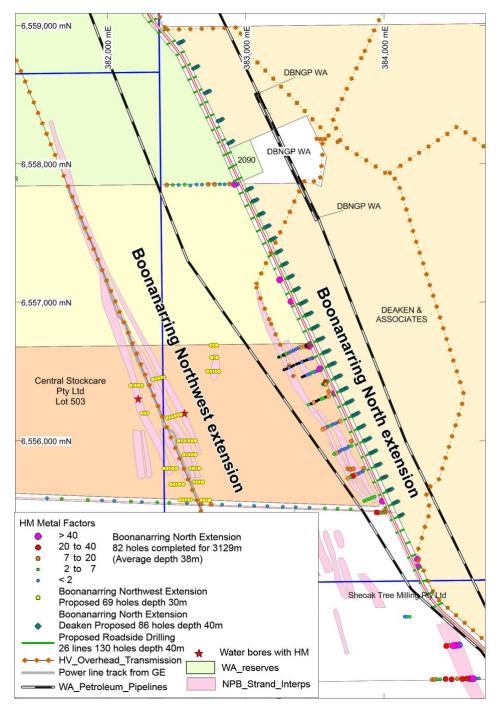


Figure 7 – Central Stockcare Lot 503 Boonanarring Northern Extension (completed), Proposed Road-side drilling,
Deaken & Associates Drilling and the new Northwest Extension Drilling.

Table 3 – Infill Drilling Intersections >50% HM Blocks A, B, C & D (none in D).

Block	HoleID	North(m)	East(m)	Intercept
		, ,	,	Width(m) at %HM from depth(m)
A	IM00636	34501	11187	4m at 53.05% HM from 43m
A	IM00640	34600	11174	2m at 51.51% HM from 44m
A	IM00641	34600	11190	5m at 61.95% HM from 43m
A	IM00646	34700	11180	5m at 63.4% HM from 42m
A	IM00647	34700	11190	4m at 59.2% HM from 43m
A	IM00647	34801	11174	3m at 53.89% HM from 44m
A	IM00651	34800	11192	2m at 59.38% HM from 46m
A	IM00658	34902	11190	2m at 69.78% HM from 48m
A	IM00663	35000	11180	5m at 64.67% HM from 46m
A	IM00664	35000	11195	2m at 78.3% HM from 48m
A	IM00671	35100	11190	2m at 63.05% HM from 49m
A	IM00671	35200	11185	3m at 65.78% HM from 51m
		35300	11170	2m at 65.11% HM from 53m
Α	IM00681			
A	IM00696	35400	11185	2m at 74.54% HM from 52m
A	IM00719	35500	11180	2m at 51.37% HM from 51m
A	IM00725	35600	11165	5m at 50.41% HM from 49m
A	IM00726	35600	11170	3m at 64.75% HM from 51m
A	IM00727	35600	11175	3m at 63.36% HM from 51m
A	IM00732	35700	11171	2m at 51.24% HM from 50m
A	IM00733	35700	11180	5m at 56.16% HM from 49m
A	IM00736	35750	11179	2m at 55.7% HM from 48m
A	IM00738	35800	11190	2m at 51.4% HM from 49m
Α	IM00740	35697	11184	2m at 57.06% HM from 51m
<u> </u>	10.400.440	20050	44405	2 1 50 440/ LIM (25
В	IM00443	32650	11185	3m at 56.44% HM from 35m
В	IM00453	32850	11180	4m at 55.16% HM from 36m
В	IM00454	32850	11176	3m at 52.84% HM from 37m
В	IM00457	32950	11185	3m at 57.32% HM from 35m
В	IM00463	33050	11183	2m at 72.88% HM from 34m
В	IM00485	33258	11191	2m at 51.33% HM from 31m
В	IM00486	33347	11190	2m at 55.98% HM from 31m
В	IM00487	33350	11185	2m at 64.01% HM from 32m
В	IM00503	33550	11196	2m at 54.72% HM from 33m
В	IM00523	33750	11186	2m at 76.73% HM from 36m
В	IM00524	33750	11191	3m at 63.55% HM from 35m
В	IM00525	33750	11195	2m at 77.49% HM from 36m
В	IM00532	33850	11186	3m at 56.97% HM from 36m
В	IM00533	33850	11190	4m at 56.94% HM from 36m
В	IM00538	33950	11187	3m at 59.26% HM from 36m
В	IM00542	33850	11195	3m at 66.82% HM from 37m
В	IM00877	32249	11185	5m at 56.66% HM from 31m

Block	HoleID	North(m)	East(m)	Intercept
				Width(m) at %HM from depth(m)
С	IM00321	31124	11155	2m at 60.13% HM from 19m
С	IM00322	31124	11165	3m at 71.85% HM from 18m
С	IM00323	31123	11170	3m at 68.98% HM from 17m
С	IM00324	31125	11175	3m at 64.72% HM from 17m
С	IM00334	30900	11160	3m at 60.55% HM from 37m
С	IM00335	30900	11155	3m at 62.9% HM from 37m
С	IM00344	30899	11165	3m at 58.51% HM from 37m
С	IM00374	30800	11113	2m at 50.17% HM from 43m
С	IM00382	31000	11160	3m at 66.76% HM from 27m
С	IM00383	31000	11165	2m at 61.69% HM from 27m
С	IM00384	31000	11170	2m at 79.94% HM from 27m
С	IM00392	30950	11145	2m at 52.76% HM from 33m
С	IM00394	30950	11155	3m at 60.77% HM from 32m
С	IM00395	30950	11161	3m at 60.38% HM from 31m
С	IM00397	30950	11170	2m at 53.45% HM from 32m
С	IM00764	30797	11112	2m at 62.3% HM from 16m
С	IM00769	30857	11156	4m at 50.23% HM from 6m

Table 4 – Infill Drilling Blocks A, B, C & D - Significant Intersection > 10% HM.

Block	HoleID	North	East	From	То	Width	HM_Lab
		m	m	m	M	М	%
Α	IM00621	34300	11159	34	40	6	11.36
Α	IM00622	34300	11164	35	42	7	10.16
Α	IM00625	34401	11145	39	48	9	14.54
Α	IM00626	34401	11162	38	48	10	12.89
Α	IM00627	34402	11177	37	46	9	13.66
Α	IM00627		including	43	45	2	32.45
Α	IM00628	34402	11181	38	41	3	16.19
Α	IM00628			42	48	6	22.60
Α	IM00628		including	43	45	2	49.11
Α	IM00633	34501	11157	37	46	9	19.83
Α	IM00634	34501	11168	38	51	13	15.00
Α	IM00634		including	42	44	2	34.85
Α	IM00635	34501	11178	37	52	15	19.54
Α	IM00635		including	42	46	4	49.35
Α	IM00636	34501	11187	42	50	8	33.93
Α	IM00636		including	43	47	4	53.05
Α	IM00640	34600	11174	36	49	13	21.57
Α	IM00640		including	44	46	2	51.51
Α	IM00641	34600	11190	42	53	11	35.44
Α	IM00641	-	including	43	48	5	61.95

Block	HoleID	North	East	From	То	Width	HM_Lab
	-	m	m	m	М	М	%
Α	IM00642	34600	11195	43	51	8	26.32
Α	IM00642		including	44	48	4	43.68
Α	IM00644	34700	11160	38	47	9	18.44
Α	IM00644		including	41	43	2	41.74
Α	IM00645	34700	11170	38	52	14	21.49
Α	IM00645		including	42	45	3	39.47
Α	IM00646	34700	11180	42	51	9	41.46
Α	IM00646		including	42	47	5	63.40
Α	IM00647	34700	11190	43	52	9	29.03
Α	IM00647		including	43	47	4	59.20
Α	IM00648	34700	11200	45	48	3	22.02
Α	IM00650	34802	11158	41	52	11	13.36
Α	IM00651	34801	11174	41	56	15	22.93
Α	IM00651		including	44	47	3	53.89
Α	IM00652	34800	11192	44	49	5	29.62
Α	IM00652		including	46	48	2	59.38
Α	IM00656	34902	11169	42	57	15	14.70
Α	IM00657	34902	11179	43	51	8	25.46
Α	IM00657		including	47	50	3	46.08
Α	IM00658	34902	11190	46	51	5	32.54
Α	IM00658		including	48	50	2	69.78
Α	IM00659	34903	11199	47	50	3	24.70
Α	IM00659		including	47	49	2	32.42
Α	IM00662	35000	11160	45	52	7	13.39
Α	IM00663	35000	11180	42	54	12	32.80
Α	IM00663		including	46	51	5	64.67
Α	IM00664	35000	11195	47	54	7	32.13
Α	IM00664		including	48	50	2	78.30
Α	IM00668	35100	11160	43	52	9	10.26
Α	IM00669	35100	11169	46	55	9	20.17
Α	IM00669	Т	including	48	51	3	38.16
Α	IM00670	35100	11180	45	57	12	14.71
Α	IM00671	35100	11190	49	53	4	39.63
Α	IM00671		including	49	51	2	63.05
Α	IM00675	35200	11170	46	58	12	19.53
Α	IM00675		including	50	53	3	40.92
Α	IM00676	35200	11185	50	58	8	28.78
Α	IM00676		including	51	54	3	65.78
Α	IM00681	35300	11170	49	61	12	18.00
Α	IM00681		including	53	55	2	65.11
Α	IM00691	35300	11190	53	60	7	14.64
Α	IM00692	35301	11180	49	60	11	25.22

Block	HoleID	North	East	From	То	Width	HM Lab
		m	m	m	M	М	%
A	IM00692		including	52	56	4	44.28
A	IM00694	35400	11154	50	55	5	17.09
A	IM00695	35400	11170	49	58	9	26.64
A	IM00695	00100	including	52	56	4	40.22
A	IM00696	35400	11185	51	60	9	27.86
A	IM00696	00.00	including	52	54	2	74.54
A	IM00706	34401	11186	37	48	11	19.82
A	IM00706		including	42	45	3	43.03
A	IM00716	35500	11150	49	55	6	11.51
Α	IM00717	35500	11160	46	55	9	19.63
А	IM00717		including	52	54	2	37.73
А	IM00718	35500	11170	49	60	11	22.35
Α	IM00718	'	including	52	54	2	43.41
Α	IM00719	35500	11180	49	60	11	15.96
Α	IM00719	•	including	51	53	2	51.37
Α	IM00723	35600	11150	50	58	8	13.42
Α	IM00724	35600	11155	48	58	10	16.93
Α	IM00725	35600	11165	47	57	10	31.20
Α	IM00725		including	49	54	5	50.41
Α	IM00726	35600	11170	46	58	12	24.46
Α	IM00726		including	51	54	3	64.75
А	IM00727	35600	11175	50	64	14	18.70
Α	IM00727		including	51	54	3	63.36
Α	IM00728	35600	11180	50	58	8	10.01
Α	IM00731	35700	11161	44	58	14	13.51
Α	IM00732	35700	11171	46	55	9	21.27
Α	IM00732	<u> </u>	including	50	52	2	51.24
Α	IM00733	35700	11180	44	57	13	26.63
Α	IM00733		including	49	54	5	56.16
Α	IM00734	35690	11190	49	54	5	16.73
Α	IM00735	35750	11170	44	53	9	11.55
Α	IM00736	35750	11179	44	54	10	19.17
Α	IM00736		including	48	50	2	55.70
Α	IM00738	35800	11190	45	57	12	16.54
Α	IM00738		including	49	51	2	51.40
А	IM00740	35697	11184	46	57	11	17.91
Α	IM00740		including	51	53	2	57.06
Α	IM00782	34402	11192	38	48	10	11.57
Α	IM00783	34501	11192	40	48	8	12.50
Α	IM00787	35400	11150	51	57	6	13.85
А	IM00788	35500	11154	46	56	10	12.41

		N1 41			_	1471 141	n E 3 U U
Block	HoleID	North	East	From	То	Width	HM_Lab
		m	m	m	M	M	%
В	IM00416	32150	11180	29	34	5	20.69
В	IM00418	32050	11170	20	39	19	13.81
В	IM00422	32250	11175	17	24	7	10.34
В	IM00422			26	41	15	12.80
В	IM00423	32250	11166	23	25	2	16.13
В	IM00423			26	35	9	12.54
В	IM00424	32250	11156	24	37	13	10.00
В	IM00428	32350	11196	32	43	11	22.06
В	IM00429	32348	11190	29	41	12	15.13
В	IM00429		including	33	36	3	38.67
В	IM00431	32350	11175	23	45	22	12.67
В	IM00432	32450	11186	32	39	7	17.37
В	IM00432		including	34	36	2	34.29
В	IM00438	32550	11164	23	39	16	10.29
В	IM00438		including	25	27	2	33.47
В	IM00441	32650	11195	35	40	5	10.92
В	IM00442	32650	11190	35	39	4	33.80
В	IM00443	32650	11185	34	39	5	38.06
В	IM00443		including	35	38	3	56.44
В	IM00444	32650	11176	30	39	9	20.08
В	IM00445	32650	11171	31	42	11	12.79
В	IM00448	32750	11167	32	41	9	11.35
В	IM00449	32750	11162	32	40	8	16.23
В	IM00450	32750	11152	25	30	5	11.35
В	IM00450			33	41	8	15.69
В	IM00452	32850	11195	36	38	2	30.06
В	IM00453	32850	11180	36	42	6	41.95
В	IM00453		including	36	40	4	55.16
В	IM00454	32850	11176	35	42	7	28.00
В	IM00454		including	37	40	3	52.84
В	IM00455	32850	11148	24	27	3	12.86
В	IM00456	32850	11138	25	36	11	12.28
В	IM00457	32950	11185	34	40	6	37.76
В	IM00457		including	35	38	3	57.32
В	IM00457			41	42	1	16.19
В	IM00458	32950	11175	34	40	6	27.17
В	IM00458		including	35	38	3	47.99
В	IM00459	32950	11170	33	39	6	24.87
В	IM00462	33050	11193	34	42	8	10.99
В	IM00463	33050	11183	33	37	4	48.41
В	IM00463		including	34	36	2	72.88
В	IM00464	33050	11177	33	41	8	21.65

D: .		N1 41			_	1871 141	U E 9 U O
Block	HoleID	North	East	From	То	Width	HM_Lab
		m	m	m	M	M	%
В	IM00464		including	34	36	2	47.31
В	IM00469	33150	11190	31	38	7	13.70
В	IM00470	33150	11185	31	40	9	32.24
В	IM00470		including	31	36	5	49.69
В	IM00471	33150	11175	31	37	6	30.40
В	IM00471		including	32	36	4	44.43
В	IM00472	33148	11170	28	36	8	17.11
В	IM00473	33142	11165	28	42	14	12.17
В	IM00479	33250	11181	27	37	10	24.11
В	IM00479		including	31	35	4	45.63
В	IM00480	33250	11161	26	35	9	13.12
В	IM00485	33258	11191	31	38	7	27.25
В	IM00485		including	31	33	2	51.33
В	IM00486	33347	11190	30	37	7	21.78
В	IM00486		including	31	33	2	55.98
В	IM00487	33350	11185	30	39	9	22.27
В	IM00487		including	32	34	2	64.01
В	IM00488	33350	11175	22	39	17	11.85
В	IM00489	33347	11170	23	35	12	12.59
В	IM00490	33345	11166	24	35	11	10.33
В	IM00492	33350	11151	25	38	13	11.20
В	IM00493	33350	11146	25	35	10	10.73
В	IM00494	33450	11195	30	35	5	23.09
В	IM00495	33450	11190	30	36	6	18.65
В	IM00496	33449	11180	29	36	7	27.29
В	IM00496		including	31	34	3	47.78
В	IM00498	33450	11164	25	36	11	12.16
В	IM00500	33450	11154	26	34	8	13.94
В	IM00502	33550	11201	30	37	7	18.63
В	IM00502		including	33	35	2	42.78
В	IM00503	33550	11196	31	35	4	34.52
В	IM00503		including	33	35	2	54.72
В	IM00504	33550	11186	31	40	9	16.64
В	IM00504		including	33	35	2	43.83
В	IM00505	33550	11180	31	42	11	14.11
В	IM00505		including	34	36	2	41.00
В	IM00506	33550	11175	31	37	6	14.57
В	IM00508	33550	11160	27	40	13	12.34
В	IM00509	33550	11155	27	38	11	10.69
В	IM00515	33650	11176	34	40	6	15.86
В	IM00516	33650	including	34	38	4	38.03
В	IM00517	33650	11190	17	42	25	11.70

Block	HoleID	North	East	From	То	Width	HM_Lab
	-	m	m	m	М	М	%
В	IM00517		including	36	39	3	34.20
В	IM00518	33650	11194	29	43	14	13.12
В	IM00518		including	35	38	3	34.89
В	IM00523	33750	11186	35	41	6	36.93
В	IM00523		including	36	38	2	76.73
В	IM00524	33750	11191	35	44	9	28.83
В	IM00524		including	35	38	3	63.55
В	IM00525	33750	11195	30	31	1	13.30
В	IM00525			35	42	7	30.96
В	IM00525		including	36	38	2	77.49
В	IM00530	33850	11170	34	41	7	20.29
В	IM00531	33850	11176	35	40	5	30.74
В	IM00531		including	35	37	2	34.45
В	IM00532	33850	11186	35	42	7	32.01
В	IM00532		including	36	39	3	56.97
В	IM00533	33850	11190	36	44	8	32.34
В	IM00533		including	36	40	4	56.94
В	IM00534	33950	11160	29	41	12	10.43
В	IM00535	33950	11170	22	41	19	10.93
В	IM00536	33950	11177	34	41	7	27.86
В	IM00536		including	35	39	4	41.07
В	IM00537	33950	11182	35	44	9	18.60
В	IM00537		including	36	39	3	45.54
В	IM00538	33950	11187	35	42	7	28.04
В	IM00538		including	36	39	3	59.26
В	IM00539	33950	11197	35	40	5	14.45
В	IM00542	33850	11195	36	41	5	49.45
В	IM00542		including	37	40	3	66.82
В	IM00543	33850	11205	38	41	3	10.63
В	IM00544	33451	11200	30	34	4	16.54
В	IM00545	33345	11195	30	34	4	23.53
В	IM00545		including	31	33	2	43.64
В	IM00546	33343	11199	30	36	6	17.84
В	IM00548	32851	11164	32	42	10	12.02
В	IM00549	32850	11170	35	42	7	21.75
В	IM00550	32849	11185	36	42	6	32.09
В	IM00550		including	37	40	3	46.81
В	IM00553	32550	11192	33	44	11	11.59
В	IM00553		including	34	36	2	42.60
В	IM00554	32450	11191	33	36	3	20.89
В	IM00556	32050	11174	35	41	6	19.72
В	IM00556		including	37	39	2	39.60

Block	HoleID	North	East	From	То	Width	HM_Lab
		m	m	m	М	М	%
В	IM00557	32051	11179	33	40	7	14.93
В	IM00557			41	46	5	11.41
В	IM00558	32051	11184	33	37	4	13.74
В	IM00563	32050	11025	28	34	6	12.22
В	IM00575	32450	10965	32	33	1	10.33
В	IM00582	32650	11031	27	31	4	10.01
В	IM00604	33652	10958	24	25	1	12.30
В	IM00605	33652	10998	26	28	2	14.83
В	IM00744	33050	11159	26	37	11	10.53
В	IM00746	32950	11165	26	41	15	12.79
В	IM00747	32850	11158	31	40	9	11.32
В	IM00748	32550	11179	28	40	12	14.91
В	IM00748		including	35	37	2	42.99
В	IM00749	32450	11180	34	42	8	13.98
В	IM00749		including	35	37	2	38.31
В	IM00750	32350	11167	21	43	22	11.80
В	IM00750		including	29	31	2	34.41
В	IM00751	32250	11180	26	38	12	15.60
В	IM00752	32249	11190	29	39	10	19.35
В	IM00752		including	31	33	2	41.00
В	IM00755	32150	11165	19	37	18	10.72
В	IM00755		including	27	29	2	33.53
В	IM00876	32152	11170	21	34	13	16.46
В	IM00877	32249	11185	30	40	10	35.73
В	IM00877		including	31	36	5	56.66
В	IM00878	32346	11186	33	43	10	14.48
В	IM00878		including	34	36	2	46.08
В	IM00879	33343	11203	30	35	5	19.14
В	IM00879		including	31	33	2	33.10
С	IM00304	31048	11033	25	32	7	12.35
С	IM00306	31050	11145	24	36	12	10.89
С	IM00307	31050	11150	24	37	13	15.44
С	IM00308	31050	11155	24	36	12	18.12
С	IM00308		including	28	30	2	48.22
С	IM00309	31050	11165	24	36	12	11.00
С	IM00311	31050	11176	28	30	2	39.51
С	IM00313	31051	11193	19	24	5	15.08
С	IM00314	31050	11198	19	23	4	13.33
С	IM00319	31124	11145	14	24	10	13.64
С	IM00320	31124	11150	13	23	10	16.44
С	IM00321	31124	11155	14	22	8	28.39

Block	HoleID	North	East	From	То	Width	HM_Lab
	-	m	m	m	М	М	%
С	IM00321		including	19	21	2	60.13
С	IM00322	31124	11165	17	22	5	48.71
С	IM00322		including	18	21	3	71.85
С	IM00322		<u> </u>	23	24	1	10.55
С	IM00323	31123	11170	16	22	6	41.85
С	IM00323		including	17	20	3	68.98
С	IM00324	31125	11175	16	24	8	32.37
С	IM00324		including	17	20	3	64.72
С	IM00327	31123	11050	16	20	4	13.21
С	IM00329	31122	11192	7	13	6	10.80
С	IM00333	30900	11170	37	40	3	33.71
С	IM00334	30900	11160	37	46	9	22.92
С	IM00334		including	37	40	3	60.55
С	IM00335	30900	11155	37	41	4	50.81
С	IM00335		including	37	40	3	62.90
С	IM00336	30900	11145	34	45	11	16.06
С	IM00337	30900	11140	35	43	8	13.25
С	IM00338	29406	11154	33	39	6	20.27
С	IM00338		including	35	37	2	38.65
С	IM00339	29406	11148	33	37	4	15.65
С	IM00340	30902	11102	38	43	5	10.51
С	IM00343	30903	11047	35	42	7	11.88
С	IM00344	30899	11165	37	42	5	36.67
С	IM00344		including	37	40	3	58.51
С	IM00345	30900	11175	36	39	3	24.50
С	IM00349	29205	11159	40	45	5	22.96
С	IM00349		including	40	42	2	40.48
С	IM00350	29205	11155	37	48	11	10.71
С	IM00351	29205	11150	37	48	11	11.73
С	IM00353	29000	11130	35	43	8	17.62
С	IM00353		including	37	39	2	47.03
С	IM00354	29000	11135	36	44	8	17.31
С	IM00357	29001	11165	37	38	1	21.44
С	IM00363	29971	11153	19	25	6	13.12
С	IM00364	29975	11165	20	22	2	13.52
С	IM00366	29950	11149	18	24	6	11.15
С	IM00367	29950	11159	19	24	5	14.02
С	IM00374	30800	11113	42	49	7	23.91
С	IM00374		including	43	45	2	50.17
С	IM00379	31000	11139	24	34	10	11.53
С	IM00380	31000	11145	24	35	11	17.48
С	IM00381	31000	11151	24	36	12	13.66

Block	HoleID	North	East	From	То	Width	HM_Lab
		m	m	m	M	М	%
С	IM00382	31000	11160	24	33	9	27.94
С	IM00382		including	27	30	3	66.76
С	IM00383	31000	11165	26	32	6	25.75
С	IM00383		including	27	29	2	61.69
С	IM00384	31000	11170	26	32	6	32.16
С	IM00384		including	27	29	2	79.94
С	IM00385	31000	11175	26	32	6	19.45
С	IM00385		including	27	29	2	47.03
С	IM00392	30950	11145	28	40	12	21.26
С	IM00392		including	33	35	2	52.76
С	IM00393	30950	11150	25	42	17	14.34
С	IM00393		including	32	35	3	49.41
С	IM00394	30950	11155	31	36	5	41.57
С	IM00394		including	32	35	3	60.77
С	IM00395	30950	11161	31	36	5	43.10
С	IM00395	<u> </u>	including	31	34	3	60.38
С	IM00396	30950	11165	30	36	6	24.88
С	IM00396		including	31	34	3	43.75
С	IM00397	30950	11170	27	39	12	14.98
С	IM00397		including	32	34	2	53.45
С	IM00406	30225	11173	35	41	6	19.77
С	IM00406		including	35	37	2	49.50
С	IM00409	30235	11155	33	35	2	11.94
С	IM00409			36	39	3	11.79
С	IM00410	30241	11146	32	41	9	12.14
С	IM00411	30244	11141	33	39	6	16.81
С	IM00683	29880	11075	21	24	3	10.96
С	IM00685	30946	11175	3	8	5	13.00
С	IM00686	30942	11180	6	9	3	20.12
С	IM00761	30400	11147	12	18	6	12.14
С	IM00764	30797	11112	15	20	5	29.33
С	IM00764		including	16	18	2	62.30
С	IM00764			33	35	2	35.37
С	IM00764			36	39	3	23.10
С	IM00769	30857	11156	6	13	7	33.34
С	IM00769		including	6	10	4	50.23
С	IM00770	30857	11149	5	15	10	17.24
С	IM00770		including	6	9	3	41.41
С	IM00771	30857	11142	7	16	9	14.77
С	IM00771		including	8	10	2	43.88
С	IM00772	30858	11134	3	13	10	12.99
С	IM00779	30300	11147	30	37	7	14.51

Block	HoleID	North	East	From	То	Width	HM_Lab
		m	m	m	M	M	%
С	IM00781	30300	11152	30	37	7	18.10
D	IM00790	28587	11115	36	37	1	28.42
D	IM00790			39	42	3	16.08
D	IM00791	28596	28596 11100 39 45 6		6	10.63	
D	IM00793	28500	11087	38	42	4	14.70
D	IM00794	28500	11102	37	40	3	12.20
D	IM00805	28200	11090	36	41	5	13.81
D	IM00811	28000	11090	34	40	6	10.22
D	IM00817	27800	11170	28	32	4	14.48
D	IM00819	27800	11090	30	35	5	19.48
D	IM00823	27700	11090	29	31	2	27.75
D	IM00824	27600	11110	26	30	4	14.01
D	IM00840	27202	11169	20	25	5	13.16
D	IM00845	27100	11110	26	29	3	13.70
D	IM00846	27100	11090	22	32	10	12.89
D	IM00847	27013	11099	24	34	10	12.75
D	IM00850	27091	11151	22	25	3	12.37
D	IM00852	27000	11110	24	33	9	12.02
D	IM00854	26901	11080	28	36	8	15.53
D	IM00855	26900	11100	29	33	4	16.49
D	IM00859	26800	11160	25	31	6	24.65
D	IM00859		including	26	29	3	41.29
D	IM00862	26700	11075	29	37	8	11.72
D	IM00868	27098	11084	21	32	11	11.36
D	IM00870	27200	11096	21	31	10	10.14
D	IM00874	27700	11096	29	34	5	16.40

Atlas, Hyperion, Red Gully, Regan's Ford, Gingin South Infill Drilling

Several JORC Mineral Resources previously drilled by Image have high-grade areas with follow up drill targets to define high-grade core zones. In some of these Mineral Resources the drill spacing is 20m and in some cases up to 40m. To test for the existence of a high-grade core at Atlas, close-spaced drilling will be conducted over a central 4km length with 65 AC holes totaling 631m planned (Figure 8). Prior to the planned drilling a botanical survey is being carried out before the POW application.

The Hyperion Deposit is within pumping distance to a potential operation centered on the Atlas Deposit. A 4km central core zone and a wide zone on the SW end of the tenement will also be defined by close-spaced drilling with a programme of 78 AC holes totaling 1,062m (Figure 9). Applications for two POWs have already been submitted.

Both the Red Gully and Regan's Ford Deposits have areas where drill hole spacing is 40m and up to 80m wide. Both infill and more detailed close-spaced drilling to delineate a potential high-grade core is required at Red Gully comprising 58 holes for 1,701m subject to the grant of a POW. Close-spaced infill drilling is also required over the Reagans Ford Deposit comprising 79 holes for 2,704m subject to access and POW.

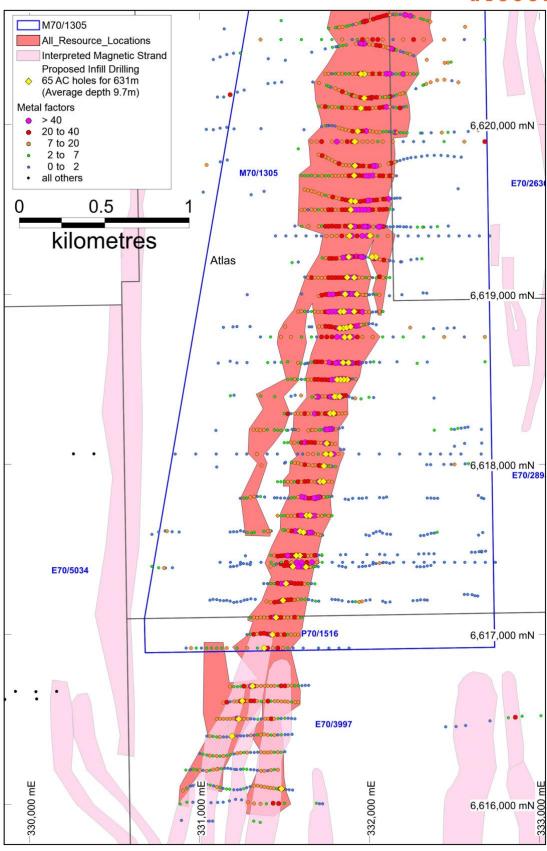


Figure 8 – Atlas Infill Core drilling

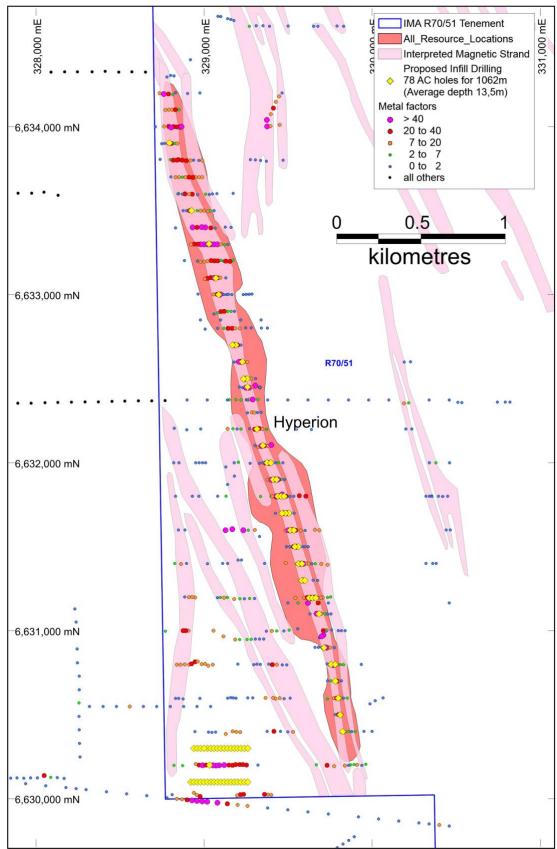


Figure 9 – Hyperion Infill Core drilling

Bidaminna Drilling

At Bidaminna 1.5 lines of drilling were completed for 28 holes totalling 1,564m during the quarter. A further 78 holes for 3,794m are planned. We are currently finalising a vegetation clearing permit to finalise the POW prior to completing this remaining drilling. Native Vegetation Clearing Permits are also required at Munbinea, Atlas, Woolka and Boonanarring West.

An access agreement is being finalised which cover a 2km central strip where the strip ratio is expected to be considerably lower than the Bidaminna Resource area to the south. An initial programme of 90 holes totalling 4,500m is planned to have a 200m spacing. This drill density is enough for an assessment of mineralisation into Indicated Mineral Resources.

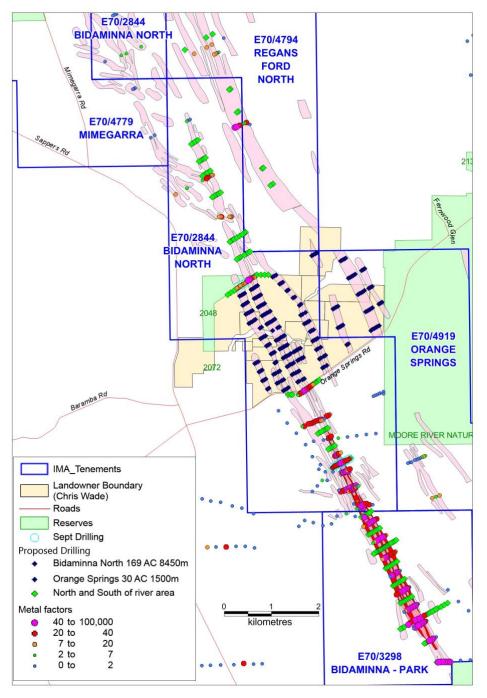


Figure 10 - Bidaminna drilling and new proposed drilling over the Chris Wade property

COMPETENT PERSON'S STATEMENTS - EXPLORATION RESULTS, MINERAL RESOURCES AND ORE RESERVES

Information in this report that relates to Exploration Results, Mineral Resources and Ore Reserves (other than Boonanarring and Atlas Mineral Resources and Ore Reserves) is based on information compiled by George Sakalidis BSc (Hons) who is a member of the Australasian Institute of Mining and Metallurgy. At the time that the Exploration Results, Mineral Resources and Ore Reserves were compiled, George Sakalidis was a director of Image Resources NL. He has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. George Sakalidis consents to the inclusion of this information in the form and context in which it appears in this report.

The information in this report that relates to the estimation of Mineral Resources for the Boonanarring and Atlas Projects is based on information compiled by Mrs Christine Standing, who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM) and the Australian Institute of Geoscientists (AIG). Mrs Standing is a full-time employee of Optiro Pty Ltd and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which she is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mrs Standing consents to the inclusion in this report of the matters based on her information in the form and context in which it appears.

The information in this report that relates to the estimation of Ore Reserves for the Boonanarring and Atlas Projects has been compiled in accordance with the guidelines of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code – 2012 Edition). The Ore Reserves have been compiled by Jarrod Pye, Mining Engineer and previously a full-time employee of Image Resources, under the direction of Andrew Law of Optiro, who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Law has sufficient experience in Ore Reserves estimation relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Mineral Resources and Ore Reserves". Mr Law consents to the inclusion in the report of the matters compiled by him in the form and context in which it appears."

FORWARD LOOKING STATEMENTS

Certain statements made during or in connection with this communication, including, without limitation, those concerning the economic outlook for the mining industry, expectations regarding prices, exploration or development costs and other operating results, growth prospects and the outlook of Image's operations contain or comprise certain forward-looking statements regarding Image's operations, economic performance and financial condition. Although Image believes that the expectations reflected in such forward-looking statements are reasonable, no assurance can be given that such expectations will prove to have been correct.

Accordingly, results could differ materially from those set out in the forward looking statements as a result of, among other factors, changes in economic and market conditions, success of business and operating initiatives, changes that could result from future acquisitions of new exploration properties, the risks and hazards inherent in the mining business (including industrial accidents, environmental hazards or geologically related conditions), changes in the regulatory environment and other government actions, risks inherent in the ownership, exploration and operation of or investment in mining properties, fluctuations in prices and exchange rates and business and operations risks management, as well as generally those additional factors set forth in our periodic filings with ASX. Image undertakes no obligation to update publicly or release any revisions to these forward-looking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events.

Attachments: Table 5. Tenement Schedule in accordance with ASX Listing Rule 5.3.3

Table 6. Mineral Resources and Ore Reserves as at 3 August 2017

Table 5 – Tenement Schedule

Tenement Schedule in accordance with ASX Listing Rule 5.3.3

Location	Tenement	Nature of Interest	Project	Equity (%) held at start of Quarter	Equity (%) held at end of Quarter
WA	E28/1895	Granted	ERAYINIA	100%	100%
WA	E70/2636	Granted	COOLJARLOO	100%	100%
WA	E70/2844	Granted	BIDAMINNA NTH	100%	100%
WA	E70/2898	Granted	COOLJARLOO	100%	100%
WA	E70/3032	Granted	GINGIN	100%	100%
WA	E70/3041	Granted	REGANS FORD SOUTH	100%	100%
WA	E70/3100	Granted	QUINNS HILL	100%	100%
WA	E70/3192	Granted	BOOTINE	100%	100%
WA	E70/3298	Granted	BIDAMINNA -PARK	90%	90%
WA	E70/3494	Granted	BRYALANA	100%	100%
WA	E70/3720	Granted	BLUE LAKE	100%	100%
WA	E70/3892	Granted	CHAPMAN HILL	100%	100%
WA	E70/3997	Granted	MUNBINIA	100%	100%
WA	E70/4077	Granted	DARLING RANGE	100%	100%
WA	E70/4244	Granted	WOOLKA	100%	100%
WA	E70/4245	Granted	WINOOKA	100%	100%
WA	M70/0448	Granted	GINGIN SOUTH	100%	100%
WA	M70/1192	Granted	RED GULLY	100%	100%
WA	M70/1194	Granted	BOONANARRING	100%	100%
WA	P70/1516	Granted	COOLJARLOO	100%	100%
WA	M70/1311	Granted	BOONANARRING NORTH	100%	100%
WA	G70/0250	Granted	BOONANARRING	100%	100%
WA	R70/0051	Granted	COOLJARLOO NORTH	100%	100%
WA	M70/1305	Application	ATLAS	100% pending grant	100% pending grant
WA	P70/1520	Application	COOLJARLOO	100% pending grant	100% pending grant
WA	E70/4631	Granted	MUNBINIA WEST	100%	100%
WA	E70/4656	Granted	WINOOKA NORTH	100%	100%
WA	E70/4663	Granted	BIBBY SPRINGS	100%	100%
WA	E70/4689	Granted	BOONANARRING WEST	100%	100%
WA	E70/4779	Granted	MIMEGARRA	100%	100%
WA	E70/4794	Granted	REGANS FORD NORTH	100%	100%
WA	E70/4795	Application	BIDAMINNA SOUTH	100% pending grant	100% pending grant
WA	E70/4919	Granted	ORANGE SPRINGS	100%	100%
WA	E70/4946	Granted	RED GULLY NORTH	100%	100%
WA	E70/4949	Granted	NAMMEGARRA	100%	100%
WA	E28/2742	Granted	MADOONIA DOWNS	100%	100%
WA	E70/5192	Application	WINOOKA SOUTH	100% pending grant	100% pending grant
WA	E70/5193	Granted	CHAPMAN HILL NORTH	100%	100%
WA	E70/5213	Application	GINGINUP HILL	100% pending grant	100% pending grant
WA	E70/5268	Application	WOOLKA SOUTH	100% pending grant	100% pending grant
WA	E70/5306	Application	BOONANARRING HILL	-	100% pending grant
Mining Te			g the Quarter		
WA	E70/5306	Application	BOONANARRING HILL	-	100% pending grant
	nements dis	posed durin	g the Quarter		
Nil					

Table 6 – Mineral Resources as at 23 October and Ore Reserves as at 3 August 2017

Project/Deposit	Category	Volume	Tonnes	% HM	% Slimes	HM Tonnes	VHM	Ilmenite	Leucoxene	Rutile	Zircon
		(million)	(million)			(million)	(%)	(%)	(%)	(%)	(%)
Boonanarring ¹	Proved	5.0	9.3	8.6	14.3	0.8	76.1	48.9	1.8	2.2	23.2
Boonanarring ¹	Probable	5.6	10.5	5.9	17.6	0.6	78.7	52.3	1.8	2.7	21.9
Total Boonanarring	100000000000000000000000000000000000000	10.6	19.9	7.2	16.1	1.4	77.2	50.4	1.8	2.4	22.7
Atlas ²	Probable	5.0	9.5	8.1	15.5	0.8	73.3	50.7	4.5	7.5	10.6
Total Atlas		5.0	9.5	8.1	15.5	0.8	73.3	50.7	4.5	7.5	10.6
Total Ore Reserves		15.6	29.3	7.5	15.9	2.2	75.8	50.5	2.7	4.2	18.4

Boonanarring Ore Reserves Release 10 April 2017

http://www.imageres.com.au/images/joomd/149178782320170410BOONANARRINGPROJECTINCREASESORETONNESBY39.pdf

1 Refer to the 5 April 2017 release http://www.asx.com.au/asxpdf/20170113/pdf/43f94vmgbq20q8.pdf for full details of the Boon anarring Mineral Resource/Reserve Estimate.

Boonanarring Ore Reserve upgrade release 21 August 2017; 60% INCREASE IN ORE TONNES IN 'PROVED' CATEGORY ORE RESERVES AT BOONANARRING.

Atlas reserves release 30/5/2017

1. COMPLIANCE STATEMENT - Boonanarring Ore Reserves

The Ore Reserves statement was compiled in accordance with the guidelines of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code – 2012 Edition). The Ore Reserves have been compiled by Jarrod Pye, Mining Engineer and then full-time employee of Image Resources, under the direction of Andrew Law, then of Optiro, who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Law has sufficient experience in Ore Reserves estimation relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Mineral Resources and Ore Reserves". Mr Law consents to the inclusion in the report of the matters compiled by him in the form and context in which it appears. These results were previously announced to the ASX on 10 April 2017 'Updated Ore Reserve for Boonanarring Project Increases Ore Tonnes by 39%' as well on 21 August 2017 '60% Increase in Ore Tonnes in "Proved" Category Ore Reserves at Boonanarring'.

2. COMPLIANCE STATEMENT - Atlas Ore Reserves

The Ore Reserves statement was compiled in accordance with the guidelines of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code – 2012 Edition). The Ore Reserves have been compiled by Jarrod Pye, Mining Engineer and then full-time employee of Image Resources, under the direction of Andrew Law, then of Optiro, who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Law has sufficient experience in Ore Reserves estimation relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Mineral Resources and Ore Reserves". Mr Law consents to the inclusion in the report of the matters compiled by him in the form and context in which it appears These results were previously announced to the ASX on 30 May 2017 'Ore Reserves Update for 100% Owned Atlas Project'.

Project/Deposit	Category	Volume	Tonnes	% HM	% Slimes	HM Tonnes	VHM	Ilmenite	Leucoxene	Rutile	Zircon
		(million)	(million)			(million)	(%)	(%)	(%)	(%)	(%)
Boonanarring ³	Measured	6.4	11.8	8.0	14.0	0.9	74.3	48.3	1.7	2.2	22.0
Boonanarring ³	Indicated	11.8	22.3	4.9	18.3	1.1	71.7	49.2	2.2	2.5	17.8
Boonanarring ³	Inferred	5.0	9.4	4.5	21.0	0.4	68.8	50.0	3.5	3.4	11.9
Boonanarring Total		23.1	43.5	5.6	18.0	2.4	72.2	49.0	2.2	2.6	18.4
Atlas ³	Measured	5.2	9.9	7.9	16.1	0.8	71.0	49.1	4.2	7.2	10.5
Atlas ³	Indicated	3.4	6.4	3.7	17.3	0.2	56.5	41.6	3.4	4.7	6.8
Atlas ³	Inferred	0.9	1.8	4.0	19.9	0.1	41.5	29.0	3.3	4.4	4.8
Atlas Total		9.5	18.1	6.0	16.9	1.1	65.9	46.1	4.0	6.5	9.3
Sub-Total Atlas/Boon	anarring	32.7	61.6	5.7	17.7	3.5	70.3	48.1	2.8	3.8	15.6

Mineral Resources - Strand Deposits; in accordance with JORC Code (2012) @ 2.0% HM Cut-off											
Project/Deposit	Category	Volume	Tonnes	% HM	% Slimes	HM Tonnes	VHM	Ilmenite	Leucoxene	Rutile	Zircon
		(million)	(million)			(million)	(%)	(%)	(%)	(%)	(%)
Helene ⁴	Indicated	6.4	13.2	4.3	18.6	0.57	88.7	74.6	0.0	3.6	10.5
Hyperion ⁴	Indicated	2.4	5.0	6.3	19.0	0.32	69.4	55.8	0.0	6.3	7.3
Cooljarloo Nth Total		8.8	18.2	4.8	18.7	0.88	81.8	67.9	0.0	4.6	9.4

ategory		Previously Reported Mineral Resources - Strand Deposits; in accordance with JORC Code (2004) @ 2.5% HM Cut-off											
ategory	Volume	Tonnes	% HM	% Slimes	HM Tonnes	VHM	Ilmenite	Leucoxene	Rutile	Zircon			
	(million)	(million)			(million)	(%)	(%)	(%)	(%)	(%)			
ndicated	0.7	1.3	5.7	15.7	0.1	75.4	57.4	9.3	3.2	5.5			
nferred	0.6	1.1	5.2	14.0	0.1	78.4	57.3	11.3	3.7	6.0			
	1.3	2.4	5.5	15.0	0.1	76.7	57.3	10.2	3.4	5.7			
1easured	0.9	1.5	4.4	7.2	0.1	79.4	50.7	15.3	5.6	7.8			
ndicated	3.2	5.8	6.5	7.1	0.4	90.6	67.6	9.8	5.1	8.1			
nferred	0.4	0.7	6.5	8.4	0.0	91.6	67.4	7.5	5.8	10.9			
	4.5	8.1	6.1	7.3	0.5	89.2	65.3	10.3	5.2	8.3			
ndicated	1.9	3.4	7.8	11.5	0.3	89.7	66.0	8.3	3.1	12.4			
nferred	1.5	2.6	7.5	10.7	0.2	89.0	65.4	8.2	3.0	12.3			
	3.4	6.0	7.7	11.2	0.5	89.4	65.7	8.2	3.1	12.4			
iully	9.2	16.5	6.6	9.8	1.1	87.8	64.5	9.4	4.1	9.7			
ווווווווווווווווווווווווווווווווווווווו	dicated ferred leasured dicated ferred dicated ferred	(million) dicated 0.7 ferred 0.6 1.3 leasured 0.9 dicated 3.2 ferred 0.4 4.5 dicated 1.9 ferred 1.5 3.4	(million) (million) dicated 0.7 1.3 ferred 0.6 1.1 1.3 2.4 leasured 0.9 1.5 dicated 3.2 5.8 ferred 0.4 0.7 4.5 8.1 dicated 1.9 3.4 ferred 1.5 2.6 3.4 6.0	(million) (million) dicated 0.7 1.3 5.7 ferred 0.6 1.1 5.2 1.3 2.4 5.5 leasured 0.9 1.5 4.4 dicated 3.2 5.8 6.5 ferred 0.4 0.7 6.5 4.5 8.1 6.1 dicated 1.9 3.4 7.8 ferred 1.5 2.6 7.5 3.4 6.0 7.7	(million) (million) dicated 0.7 1.3 5.7 15.7 ferred 0.6 1.1 5.2 14.0 1.3 2.4 5.5 15.0 leasured 0.9 1.5 4.4 7.2 dicated 3.2 5.8 6.5 7.1 ferred 0.4 0.7 6.5 8.4 4.5 8.1 6.1 7.3 dicated 1.9 3.4 7.8 11.5 ferred 1.5 2.6 7.5 10.7 3.4 6.0 7.7 11.2	(million) (million) (million) dicated 0.7 1.3 5.7 15.7 0.1 ferred 0.6 1.1 5.2 14.0 0.1 leasured 0.9 1.5 4.4 7.2 0.1 dicated 3.2 5.8 6.5 7.1 0.4 ferred 0.4 0.7 6.5 8.4 0.0 4.5 8.1 6.1 7.3 0.5 dicated 1.9 3.4 7.8 11.5 0.3 ferred 1.5 2.6 7.5 10.7 0.2 3.4 6.0 7.7 11.2 0.5	(million) (million) (million) (million) (%) dicated 0.7 1.3 5.7 15.7 0.1 75.4 ferred 0.6 1.1 5.2 14.0 0.1 78.4 1.3 2.4 5.5 15.0 0.1 76.7 leasured 0.9 1.5 4.4 7.2 0.1 79.4 dicated 3.2 5.8 6.5 7.1 0.4 90.6 ferred 0.4 0.7 6.5 8.4 0.0 91.6 4.5 8.1 6.1 7.3 0.5 89.2 dicated 1.9 3.4 7.8 11.5 0.3 89.7 ferred 1.5 2.6 7.5 10.7 0.2 89.0 3.4 6.0 7.7 11.2 0.5 89.4	(million) (million) (million) (%) (%) dicated 0.7 1.3 5.7 15.7 0.1 75.4 57.4 ferred 0.6 1.1 5.2 14.0 0.1 78.4 57.3 leasured 0.9 1.5 4.4 7.2 0.1 79.4 50.7 dicated 3.2 5.8 6.5 7.1 0.4 90.6 67.6 ferred 0.4 0.7 6.5 8.4 0.0 91.6 67.4 4.5 8.1 6.1 7.3 0.5 89.2 65.3 dicated 1.9 3.4 7.8 11.5 0.3 89.7 66.0 ferred 1.5 2.6 7.5 10.7 0.2 89.0 65.4 3.4 6.0 7.7 11.2 0.5 89.4 65.7	(million) (million) (million) (%) (%) dicated 0.7 1.3 5.7 15.7 0.1 75.4 57.4 9.3 ferred 0.6 1.1 5.2 14.0 0.1 78.4 57.3 11.3 1.3 2.4 5.5 15.0 0.1 76.7 57.3 10.2 leasured 0.9 1.5 4.4 7.2 0.1 79.4 50.7 15.3 dicated 3.2 5.8 6.5 7.1 0.4 90.6 67.6 9.8 ferred 0.4 0.7 6.5 8.4 0.0 91.6 67.4 7.5 4.5 8.1 6.1 7.3 0.5 89.2 65.3 10.3 dicated 1.9 3.4 7.8 11.5 0.3 89.7 66.0 8.3 ferred 1.5 2.6 7.5 10.7 0.2 89.0 65.4 8.2 <t< td=""><td>(million) (million) (million) (%) (%) (%) (%) dicated 0.7 1.3 5.7 15.7 0.1 75.4 57.4 9.3 3.2 ferred 0.6 1.1 5.2 14.0 0.1 78.4 57.3 11.3 3.7 1.3 2.4 5.5 15.0 0.1 76.7 57.3 10.2 3.4 leasured 0.9 1.5 4.4 7.2 0.1 79.4 50.7 15.3 5.6 dicated 3.2 5.8 6.5 7.1 0.4 90.6 67.6 9.8 5.1 ferred 0.4 0.7 6.5 8.4 0.0 91.6 67.4 7.5 5.8 4.5 8.1 6.1 7.3 0.5 89.2 65.3 10.3 5.2 dicated 1.9 3.4 7.8 11.5 0.3 89.7 66.0 8.3 3.1 fe</td></t<>	(million) (million) (million) (%) (%) (%) (%) dicated 0.7 1.3 5.7 15.7 0.1 75.4 57.4 9.3 3.2 ferred 0.6 1.1 5.2 14.0 0.1 78.4 57.3 11.3 3.7 1.3 2.4 5.5 15.0 0.1 76.7 57.3 10.2 3.4 leasured 0.9 1.5 4.4 7.2 0.1 79.4 50.7 15.3 5.6 dicated 3.2 5.8 6.5 7.1 0.4 90.6 67.6 9.8 5.1 ferred 0.4 0.7 6.5 8.4 0.0 91.6 67.4 7.5 5.8 4.5 8.1 6.1 7.3 0.5 89.2 65.3 10.3 5.2 dicated 1.9 3.4 7.8 11.5 0.3 89.7 66.0 8.3 3.1 fe			

Historic Deposit Mineral Resources - Strand deposit; in accordance with JORC Code (2004) @ 2.5% HM Cut-off											
Project/Deposit	Category	Volume	Tonnes	% HM	% Slimes	HM Tonnes	VHM	Ilmenite	Leucoxene	Rutile	Zircon
		(million)	(million)			(million)	(%)	(%)	(%)	(%)	(%)
Regans Ford ⁵	Indicated	4.5	9.0	9.9	16.8	0.9	94.3	70.0	10.0	4.3	10.0
Regans Ford ⁵	Inferred	0.5	0.9	6.5	18.5	0.1	90.5	68.3	7.7	4.4	10.1
Regans Ford Total		5.0	9.9	9.6	17.0	1.0	94.1	69.9	9.9	4.3	10.0
Grand Totals		55.6	106.2	6.1		6.5	78.3	56.8	4.6	4.0	12.9

3. COMPLIANCE STATEMENT - Boonanarring/Atlas Mineral Resources

The information in this table that relates to the estimation of Mineral Resources is based on information compiled by Mrs Christine Standing, who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM) and the Australian Institute of Geoscientists (AIG). Mrs Standing is a full-time employee of Optiro Pty Ltd and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which she is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mrs Standing consents to the inclusion in this report of the matters based on her information in the form and context in which it appears.

4. COMPETENT PERSON'S STATEMENT – MINERAL RESOURCE ESTIMATES

The information in this table that relates to Mineral Resources is based on information compiled by Lynn Widenbar BSc, MSc, DIC MAUSIMM MAIG employed by Widenbar & Associates who is a consultant to the Company. Lynn Widenbar has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 edition of the 'Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Lynn Widenbar consents to the inclusion of this information in the form and context in which it appears.

5. HISTORIC INFORMATION - REGANS FORD DEPOSIT

The information in this table that relates to tonnes, grades and mineral assemblage is based on historic information published by Iluka Resources Limited and indicating the mineral resources were compiled in accordance with the JORC Code (2004).

Project/Deposit	Category	Volume BCM	Tonnes	% HM	% Slimes	HM Tonnes	VHM	Ilmenite	Leucoxene	Rutile	Zircon
		(million)	(million)			(million)	(%)	(%)	(%)	(%)	(%)
Titan ⁶	Indicated	10.3	21.2	1.8	22.1	0.38	86.0	71.9	1.5	3.1	9.5
Titan ⁶	Inferred	58.5	115.4	1.9	18.9	2.2	85.9	71.8	1.5	3.1	9.5
Total Titan	Total	68.8	136.6	1.9	19.4	2.6	85.9	71.8	1.5	3.1	9.5
Telesto ⁶	Indicated	1.7	3.5	3.8	18.4	0.13	83.3	67.5	0.7	5.6	9.5
Calypso ⁶	Inferred	27.1	51.5	1.7	13.7	0.85	85.6	68.1	1.6	5.1	10.8
Mineral Resourc	es - Dredge	deposits; in a	ccordance v	with JOR	C Code (2	004) @ 1.0%	HM Cut	-off			
Project/Deposit	Category	Volume BCM	Tonnes	% HM	% Slimes	HM Tonnes	VHM	Ilmenite	Leucoxene	Rutile	Zircon
		(million)	(million)			(million)	(%)	(%)	(%)	(%)	(%)
Bidaminna ⁶	Inferred	26.3	44.6	3.0	3.6	1.3	96.8	83.1	7.2	1.0	5.5
			·								
Total Dredge		123.9	236.2	2.1	15.2	4.9	87.8	73.1	2.6	3.2	9.0

6. COMPETENT PERSON'S STATEMENT – MINERAL RESOURCES ESTIMATES

The information in this presentation that relates to Mineral Resources is based on information compiled by Lynn Widenbar BSc, MSc, DIC MAusIMM MAIG employed by Widenbar & Associates who is a consultant to the Company. Lynn Widenbar has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Lynn Widenbar consents to the inclusion of this information in the form and context in which it appears.

+Rule 5.5

Appendix 5B

Mining exploration entity and oil and gas exploration entity quarterly report

Introduced 01/07/96 Origin Appendix 8 Amended 01/07/97, 01/07/98, 30/09/01, 01/06/10, 17/12/10, 01/05/13, 01/09/16

Name of entity

IMAGE RESOURCES NL ABN Quarter ended ("current quarter") 57 063 977 579 30/09/2019

Con	solidated statement of cash flows	Current quarter \$A'000	Year to date (9 months) \$A'000
1.	Cash flows from operating activities		
1.1	Receipts from customers 1	37,196	92,061
1.2	Payments for		
	(a) exploration & evaluation	(1,095)	(2,133)
	(b) development	-	-
	(c) production	(21,539)	(55,232)
	(d) staff costs	(558)	(1,686)
	(e) administration and corporate costs	(636)	(1,259)
1.3	Dividends received (see note 3)	-	-
1.4	Interest received	20	41
1.5	Interest and other costs of finance paid	(254)	(507)
1.6	Income taxes paid	-	-
1.7	Research and development refunds	-	-
1.8	Other (provide details if material)	-	-
1.9	Net cash from / (used in) operating activities	13,134	31,285

⁺ See chapter 19 for defined terms

Con	solidated statement of cash flows	Current quarter \$A'000	Year to date (9 months) \$A'000
2.	Cash flows from investing activities		
2.1	Payments to acquire:		
	(a) property, plant and equipment	(1,513)	(6,087)
	(b) tenements (see item 10)	-	-
	(c) investments	-	-
	(d) other non-current assets	-	-
2.2	Proceeds from the disposal of:		
	(a) property, plant and equipment	76	76
	(b) tenements (see item 10)	-	-
	(c) investments	-	-
	(d) other non-current assets	-	-
2.3	Cash flows from loans to other entities	-	-
2.4	Dividends received (see note 3)	-	-
2.5	Other (provide details if material)	-	-
	Term Deposits greater than 90 days matured		
2.6	Net cash from / (used in) investing activities	(1,437)	(6,011)

3.	Cash flows from financing activities		
3.1	Proceeds from issues of shares	-	1,534
3.2	Proceeds from issue of convertible notes	-	-
3.3	Proceeds from exercise of share options	-	-
3.4	Transaction costs related to issues of shares, convertible notes or options	(10)	(39)
3.5	Proceeds from borrowings	-	566
3.6	Repayment of borrowings	(2,671)	(4,566)
3.7	Transaction costs related to loans and borrowings	-	-
3.8	Dividends paid	-	-
3.9	Other (provide details if material)	-	-
3.10	Net cash from / (used in) financing activities	(2,681)	(2,505)

⁺ See chapter 19 for defined terms

Consolidated statement of cash flows		Current quarter \$A'000	Year to date (9 months) \$A'000
4.	Net increase / (decrease) in cash and cash equivalents for the period		
4.1	Cash and cash equivalents at beginning of period	25,684	11,886
4.2	Net cash from / (used in) operating activities (item 1.9 above)	13,134	31,285
4.3	Net cash from / (used in) investing activities (item 2.6 above)	(1,437)	(6,011)
4.4	Net cash from / (used in) financing activities (item 3.10 above)	(2,681)	(2,505)
4.5	Effect of movement in exchange rates on cash held	1,105	1,150
4.6	Cash and cash equivalents at end of period 1	35,805	35,805

5.	Reconciliation of cash and cash equivalents at the end of the quarter (as shown in the consolidated statement of cash flows) to the related items in the accounts	Current quarter \$A'000	Previous quarter \$A'000
5.1	Bank balances	35,790	25,669
5.2	Call deposits	15	15
5.3	Bank overdrafts	-	-
5.4	Other (provide details)	-	-
5.5	Cash and cash equivalents at end of quarter (should equal item 4.6 above)	35,805 1	25,684 2

¹ Current quarter cash balance excludes \$A12.25 million received in October for a shipment dispatched in September.

² Previous quarter cash balance excludes \$A11.97 million received in July for a shipment dispatched in June.

6.	Payments to directors of the entity and their associates	Current quarter \$A'000
6.1	Aggregate amount of payments to these parties included in item 1.2	223
6.2	Aggregate amount of cash flow from loans to these parties included in item 2.3	-
6.3	Include below any explanation necessary to understand the transaction items 6.1 and 6.2	ns included in

+ See chapter 19 for defined terms

7.	Payments to related entities of the entity and their associates	Current quarter \$A'000
7.1	Aggregate amount of payments to these parties included in item 1.2	-
7.2	Aggregate amount of cash flow from loans to these parties included in item 2.3	-

7.3 Include below any explanation necessary to understand the transactions included in items 7.1 and 7.2

8.	Financing facilities available Add notes as necessary for an understanding of the position	Total facility amount at quarter end \$A'000	Amount drawn at quarter end \$A'000
8.1	Loan facilities	68,318	68,318
8.2	Credit standby arrangements	55	55
8.3	Other	-	-

8.4 Include below a description of each facility above, including the lender, interest rate and whether it is secured or unsecured. If any additional facilities have been entered into or are proposed to be entered into after quarter end, include details of those facilities as well.

Loan held is as follows:

A senior secured debt facility with Pala Investments Limited ("Pala"), Castelake IV, L.P. and CL V Investment Solutions LLC of US\$38,850,000 + capitalised interest of US\$7,257,672 (A\$68,317,783 at 30 Sep 2019). Interest rate is 14% for the first fifteen months following draw down on 25 May 2018 and 13% thereafter for the balance of the loan. Interest for the first fifteen months is added to the loan amount and thereafter paid quarterly in arrears. Further details can be found in the announcement lodged with the ASX on 8 March 2018.

9.	Estimated cash outflows for next quarter	\$A'000
9.1	Exploration and evaluation	600
9.2	Development	-
9.3	Production	21,000
9.4	Staff costs	700
9.5	Administration and corporate costs	400
9.6	Other – Capital 1	2,400
9.7	Total estimated cash outflows 2	25,100

- 1. Mainly comprises pre-strip for Block B
- 2. Cash outflows exclude forecast sales receipts.

+ See chapter 19 for defined terms

10.	Changes in tenements (items 2.1(b) and 2.2(b) above)	Tenement reference and location	Nature of interest	Interest at beginning of quarter	Interest at end of quarter
10.1	Interests in mining tenements and petroleum tenements lapsed, relinquished or reduced	Refer Quarterly Report			
10.2	Interests in mining tenements and petroleum tenements acquired or increased	Refer Quarterly Report			

Compliance statement

1 This statement has been prepared in accordance with accounting standards and policies which comply with Listing Rule 19.11A.

Date: 31 October 2019

2 This statement gives a true and fair view of the matters disclosed.

Sign here:

(Director/Company secretary)

Print name: Dennis Wilkins

Notes

- The quarterly report provides a basis for informing the market how the entity's activities have been financed for the past quarter and the effect on its cash position. An entity that wishes to disclose additional information is encouraged to do so, in a note or notes included in or attached to this report.
- 2. If this quarterly report has been prepared in accordance with Australian Accounting Standards, the definitions in, and provisions of, AASB 6: Exploration for and Evaluation of Mineral Resources and AASB 107: Statement of Cash Flows apply to this report. If this quarterly report has been prepared in accordance with other accounting standards agreed by ASX pursuant to Listing Rule 19.11A, the corresponding equivalent standards apply to this report.
- 3. Dividends received may be classified either as cash flows from operating activities or cash flows from investing activities, depending on the accounting policy of the entity.

⁺ See chapter 19 for defined terms