

18 November 2019

ASX ANNOUNCEMENT

Infill drilling confirms bulk tonnage potential of the Mulgine Trench deposit

Highlights

- Drilling continues to intersect substantial thicknesses of tungsten mineralisation within a 150-220 metre thick zone at Mulgine Trench. Better intersections include:
 - \circ 192m at 0.13% WO_3 and 240 ppm Mo from 0m in MMC381
 - \circ 156m at 0.10% WO_3 and 110 ppm Mo from 6m in MMC367
 - \circ 146m at 0.13% WO_3 and 310 ppm Mo from 0m in MMC379
 - \circ 114m at 0.13% WO_3 and 300 ppm Mo from 0m in MMC376
- Within the broad tungsten envelope, drilling defined a Lower Tungsten-Molybdenum Domain that forms a 50m to 120m wide zone with significant molybdenum. Better intersection including:
 - o 110m at 0.11% WO3 and 410 ppm Mo from 50m in MMC376
 - 58m at 0.11% WO₃ and 630 ppm Mo from 14m in MMC326
 - 44m at 0.05% WO3 and 1090 ppm Mo from 4m in MMC330
- Interpretation of data is continuing and a revised Mineral Resource estimate will be released later in the December quarter.

Introduction

Australian tungsten developer, Tungsten Mining NL (ASX: TGN) ("TGN" or "the Company") is pleased to report on results from drilling at the Mt Mulgine Project in the Murchison Region of Western Australia, approximately 350km north northeast of Perth. The Company owns 100% of the tungsten and molybdenum rights on a group of tenements that have been the subject of significant previous evaluation for tungsten and molybdenum. The Company also has the rights to all by-products from the mining of tungsten and molybdenum. Near surface Mineral Resources have been delineated at the Mulgine Trench and Mulgine Hill deposits, which have been the subject of ongoing evaluation by the Company (Figure 1).

In April 2019, the Company commenced work on a Pre-Feasibility Study (PFS) for large scale operations at the Mt Mulgine Project. It is intended that one of the outcomes of the PFS will be the declaration of a maiden Ore Reserve for the larger Mt Mulgine Project and accordingly resource definition drilling is a major component of the program.

In July 2019, the Company commenced resource definition drilling at Mulgine Trench with 164 reverse circulation (RC) holes drilled to 11 November 2019. The Company reported results from the first 66 holes on 9 October 2019 and this announcement is reporting results from the next 51 holes. Drilling continues to intersect substantial thicknesses of tungsten-molybdenum mineralisation within a 150 to 220 metre thick envelope and has better defined a Lower Tungsten-Molybdenum Domain. The company has commenced interpretation of data and will update the Mulgine Trench Mineral Resource estimate in the December quarter.

Level 4, 46 Colin Street, West Perth WA 6005 Australia PO Box 452, West Perth WA 6872 Australia T+61 8 9486 8492F+61 8 6117 4039

info@tungstenmining.com tungstenmining.com AN AUSTRALIAN BASED RESOURCES COMPANY

Tungsten Mining's CEO Craig Ferrier commented, "Drilling continues to progress extremely positively, with results from Phase 2 infill drilling confirming the very substantial widths of polymetallic mineralisation and bulk tonnage potential of Mulgine Trench. This will provide for very low strip ratios and bulk mining methods, the benefit of which will be factored into mining studies for the PFS. Work on the updated Mineral Resource estimate is well advanced and is expected to be competed by early December."

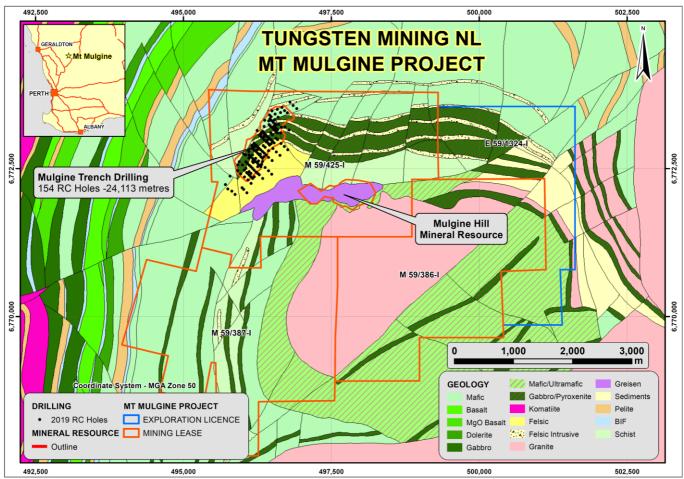


Figure 1. Location of Mulgine Hill and Mulgine Trench Mineral Resources.

Mulgine Trench Mineral Resource

The 2014 Mulgine Trench Mineral Resource (Table 1) estimated grades for tungsten and molybdenum into 0.10% WO₃ domains and ignored low-grade tungsten that in many instances occurs with other minerals, including molybdenum. This estimate was based on drilling on 80 metre to 180 metre spaced sections with 40 metre to 80 metre spaced holes on sections. In September 2018, the Company drilled four metallurgical holes that indicated significant potential to add to the 2014 Mineral Resource. Mineralisation was open along strike, down dip and in some cases up dip.

Table 1: Mineral Resource estimates for Mulgine Trench at a 0.10% WO3 cut-off

Γ	Mulgine Trench Deposit – November 2014										
Classification	Tonnes (Millions)	WO ₃ %	Mo ppm								
Indicated	0.4	0.14	400								
Inferred	63.4	0.17	250								
Total	Total 63.8 0.17 250										

Refer ASX (HAZ) Announcement 5 November 2014, "Hazelwood continues to increase tungsten resource".

Tungsten-molybdenum mineralisation at Mt Mulgine is associated with the Mulgine Granite - a high-level leucogranite forming a 2km stock that intrudes the Mulgine anticline (Figure 1). The granite intrudes a greenstone sequence composed of micaceous schists, amphibolite and talc-chlorite schist which were formerly metasediments, mafic and ultramafic rocks respectively.

Tungsten-molybdenum mineralisation at Mulgine Trench is associated with altered and quartz veined mafic and ultramafic units that form a 150 metre to 220 metre thick zone over 1.4 kilometres of strike and dips shallowly towards the northwest.

Resource Definition Drilling

In July 2019, the Company commenced a phased drilling program as part of the Mt Mulgine Project PFS with the objective of upgrading the dominantly Inferred Mulgine Trench Mineral Resource estimate to a dominantly Indicated status. Phase 1 of the program consisted of completing 40 metre spaced infill holes on existing sections and test possible extensions to known mineralisation. This work confirmed continuity of mineralisation present and identified substantially more mineralisation within the known deposit and extensions. The program has progressed onto Phase 2 which involves infilling sections to a 40 metre spacing and to the 11 November 2019, a total of 164 reverse circulation (RC) holes for 26,020 metres have been drilled (Figure 2).

In October, the Company reported results from the first 66 holes intersecting multiple broad zones of tungstenmolybdenum mineralisation within a 120 metre to 220-metre thick horizon over 1.4 kilometres of strike. Results have been received from the next 51 holes and continue to demonstrate the substantial thicknesses and continuity of mineralisation present. This confirms the Company's opinion that mineralisation at Mulgine Trench is far more extensive than indicated by the 2014 Mineral Resource estimate.

Drilling has intersected multiple tungsten-molybdenum intersections in excess of 50 metres true thickness within a 150 to 220 metre wide zone. Better holes include MMC381, MMC367 and MMC379 that intersected mineralised zones of **192 metres at 0.13% WO₃ and 240 ppm Mo** from surface (0 metres), **156 metres at 0.10% WO₃ and 110 ppm Mo** from 6 metres and **146 metres at 0.13% WO₃ and 310 ppm Mo** from surface (0 metres) respectively. All three holes were drilled perpendicular to mineralisation and intervals represent true thicknesses. Drilling continues to intersect significantly more tungsten-molybdenum mineralisation than predicted by the 2014 Mineral Resource estimate (Figures 3).

In addition to indicating better continuity to mineralisation within the Mineral Resource estimate, drilling has also intersected significant polymetallic mineralisation defining a Lower Tungsten-Molybdenum domain that forms a 50 to 120 metre thick zone (Table 3 and Figure 4). Better holes from this zone include **110 metres at 0.11% WO₃**, **410 ppm Mo** from 50 metres in MMC376, **58 metres at 0.11% WO₃**, **630 ppm Mo** from 14 metres in MMC326 and **44 metres at 0.05% WO₃**, **1090 ppm Mo** from 4 metres in MMC326. Holes were drilled perpendicular to mineralisation and intervals represent true thicknesses.

Interpretation of results from Phase 1 drilling and 22 of the Phase 2 holes drilled is underway and the Company is planning to complete a revised Mineral Resource estimate for Mulgine Trench in the December Quarter. This updated geological block model will be used to direct a more detailed drill out of the Trench deposit. It is also intended to model any accessory minerals of significance that occur within the Trench deposit.

A list of holes with substantial zones of tungsten mineralisation at a 0.05% WO₃ lower cut-off displaying the bulk tonnage potential of Mulgine Trench is presented in Table 2. Better holes from the Lower Tungsten-Molybdenum Domain at a 200 ppm Mo lower cut-off are presented in Table 3. A complete list of intersections greater than 3 metres at 0.05% WO₃ and 3 metres at 200 ppm Mo are listed in Appendix 1 and 2 respectively.

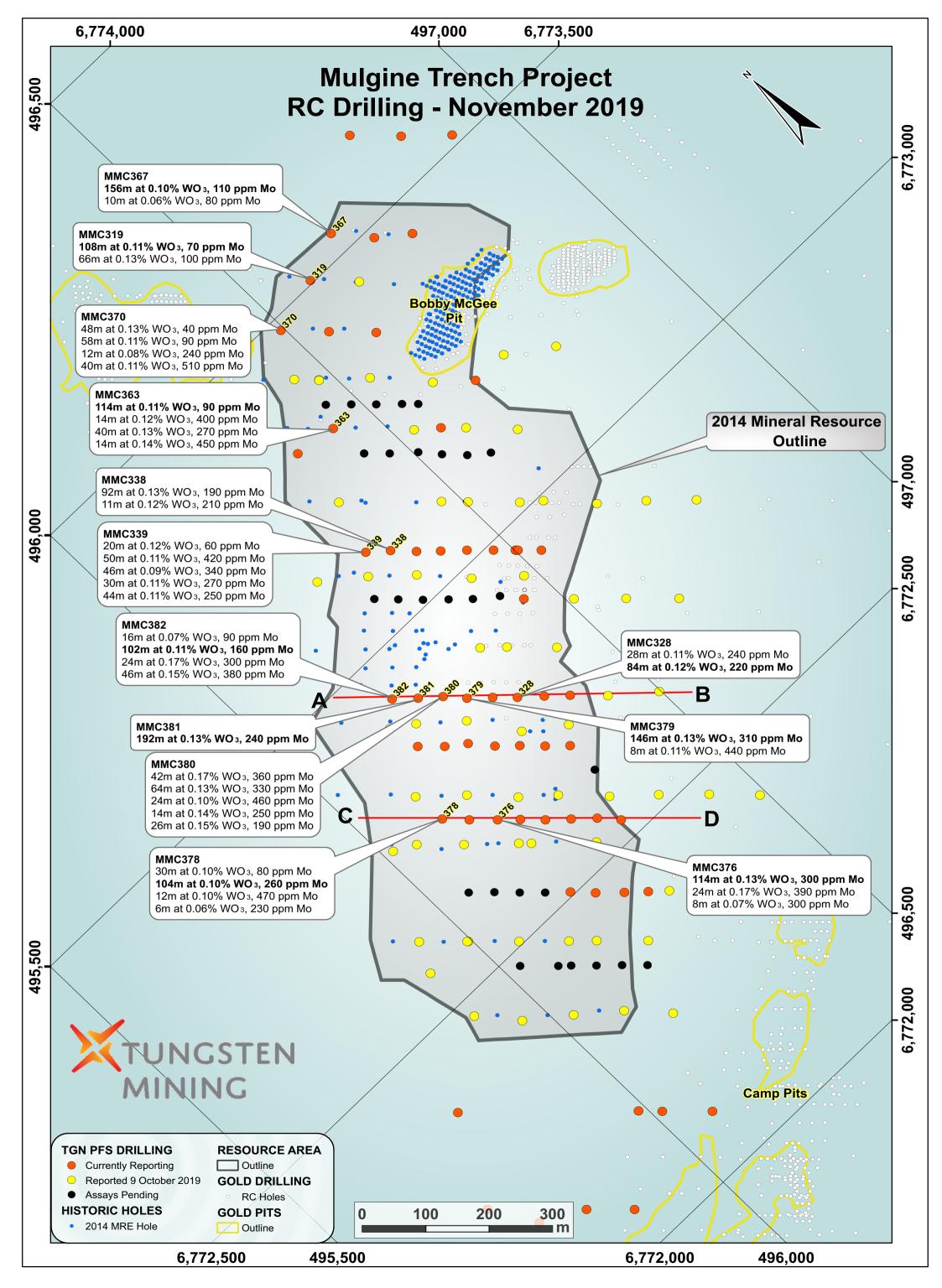


Figure 2. Plan showing location of holes and better intersections at Trench. Assay results currently being reported are yellow dots and assays pending are black dots. Blue small dots are holes used in 2014 Resource estimate.

	IVIUI	-		ificant Tungst	en minerali	Sation (at U			
		MGA Coo	rdinates				Intersectio	ons	-
Hole No	Northing	Easting	Depth	Dip/	From	То	Interval	WO ₃	Мо
14140040	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(%)	(ppm)
MMC319	6,773,505	496,585	180	-60/135	0	108	108	0.11	70
MMC319					112	178	66	0.13	100
MMC328	6,772,791	496,333	138	-60/135	18	46	28	0.11	240
MMC328					54	138	84	0.12	220
MMC338	6,773,103	496,361	125	-60/135	2	94	92	0.13	190
MMC338					114	125	11	0.12	210
MMC339	6,773,128	496,332	264	-60/135	40	60	20	0.12	60
MMC339					64	114	50	0.11	420
MMC339					120	166	46	0.09	340
MMC339					188	218	30	0.11	270
MMC339					220	264	44	0.11	250
MMC363	6,773,308	496,439	216	-90	0	114	114	0.11	90
MMC363					128	142	14	0.12	400
MMC363					154	194	40	0.13	270
MMC363					198	212	14	0.14	450
MMC367	6,773,536	496,663	180	-60/135	6	162	156	0.10	110
MMC367					164	174	10	0.06	80
MMC370	6,773,480	496,494	176	-60/135	6	54	48	0.13	40
MMC370					58	116	58	0.11	90
MMC370					120	132	12	0.08	240
MMC370					136	176	40	0.11	510
MMC376	6,772,671	496,169	204	-60/135	0	114	114	0.13	300
MMC376					116	140	24	0.17	390
MMC376					166	174	8	0.07	300
MMC378	6,772,734	496,108	202	-60/135	26	56	30	0.10	80
MMC378					62	166	104	0.10	260
MMC378					178	190	12	0.10	470
MMC378					194	200	6	0.06	230
MMC379	6,772,847	496,276	160	-60/135	0	146	146	0.13	310
MMC379	-, ,-	, -			152	160	8	0.11	440
MMC380	6,772,875	496,251	186	-60/135	0	42	42	0.17	360
MMC380	-, _,	,			46	110	64	0.13	330
MMC380					114	138	24	0.10	460
MMC380					142	156	14	0.10	250
MMC380					160	186	26	0.14	190
MMC381	6,772,901	496,221	198	-60/135	0	192	192	0.13	240
MMC382	6,772,929	490,221	210	-60/135	0	16	192	0.13	90
MMC382	0,112,020	+50,131	210	00/100	30	132	102	0.07 0.11	160
MMC382					30 136	160	24	0.17	300
MMC382					164	210	46	0.15	380

Table 2 – Better intersections of tungsten mineralisation in infill drilling at Mulgine Trench

2*m* cone split RC samples were submitted to Bureau Veritas Minerals Pty Ltd, Canningvale WA for WO₃ and Mo by XRF. Lower cut-off grade 0.05% WO₃ with up to 2*m* of interval waste, no top cut grade. True thickness is 75% of intersection length for vertical holes and 100% of intersection length for inclined holes. Grid coordinates are MGA Zone 50.

				ificant Tungst					
		MGA Coo					Intersectio		
Hole No	Northing (m)	Easting (m)	Depth (m)	Dip/ Azim	From (m)	То (m)	Interval (m)	WO₃ (%)	Mo (ppm)
MMC326	6,772,735	496,394	102	-60/135	14	72	58	0.11	630
MMC327	6,772,763	496,364	120	-60/135	4	54	50	0.12	750
MMC328	6,772,791	496,333	138	-60/135	28	62	34	0.12	360
MMC330	6,772,963	496,503	76	-60/135	4	48	44	0.05	1090
MMC332	6,772,988	496,477	132	-60/135	18	46	28	0.08	970
MMC332					50	88	38	0.08	610
MMC333	6,773,018	496,447	150	-60/135	54	108	54	0.13	430
MMC333					116	138	22	0.11	530
MMC334	6,773,046	496,417	156	-60/135	72	86	14	0.08	920
MMC334					132	154	22	0.07	910
MMC336	6,772,158	495,748	168	-60/135	86	132	46	0.06	550
MMC339	6,773,128	496,332	264	-60/135	78	94	16	0.14	640
MMC339					102	116	14	0.07	580
MMC339					124	158	34	0.10	400
MMC339					216	240	24	0.12	410
MMC340	6,772,676	496,336	132	-60/135	2	36	34	0.14	460
MMC340					46	80	34	0.11	640
MMC341	6,772,704	496,307	138	-60/135	4	40	36	0.14	760
MMC341					64	106	42	0.09	570
MMC342	6,772,732	496,280	174	-60/135	16	36	20	0.08	610
MMC342					84	128	44	0.12	590
MMC361	6,773,189	496,560	156	-60/135	8	56	48	0.12	810
MMC361					104	134	30	0.07	610
MMC372	6,772,562	496,281	138	-60/135	2	70	68	0.11	430
MMC373	6,772,590	496,252	156	-60/135	36	78	42	0.13	650
MMC374	6,772,618	496,222	166	-60/135	60	88	28	0.12	910
MMC375	6,772,646	496,195	198	-60/135	32	58	26	0.10	430
MMC375					66	126	60	0.07	540
MMC376	6,772,671	496,169	204	-60/135	50	160	110	0.11	410
MMC377	6,772,703	496,137	192	-60/135	82	108	26	0.07	580
MMC377					126	188	62	0.08	330
MMC378	6,772,734	496,108	202	-60/135	136	202	66	0.07	420
MMC379	6,772,847	496,276	160	-60/135	38	102	64	0.13	490
MMC380	6,772,875	496,251	186	-60/135	54	90	36	0.16	340
MMC380					104	134	30	0.10	530
MMC381	6,772,901	496,221	198	-60/135	82	116	34	0.17	390
MMC382	6,772,929	496,191	210	-60/135	116	144	28	0.15	360
MMC382					156	178	22	0.10	590
MMC386	6,773,205	496,654	108	-70/135	6	34	28	0.15	640
MMC386					58	72	14	0.03	830

Table 3 – Better intersections of molybdenum mineralisation in drilling at Mulgine Trench

2m cone split RC samples were submitted to Bureau Veritas Minerals Pty Ltd, Canningvale WA for WO₃ and Mo by XRF. Lower cut-off grade 200 ppm Mo with up to 2m of interval waste, no top cut grade. True thickness is 75% of intersection length for vertical holes and 100% of intersection length for inclined holes. Grid coordinates are MGA Zone 50.

Mulgine Trench Deposit Section A - B

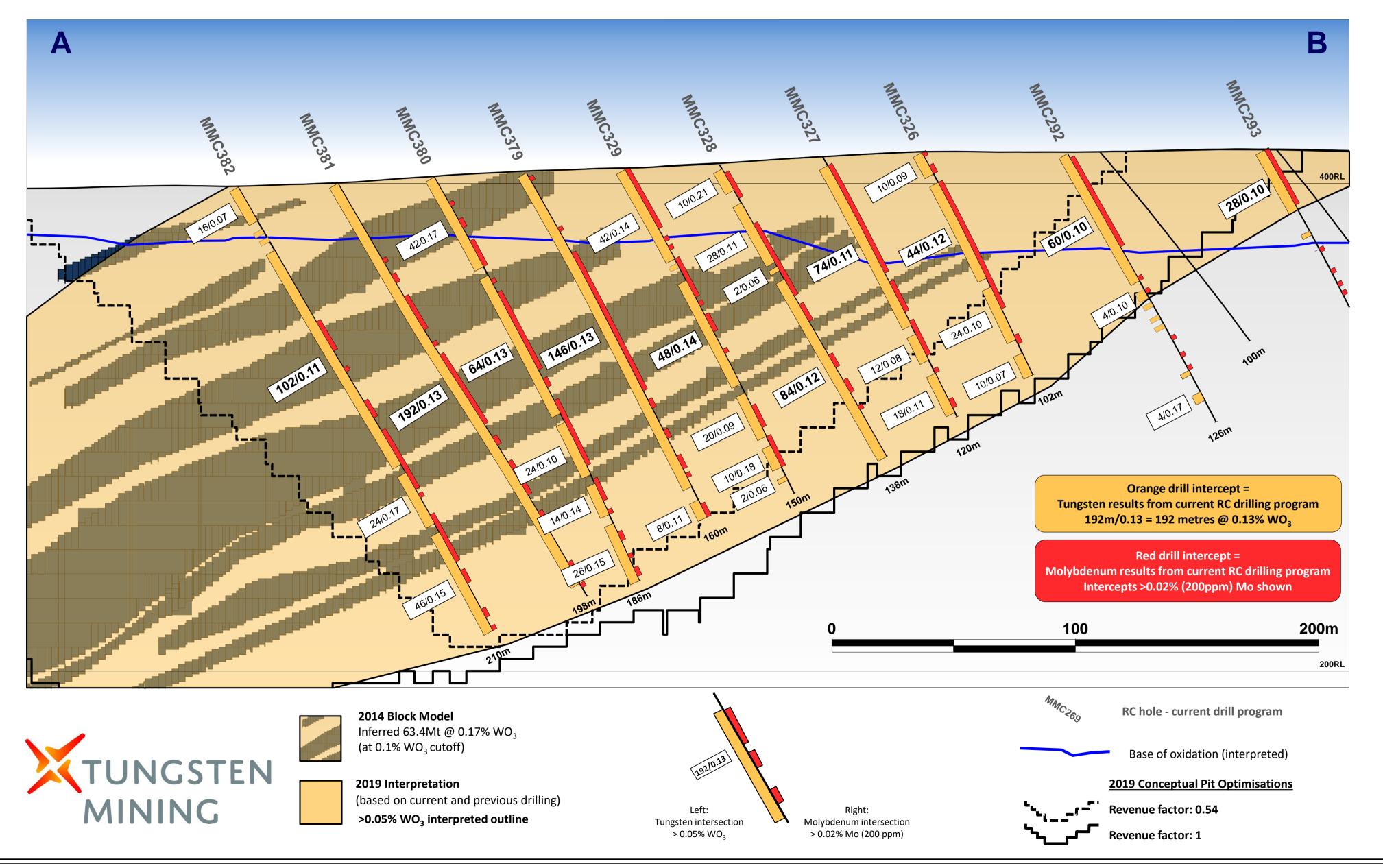


Figure 3. Cross section showing outlines and intersections >0.05% WO₃ defined by Tungsten Mining Drilling against the 2014 Mulgine Trench Mineral Resource. Location of section displayed on Figure 2.

Mulgine Trench Deposit Section C - D

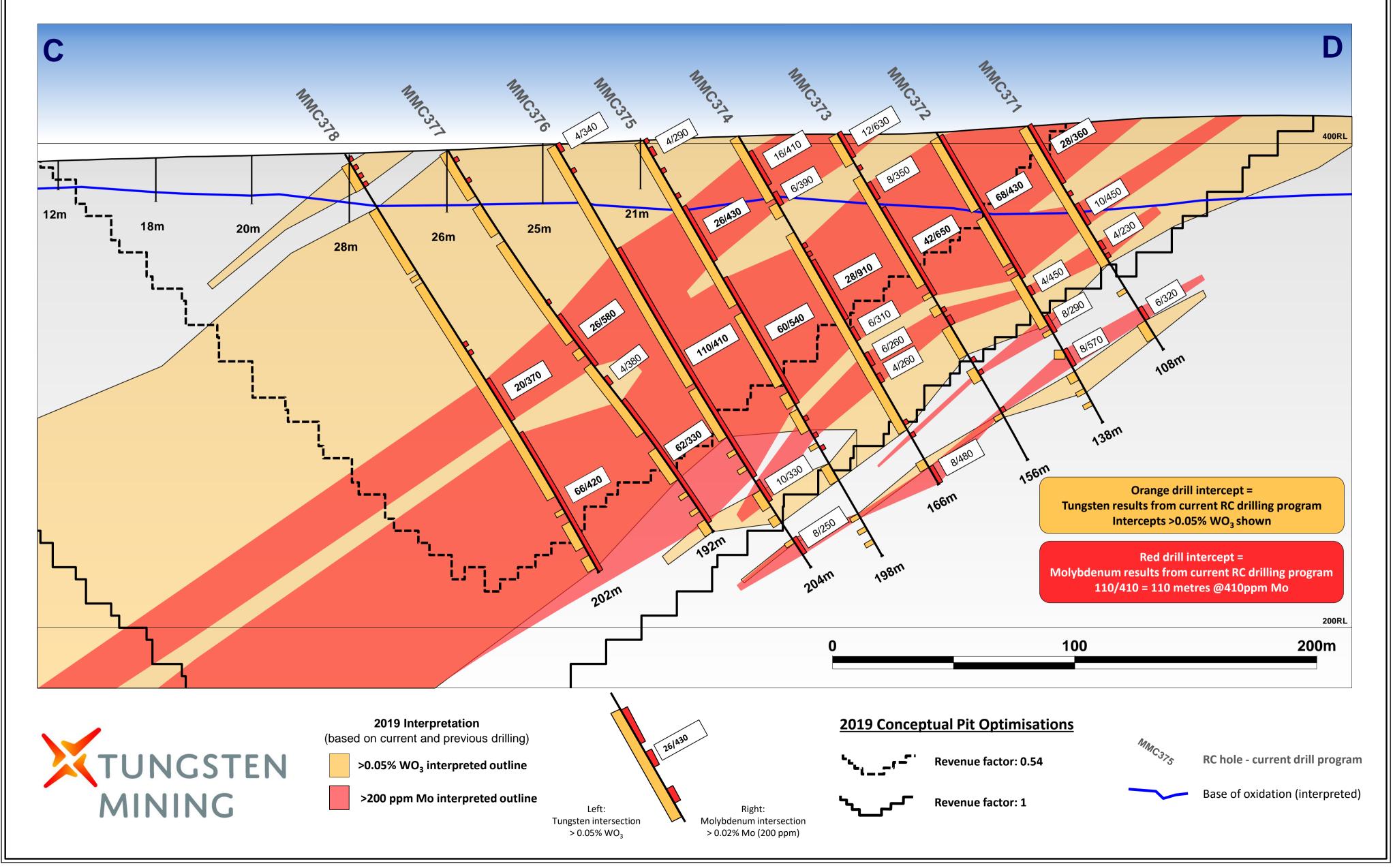


Figure 4. Cross section showing Lower Tungsten-Molybdenum Domain defined by red hatched outlines and intersections greater than 200 ppm Mo. Location of section displayed on Figure 2.

-ENDS-

For further information: Craig Ferrier Chief Executive Officer

Chief Executive Officer Ph: +61 8 9486 8492 E: craig.ferrier@tungstenmining.com Mark Pitts Company Secretary Ph: +61 8 9316 9100 E: mark.pitts@tungstenmining.com.au

Competent Person's Statement

The information in this report that relates to Exploration Results and Data Quality is based on, and fairly represents, information and supporting documentation prepared by Peter Bleakley, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Bleakley is not a full-time employee of the company. Mr Bleakley is a consultant to the mining industry. Mr Bleakley has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Bleakley consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to the Mulgine Trench Mineral Resources are extracted from the report titled 'June 2016 Mineral Resource Update and Core Sampling' released to the ASX on 24 June 2016, available to view at <u>www.tungstenmining.com</u>. Up to 11 November 2019, Tungsten Mining have drilled an additional 173 RC and five diamond holes into the Mulgine Trench Mineral Resource. Interpretation of all new data is proceeding and a revised estimate will be released later in December 2019 quarter. Other than the aforementioned review, the Company confirms that it is not aware of any new information or data that materially affects the information included in the ASX announcement and that all material assumptions and technical parameters underpinning the estimates in original ASX announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original ASX announcements.

About Tungsten Mining

Australian tungsten developer, Tungsten Mining NL is an Australian based resources company listed on the Australian Securities Exchange. The Company's prime focus is the exploration and development of tungsten projects in Australia.

Tungsten (chemical symbol W), occurs naturally on Earth, not in its pure form but as a constituent of other minerals, only two of which support commercial extraction and processing - wolframite ((Fe, Mn) WO_4) and scheelite (CaWO₄).

Tungsten has the highest melting point of all elements except carbon – around 3400°C giving it excellent high temperature mechanical properties and the lowest expansion coefficient of all metals. Tungsten is a metal of considerable strategic importance, essential to modern industrial development (across aerospace and defence, electronics, automotive, extractive and construction sectors) with uses in cemented carbides, high-speed steels and super alloys, tungsten mill products and chemicals.

Through exploration and acquisition, the Company has established a globally significant tungsten resource inventory in its portfolio of advanced mineral projects across Australia. This provides the platform for the Company to become a major player within the global primary tungsten market through the development of low-cost tungsten concentrate production.

Appendix 1 Intersections greater than 3 metres at 0.05% WO₃ in Mulgine Trench Drilling

	Mulç	gine Trench D	orilling - S	ignificant T	ungsten Min	eralisation	(>3m at 0.0	5% WO₃ cut o	ff)	
		MGA Coord	inates				Inter	sections		
Hole No	Northing (m)	Easting (m)	RL (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO₃ (%)	Mo (ppm)
MMC319	6,773,505	496,585	405	180	-60/135	0	108	108	0.11	70
MMC319						112	178	66	0.13	100
MMC320	6,772,376	495,785	385	146	-60/135	104	112	8	0.05	90
MMC320						114	120	6	0.06	270
MMC320						128	132	4	0.09	130
MMC320						140	146	6	0.07	650
MMC321	6,772,121	495,816	389	160	-60/135	4	26	22	0.08	100
MMC321						32	36	4	0.08	260
MMC321						42	64	22	0.09	640
MMC321						100	104	4	0.09	50
MMC321						126	132	6	0.08	210
MMC321						154	158	4	0.06	200
MMC322	6,772,067	495,870	389	132	-60/135	30	34	4	0.09	370
MMC322						38	42	4	0.07	80
MMC322						60	66	6	0.06	190
MMC322						68	72	4	0.10	40
MMC322						118	122	4	0.32	170
MMC323	6,772,176	495,988	397	132	-90	2	12	10	0.14	600
MMC323						114	120	6	0.08	350
MMC324	6,772,150	496,014	397	114	-60/135	52	66	14	0.13	90
MMC324						78	84	6	0.07	90
MMC324						94	106	12	0.11	110
MMC325	6,772,094	496,070	391	78	-60/135	70	74	4	0.08	150
MMC326	6,772,735	496,394	413	102	-60/135	0	10	10	0.09	600
MMC326						14	58	44	0.12	500
MMC326						62	86	24	0.10	360
MMC326						92	102	10	0.07	100
MMC327	6,772,763	496,364	411	120	-60/135	4	78	74	0.11	630
MMC327						82	94	12	0.08	330
MMC327						100	118	18	0.11	160
MMC328	6,772,791	496,333	408	138	-60/135	2	12	10	0.21	440
MMC328						18	46	28	0.11	240
MMC328						54	138	84	0.12	220
MMC329	6,772,818	496,305	406	150	-60/135	0	42	42	0.14	250
MMC329						52	100	48	0.14	250
MMC329						104	124	20	0.09	190
MMC329						128	138	10	0.18	820
MMC330	6,772,963	496,503	411	76	-60/135	0	6	6	0.07	580
MMC330						24	32	8	0.07	950
MMC330						44	76	32	0.07	320

	Mulç			ignificant T	ungsten Min	eralisation	>3m at 0.0	5% WO₃ cut o	ff)		
		MGA Coordi	inates		Intersections						
Hole No	Northing	Easting	RL (m)	Depth	Dip/	From	To	Interval	WO ₃	Mo	
MMC330B	(m) 6,772,961	(m) 496,504	(m) 411	(m) 120	Azim -60/135	(m) 0	(m) 6	(m) 6	(%) 0.08	(ppm) 550	
MMC330B	0,112,001	100,001		120	00,100	16	20	4	0.07	1760	
MMC330B						24	38	14	0.08	640	
MMC330B						44	78	34	0.00	250	
MMC330B						88	96	8	0.07	300	
MMC330B						106	116	0 10	0.08		
	0 770 005	400 500	440	100	00/405					150	
MMC331	6,772,935	496,530	413	102	-60/135	8	36	28	0.08	410	
MMC331						42	54	12	0.07	200	
MMC331						58	66	8	0.06	230	
MMC331						84	96	12	0.08	140	
MMC332	6,772,988	496,477	407	132	-60/135	10	14	4	0.07	280	
MMC332						18	76	58	0.09	730	
MMC332						82	100	18	0.09	410	
MMC332						104	112	8	0.08	120	
MMC332						120	126	6	0.06	80	
MMC333	6,773,018	496,447	403	150	-60/135	2	20	18	0.14	240	
MMC333						28	34	6	0.07	90	
MMC333						44	112	68	0.12	370	
MMC333						122	128	6	0.18	810	
MMC333						134	138	4	0.20	290	
MMC334	6,773,046	496,417	400	156	-60/135	2	6	4	0.11	10	
MMC334						12	38	26	0.14	130	
MMC334						44	54	10	0.09	70	
MMC334						62	70	8	0.08	200	
MMC334						76	140	64	0.12	480	
MMC335	6,773,073	496,389	399	174	-60/135	2	50	48	0.11	320	
MMC335	0,110,010	100,000	000	.,,	00/100	- 54	66	12	0.08	90	
MMC335						78	120	42	0.00	470	
MMC335						124	120		0.10	360	
MMC336	6,772,158	495,748	385	168	-60/135	20	32	32 12	0.13	10	
	0,772,156	490,746	300	100	-00/135						
MMC336						72	80	8	0.11	150	
MMC336						92	96	4	0.06	1200	
MMC336						100	108	8	0.07	390	
MMC336						120	124	4	0.18	360	
MMC336						150	168	18	0.10	120	
MMC337	6,772,231	495,706	384	168	-60/135	116	128	12	0.09	80	
MMC337						144	166	22	0.07	550	
MMC338	6,773,103	496,361	398	125	-60/135	2	94	92	0.13	190	
MMC338						106	112	6	0.06	500	
MMC338						114	125	11	0.12	210	
MMC339	6,773,128	496,332	397	264	-60/135	40	60	20	0.12	60	
MMC339						64	114	50	0.11	420	
MMC339						120	166	46	0.09	340	

	Mulç	gine Trench D	rilling - S	ignificant T	ungsten Min	eralisation	(>3m at 0.0	5% WO₃ cut o	ff)			
		MGA Coordi	nates		Intersections							
Hole No	Northing	Easting	RL	Depth	Dip/	From	То	Interval	WO ₃	Мо		
	(m)	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(%)	(ppm)		
MMC339						188	218	30	0.11	270		
MMC339						220	264	44	0.11	250		
MMC340	6,772,676	496,336	406	132	-60/135	0	74	74	0.14	480		
MMC340						82	86	4	0.16	250		
MMC340						102	122	20	0.10	100		
MMC341	6,772,704	496,307	405	138	-60/135	2	66	64	0.12	550		
MMC341						70	92	22	0.12	550		
MMC341						94	98	4	0.06	350		
MMC341						104	114	10	0.10	170		
MMC341						120	128	8	0.10	100		
MMC342	6,772,732	496,280	403	174	-60/135	0	10	10	0.27	150		
MMC342						16	26	10	0.11	440		
MMC342						34	40	6	0.12	410		
MMC342						44	56	12	0.17	530		
MMC342						76	136	60	0.11	470		
MMC342						140	144	4	0.07	230		
MMC342						150	166	16	0.14	140		
MMC361	6,773,189	496,560	409	156	-60/135	0	34	34	0.15	600		
MMC361						42	58	16	0.12	900		
MMC361						76	86	10	0.09	430		
MMC361						90	98	8	0.10	480		
MMC361						104	114	10	0.11	690		
MMC361						122	130	8	0.10	370		
MMC361						136	148	12	0.10	110		
MMC363	6,773,308	496,439	399	216	-90	0	114	114	0.11	90		
MMC363	-, -,	,		-		128	142	14	0.12	400		
MMC363						154	194	40	0.13	270		
MMC363						198	212	14	0.14	450		
MMC364	6,773,318	496,370	398	170	-60/135	24	28	4	0.13	20		
MMC365	6,773,446	496,754	403	90	-60/135	0	8	8	0.11	180		
MMC365	0,110,110	100,101	100		00,100	22	32	10	0.07	50		
MMC365						50	54	4	0.07	130		
MMC365						78	86	8	0.17	60		
MMC366	6,773,484	496,706	404	138	-60/135	0	46	46	0.11	70		
MMC366	0,110,404	400,700	-10-1	100	00/100	50	56	40 6	0.10	280		
MMC366						60	64	4	0.10	140		
MMC366						74	88	4	0.07	140		
MMC366						90	96	6	0.11	100		
MMC366						100	116	16	0.07	100		
MMC366	0 770 500	400.000	407	400	00/405	122	138	16	0.07	100		
MMC367	6,773,536	496,663	407	180	-60/135	6	162	156	0.10	110		
MMC367	0 770 070	400 500	400	100	00/405	164	174	10	0.06	80		
MMC368	6,773,372	496,599	403	138	-60/135	0	30	30	0.14	170		

	Mulç	gine Trench D	orilling - S	ignificant T	ungsten Min	eralisation	(>3m at 0.0	5% WO₃ cut o	ff)		
		MGA Coord	inates		Intersections						
Hole No	Northing	Easting	RL	Depth	Dip/	From	То	Interval	WO ₃	Мо	
MMC2C0	(m)	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(%)	(ppm)	
MMC368				-		34	52	18	0.09	210	
MMC368						56	94	38	0.12	170	
MMC368						114	120	6	0.07	210	
MMC368						124	128	4	0.05	320	
MMC369	6,773,425	496,547	402	162	-60/135	2	70	68	0.11	110	
MMC369						74	126	52	0.12	460	
MMC369						136	160	24	0.10	380	
MMC370	6,773,480	496,494	403	176	-60/135	6	54	48	0.13	40	
MMC370						58	116	58	0.11	90	
MMC370						120	132	12	0.08	240	
MMC370						136	176	40	0.11	510	
MMC371	6,772,534	496,307	407	108	-60/135	0	66	66	0.11	310	
MMC371						94	102	8	0.66	90	
MMC372	6,772,562	496,281	405	138	-60/135	2	36	34	0.14	480	
MMC372						40	62	22	0.10	350	
MMC372						68	92	24	0.09	230	
MMC372						114	118	4	0.07	70	
MMC373	6,772,590	496,252	404	156	-60/135	0	14	14	0.07	560	
MMC373						20	72	52	0.13	560	
MMC373						82	86	4	0.07	190	
MMC373						92	106	14	0.12	90	
MMC373						112	118	6	0.09	280	
MMC374	6,772,618	496,222	403	166	-60/135	0	30	30	0.11	290	
MMC374	0,112,010	,				32	38	6	0.13	180	
MMC374						46	140	94	0.10	390	
MMC374						154	158	4	0.07	150	
MMC375	6,772,646	496,195	401	198	-60/135	0	78	78	0.07 0.13	250	
MMC375	0,112,040	+30,133	401	130	-00/100	82	116	34	0.08	640	
MMC375						120	126		0.07	530	
MMC375						120	138	6 10	0.07	140	
MMC375	0 770 074	400 400	400	001	00/405	154	162	8	0.10	80	
MMC376	6,772,671	496,169	400	204	-60/135	0	114	114	0.13	300	
MMC376						116	140	24	0.17	390	
MMC376						166	174	8	0.07	300	
MMC376						178	182	4	0.08	60	
MMC377	6,772,703	496,137	397	192	-60/135	0	22	22	0.14	130	
MMC377						26	40	14	0.10	50	
MMC377						44	94	50	0.13	180	
MMC377						98	102	4	0.07	720	
MMC377						106	142	36	0.12	320	
MMC377						150	166	16	0.08	310	
MMC377						186	192	6	0.08	140	
MMC378	6,772,734	496,108	396	202	-60/135	4	16	12	0.13	250	

	Mulç	jine Trench D		ignificant i		eralisation	>3m at 0.0	5% wO ₃ cut o	п) 	
		MGA Coordi	nates				Inter	sections		
Hole No	Northing	Easting	RL	Depth	Dip/	From	То	Interval	WO ₃	Мо
	(m)	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(%)	(ppm)
MMC378						26	56	30	0.10	80
MMC378						62	166	104	0.10	260
MMC378						178	190	12	0.10	470
MMC378						194	200	6	0.06	230
MMC379	6,772,847	496,276	404	160	-60/135	0	146	146	0.13	310
MMC379						152	160	8	0.11	440
MMC380	6,772,875	496,251	403	186	-60/135	0	42	42	0.17	360
MMC380						46	110	64	0.13	330
MMC380						114	138	24	0.10	460
MMC380						142	156	14	0.14	250
MMC380						160	186	26	0.15	190
MMC381	6,772,901	496,221	400	198	-60/135	0	192	192	0.13	240
MMC382	6,772,929	496,191	399	210	-60/135	0	16	16	0.07	90
MMC382						30	132	102	0.11	160
MMC382						136	160	24	0.17	300
MMC382						164	210	46	0.15	380
MMC383	6,773,516	496,912	408	90	-60/135	66	68	2	0.08	510
MMC384	6,773,571	496,854	412	138	-60/135	60	62	2	0.22	70
MMC385	6,773,629	496,797	413	161	-60/135	8	20	12	0.10	20
MMC385						30	34	4	0.08	30
MMC385						138	156	18	0.09	330
MMC386	6,773,205	496,654	410	108	-70/135	0	18	18	0.18	770
MMC386						26	42	16	0.13	300
MMC386						46	58	12	0.09	220
MMC386						76	84	8	0.12	430
MMC386						92	102	10	0.11	330
MMC387	6,772,898	496,454	408	90	-60/135	2	10	8	0.07	610
MMC387						20	44	24	0.09	510
MMC387						48	58	10	0.08	230
MMC387						68	82	14	0.11	210

2m cone split RC samples submitted to Bureau Veritas Minerals Pty Ltd, Canningvale WA for WO₃ and Mo by XRF. Lower cut-off grade 200 ppm Mo with up to 2m of interval waste, no top cut grade. True thickness is 75% of intersection length for vertical holes and 100% of intersection length for inclined holes. Grid coordinates are MGA Zone 50.

Appendix 2

Intersections greater than 2 metres at 200 ppm Mo in Mulgine Trench Drilling

	Mulgine 1	French Drillin	ıg - Signific	ant Molybd	enum Minera	lisation (>	3m at 200) ppm Mo cut	: off)		
		MGA Coord	dinates		Intersections						
Hole No	Northing (m)	Easting (m)	RL (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO ₃ (%)	Mo (ppm)	
MMC319	6,773,505	496,585	404.5	180	-60/135	86	92	6	0.13	300	
MMC319						100	104	4	0.11	230	
MMC320	6,772,376	495,785	384.8	146	-60/135	120	126	6	0.02	220	
MMC320						138	146	8	0.07	570	
MMC321	6,772,121	495,816	388.9	160	-60/135	34	60	26	0.07	600	
MMC321						70	78	8	0.06	380	
MMC321						154	158	4	0.06	200	
MMC322	6,772,067	495,870	388.8	132	-60/135	30	36	6	0.07	320	
MMC322						98	104	6	0.03	270	
MMC323	6,772,176	495,988	397	132	-90	2	12	10	0.14	600	
MMC323						34	38	4	0.05	270	
MMC323						110	118	8	0.06	460	
MMC324	6,772,150	496,014	397.2	114	-60/135	108	114	6	0.04	330	
MMC325	6,772,094	496,070	390.9	78	-60/135	54	58	4	0.04	270	
MMC326	6,772,735	496,394	412.7	102	-60/135	6	10	4	0.06	1270	
MMC326						14	72	58	0.11	630	
MMC326						84	88	4	0.09	340	
MMC327	6,772,763	496,364	410.9	120	-60/135	4	54	50	0.12	750	
MMC327						58	72	14	0.11	490	
MMC327						76	92	16	0.05	400	
MMC327						98	100	2	0.05	300	
MMC328	6,772,791	496,333	407.8	138	-60/135	4	16	12	0.15	440	
MMC328						28	62	34	0.12	360	
MMC328						66	74	8	0.08	300	
MMC328						90	96	6	0.06	570	
MMC328						102	108	6	0.15	500	
MMC329	6,772,818	496,305	405.8	150	-60/135	0	28	28	0.16	290	
MMC329						42	60	18	0.11	610	
MMC329						68	76	8	0.11	400	
MMC329						110	120	10	0.07	280	
MMC329						124	138	14	0.13	780	
MMC330	6,772,963	496,503	410.6	76	-60/135	4	48	44	0.05	1090	
MMC330						56	74	18	0.08	380	
MMC330B	6,772,961	496,504	410.7	120	-60/135	2	44	42	0.05	980	
MMC330B						52	70	18	0.08	340	
MMC330B						80	92	12	0.04	500	
MMC331	6,772,935	496,530	413.3	102	-60/135	6	36	30	0.07	410	
MMC331						40	46	6	0.08	270	
MMC331						60	76	16	0.04	470	
MMC331						78	86	8	0.04	220	

	Mulgine 1			ant Molybd	lenum Minera	lisation (>			: off)	
Hole No		MGA Coord				I -		sections		
Hole NO	Northing (m)	Easting (m)	RL (m)	Depth (m)	Dip/ Azim	From (m)	To (m)	Interval (m)	WO₃ (%)	Mo (ppm)
MMC332	6,772,988	496,477	407.1	132	-60/135	10	14	4	0.07	280
MMC332						18	46	28	0.08	970
MMC332						50	88	38	0.08	610
MMC332						94	102	8	0.07	350
MMC332						128	132	4	0.05	310
MMC333	6,773,018	496,447	403.4	150	-60/135	6	22	16	0.13	270
MMC333						44	48	4	0.15	210
MMC333						54	108	54	0.13	430
MMC333						116	138	22	0.11	530
MMC334	6,773,046	496,417	400.4	156	-60/135	20	26	6	0.10	270
MMC334	-, -,	,				56	60	4	0.05	310
MMC334						72	86	14	0.08	920
MMC334						94	100	6	0.13	520
MMC334						104	118	14	0.14	340
MMC334						122	128	6	0.07	330
MMC334						132	154	22	0.07	910
MMC335	6,773,073	496,389	398.5	174	-60/135	102	26	16	0.13	510
MMC335	0,110,010	400,000	000.0	17-	00/100	36	48	10	0.10	380
MMC335						66	70	4	0.03	480
MMC335						74	78	4	0.03	220
MMC335						86	94	8	0.04 0.11	510
MMC335						98	118	20	0.09	670
MMC335						136	144	20 8	0.09	480
MMC335								8 20		
	6 770 450	405 749	2047	169	60/125	146	166		0.09	250
MMC336	6,772,158	495,748	384.7	168	-60/135	10	14	4	0.01	290
MMC336						86	132 168	46 6	0.06	550
MMC336	0 770 004	405 700	202.5	400	00/405	162			0.08	260
MMC337	6,772,231	495,706	383.5	168	-60/135	140	168	28	0.07	500
MMC338	6,773,103	496,361	397.6	125	-60/135	6	16	10	0.14	290
MMC338						44	56	12	0.11	330
MMC338						60	64	4	0.11	450
MMC338						76	80	4	0.08	260
MMC338						88	92	4	0.12	520
MMC338						98	110	12	0.05	400
MMC338		100.000	0.77			114	118	4	0.09	360
MMC339	6,773,128	496,332	397.3	264	-60/135	58	72	14	0.10	280
MMC339						78	94	16	0.14	640
MMC339						102	116	14	0.07	580
MMC339						124	158	34	0.10	400
MMC339						162	170	8	0.05	260
MMC339						178	182	4	0.04	270
MMC339						186	194	8	0.12	390
MMC339						206	210	4	0.13	1050

	Mulgine 7	Trench Drillin	ıg - Signific	ant Molybd	lenum Minera	lisation (>	3m at 200) ppm Mo cut	off)		
		MGA Coord	dinates		Intersections						
Hole No	Northing	Easting	RL	Depth	Dip/	From	То	Interval	WO ₃	Мо	
MMC339	(m)	(m)	(m)	(m)	Azim	(m) 216	(m) 240	(m) 24	(%) 0.12	(ppm) 410	
MMC339	6 770 676	406 226	405.6	132	-60/135	210	36	24 34	0.12	410	
MMC340	6,772,676	496,336	405.6	132	-00/135	2 46	30 80	34	0.14	400 640	
MMC340						40 84	90	34 6	0.06	290	
MMC340						104	108	4	0.00	290	
MMC340 MMC341	6 770 704	406 207	404.0	138	60/125		40		0.11 0.14	760	
MMC341 MMC341	6,772,704	496,307	404.9	138	-60/135	4 46	40 50	36 4	0.14	390	
MMC341 MMC341							60	4		390	
MMC341 MMC341						56 64	106	4 42	0.08	570	
MMC341	0 770 700	400.000	402	474	-60/135	112	118	6	0.04	210	
MMC342 MMC342	6,772,732	496,280	403	174	-60/135	6 16	10 36	4	0.32	290	
								20	0.08	610 000	
MMC342						38	42	4	0.06	230	
MMC342						44	50	6	0.14	820	
MMC342						54	58	4	0.08	440	
MMC342						66	72	6	0.04	420	
MMC342						84	128	44	0.12	590	
MMC342						130	134	4	0.04	290	
MMC342	0.770.400	100 500	100.0	150	00/105	140	144	4	0.07	230	
MMC361	6,773,189	496,560	408.8	156	-60/135	8	56	48	0.12	810	
MMC361						74	78	4	0.05	230	
MMC361						80	86	6	0.11	600	
MMC361						92	98	6	0.10	630	
MMC361						104	134	30	0.07	610	
MMC363	6,773,308	496,439	398.6	216	-90	46	50	4	0.18	410	
MMC363						102	106	4	0.11	230	
MMC363						128	148	20	0.09	370	
MMC363						152	160	8	0.18	350	
MMC363						168	194	26	0.11	340	
MMC363						206	216	10	0.12	630	
MMC365	6,773,446	496,754	403	90	-60/135	4	8	4	0.17	340	
MMC365						12	16	4	0.03	260	
MMC365						54	66	12	0.05	250	
MMC366	6,773,484	496,706	404.2	138	-60/135	50	54	4	0.19	360	
MMC367	6,773,536	496,663	406.8	180	-60/135	88	92	4	0.39	630	
MMC367						106	110	4	0.08	470	
MMC367						176	180	4	0.03	380	
MMC368	6,773,372	496,599	402.6	138	-60/135	34	38	4	0.06	330	
MMC368						42	48	6	0.07	300	
MMC368						86	110	24	0.05	420	
MMC368						118	132	14	0.04	250	
MMC368						134	138	4	0.03	280	
MMC369	6,773,425	496,547	401.8	162	-60/135	74	102	28	0.10	680	

	Mulgine 1	French Drillin	ıg - Signific	ant Molybd	lenum Minera	lisation (>	3m at 200) ppm Mo cut	off)	
	MGA Coordinates Intersections									
Hole No	Northing	Easting	RL	Depth	Dip/	From	То	Interval	WO ₃	Мо
MMC260	(m)	(m)	(m)	(m)	Azim	(m)	(m) 126	(m) 4	(%)	(ppm)
MMC369 MMC369						122 128	120	4	0.09	630 210
MMC369						120	160	4 26	0.03	370
MMC370	6,773,480	496,494	403.1	176	-60/135	126	134	8	0.09	300
MMC370	0,110,400	+30,+34	403.1	170	-00/100	138	142	4	0.00	230
MMC370						150	156	6	0.14	290
MMC370						160	176	16	0.10	1010
MMC371	6,772,534	496,307	407.2	108	-60/135	0	28	28	0.15	360
MMC371	0,112,001	100,001		100	00,100	38	48	10	0.09	450
MMC371						56	60	4	0.08	230
MMC371						88	94	6	0.02	320
MMC372	6,772,562	496,281	404.5	138	-60/135	2	70	68	0.11	430
MMC372						74	78	4	0.09	450
MMC372						88	96	8	0.06	290
MMC372						104	112	8	0.06	570
MMC373	6,772,590	496,252	404.1	156	-60/135	0	12	12	0.07	630
MMC373	-,,	,				24	32	8	0.09	350
MMC373						36	78	42	0.13	650
MMC373						88	92	4	0.02	270
MMC374	6,772,618	496,222	403.2	166	-60/135	8	24	16	0.11	410
MMC374	, ,					28	34	6	0.12	390
MMC374						60	88	28	0.12	910
MMC374						92	98	6	0.09	310
MMC374						104	110	6	0.08	260
MMC374						114	118	4	0.12	260
MMC374						158	166	8	0.02	480
MMC375	6,772,646	496,195	401.3	198	-60/135	4	8	4	0.24	290
MMC375						32	58	26	0.10	430
MMC375						66	126	60	0.07	540
MMC376	6,772,671	496,169	399.5	204	-60/135	0	4	4	0.08	340
MMC376						50	160	110	0.11	410
MMC376					1	162	172	10	0.06	330
MMC376					1	190	198	8	0.05	250
MMC377	6,772,703	496,137	397.1	192	-60/135	82	108	26	0.07	580
MMC377					1	114	118	4	0.06	380
MMC377					1	126	188	62	0.08	330
MMC378	6,772,734	496,108	395.6	202	-60/135	110	130	20	0.10	370
MMC378					1	136	202	66	0.07	420
MMC379	6,772,847	496,276	404.4	160	-60/135	38	102	64	0.13	490
MMC379						106	110	4	0.13	470
MMC379						120	124	4	0.08	490
MMC379						132	138	6	0.12	320
MMC379					1	154	160	6	0.12	550

	Mulgine 1	Trench Drillin	ıg - Signific	ant Molybd	lenum Minera	lisation (>	3m at 200) ppm Mo cut	off)	
	MGA Coordinates			Intersections						
Hole No	Northing	Easting	RL	Depth	Dip/	From	То	Interval	WO ₃	Мо
	(m)	(m)	(m)	(m)	Azim	(m)	(m)	(m)	(%)	(ppm)
MMC380	6,772,875	496,251	402.7	186	-60/135	20	24	4	0.07	400
MMC380						30	42	12	0.22	910
MMC380						54	90	36	0.16	340
MMC380						94	98	4	0.13	940
MMC380						104	134	30	0.10	530
MMC380						140	150	10	0.14	330
MMC380						164	168	4	0.34	310
MMC380						180	184	4	0.09	340
MMC381	6,772,901	496,221	400.1	198	-60/135	42	46	4	0.18	320
MMC381						54	70	16	0.12	310
MMC381						82	116	34	0.17	390
MMC381						122	126	4	0.12	270
MMC381						134	150	16	0.11	640
MMC381						158	162	4	0.08	530
MMC381						182	186	4	0.20	240
MMC382	6,772,929	496,191	398.6	210	-60/135	64	78	14	0.12	290
MMC382						102	110	8	0.11	310
MMC382						116	144	28	0.15	360
MMC382						156	178	22	0.10	590
MMC382						182	188	6	0.08	560
MMC382						200	204	4	0.09	450
MMC383	6,773,516	496,912	407.6	90	-60/135	78	80	2	0.01	550
MMC384	6,773,571	496,854	411.8	138	-60/135	42	46	4	0.01	410
MMC385	6,773,629	496,797	413.1	161	-60/135	138	146	8	0.10	690
MMC386	6,773,205	496,654	409.6	108	-70/135	6	34	28	0.15	640
MMC386						40	44	4	0.06	450
MMC386						58	72	14	0.03	830
MMC386						76	82	6	0.11	500
MMC386						90	96	6	0.08	360
MMC387	6,772,898	496,454	407.6	90	-60/135	2	38	36	0.07	690
MMC387						42	54	12	0.07	540
MMC387						62	72	10	0.11	570

Holes MMC265 - MMC291 and MMC301 - MMC309 were sampled with 1m cone split RC samples, remaining holes sampled with 2m cone split RC samples. Samples submitted to Bureau Veritas Minerals Pty Ltd, Canningvale WA for WO₃ and Mo by XRF. Lower cut-off grade 200 ppm Mo with up to 2m of interval waste, no top cut grade. True thickness is 75% of intersection length for vertical holes and 100% of intersection length for inclined holes. Grid coordinates are MGA Zone 50.

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary	
Sampling techniques	Nature and quality of sampling (e.g. cut channels,	During August 2016, TGN drilled 9 RC holes for 476 metres and one large diameter (PQ) diamond hole for 31.6 metres at Mulgine Trench to test tungsten mineralisation adjacent to and beneath the Bobby McGee pit	
	random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or	In September 2018, TGN drilled an additional 4 PQ diamond holes (528.2 m) into the Trench deposit to collect metallurgical samples and twin RC and diamond holes.	
	handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	From 12 July 2019 to present, the Company has drilled 164 RC holes for 26,020 metres. At the time of writing, Tungsten Mining had received results from 117 holes of the 164 RC holes and results reported in this announcement relate to 51 of these holes.	
		TGN drillhole collar locations were picked up by a licenced surveyor using a Topcon GNSS with manufacturer's specifications of +/- 10mm N,E and +/15mm Z.	
	Include reference to measures taken to ensure sample	Downhole surveying was measured by the drill contractors using a Champ North Seeking solid state gyroscopic system in the drill rods. Accuracy is $\pm 0.75^{\circ}$ for azimuth and $\pm 0.15^{\circ}$ for inclination.	
	representivity and the appropriate calibration of any measurement tools or systems used	Certified standards were inserted into the sample sequences in according to TGN QAQC procedures. Duplicate samples were collected to check repeatability of sampling and variability or nugget effect for tungsten mineralisation. Blanks were inserted into the sample stream behind high- grade samples to test contamination. Results from this QAQC sampling were considered good.	
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	Given the style of mineralisation present at Mulgine Trench, Tungsten Mining ran an orientation survey to determine the acceptability of 2m sampling intervals. MMC265 and MMC266 were sampled and assayed twice at 1 metre intervals to determine repeatability and/or nugget effect of 1 metre sampling.	
		For holes MMC267 – 269, 1m cone split samples were then compared against a second set of 2m cone split duplicates samples.	
		From this orientation work, it was concluded there was no discernible evidence that increasing the downhole sample interval from one to two metres materially impacts either accuracy or precision of the assay results.	
		Pending assessment of the orientation surveys by the Company's external resource consultants, RC holes MMC265 – MMC291 and MMC301 – MMC309 were sampled at 1 m intervals from the cyclone and split using a cone splitter immediately beneath the cyclone to produce two representative 3 - 5 kg 1m-samples in calico bags.	
		For all remaining holes, samples were split using a cone splitter to produce two representative 3 - 5 kg 2m-samples in calico bags. The bulk reject material was collected at 1 m intervals from the cyclone and placed on the ground for geological logging.	
		The cone splitter was cleaned by hosing with pressurised air to eliminate sample contamination. Two samples were collected; one is used for analysis and the other is retained as a reference or for possible re-analysing / QAQC activities.	
		Samples from the current drilling programme were submitted to Bureau Veritas Minerals Pty Ltd of Canningvale, WA, for a standard XRF Tungsten Suite and fire assay for gold analysis. Phase 1 holes were analysed by Laser Ablation ICP-MS for a comprehensive multi-element suite to assist geometallurgical domaining of the deposit.	

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole	TGN completed 173 RC drillholes with depths ranging from 6 to 270 m, averaging 152 m. RC drilling used a face-sampling hammer that produced a nominal 140 mm diameter hole.
	hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type,	The Company drilled 4 PQ diamond holes (560 m) into the Trench deposit to collect metallurgical samples and twin RC and diamond holes.
	whether core is oriented and if so, by what method, etc).	TGN diamond and RC holes were surveyed in-rods at 20 - 30 m intervals using a North Seeking gyroscopic probe.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed	RC and diamond recovery was visually assessed, recorded on drill logs and considered to be acceptable.
	Measures taken to maximise sample recovery and ensure representative nature of the samples	RC samples collected by TGN were visually checked for recovery, moisture and contamination. A cyclone and cone splitter was used to provide a uniform sample and these were routinely cleaned. The drill contractor blew out the hole at th beginning of each drill rod to remove excess water and maintain dry samples.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Ground conditions for RC drilling were good and drilling returned consistent size samples. All RC samples were dry and contamination would be minimal. No significant bias is expected, and any potential bias is not considered material at this stage.
Logging		TGN uses specially designed drill logs for tungsten mineralisation to capture the geological data. During logging part of the RC sample is washed, logged and placed into chip trays.
	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	During the 2019 drilling programme, a second set of partially sieved material is stored in chiptrays for mineral identification by a near-IR spectral scanner (PANalytical TerraSpec Halo).
		The washed chip trays are stored in sea conjtainers on site and Halo chip trays stored at TGN's Gnangara warehouse.
		All drill data is digitally captured and stored in a central database.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	RC chip logging included records of lithology, mineralogy, textures, oxidation state and colour. Key minerals associated with tungsten mineralisation and veining are recorded.
	The total length and percentage of the relevant intersections logged	All TGN drill holes were logged in full.
Sub-sampling techniques and sample preparation	lf core, whether cut or sawn and whether quarter, half or all core taken.	PQ metallurgical core was cut in half and then quartered. 1 metre samples of quarter core for PQ holes were submitted to Nagrom for XRF analysis.
	lf non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	TGN RC samples were collected on the rig by a cyclone. Material was split by a cone splitter immediately beneath the cyclone to produce two 3 - 5 kg samples.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples from the current drilling programme were submitte to Bureau Veritas Minerals Pty Ltd of Canningvale, WA and dried, split if over 2.5 kg and pulverised in robotic vibrating disc pulveriser.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	TGN's QAQC procedures included the insertion of field duplicates, blanks and commercial standards. Duplicates, blanks and standards were inserted at intervals of one in 25. Geological logging and UV lamping was used to ensure duplicate and blank samples were from mineralised intervals

Criteria	JORC Code explanation	Commentary
	Measures taken to ensure that the sampling is	TGN inserted 1 in 25 RC field duplicates taken from 1 m or 2 m cone split samples at the rig. Repeatability in RC duplicate samples was found to be acceptable given the coarse-grained nature of tungsten mineralisation present.
	neasures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second- half sampling.	Four PQ diamond holes and two RC hole have twined other RC and diamond drilling at Mulgine Trench. These holes intersected similar grade and thickness of mineralization at target depths. Individual high grade zones did demonstrate the particulate or nuggetty nature of tungsten mineralisation present.
		Assays from duplicate samples showed a low - moderate scatter (R ² 0.87) for tungsten , but no systematic bias. This is consistent with the style of mineralisation present, coarse grained scheelite associated with quartz veining.
		Molybdenum results from duplicate samples showed good correlation with an R^2 of 0.93.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The larger sample size of approximately 40 kg per metre collected by RC drilling is considered more appropriate than small diameter diamond holes and therefore sample sizes are considered to be acceptable to accurately represent the tungsten and molybdenum mineralisation present at Mulgine Trench
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the	Tungsten Mining assays samples for a tungsten suite by XRF. XRF has proven to be a very accurate analytical technique for a wide range of base metals, trace elements and major constituents found in rocks and mineral materials. Glass fusion XRF is utilised for assaying, since it provides good accuracy and precision; it is suitable for analysis from very low levels up to very high levels.
	technique is considered partial or total.	A suite of 40 elements including tungsten and molybdenum were assayed by Fused Bead Laser Ablation ICP-MS. The XRF disk is laser ablated and the subsequent gas is introduced to the Mass Spectrometer, providing an ideal platform for analysis.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	A handheld magnetic susceptibility meter (KT-10) was used to measure magnetic susceptibility for every sample. Data is stored in the database.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Field QAQC procedures for TGN sampling included the insertion of blanks, commercial standards and duplicates at the rate of one in 25 samples. Assay results have demonstrated acceptable levels of accuracy and precision.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	No independent personnel have verified intersections in drilling. TGN personnel have conducted a review of all assaying by visual inspection of UV core photography and UV estimates for RC drilling against the drill database.
	The use of twinned holes.	TGN drilled four PQ diamond holes and two RC hole to twined RC and diamond drilling at Mulgine Trench. Twin holes intersected similar widths and grades for mineralisation. High grade zones were however found to be variable or nuggety.
		Logging conducted by TGN takes place at the drilling site. Ruggedised computers are used to record the logging for RC samples. Diamond logging is onto paper drill logs and data entered in Perth.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	A set of standard Excel templates are used to capture the data. Data was validated on-site by the supervising geologist before being sent to Perth office. It was then loaded into Micromine and validated for logging codes, missing intervals, overlapping intervals, hole location and downhole surveying. Validated data is then loaded into a relational database for storage.

Criteria	JORC Code explanation	Commentary
	Discuss any adjustment to assay data.	No adjustments were made, other than for values below the assay detection limit which have been entered as half of the detection limit.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	TGN drillhole collar locations were picked up by a licenced surveyor using a Topcon GNSS with manufacturer's specifications of +/- 10mm N,E and +/15mm Z. Downhole surveying of TGN holes was measured by the drill contractors using a North Seeking solid state gyroscopic system in the drill rods. Accuracy is $\pm 0.75^{\circ}$ for azimuth and $\pm 0.15^{\circ}$ for inclination.
	Specification of the grid system used.	Geocentric Datum of Australia 1994 (GDA94) - Zone 50.
	Quality and adequacy of topographic control.	High resolution aerial photography and digital elevation survey was flown by Geoimage Pty Ltd on 18 February 2018 with expected height accuracy of +/- 0.5 m.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill spacing is generally 40 metre spaced holes on 120 – 180 metre sections. Selected areas have been infilled to 80 metre section spacings.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The drill spacing at Mulgine Trench was sufficient to define an Inferred Mineral Resource reported in November 2014. TGN have drilled an additional 178 holes into Mulgine Trench since this estimate.
	Whether sample compositing has been applied.	For non-mineralised intervals 1 m samples collected from the cyclone were composited into 5 m and later 6 m composite samples for RC drilling. Where composite samples have anomalous tungsten and/or molybdenum, the 1 m or 2 m cone split samples have been submitted for analysis.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The orientation of drilling was designed to intersect mineralisation perpendicular to the dominant vein geometry and mineralised stratigraphy. Holes drilled at -60 degree towards the southeast intersect dominant vein sets and stratigraphy at 90 degrees.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Structural logging of diamond core has confirmed that drill orientation did not introduce any bias regarding the orientation of mineralised veining.
Sample security	The measures taken to ensure sample security.	Samples collected by TGN were securely sealed and stored on site and delivered by courier to the laboratory in Perth. Sample submissions forms used to track samples were sent with samples as well as emailed directly to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques are consistent with industry standards. Consistency of data was validated by Tungsten Mining while loading into the database (Depth from < Depth to; interval is within hole depth, check for overlapping samples or intervals, etc.). Any data which fails the database constraints and cannot be loaded is returned for validation, etc.). Global consistency was also checked later by plotting sections using the database and reconciling assays. Assay results are visually compared against UV estimates for tungsten and visual estimates for molybdenum.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental	The Mulgine Trench prospect is located on Mining Lease M59/425-I covering an area of approximately 9.4 km ² . TGN has 100% of the mineral rights for tungsten and molybdenum and to all by-products from the mining of tungsten and molybdenum. The current registered holder of the tenement is Minjar Gold Pty Ltd.
	settings.	The normal Western Australian state royalties apply.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are in good standing at the time of reporting. Mid-West Tungsten Pty Ltd holds a consent caveat over tenement M59/425-I.
Exploration done by other parties		Tungsten Drilling Drilling initially focused on tungsten mineralisation with Minefields and ANZECO drilling 77 NQ/BQ diamond drillholes (8,703 m DD, 1,871 m pre-collars) in the 1970s and 1980s.
		In 2014, Minjar Gold Pty Ltd drilled 27 RC exploration hole (1,680 m) northwest of the Bobby McGee and 160 RC holes (5,712 m) for grade control in the Bobby McGee pit. Hazelwood Resources Ltd assayed these holes for their standard XRF tungsten suite.
		TGN have conducted a thorough review of all drilling and sampling procedures.
	Acknowledgment and appraisal of exploration by other parties.	Gold Drilling In 1980, focus then turned onto gold exploration and multiple phases of dominantly RC drilling and minor diamond drilling was completed by numerous companies to present. A total of 325 RC holes (17,824 m) and 5 diamond holes (858 m) have been drilled to evaluate gold at Mulgine Trench.
		Exploration drilling consisting of 422 RAB (11,374 m) holes was drilled across the Trench Deposit and strike extensions.
		During mining, an additional 2,334 RC holes (54,295 m) were drilled at the Camp and Highland Chief pits.
Geology	Deposit type, geological setting and style of mineralisation.	Mulgine Trench Stratigraphy for the Mulgine Trench deposit consists of a hangingwall amphibolites, the main mineralised horizon and footwall felsic volcanics and quartzite. The mineralised horizon is a 150 to 220 metre thick zone that is delineated over 1.4 kilometres of strike and dips shallowly (25 – 40 degrees) towards the northwest.
		Tungsten and molybdenum mineralisation dominantly occurs as scheelite and molybdenite in foliation parallel veins or adjacent to vein margins or as coatings on fractures or disseminated in greisen units/veins.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth 	Collar data for drilling is included in Appendix A.
	 down hole length and interception depth hole length.	

Criteria	JORC Code explanation	Commentary
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off	Intersections were reported using a lower cut-off grade of 0.05% WO ₃ . WO ₃ and Mo grades are reported separately for intersections. No top cut and up to 2m of internal waste were included. A second set of intersections were reported using a lower cut-
	grades are usually Material and should be stated.	off grade of 200 ppm Mo. Again WO_3 and Mo grades are reported separately for intersections. No top cut and up to $2m$ of internal waste were included.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	For reporting of tungsten intersections, all assays >1.0% WO ₃ are reported beneath the relevant intersection. Interval zones of waste up to 2m wide are included in intersections provided the adjacent zone and waste are >0.05% WO ₃ .
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not applicable, no metal equivalents were quoted.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Vertical holes will intersect mineralisation between 55° - 70° and inclined will intersect mineralisation at between 80° - 90° True thickness will be between 75 and 100% of the intersection thickness for vertical and inclined holes repsectively.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to diagrams in the body of text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be	All Intersections greater than $3m$ at 0.05 WO ₃ at Mt Mulgine are reported and holes with no significant mineralisation are documented in Appendix 1.
	practiced to avoid misleading reporting of Exploration Results.	A separate list of all Intersections greater than 3m at 200 ppm Mo at Mt Mulgine is reported in Appendix 2.
Other substantive exploration data		Mineralogical and metallurgical studies on the Mulgine Trench deposit show scheelite well liberated at coarse sized fractions resulting in good recoveries via a simple gravity circuit. Molybdenum was liberated at finer sized fractions and showed high recovery and upgrades through a flotation circuit. Comminution work showed all ore types were of moderate to high hardness.
	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating	An extensive geo-metallurgical program has commenced to understand the range of ore types in the Trench deposit and their volumes. This will provide the basis to produce a representative master composite to complete the metallurgical testwork program.
		Ore sorting test work to remove gangue material prior to milling and gravity treatment showed that X-Ray Transmission (XRT) sorting has removed up to 50% of the feed mass as waste whilst maintaining +90% tungsten yield.
	substances.	Metallurgical test work has shown that the ore as represented by the samples tested, should be readily concentrated to exceed the target of $+60\%$ WO ₃ concentrate. Levels of potential deleterious contaminants reporting to the final concentrate are expected to be below the minimum threshold for specific APT conversion processes.
		Evidence gathered to date show that no major metallurgical problems are expected to affect the overall viability of the project.

Criteria	JORC Code explanation	Commentary
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	 TGN are currently undertaking a Pre-Feasibility Study on the greater Mt Mulgine Project incorporating the Mulgine Trench and Mulgine Hill deposits. Planned activities include: Resource definition and infill drilling of the Trench deposit; Mine design and optimisation of the mining schedule, geotechnical studies and definition of maiden ore reserves; Metallurgical test work on the material from Trench; Process design and engineering for the tungsten processing plant and associated non-process infrastructure; Assessment of existing and exploration for additional ground water resources; and Completion of native flora, fauna, aboriginal heritage surveys and regulatory approval processes.