

PROMISING INITIAL DRILLING RESULTS AT GOVERNMENT WELL

Ora Gold Limited (Ora Gold) is pleased to announce that the assay results of the initial reverse circulation drilling program on the Government Well prospects have confirmed two broad zones of shallow VHMS base metal mineralisation at the CVG prospect and the discovery of a wide gold mineralised structure at the CVI prospect.

Final assay results have been returned from the initial reverse circulation (RC) drilling program at Government Well (**Figure 1**). The shallow drilling program has outlined base metal and gold targets for deeper drilling in the southern CVG and the northern CVI electromagnetic (EM) conductors.

The CVG and CVI EM conductors and their surface projection are shown on the total magnetic intensity image in **Figure 2**. Both conductors are modelled to be dipping steeply to the west under a magnetic mafic-ultramafic package with the top of the conductors at about 100m below surface.

Thirty-four holes totalling 2,080m to a maximum depth of 115m were completed (see drill hole layout plan in **Figure 3**) with an average down hole depth of 60m. While the broad mineralised zones are mostly of an anomalous grade, the widths and strike extent of the zones, the metal signature and the mineralisation outline made possible by the shallow drilling over the strong EM conductors, all together indicate the strong possibility of significant mineralisation at depth.

Figure 1. Government Well location with Ora Gold tenements, regional geology and main projects

Ora Gold Limited | ABN: 74 950 465 654 | Level 2, 47 Stirling Highway, Nedlands, WA 6009 | PO Box 333, Nedlands, WA 6909 www.ora.gold | info@ora.gold | Tel: +61 8 9389 6927 Nineteen holes were drilled on the southern CVG prospect. Two lines 50m apart, were drilled across the area of historical drilling and the previously reported (27 June 2019) high grade copper rock chip sampling (**Figure 4**). The drilling delineated two parallel zones which have VHMS base metal characteristics and widths up to 30m (11 October 2019). The zones strike north-north-east and dip steeply west and both zones are open along strike and down dip. A further three holes were located three hundred metres to the south of these lines.

Fifteen holes were drilled at the northern CVI prospect to a maximum depth of 78m in three lines across the modelled surface projection of the EM conductor and spaced at 100m and 120m apart.

The CVI drilling discovered a north-north-east striking, steeply west-dipping, gold mineralised structure of more than ~20m approximately true width at the contact of a carbonaceous sediment / thin intermediate intrusive with an underlying dolerite horizon (see section in **Figure 5**). The gold mineralisation persists into the fresh dolerite footwall, which slowed the drilling, and the holes were stopped before reaching the bottom of the mineralisation. The width of the CVI gold zone may be more than ~20m and it is open along strike and down dip. Elevated precious metal content mineralisation indicates the potential CVI deposit may be intrusive-related.

The assaying results correlate well with the previously released hand-held XRF readings of RC samples (11 October 2019). The assay results confirm and extend the two base metal zones in the CVG prospect and identify new gold and silver mineralisation at the CVI prospect. These very promising results are to be followed up with deeper drilling to 200-250m depth.

Compared to the XRF readings, the assays for the CVG Eastern and Western zones are generally higher, at up to 5% zinc, 2% copper, 0.6% lead, 11oz/t silver and 1.6g/t gold from individual one metre samples.

Table 1 has the significant anomalous assays and XRF comparison for the two zones at the CVGprospect, **Table 2** has the assays for the CVI gold zone and **Table 3** lists the significant assayresults. Drill hole details are in **Table 4** and complete anomalous assay results are in **Appendix 1**.

Hole ID	Dip	Azimuth ¹	RL ²	Depth	Easting	Northing	ASSAY (Cu+Zn+Pb)% ³	XRF
Eastern Zone								
OGGRC220	-60	120	499	61	636625	7092570	0.6% over 22m from 28m	0.2%
OGGRC221	-60	120	499	91	636596	7092591	0.3% over 15m from 66m	0.2%
OGGRC227	-60	115	500	60	636651	7092610	0.6% over 40m from 2m	0.4%
							Incl. 0.9% Zn over 2m from 18m	
							and 1.1% Zn over 5m from 34m	
OGGRC228	-60	115	501	67	636628	7092622	0.1% over 20m from 36m	0.2%
							Now 0.2% over 38m from 36m	
Western Zone								
OGGRC223	-60	120	500	60	636546	7092614	0.2% over 17m from 1m	0.2%
OGGRC224	-60	120	500	60	636524	7092627	0.1% over 10m from 33m	0.1%
OGGRC231	-60	115	501	60	636543	7092663	0.3% over 46m from 0m	0.2%
OGGRC232	-60	115	502	115	636513	7092679	0.7% over 62m from 52m	0.4%
							Incl. 2.2% Cu over 1m from 56m	
							and 1.8% Zn over 8m from 60m	
							and 1.0% Cu/3.1% Zn over 2m from 101m	
OGGRC233	-60	115	502	93	636500	7092689	0.6% over 14m from 79m to EOH	0.4%
							Incl. 1.4% Cu over 1m from 84m	

Table 1.	CVG Significant Anoma	ous Assays and XRF	readings (COG 0.	1% total Cu, Zn and Pb)
----------	-----------------------	--------------------	------------------	-------------------------

¹Magnetic bearing

²Surveyed elevation

³Assays may be of 1 - 4m composites

Discovery of the wide gold mineralised structure on the CVI prospect was identified in the assaying, rather than in the XRF readings, which only indicated anomalous arsenic and some silver.

Hole ID	Dip	Azimuth ¹	RL ²	Depth	Easting	Northing	ASSAY ³
OGGRC237	-60	115	503	58	636886	7093189	0.1g/t Au over 28m from 22m
							Plus 0.8g/t Au over 1m from 49m
OGGRC238	-60	115	503	78	636857	7093203	0.2g/t Au over 20m from 58m
OGGRC241	-60	120	499	40	636922	7093284	0.5g/t Au over 20m from 20m
							Incl. 1.6g/t Au over 3m from 26m
OGGRC242	-60	120	499	69	636899	7093302	0.4g/t Au over 14m from 50m
							Incl. 1.4g/t Au over 5m from 59m

 Table 2. CVI Significant Anomalous Assays

¹Magnetic bearing

²Surveyed elevation

³Assays may be of 1 - 4m composites

The Government Well prospects are located at the northern extremity of the Abbotts Greenstone Belt on the wholly-owned E51/1609 tenement. The geological setting and age are similar to base metal deposits in the Yilgarn. A late stage Archaean granite/porphyry has intruded the package to the north of the Government Well prospects.

Figure 2. Government Well modelled conductors on total magnetic intensity (TMI) image and aerial photo

		-						
Hole ID	From	То	Interval	% Cu	% Pb	% Zn	g/t Au	g/t Ag
OGGRC220	31m	33m	2m	0.1	0.3	0.2	0.9	285
OGGRC227	2m	42m	40m			0.5		
including	9m	26m	17m	0.2				
and	18m	20m	2m			0.9		
and	34m	39m	5m			1.1		
OGGRC231	1m	16m	15m	0.3	0.2			
and	33m	34m	1m				1.6	
OGGRC232	56m	64m	8m			1.8		
including	56m	57m	1m	2.2	0.6	0.1	0.2	39
	78m	98m	20m			0.4		
	100m	110m	10m			0.8		
including	101m	103m	2m	1.0	0.4	3.1		
OGGRC233	83m	93m	10m			0.2		
including	84m	85m	1m	1.4	0.3	0.2		21
OGGRC241	26m	29m	3m				1.6	
OGGRC242	59m	64m	5m				1.4	

Table 3. Significant assay results from the current drilling

Figure 3. Modelled Government Well prospects on VLTEM image (Late channel – CH33BZ) showing the Ora Gold drilled holes and deeper proposed holes

Figure 4. Base metals trends and significant intersections over the northern part of the CVG prospect

Figure 5. CVI prospect A-A' cross section showing the stratigraphy, gold mineralised structure and proposed deeper holes

Table 4 Drill hole details

Hole ID	Dip	Azimuth	RL	Туре	Depth	Easting	Northing	Prospect
OGGRC218	-60	120	502	RC	57	636679	7092537	CVG Conductor
OGGRC219	-60	120	498	RC	58	636656	7092548	CVG Conductor
OGGRC220	-60	120	499	RC	61	636625	7092570	CVG Conductor
OGGRC221	-60	120	499	RC	91	636596	7092591	CVG Conductor
OGGRC222	-60	120	499	RC	61	636573	7092603	CVG Conductor
OGGRC223	-60	120	500	RC	60	636546	7092614	CVG Conductor
OGGRC224	-60	120	500	RC	60	636524	7092627	CVG Conductor
OGGRC225	-60	120	500	RC	60	636499	7092641	CVG Conductor
OGGRC226	-60	120	500	RC	60	636681	7092593	CVG Conductor
OGGRC227	-60	115	500	RC	60	636651	7092610	CVG Conductor
OGGRC228	-60	115	501	RC	67	636628	7092622	CVG Conductor
OGGRC229	-60	115	501	RC	60	636600	7092634	CVG Conductor
OGGRC230	-60	115	501	RC	60	636571	7092648	CVG Conductor
OGGRC231	-60	115	501	RC	60	636543	7092663	CVG Conductor
OGGRC232	-60	115	502	RC	115	636513	7092679	CVG Conductor
OGGRC233	-60	115	502	RC	93	636500	7092689	CVG Conductor
OGGRC234	-60	115	502	RC	24	636963	7093147	CVI Conductor
OGGRC235	-60	115	502	RC	45	636940	7093161	CVI Conductor
OGGRC236	-60	115	503	RC	57	636912	7093174	CVI Conductor
OGGRC237	-60	115	503	RC	58	636886	7093189	CVI Conductor
OGGRC238	-60	115	503	RC	78	636857	7093203	CVI Conductor
OGGRC239	-60	115	503	RC	54	636833	7093221	CVI Conductor
OGGRC240	-60	120	499	RC	24	636945	7093270	CVI Conductor
OGGRC241	-60	120	499	RC	40	636922	7093284	CVI Conductor
OGGRC242	-60	120	499	RC	69	636899	7093302	CVI Conductor
OGGRC243	-60	120	500	RC	57	636872	7093319	CVI Conductor
OGGRC244	-60	120	500	RC	48	636847	7093337	CVI Conductor
OGGRC245	-60	120	500	RC	66	636987	7093414	CVI Conductor
OGGRC246	-60	120	495	RC	60	636961	7093431	CVI Conductor
OGGRC247	-60	120	495	RC	48	636937	7093447	CVI Conductor
OGGRC248	-60	135	500	RC	54	636827	7093284	CVI Conductor
OGGRC249	-60	100	506	RC	95	636523	7092455	CVG Conductor
OGGRC250	-60	100	502	RC	60	636439	7092477	CVG Conductor
OGGRC251	-60	100	502	RC	60	636410	7092480	CVG Conductor

About Ora Gold Limited

The Company is an ASX-listed company exploring and conducting pre-production activities on its Abbotts and Garden Gully tenements near Meekatharra, Western Australia. The near-term focus is of low-cost development of its already identified shallow gold mineralisation, while investigating the potential for larger gold and base metal deposits. The Company's 100% owned tenements cover the majority of the Abbotts Greenstone Belt and comprise 2 granted Mining Leases, 21 granted Prospecting Licences and 7 granted Exploration Licences covering about 393 square kilometres, not including the recent Exploration Licence application.

Competent Person Statement

The details contained in this report that pertain to Exploration Results, Mineral Resources or Ore Reserves, are based upon, and fairly represent, information and supporting documentation compiled by Mr Costica Vieru, a Member of the Australian Institute of Geoscientists and a full-time employee of the Company. Mr Vieru has sufficient experience which is relevant to the style(s) of mineralisation and type(s) of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Vieru consents to the inclusion in this report of the matters based upon the information in the form and context in which it appears.

For Further Information Contact: Philip Bruce +61 412 409555 / +61 8 9389 6927

ORA GOLD LIMITED		ASX Code
Quoted Shares:	646.1M	OAU

Appendix 1 All anomalous assay results (ppm)

Hole ID	From	То	Au	Ag	Cu	Pb	Zn	Comments
OGGRC220	26	27					1198	
OGGRC220	27	28					1196	
OGGRC220	28	29	0.26	1.89	358	457	2054	
OGGRC220	29	30	0.21	5.13	895	3678	1631	
OGGRC220	30	31	0.10	3.20	649	4800	817	
OGGRC220	31	32	0.86	343	1160	5097	1929	2m at 0.9g/t Au, 285g/t Ag (31-33m)
OGGRC220	32	33	0.93	227	817	1677	1530	Shear Zone
OGGRC220	33	34		4.12	185	815	473	
OGGRC220	40	41		1.89	1110	158	369	
OGGRC220	43	44		0.73	578	138	1070	
OGGRC220	44	45		0.53	279	53	1236	_
OGGRC220	45	46	0.13				3586	6m at 0.2% Zn (43-49m)
OGGRC220	46	47					2989	
OGGRC220	47	48					2366	
OGGRC220	48	49					1238	
OGGRC220	50	51					1009	
OGGRC221	66	67	0.05	6.87	1959	1612	754	11m at 2.9g/t Ag, 0.2% Cu (66-77m)
OGGRC221	67	68	0.06	4.98	2951	799	294	
OGGRC221	68	69	0.08	6.16	5500	651	101	
OGGRC221	69	70	0.05	3.41	2833	825	132	
OGGRC221	70	71	0.05	2.47	2080	529	225	
OGGRC221	71	72	0.03	1.59	1632	292	127	
OGGRC221	72	73	0.02	1.27	1299	394	125	
OGGRC221	73	74	0.02	1.84	1353	514	125	
OGGRC221	74	75	0.02	1.16	1055	414	135	
OGGRC221	75	76	0.02	0.88	705	197	872	
OGGRC221	76	77	0.02	1.10	1199	73	1273	5m at 0.25% Zn (76-81m)
OGGRC221	77	78		2.88	2051		1432	
OGGRC221	78	79					3061	
OGGRC221	79	80					4728	
OGGRC221	80	81					2184	
OGGRC223	0	1					1194	17m at 0.17% Zn (1-17m)
OGGRC223	1	2					1168	
OGGRC223	2	3					1336	
OGGRC223	3	4					1315	
OGGRC223	4	5					1357	
OGGRC223	5	6					1585	
OGGRC223	6	7					1862	
OGGRC223	7	8					2071	
OGGRC223	8	9					1731	
OGGRC223	9	10					2208	
OGGRC223	10	11					1929	
OGGRC223	11	12					1783	

Hole ID	From	То	Au	Ag	Cu	Pb	Zn	Comments
OGGRC223	12	13					701	
OGGRC223	14	15					1249	
OGGRC223	15	16					3268	
OGGRC223	16	17					3312	
OGGRC223	33	34	0.30	0.19	173		172	
OGGRC224	33	34	0.03	4.65	1272		1073	
OGGRC224	34	35					1051	
OGGRC224	35	36					1065	
OGGRC224	36	37					1271	
OGGRC224	41	42					1625	
OGGRC224	42	43					1549	
OGGRC226	38	39					1437	
OGGRC227	2	3					1165	
OGGRC227	3	4					1035	
OGGRC227	4	5					1434	
OGGRC227	5	6					1826	
OGGRC227	6	7					1542	
OGGRC227	7	8					2248	
OGGRC227	8	9			1339		2061	
OGGRC227	9	10			2972		1932	
OGGRC227	10	11			3438		1788	
OGGRC227	11	12	0.05	1.34	1742		1249	
OGGRC227	12	13	0.02	1.65	1368		1697	
OGGRC227	13	14	0.03	1.55	2625		1648	
OGGRC227	14	15	0.01	1.98	2253	1086	3562	40m at 0.49% Zn (2-42m)
OGGRC227	15	16	0.01	1.23	1213	85	4498	or
OGGRC227	16	17	0.02	0.98	2359		6473	28m at 0.63% Zn (14-42m)
OGGRC227	17	18	0.01	0.61	896		5694	
OGGRC227	18	19	0.02	0.69	937		10261	including 1m at 1.02% Zn (18-19m)
OGGRC227	19	20	0.03	1.68	1066		8057	
OGGRC227	20	21	0.05	0.91	1264		6105	and 17m at 0.2% Cu (9-26m)
OGGRC227	21	22	0.01	0.30	701		3614	
OGGRC227	22	23	0.01	0.44	680		3310	
OGGRC227	23	24	0.01	0.97	1336		2982	
OGGRC227	24	25	0.01	18.20	7386		2474	
OGGRC227	25	26	0.02	1.15			3114	
OGGRC227	26	27					3925	
OGGRC227	27	28					5417	
OGGRC227	28	29					8444	
OGGRC227	29	30					7883	
OGGRC227	30	31					4962	
OGGRC227	31	32					5612	
OGGRC227	32	33					5690	
OGGRC227	33	34					6109	
OGGRC227	34	35					11308	

Hole ID	From	То	Au	Ag	Cu	Pb	Zn	Comments
OGGRC227	35	36					9725	
OGGRC227	36	37					12517	6m at 1.04% Zn (34-40m)
OGGRC227	37	38					9516	
OGGRC227	38	39					12532	
OGGRC227	39	40					7344	
OGGRC227	40	41					2512	
OGGRC227	41	42					2269	
OGGRC228	36	40					1717	
OGGRC228	40	44					2265	
OGGRC228	44	48					1681	
OGGRC228	52	53			183		1762	12m at 0.24% Zn (52-64m)
OGGRC228	53	54			709		2352	
OGGRC228	54	55		1.9	1197		3470	
OGGRC228	55	56		1.37	869		2050	
OGGRC228	56	57		0.87	990		1747	
OGGRC228	57	58		0.39			874	
OGGRC228	58	59		1.13			2639	
OGGRC228	59	60					2395	
OGGRC228	60	61					1364	
OGGRC228	61	62					719	
OGGRC228	62	63					4042	
OGGRC228	63	64					6058	
OGGRC230	0	1	0.10				368	
OGGRC230	1	2	0.07				429	
OGGRC230	2	3	0.04				490	
OGGRC230	3	4	0.16				377	
OGGRC230	4	5	0.04				482	
OGGRC230	12	16					1414	
OGGRC231	1	2		0.91	988	1065	961	
OGGRC231	2	3		0.83	1362	1957	349	15m at 0.20% Pb, 0.28% Cu (1-16m)
OGGRC231	3	4		1.01	3423	4958	429	
OGGRC231	4	5		1.07	3181	2794	538	
OGGRC231	5	6		1.05	3707	4311	457	
OGGRC231	6	7		2.09	4522	3442	800	
OGGRC231	7	8		1.36	5510	2472	967	
OGGRC231	8	9		0.90	2631	1540	486	
OGGRC231	9	10		1.09	3156	2130	450	
OGGRC231	10	11		0.84	2179	1005	841	
OGGRC231	11	12		0.74	1229	578	652	
OGGRC231	12	13		0.48	2257	537	1025	
OGGRC231	13	14		0.49	3267	831	733	
OGGRC231	14	15		0.7	1703	1352	513	
OGGRC231	15	16		2.24	2011	1289	3725	
OGGRC231	16	20		0.69	2742		5539	
OGGRC231	20	24		0.12			2130	

Hole ID	From	То	Au	Ag	Cu	Pb	Zn	Comments
OGGRC231	33	34	1.56	1.02			554	
OGGRC231	34	35	0.05				515	
OGGRC231	35	36					1291	
OGGRC231	36	37					1310	
OGGRC231	37	38	0.02				1213	
OGGRC231	38	39	0.16				1597	
OGGRC231	39	40	0.03				1181	
OGGRC231	40	41	0.29				1282	
OGGRC231	41	42					2865	
OGGRC231	42	43					2122	
OGGRC231	43	44					2499	
OGGRC231	44	48					1794	
OGGRC232	52	53					1571	
OGGRC232	53	54		0.94	916	405	1038	
OGGRC232	54	55	0.05	2.15	1629	689	680	
OGGRC232	55	56	0.05	8.42	3492	3530	1203	Intrusive-related vein
OGGRC232	56	57	0.21	38.80	22471	6378	1124	2.2% Cu, 0.21g/t Au, 39g/t Ag, 0.6% Pb, 0.1% Zn
OGGRC232	57	58	0.04	3.59	3753	1251	2332	
OGGRC232	58	59			708	981	2688	
OGGRC232	59	60			197	95	6483	
OGGRC232	60	61			292	52	8593	
OGGRC232	61	62			905	122	10845	19m at 0.9% Zn incl. 10m at 1.56% Zn (59-69m)
OGGRC232	62	63			177	11	27237	Zinc-rich package
OGGRC232	63	64			172	54	39680	
OGGRC232	64	65			362	266	17094	
OGGRC232	65	66			156	90	13525	
OGGRC232	66	67			197	23	13229	
OGGRC232	67	68			379	22	10460	
OGGRC232	68	69			145	8	8627	
OGGRC232	69	70			547	55	5442	
OGGRC232	70	71			899	56	5727	
OGGRC232	71	72			962	67	3541	
OGGRC232	72	73					2757	6m at 0.33% Zn (72-78m)
OGGRC232	73	74					3005	
OGGRC232	74	75					3477	
OGGRC232	75	76					3554	CVG Conductor
OGGRC232	76	77					5263	
OGGRC232	77	78					2168	
OGGRC232	78	82					1870	20m at 0.44% Zn (78-98m)
OGGRC232	82	86					6383	
OGGRC232	86	90					5951	
OGGRC232	90	94					6551	
OGGRC232	94	98					1529	
OGGRC232	100	101		1.46	1489	463	3310	
OGGRC232	101	102		22.50	10232	5394	48267	1m at 4.82% Zn, 1.02% Cu, 0.54% Pb (101-102m)

Hole ID	From	То	Au	Ag	Cu	Pb	Zn	Comments
OGGRC232	102	103		8.58	8079	3156	13543	
OGGRC232	103	104		3.64	2919	1906	6699	10m at 0.81% Zn (100-110m)
OGGRC232	104	105					6705	
OGGRC232	105	106					3873	
OGGRC232	106	110					1489	
OGGRC233	44	48					1360	
OGGRC233	76	80					1285	
OGGRC233	80	81					1433	CVG Conductor
OGGRC233	82	83					1021	
OGGRC233	83	84		2.45	1321	820	3729	
OGGRC233	84	85		20.60	13807	3458	2277	1m at 1.38% Cu, 21g/t Ag (84-85m)
OGGRC233	85	86		1.07	425	1267	2767	
OGGRC233	86	87		0.20	239	293	3038	
OGGRC233	87	88		3.65	1882	2413	1395	
OGGRC233	88	89		0.34	268	666	1535	10m at 0.23% Zn (83-93m)
OGGRC233	89	90		5.78	2832	2240	2204	
OGGRC233	90	91		2.01	2092	2886	1796	
OGGRC233	91	92				2073	1709	
OGGRC233	92	93				3257	2621	
OGGRC232	105	106					3873	
OGGRC232	106	110					1489	
OGGRC237	22	25	0.28	0.58				
OGGRC237	25	26	0.15	0.25				
OGGRC237	26	27	0.17	0.27				
OGGRC237	33	34	0.13	0.27				CVI Conductor
OGGRC237	34	35	0.14	0.26				
OGGRC237	35	36	0.13	0.26				
OGGRC237	36	37	0.10	0.18				
OGGRC237	37	38	0.24	0.16				
OGGRC237	42	44	0.17	0.05				
OGGRC237	49	50	0.78	0.48				
OGGRC238	55	56					1905	
OGGRC238	56	57					1977	
OGGRC238	58	59					3481	
OGGRC238	59	60		4.68		1688	2890	
OGGRC238	64	65	0.15	1.10				
OGGRC238	68	69	0.12	0.53				
OGGRC238	69	70	0.14	1.02				
OGGRC238	70	71	0.80	0.38				
OGGRC238	71	72	0.82	0.54				
OGGRC238	72	73	0.38	0.32				
OGGRC238	73	74	0.27	0.46				
OGGRC238	74	75	0.47	0.21				
OGGRC238	75	76	0.16	0.18				
OGGRC238	76	78	0.11	0.24				

Hole ID	From	То	Au	Ag	Cu	Pb	Zn	Comments
OGGRC240	5	6	0.33	0.06				
OGGRC241	6	10					1175	
OGGRC241	10	12					1260	
OGGRC241	14	15	0.16	0.34				
OGGRC241	19	20	0.16	0.33				
OGGRC241	20	21	0.22	0.40				
OGGRC241	21	22	0.30	0.57				
OGGRC241	22	23	0.27	0.34				
OGGRC241	23	24	0.35	0.30				
OGGRC241	24	25	0.26	0.41				
OGGRC241	25	26	0.10	0.40				
OGGRC241	26	27	0.90	0.76				3m at 1.6g/t Au (26-29m)
OGGRC241	27	28	1.16	0.78				
OGGRC241	28	29	2.75	3.31				
OGGRC241	29	32	0.21	0.20				
OGGRC241	32	33	0.25	0.26				
OGGRC241	33	34	0.51	0.32				
OGGRC241	34	35	1.08	0.46				
OGGRC241	35	36	0.29	1.15				
OGGRC241	36	40	0.43	0.44				Open at depth
OGGRC242	48	49					1608	
OGGRC242	49	50					1404	
OGGRC242	50	51	0.23					
OGGRC242	51	52	0.11	1.19			2383	
OGGRC242	52	53	0.13	1.26				
OGGRC242	53	54	0.14	1.84				
OGGRC242	54	55	0.17	2.59				
OGGRC242	55	56	0.29	3.05			1040	
OGGRC242	56	57	0.19	1.82				
OGGRC242	57	58	0.08	1.59			2590	
OGGRC242	58	59	0.06	1.00				
OGGRC242	59	60	1.53	0.87				5m at 1.36g/t Au (59-64m)
OGGRC242	60	61	1.64	0.82				
OGGRC242	61	64	1.22	1.27				
OGGRC242	64	67	0.44	0.42				
OGGRC242	67	69	0.40	0.37				Open at depth
OGGRC245	50	51					1564	
OGGRC245	51	52					1249	
OGGRC245	52	53	0.10	1.33			1465	
OGGRC245	53	54	0.10	1.25			1835	
OGGRC245	54	55	0.09	1.31			1108	
OGGRC245	55	56	0.11	1.31			1192	
OGGRC248	33	34	0.15					
OGGRC248	34	35	0.44					
OGGRC248	35	36	0.22					

Appendix 2 JORC Table 1 Checklist of Assessment and Reporting Criteria

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	This is an ongoing reverse circulation (RC) drilling program with thirty-four holes completed to date. RC sample was collected through a rig-mounted cyclone with cone splitter attachment and split in even metre intervals. Wet sample was speared or on occasion scoop-sampled. RC drill chips (from each metre interval) were examined visually, logged by the geologist and any visual observation of alteration or of mineralisation was noted on the drill logs. A hand-held XRF instrument, an Olympus Delta XRF Analyser, took readings of every metre sub-sample through the primary split sample calico bag. The Delta XRF Analyser is calibrated before each session and is serviced according to the manufacturer's recommended schedule. Duplicate samples are submitted at a rate of approximately 4% of total samples taken (one duplicate submitted for every 25 samples).
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Reverse circulation holes were drilled by a track-mounted Edson 3000W rig with 1350cpm at 500psi compressor. The rig has a full lock-out isolation and emergency shut-out system.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Volume of material collected from each metre interval of RC drilling completed is monitored visually by the site geologist and field assistants. Dry sample recoveries were estimated at ~95%. Where moisture was encountered the sample recovery was still excellent, estimated at >80%. No evidence has been observed of a relationship between sample recovery and grade. The excellent sample recoveries obtained preclude any assumption of grain size bias.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	RC chips are logged visually by experienced and competent geologists to a level appropriate for Mineral Resource estimation. No core samples at this stage. The entire length of each drill hole is logged and evaluated.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	RC material was cone split, sampled dry where possible and wet when excess ground water could not be prevented. Sample condition (wet, dry or damp) is recorded at the time of logging. The RC sub-sample of about 3kg is retained in a marked calico bag and stored prior to shipping to the laboratory. Hand-held XRF sampling is a technique for preliminary assessment of exploration samples. Ora Gold use the technique extensively throughout their soil sampling and drilling programs and are experienced in its use. The entire ~3kg RC sample is pulverized to 75µm (85% passing). This is considered best practice and is standard throughout the industry. Pulp duplicates are taken at the pulverising stage and selective repeats conducted as per the laboratory's normal standard QA/QC practices.

		Duplicate samples taken every 25th sample. Standards also submitted to check laboratory accuracy. Sample size is industry standard and is appropriate for grain size of the material sampled. The XRF reading is of a 3mm spot in the sample and a single reading is taken for every metre of drilling. The reading is taken after 30 seconds of analysing the RC chips through the calico bag. The readings are considered a preliminary indication of the contained elements in the spot being analysed and are not necessarily representative of the entire sample. Calibration of the XRF Analyser is done before every session.
Quality of	The nature, quality and appropriateness of the assaying and	All samples were analysed at Intertek labs in Perth for ten
assay data and	laboratory procedures used and whether the technique is considered partial or total.	elements including Au, Ag, As, Bi, Cu, Pb, Zn, Se, Te and Sb. Fire assav is a total digest technique and is considered
laboratory	For geophysical tools, spectrometers, handheld XRF	appropriate for gold.
tests	instruments, etc, the parameters used in determining the analysis including instrument make and model, reading	Handheld XRF equipment, where used, is an Olympus Delta XRF Analyser. Ora Gold follows the manufacturer's
	times, calibrations factors applied and their derivation, etc.	recommended calibration protocols and usage practices.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether	Magnetic susceptibility measurements are taken on each 1m interval downhole.
	acceptable levels of accuracy (ie lack of bias) and precision	Certified reference material standards at 1 every 20 samples
	have been established.	and duplicates at 1 every 25 samples. Lab using random pulp duplicates and certified reference
		material standards.
		Accuracy and precision levels have been determined to be satisfactory after analysis of these QA/QC samples.
Verification	The verification of significant intersections by either	All sampling is routinely inspected by senior geological staff.
of sampling and assaying	Independent or alternative company personnel. The use of twinned holes.	Significant intersections are inspected by senior geological staff and Ora Gold's corporate staff.
	Documentation of primary data, data entry procedures, data	The program included no twin holes.
	Discuss any adjustment to assay data.	with summary data subsequently transcribed in the field to
		electronic files that are then copied to head office.
Location of	Accuracy and quality of surveys used to locate drill holes	Collar locations were initially located and recorded using
data points	(collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation	hand-held GPS (Garmin 60Cx model) with typical accuracy of
	Specification of the grid system used.	of Geraldton was with a Trimble R10 GNSS RTK GPS.
	Quality and adequacy of topographic control.	The grid system applicable to the area is Australian Geodetic Grid GDA94, Zone 50.
		Topographic control was based on standard industry
		RMSurveys of Geraldton.
Data spacing	Data spacing for reporting of Exploration Results.	Drill hole collars were located and oriented so as to deliver
distribution	establish the degree of geological and grade continuity	geological model being tested to be assessed effectively.
	appropriate for the Mineral Resource and Ore Reserve	This is still early stage exploration and is not sufficiently
	Whether sample compositing has been applied.	Samples taken on a 1m basis, unless otherwise specified.
Orientation	Whether the orientation of sampling achieves unbiased	Current drilling aims to ascertain the details of the complex
relation to	is known, considering the deposit type.	sometimes sufficient data to confirm true widths as noted.
geological	If the relationship between the drilling orientation and the	Interpretation continues of orientation of lithologies,
SUULUIE	have introduced a sampling bias, this should be assessed	orientation and movement direction on controlling
	and reported if material.	structures and faulting. The drilling programs will continue
		these parameters.
		Data collected so far presents no suggestion that any sampling bias has been introduced
Sample	The measures taken to ensure sample security.	When all relevant intervals have been sampled, the samples
security		will be collected and transported by Company personnel to
		secure locked storage in Perth before delivery by Company personnel to the laboratory for assay.

Audits or	The results of any audits or reviews of sampling techniques	Internal reviews are carried out regularly as a matter of
reviews	and data.	policy. All assay results are considered to be representative
		as both the duplicates and standards from this program
		have returned satisfactory replicated results.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Abbotts/Garden Gully Project area comprises twenty- one granted prospecting licences and two granted mining leases totalling 393 square kilometres. Ora Gold Limited holds a 100% interest in each lease.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The project area is partially located in the Yoothapina pastoral lease. The Government Well project area is 45km north-west of Meekatharra, in the Murchison of WA.
		The licences are in good standing and there are no known impediments to obtaining a licence to operate.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Western Mining Corporation and St Barbara Mines Limited did limited work within the Government Well area during the 1970s and 1990s (WAMEX reports: a3084 and a44060).
Geology	Deposit type, geological setting and style of mineralisation.	The Abbotts and Garden Gully projects are on the 2.75Ga Archaean Abbotts Greenstone Belt, comprised of rocks of the Greensleeves Formation - a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. The belt is a regional synclinal succession trending N-NE with a northern fold closure and postdating E-W synform, further transected by NE trending shear zones. The project area is blanketed by scree deposits, broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the regional drainage system.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why it is the case.	A summary and the relevant drill hole details are presented in Table 4.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually material and should be stated. Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Significant anomalous drill intercepts are presented in Tables 1, 2 and3. All anomalous assay results are shown in Appendix 1. Arithmetic weighted averages are used. For example: 26m to 29m in OGGRC 241 is reported as 3m at 1.62g/t Au. This comprised three samples of 1m intervals for a total of 3m, calculated as follows: [(1x0.9)+(1x1.16)+(1x2.75)] ={ 4.80/3]=1.60 g/t Au to two decimal points. No metal equivalent values are used.
Relationship between	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the	Insufficient geological data have yet been collected to confirm the geometry of the mineralisation. The current

mineralisation widths and intercept lengths	mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	drilling programs aim to confirm our interpretation and afford greater certainty. Reported intercepts are downhole widths and true widths are only stated when data indicates reasonable certainty. The information available to date is advancing our interpretation of geometry and requires further investigation.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views.	Relevant location maps and sections are included in the body of this announcement (Figures 1 - 5).
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	This announcement includes the results of RC sample assays and drill hole information for the recent Government Well drilling program. The reporting of the results to hand is comprehensive and thus by definition balanced.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including, but not limited to: geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density; groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	This announcement includes data relating to interpretations and potential significance of geological observations from the recent drilling program. Additional relevant information will be reported and announced as and when it becomes available to provide context to current and planned programs.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Deep reverse circulation drilling with potential diamond tails will follow soon as part of the next stage of exploration.