

www.bassmetals.com.au

ASX Announcement 25 November 2019

Bass increases Mahefedok North graphite resource by 54% furthering its plans for large scale mining and processing operations.

Bass Metals Limited (ASX: "BSM") ("Bass" or the "Company") is pleased to provide a material update to its resource base as it continues to deliver on its strategy to develop large scale mining and processing at its 100% wholly owned Graphmada Mine Complex, located in Madagascar.

HIGHLIGHTS

- Bass has delivered, via 1,092m of diamond drilling and sampling, a material upgrade in JORC Code (2012) classification for the Mahefedok Mineral Resource, with Measured and Indicated Mineral Resources now at 1.6 Million Tonnes (Mt) at 4.3% Total Graphitic Carbon (TGC).
- Within the Mahefedok North zone, the site of current mining operations, Mineral Resources have increased to 2 Mt of graphite resources at 4.3% TGC, a 54% increase.
- The additional resources discovered outside of the existing Mahefedok North Open Pit design will allow for planning for an expansion of current operations.
- This excellent outcome supports Bass' long held view that the graphite mineralization across its permits is extensive and sufficient to support large scale mining and processing operations.
- The Company is proceeding to finalise a maiden Mineral Resource estimate for the Mahela Deposit, with results expected to be announced in the coming weeks.

SUMMARY

Bass Metals is pleased to provide an updated and expanded estimate for the for Mahefedok North zone, part of the Mahefedok Deposit, the primary large flake graphite deposit for the Graphmada Mining Complex.

Current mining operations at Mahefedok North confirmed the presence of mineralization not discovered as part of the maiden drilling (1,869m) and resource estimate reported in June 2017¹. To infill and upgrade the confidence classification in accordance with the JORC Code (2012), a further 1,092m of drilling and sampling² was completed in and around existing open pit operations.

The information collected, combined with 2017 drill data was used to update the existing Mineral Resource estimate for Mahefedok North only. Mahefedok Central and Mahefedok South are yet to be further drill tested for extensions or infill drilled and are open in all directions and to depth.

Mahefedok North	Tonnes	TGC	Contained Graphite
Measured	0.4 Mt	4.1%	16 Kt
Indicated	0.8 Mt	4.6%	37 Kt
Inferred	0.8 Mt	4.1%	33 Kt
Total	2.0 Mt	4.3%	86 Kt

Table 1: 2019 Mahefedok North Mineral Resource (increased by 54%)³.

Table 2: The total Mineral	Resources for Mahefedok	(increased by $20\%)^4$.
----------------------------	-------------------------	---------------------------

Total Mahefedok	Tonnes	TGC	Contained Graphite
Measured	0.4 Mt	4.1%	16 Kt
Indicated	1.2 Mt	4.4%	53 Kt
Inferred	2.6 Mt	4.1%	107 Kt
Total	4.2 Mt	4.2%	176 Kt

¹ ASX Announcement 11/04/2019 "Extensive Graphite mineralisation at Mahefedok deposit."

² ASX Announcement 11/09/2019 "Continued exploration success at Graphmada."

³ Figures subject to rounding.

⁴ Figures subject to rounding.

TECHNICAL SUMMARY (ASX LR 5.8.1)

The following summary presents a fair and balanced representation of the information contained within JORC Table 1 (sections 1-3) attached in the appendices:

- The Company holds the Mahefedok Deposit via exploitation permit number 26670, which is 100% owned. The permit grants the exclusive rights for 40 years to explore and mine graphitic resources.
- The Mahefedok Deposit contains flake graphite mineralized lenses within both the weathered profile (regolith) and underlying crystalline graphitic gneisses (hard rock), broadly coinciding with negative ground self-potential anomalies.
- Trenching, pitting, diamond and auger drilling have intersected the mineralization, along with mining operations over a portion of the mineralization in the north.
- Known mineralization is distributed in 3 broad north-south striking zones; the northern zone (Mahefedok North) has a strike length of approximately 500m, the center zone (Mahefedok Central) approximately 850m, and the southern zone (Mahefedok South) about 300m for a cumulative strike of approximately 1,650m. The deposit dips to the west at between 30° and 45°. It consists of up to seven lenses in the north and central zones of the deposit, and three in the southern zone. Individual lenses are nominally between 2 m and 14 m in true thickness.
- 3,033 samples from 2,961 meters of diamond drilling (1,869m in 2017 and 1,092m in 2019) were prepared and split at the in-house Graphmada laboratory and analyzed by SANAS accredited laboratory Graphitic Carbon, Total Carbon and Sulphur grades.

- The estimate was classified as Measured, Indicated and Inferred on the basis
 of grade control augering, surface mapping, geophysical information, drill
 hole sample assay results, drill hole logging, assigned density values based
 on core sample measurements, mining and processing operations, and sales.
- Grade estimation was completed using the ordinary kriging estimation method and checked using inverse distance weighting to the power of two estimation.
- The nominal 3% cut-off reflects a natural geological cut-off, which is visually distinguishable in drill core. This cut-off is further supported by statistical analysis of the grade population distribution of the total dataset.

LOCATION AND PERMITTING

Access to the Graphmada Mining Complex (Mahefedok) is excellent, with a travel time to and from Antananarivo of approximately 5 hours along the Route National (RN2) highway. The RN2 highway passes near the western edge of Graphmada and is the highway that connects the main port located at Toamasina to the capital, Antananarivo.

An all weather road, 1.5 km in length, connects the highway with Graphmada, the location of current mining and processing operations for Bass Metals. Graphmada has general site offices, amenities and services able to support mining and processing operations.

The Company holds the deposit via exploitation permit number 26670, which is 100% owned. The permit grants the exclusive right for 40 years to explore and mine graphite resources.

Figure 1: Location of the Mahefedok Mineral Resource.

PREVIOUS EXPLORATION AND MINING

Systematic exploration activities have been conducted at Mahefedok since 2014 and results obtained from exploration work (including geological mapping, ground geophysical surveys, pitting, trenching and sampling), confirmed that Mahefedok contained significant regolith-hosted large flake graphite mineralisation over an approximate 1.8 km strike length.

Trial mining commenced in early January 2016 at the northern extension of the Mahefedok Deposit, were a total of \sim 10,000 tonnes of material was mined, with all product produced sold to international customers.

Augering and a maiden diamond-drilling program in 2017 at Mahefedok identified significant intercepts of soft easily mineable regolith mineralization.

All drill holes demonstrated graphite mineralization. The resulting maiden Mineral Resource estimate of 3.5mt at 4.2% TGC⁵ was inclusive of 3 zones; Mahefedok North, Central and South.

In 2018 mining commenced at Mahefedok North Pit. Regular grade control and pit mapping information was gathered and mineralization mined, processed and sold to international markets.

GEOLOGY

At Graphmada, economically viable graphite mineralization is hosted within granite-gneisses and migmatites as disseminations and occasionally along with pegmatite and quartzo-feldspathic veins as enriched lumps. These graphite bearing gneisses and migmatites have been deeply weathered and are susceptible to regolith formation due to the tropical climatic conditions in the region.

Within the Mahefedok Deposit, graphite is hosted within both the bedrock gneiss and also as concentrations within the weathered regolith, and are termed 'Hard Rock' and 'Regolith-Hosted' natural flake graphite occurrences respectively.

MINERAL RESOURCE ESTIMATE

The Mineral Resource Estimate (MRE) is based upon 3,033 samples from 2,961 meters of diamond drilling (1,869m in 2017 and 1,092m in 2019⁶) and assayed for graphite content at the deposit. The mineralization wireframes were modelled using a nominal lower cut-off grade of 3% TGC.

 $^{^5}$ Reported in accordance with the 2012 Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ('the JORC Code 2012') at a >3% cut-off and first released to the ASX on 21/06/17 "Maiden Mineral Resource for Mahefedok Deposit

⁶ Excludes BSMD095. Re-drilled as BSMD095.

The mineralization wireframes were modelled by joining drill section interpretation string polygons based upon geological knowledge of the deposit, derived from ground electrical surveys, trenching data, drill hole logs and drill sample analysis results. A detailed topographic surface was updated with more accurate information obtained from Drone and DGPS surveys in and around current operations. Weathering boundary surfaces, based on the drill logging, were used to define the regolith and bedrock zones.

A block model was constructed using Surpac software with a parent cell size of 5 m (E) by 25 m (N) by 3 m (RL). Drill hole sample assay results were subjected to detailed statistical and spatial (variography) analysis. Composited sample grades for TGC were interpolated into the block model using Ordinary Kriging (OK) with an inverse distance weighting to the power two (IDW) check estimate completed for validation purposes. Density values were assigned to the block model based on analysis of measurements taken in the various weathering state domains. The model was validated visually, graphically and statistically, and reported from all classified estimated blocks within the interpreted mineralization domains under the guidelines of the JORC Code (2012). The results of the MRE are presented in Table 1 above.

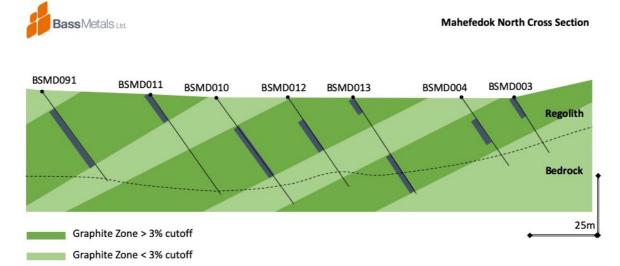


Figure 2: Cross-section of the Mahefedok North Mineral Resource estimate.

Figure 3: Plan of the Mahefedok North Pit Mineral Resource Estimate.

CLASSIFICATION AND JORC CODE 2012 CLAUSE 49

Clause 49 of the JORC Code 2012 requires that minerals such as graphite that are produced and sold according to product specifications are reported "in terms of the mineral or minerals on which the project is to be based and must include the specification of those minerals". Therefore, graphite Mineral Resources must be reported at least in terms of purity and flake size distribution, in addition to TGC and tonnages.

In 2016, Independent Metallurgical Operations completed maiden test work and demonstrated of the total ore sample tested, that concentrates could be produced with overall grades >94% Fixed Carbon, with approximately 60% of the flakes larger than 150 microns (Coarse Flake). Recoveries ranged from approximately 75-92%⁷.

Subsequently, these results were confirmed by Dorfner ANZAPLAN⁸ of Germany after further analysis. The particle size distribution was concluded to be coarse, with approximately 70% of the sample larger than 180 microns (Large Flake). The main chemical impurities were Si, Al and Fe, which is consistent with quartz and clay, which were confirmed by XRD analysis. ANZAPLAN concluded that the concentrate benchmarked favorably for use in various carbon applications and market segments.

Since the commencement of operations at Mahefedok, concentrates have been produced and sold in line with these original results, supporting the classification of the Mahefedok deposit as an Industrial Mineral Resource.

⁷ ASX Announcement 15/11/2016 "Bass achieves excellent concentrate optimisation results."

⁸ ASX Announcement 23/05/2017 "Tests confirm Graphite Concentrates as Industry Benchmark

TIM MCMANUS CEO:

"We are very pleased with these results. To add additional resources along with an upgrade in confidence at our current operations adds significant value for our shareholders.

We're currently working towards a maiden Mineral Resource for Mahela also and expect that the results for this estimation will be made available in the coming weeks.

Looking to 2020, we have also begun planning our next round of drilling to continue implementing our strategy to establish large scale mining and processing operations."

For more information, please contact:

Tim McManus Chief Executive Officer Phone: (07) 3203 5894 Email: admin@bassmetals.com.au www.bassmetals.com.au Peter Wright Executive Director Phone: (07) 3203 5894 Email: admin@bassmetals.com.au

🍤 @bassmetals

Disclaimer

This document has been prepared by Bass Metals Limited (the "Company"). It should not be considered as an invitation or offer to subscribe for or purchase any securities in the Company or as an inducement to make an invitation or offer with respect to those securities. No agreement to subscribe for securities in the Company will be entered into on the basis of this document.

This document is provided on the basis that neither the Company nor its officers, shareholders, related bodies corporate, partners, affiliates, employees, representatives and advisers make any representation or warranty (express or implied) as to the accuracy, reliability, relevance or completeness of the material contained in the document and nothing contained in the document is, or may be relied upon as a promise, representation or warranty, whether as to the past or the future. The Company hereby excludes all warranties that can be excluded by law.

Forward Looking Statements

This announcement contains certain 'forward-looking statements' within the meaning of the securities laws of applicable jurisdictions. Forward-looking statements can generally be identified by the use of forward-looking words such as 'may,' 'should,' 'expect,' 'anticipate,' 'estimate,' 'scheduled' or 'continue' or the negative version of them or comparable terminology.

Any forecasts or other forward-looking statements contained in this announcement are subject to known and unknown risks and uncertainties and may involve significant elements of subjective judgment and assumptions as to future events which may or may not be correct. There are usually differences between forecast and actual results because events and actual circumstances frequently do not occur as forecast and these differences may be material.

Bass Metals does not give any representation, assurance or guarantee that the occurrence of the events expressed or implied in any forward-looking statements in this announcement will actually occur and you are cautioned not to place undue reliance on forward-looking statements. The information in this document does not take into account the objectives, financial situation or particular needs of any person. Nothing contained in this document constitutes investment, legal, tax or other advice.

Important information

This announcement does not constitute an offer to sell, or a solicitation of an offer to buy, securities in the United States, or in any other jurisdiction in which such an offer would be illegal. The securities referred to in this document have not been and will not be registered under the United States Securities Act of 1933 (the 'US Securities Act'), or under the securities laws of any state or other jurisdiction of the United States and may not be offered or sold, directly or indirectly, within the United States, unless the securities have been registered under the US Securities Act or an exemption from the registration requirements of the US Securities Act is available.

This document may not be distributed or released in the United States.

Competent Person Statement

The information in this document that relates to Exploration Results, Exploration Targets and Mineral Resources is based on information compiled by Tim McManus, a Competent Person who is a member of the Australasian Institute of Mining and Metallurgy and a full-time employee of the Company.

Tim McManus has sufficient experience that is relevant to the style of mineralization and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.

Tim McManus consents to the inclusion of the information in this document in the form and context in which it appears.

APPENDIX

Mahefedok Collar Coordinates

Drill hole ID	Utm39sX	Utm39sY	Azimuth	Inclination	Total Depth
BSMD065	289,005	7,905,704	90	-60	37.4
BSMD066	288,977	7,905,701	90	-60	41.3
BSMD067	288,953	7,905,700	90	-60	41.3
BSMD068	288,929	7,905,704	90	-60	28.3
BSMD069	288,897	7,905,699	90	-60	35.8
BSMD070	288,899	7,905,648	90	-60	24.4
BSMD071	288,924	7,905,650	90	-60	42.4
BSMD072	288,951	7,905,650	90	-60	20.3
BSMD073	288,980	7,905,602	90	-60	40.3
BSMD074	288,957	7,905,603	90	-60	20.3
BSMD075	288,929	7,905,602	90	-60	41.3
BSMD076	289,054	7,905,548	90	-60	29.3
BSMD077	289,020	7,905,546	90	-60	34.8
BSMD078	288,987	7,905,503	90	-60	26.3
BSMD079	288,977	7,905,552	90	-60	35.2
BSMD080	288,946	7,905,548	90	-60	32.4
BSMD081	288,910	7,905,546	90	-60	26.3
BSMD082	288,903	7,905,600	90	-60	24.4
BSMD083	288,906	7,905,450	90	-60	47.3
BSMD084	288,901	7,905,501	90	-60	35.3
BSMD085	289,082	7,905,406	90	-60	19.4
BSMD086	289,081	7,905,456	90	-60	24.4
BSMD087	289,042	7,905,458	90	-60	29.3
BSMD088	288,986	7,905,458	90	-60	32.4
BSMD089	288,957	7,905,456	90	-60	24.3
BSMD090	288,952	7,905,502	90	-60	27.4
BSMD091	288,894	7,905,741	90	-60	43.4
BSMD092	288,920	7,905,832	90	-60	47.4
BSMD093	288,959	7,905,650	0	-90	33.5
BSMD094	288,936	7,905,705	0	-90	37.5
BSMD095	288,918	7,905,400	90	-60	40.3
BSMD095A	288,917	7,905,404	90	-60	44.0
BSMD096	288,975	7,905,403	90	-60	31.3
BSMD097	288,964	7,905,604	0	-90	33.5

Note: BSMD095 not used in Mineral Resource Estimation due to poor recovery. Re-drilled as BSMD095A.

Mahefedok Assay Results

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD065	3.9	4.5	0.6	0.2	Saprolith
BSMD065	4.5	5.5	1.0	0.7	Saprolith
BSMD065	5.5	6.6	1.1	0.5	Saprolith
BSMD065	6.6	6.9	0.3	1.1	Saprolith
BSMD065	6.9	7.8	0.9	4.7	Saprolith
BSMD065	7.8	8.6	0.9	8.2	Saprolith
BSMD065	8.6	9.6	1.0	0.7	Saprolith
BSMD065	9.6	10.6	1.0	0.6	Saprolith
BSMD065	10.6	11.5	0.9	1.5	Saprolith
BSMD065	11.5	12.3	0.8	0.9	Saprolith
BSMD065	12.3	13.2	0.9	0.6	Saprolith
BSMD065	13.2	14.0	0.8	1.9	Saprolith
BSMD065	14.0	15.1	1.0	8.1	Saprolith
BSMD065	15.1	16.2	1.1	3.0	Saprolith
BSMD065	16.2	17.4	1.2	1.3	Saprolith
BSMD065	17.4	18.5	1.2	1.2	Saprolith
BSMD065	18.5	19.9	1.4	4.6	Saprolith
BSMD065	19.9	20.9	1.0	2.5	Saprolith
BSMD065	20.9	22.1	1.2	0.9	Saprolith
BSMD065	22.1	23.0	0.9	1.1	Saprolith
BSMD065	23.0	24.4	1.3	2.1	Saprolith
BSMD065	24.4	25.4	1.1	0.5	Saprolith
BSMD065	25.4	26.3	0.9	0.8	Saprolith
BSMD065	26.3	27.4	1.1	0.4	Saprolith
BSMD065	27.4	28.3	0.9	0.5	Saprolith
BSMD065	28.3	29.4	1.1	1.1	Saprolith
BSMD065	29.4	30.6	1.2	1.5	Saprolith
BSMD065	30.6	32.0	1.4	2.4	Saprolith
BSMD065	32.0	32.7	0.8	6.0	Saprolith
BSMD065	32.7	33.4	0.6	5.0	Saprolith
BSMD065	33.4	33.9	0.5	3.3	Saprolith
BSMD065	33.9	34.9	1.0	1.5	Saprolith
BSMD065	34.9	35.7	0.8	3.3	Graphitic Gneiss
BSMD065	35.7	36.6	0.8	2.8	Graphitic Gneiss
BSMD065	36.6	37.4	0.8	4.2	Graphitic Gneiss
BSMD066	4.0	4.8	0.8	0.2	Saprolith
BSMD066	4.8	5.1	0.3	0.4	Saprolith
BSMD066	5.1	5.9	0.8	1.4	Saprolith
BSMD066	5.9	6.7	0.8	4.7	Saprolith
BSMD066	6.7	7.5	0.9	1.7	Saprolith
BSMD066	7.5	8.1	0.6	3.7	Saprolith
BSMD066	8.1	9.4	1.3	6.7	Saprolith
BSMD066	9.4	10.6	1.1	9.6	Saprolith
BSMD066	10.6	11.6	1.1	6.5	Saprolith
BSMD066	11.6	12.3	0.7	4.8	Saprolith
BSMD066	12.3	13.4	1.1	5.0	Saprolith
BSMD066	13.4	14.3	0.9	4.0	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD066	14.3	15.8	1.6	3.6	Saprolith
BSMD066	16.3	17.4	1.1	2.5	Saprolith
BSMD066	17.4	17.8	0.3	0.5	Saprolith
BSMD066	17.8	19.4	1.6	1.3	Saprolith
BSMD066	19.4	21.4	2.0	2.0	Saprolith
BSMD066	21.4	22.0	0.6	7.2	Saprolith
BSMD066	22.0	23.0	1.0	1.3	Saprolith
BSMD066	23.0	24.6	1.6	1.1	Saprolith
BSMD066	24.6	25.3	0.8	2.5	Saprolith
BSMD066	25.3	26.5	1.1	0.9	Saprolith
BSMD066	26.5	27.5	1.1	1.4	Saprolith
BSMD066	27.5	28.4	0.9	1.8	Saprolith
BSMD066	28.4	29.4	1.0	2.0	Saprolith
BSMD066	29.4	29.9	0.5	6.8	Saprolith
BSMD066	29.9	30.8	0.9	2.5	Saprolith
BSMD066	31.3	32.1	0.8	2.1	Saprolith
BSMD066	32.1	32.8	0.7	1.6	Saprolith
BSMD066	33.3	34.4	1.1	3.0	Saprolith
BSMD066	34.4	35.8	1.4	4.9	Graphitic Gneiss
BSMD066	35.8	36.6	0.8	4.4	Graphitic Gneiss
BSMD066	36.6	37.5	0.9	1.8	Graphitic Gneiss
BSMD066	37.5	38.5	1.0	4.2	Graphitic Gneiss
BSMD066	38.5	39.4	0.9	1.0	Graphitic Gneiss
BSMD066	39.4	40.3	0.9	1.7	Graphitic Gneiss
BSMD066	40.3	41.3	1.0	2.0	Graphitic Gneiss
BSMD067	6.3	6.8	0.5	0.1	Saprolith
BSMD067	6.8	7.5	0.7	0.0	Saprolith
BSMD067	7.5	8.3	0.8	2.4	Saprolith
BSMD067	8.3	9.5	1.1	3.0	Saprolith
BSMD067	9.5	10.4	1.0	1.6	Saprolith
BSMD067	10.4	11.4	0.9	1.5	Saprolith
BSMD067	11.4	12.2	0.8	1.5	Saprolith
BSMD067	12.2	12.9	0.7	5.3	Saprolith
BSMD067	12.9	13.3	0.4	7.1	Saprolith
BSMD067	13.3	14.3	0.9	2.9	Saprolith
BSMD067	14.3	15.1	0.9	2.2	Saprolith
BSMD067	15.1	16.4	1.2	1.4	Saprolith
BSMD067	16.4	17.4	1.0	2.2	Saprolith
BSMD067	17.4	18.7	1.3	2.0	Saprolith
BSMD067	18.7	19.6	0.9	2.5	Saprolith
BSMD067	19.6	20.5	0.9	0.0	Saprolith
BSMD067	20.5	21.6	1.1	0.0	Saprolith
BSMD067	21.6	22.7	1.1	0.1	Saprolith
BSMD067	22.7	23.8	1.2	1.0	Saprolith
BSMD067	23.8	24.3	0.5	2.8	Saprolith
BSMD067	24.3	25.4	1.0	1.1	Saprolith
BSMD067	25.4	25.8	0.5	0.7	Saprolith
BSMD067	25.8	26.5	0.7	1.0	Saprolith
BSMDUn/					

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD067	27.3	28.3	1.0	3.0	Saprolith
BSMD067	28.3	29.2	0.9	4.9	Saprolith
BSMD067	29.2	30.4	1.2	1.0	Saprolith
BSMD067	30.4	31.4	1.1	1.8	Saprolith
BSMD067	31.4	32.3	0.9	1.3	Saprolith
BSMD067	32.3	33.3	1.0	2.0	Saprolith
BSMD067	33.3	34.4	1.1	1.2	Saprolith
BSMD067	34.4	35.3	0.9	2.5	Saprolith
BSMD067	35.3	36.5	1.2	1.3	Saprolith
BSMD067	36.5	37.4	0.9	3.4	Saprolith
BSMD067	37.4	38.3	0.9	3.5	Saprolith
BSMD067	38.3	39.3	1.0	2.9	Saprolith
BSMD067	39.3	40.2	0.9	2.6	Saprolith
BSMD067	40.2	41.3	1.1	2.3	Saprolith
BSMD068	4.3	5.3	1.0	0.3	Saprolith
BSMD068	5.3	6.2	0.9	0.4	Saprolith
BSMD008	6.2	7.4	1.3	0.9	Saprolith
BSMD068	7.4	8.3	0.9	0.2	Saprolith
BSMD008 BSMD068	8.3	9.3	1.0	1.5	Saprolith
BSMD008 BSMD068	9.3	10.0	0.7	1.0	Saprolith
BSMD008 BSMD068	10.0	10.5	0.5	2.6	Saprolith
					•
BSMD068	10.5	11.0	0.5	0.2	Saprolith
BSMD068	11.0	11.8	0.8	0.6	Saprolith
BSMD068	11.8	12.5	0.7	1.1	Saprolith
BSMD068	12.5	13.1	0.6	2.9	Saprolith
BSMD068	13.1	13.8	0.8	8.6	Saprolith
BSMD068	13.8	14.5	0.7	1.6	Saprolith
BSMD068	14.5	15.3	0.8	0.5	Saprolith
BSMD068	15.3	16.1	0.8	1.1	Saprolith
BSMD068	16.1	16.7	0.6	1.8	Saprolith
BSMD068	16.7	17.7	1.0	2.6	Saprolith
BSMD068	17.7	18.7	1.1	1.1	Saprolith
BSMD068	18.7	19.9	1.1	3.0	Saprolith
BSMD068	19.9	20.4	0.6	6.9	Saprolith
BSMD068	20.4	21.3	0.8	8.2	Saprolith
BSMD068	21.3	22.4	1.1	2.2	Saprolith
BSMD068	22.4	23.4	1.1	1.1	Saprolith
BSMD068	23.4	24.4	1.0	2.1	Saprolith
BSMD068	24.4	25.5	1.1	0.0	Dolerite
BSMD069	6.7	7.4	0.8	0.7	Saprolith
BSMD069	7.4	8.4	1.0	1.7	Saprolith
BSMD069	8.4	9.4	0.9	2.2	Saprolith
BSMD069	9.4	11.3	2.0	4.3	Saprolith
BSMD069	12.8	13.7	0.9	4.2	Saprolith
BSMD069	13.7	14.5	0.7	3.8	Saprolith
BSMD069	14.5	15.7	1.2	4.1	Saprolith
BSMD069	15.7	16.6	0.9	3.8	Saprolith
BSMD069	16.6	17.4	0.9	4.3	Saprolith
BSMD069	17.4	18.4	1.0	3.2	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD069	18.4	19.4	1.0	4.4	Saprolith
BSMD069	19.4	20.3	0.9	4.3	Saprolith
BSMD069	20.3	21.8	1.5	2.8	Saprolith
BSMD069	21.8	22.8	1.0	6.9	Saprolith
BSMD069	22.8	23.8	1.1	5.3	Saprolith
BSMD069	23.8	25.0	1.2	5.3	Saprolith
BSMD069	25.0	26.0	1.0	4.1	Saprolith
BSMD069	26.0	26.8	0.9	5.5	Saprolith
BSMD069	26.8	27.5	0.6	6.4	Saprolith
BSMD069	27.5	28.1	0.6	7.0	Saprolith
BSMD069	28.1	28.5	0.4	6.8	Saprolith
BSMD069	28.5	29.3	0.8	7.5	Saprolith
BSMD069	29.3	30.4	1.1	8.0	Saprolith
BSMD069	30.4	31.1	0.7	3.1	Saprolith
BSMD069	31.1	31.8	0.7	3.0	Saprolith
BSMD069	31.8	32.6	0.9	1.8	Graphitic Gneiss
BSMD069	32.6	33.5	0.9	1.9	Graphitic Gneiss
BSMD069	33.5	34.3	0.8	2.1	Graphitic Gneiss
BSMD069	34.3	35.1	0.8	0.0	Graphitic Gneiss
BSMD069	35.1	35.8	0.7	2.1	Gneiss
BSMD070	4.4	5.0	0.7	0.0	Saprolith
BSMD070	5.0	6.6	1.6	4.1	Saprolith
BSMD070	6.6	7.4	0.9	4.8	Saprolith
BSMD070	7.4	8.2	0.7	0.1	Saprolith
BSMD070	8.2	8.6	0.4	1.1	Saprolith
BSMD070	8.6	9.3	0.7	0.2	Saprolith
BSMD070	9.3	9.8	0.5	2.2	Saprolith
BSMD070	9.8	10.9	1.0	7.1	Saprolith
BSMD070	10.9	12.4	1.5	8.9	
			0.5	7.8	Saprolith
BSMD070 BSMD070	12.4 12.9	12.9 13.6	0.5	12.0	Saprolith
		13.0		4.5	Saprolith
BSMD070	13.6		1.1		Saprolith
BSMD070	14.6	16.0	1.4	3.1	Saprolith
BSMD070	16.0	17.2	1.2	3.1	Saprolith
BSMD070	17.2	18.0	0.9	2.6	Graphitic Gneiss
BSMD070	18.0	18.9	0.9	2.1	Graphitic Gneiss
BSMD070	18.9	19.8	0.9	2.1	Graphitic Gneiss
BSMD070	19.8	20.7	0.9	1.8	Graphitic Gneiss
BSMD070	20.7	21.6	0.9	2.5	Graphitic Gneiss
BSMD070	21.6	22.5	0.9	1.8	Graphitic Gneiss
BSMD070	22.5	23.4	0.9	2.5	Graphitic Gneiss
BSMD070	23.4	24.4	1.0	1.8	Graphitic Gneiss
BSMD071	5.4	5.9	0.5	0.3	Saprolith
BSMD071	5.9	6.9	1.0	2.9	Saprolith
BSMD071	6.9	7.8	1.0	3.0	Saprolith
BSMD071	7.8	8.9	1.1	2.3	Saprolith
BSMD071	8.9	10.2	1.3	2.9	Saprolith
BSMD071	10.2	11.0	0.8	2.5	Saprolith
BSMD071	11.0	11.9	0.8	4.7	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD071	11.9	12.6	0.7	7.3	Saprolith
BSMD071	12.6	13.9	1.3	3.2	Saprolith
BSMD071	13.9	15.4	1.5	5.6	Saprolith
BSMD071	15.4	16.1	0.8	4.7	Saprolith
BSMD071	16.1	16.9	0.8	2.9	Saprolith
BSMD071	16.9	17.7	0.9	2.6	Saprolith
BSMD071	17.7	18.9	1.1	1.1	Saprolith
BSMD071	18.9	19.9	1.1	1.0	Saprolith
BSMD071	19.9	21.1	1.2	2.0	Saprolith
BSMD071	21.1	22.0	1.0	0.9	Saprolith
BSMD071	22.0	22.8	0.8	0.2	Saprolith
BSMD071	22.8	23.4	0.5	0.6	Saprolith
BSMD071	23.4	24.0	0.6	1.3	Saprolith
BSMD071	24.0	24.9	1.0	0.5	Saprolith
BSMD071	24.9	25.9	1.0	2.0	Saprolith
BSMD071	25.9	26.9	1.0	1.0	Saprolith
BSMD071	26.9	28.4	1.4	1.4	Saprolith
BSMD071	28.4	29.4	1.0	1.6	Saprolith
BSMD071	29.4	29.9	0.6	4.1	Saprolith
BSMD071	29.9	30.6	0.7	4.6	Saprolith
BSMD071	30.6	31.6	1.0	3.6	Saprolith
BSMD071	31.6	32.7	1.0	0.7	Saprolith
BSMD071	32.7	33.4	0.8	1.8	Saprolith
BSMD071	33.4	34.4	1.0	0.8	Saprolith
BSMD071	34.4	35.2	0.9	2.3	Saprolith
BSMD071	35.2	35.9	0.6	2.4	Saprolith
BSMD071	35.9	36.5	0.6	2.2	Saprolith
BSMD071	36.5	37.2	0.7	4.9	Saprolith
BSMD071 BSMD071	37.2	37.9	0.7	4.7	Saprolith
BSMD071	37.9	38.7	0.8	3.9	Saprolith
BSMD071 BSMD071	38.7	39.5	0.8	0.7	Saprolith
BSMD071 BSMD071	39.5	40.2	0.7	0.3	Saprolith
BSMD071 BSMD071	40.2	40.9	0.7	1.0	Graphitic Gneiss
BSMD071 BSMD071	40.9	41.6	0.7	1.3	Graphitic Gneiss
BSMD071 BSMD071	40.9	41.0	0.8	1.0	Graphitic Gneiss
BSMD071 BSMD072	0.0	1.0	1.0	6.7	Saprolith
BSMD072 BSMD072	1.0	2.0	1.1	0.7	Saprolith
BSMD072 BSMD072	2.0	2.6	0.6	0.8	Saprolith
BSMD072 BSMD072	2.6	3.3	0.7	2.0	
	3.3	3.8	0.5	1.7	Saprolith
BSMD072 BSMD072	3.8	4.5	0.5	0.8	Saprolith Saprolith
BSMD072 BSMD072	4.5	5.2	0.7	1.9	Saprolith
	5.2	5.8	0.7		
BSMD072	5.8			1.4	Saprolith
BSMD072		6.5	0.6	1.5	Saprolith
BSMD072	6.5	7.2	0.7	3.0	Saprolith
BSMD072	7.2	7.8	0.6	8.5	Saprolith
BSMD072	7.8	8.9	1.1	1.7	Saprolith
BSMD072	8.9	9.7	0.8	2.3	Saprolith
BSMD072	9.7	10.3	0.6	2.0	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD072	10.3	10.8	0.5	1.2	Saprolith
BSMD072	10.8	11.3	0.5	1.1	Saprolith
BSMD072	11.3	12.0	0.7	7.0	Saprolith
BSMD072	12.0	12.7	0.8	6.0	Saprolith
BSMD072	12.7	13.3	0.5	2.7	Saprolith
BSMD072	13.3	13.6	0.3	3.6	Saprolith
BSMD072	13.6	14.5	1.0	5.1	Saprolith
BSMD072	14.5	15.5	0.9	3.6	Saprolith
BSMD072	15.5	16.4	0.9	3.1	Saprolith
BSMD072	16.4	17.2	0.8	2.7	Graphitic Gneiss
BSMD072	17.2	18.0	0.8	2.6	Graphitic Gneiss
BSMD072	18.0	19.0	1.0	0.0	Dolerite
BSMD073	0.0	1.0	1.0	5.1	Saprolith
BSMD073	1.0	2.0	1.0	3.0	Saprolith
BSMD073	2.0	3.0	1.0	2.9	Saprolith
BSMD073	3.0	4.1	1.1	3.4	Saprolith
BSMD073	4.1	4.7	0.6	3.6	Saprolith
BSMD073	4.7	5.6	0.9	1.8	Saprolith
BSMD073	5.6	6.5	0.9	2.7	Saprolith
BSMD073	6.5	7.3	0.9	0.4	Saprolith
BSMD073	7.3	8.2	0.8	1.1	Saprolith
BSMD073	8.2	9.0	0.9	1.2	Saprolith
BSMD073	9.0	10.1	1.0	1.6	Saprolith
BSMD073	10.1	10.4	0.4	1.0	Saprolith
BSMD073	10.1	10.9	0.5	1.0	Saprolith
BSMD073	10.4	11.4	0.5	0.9	Saprolith
BSMD073	11.4	12.2	0.8	1.2	Saprolith
BSMD073	12.2	12.6	0.4	1.7	Saprolith
BSMD073	12.6	13.1	0.4	1.5	Saprolith
BSMD073	13.1	13.8	0.7	2.2	Saprolith
BSMD073	13.1	13.8	1.1	3.6	Saprolith
BSMD073	14.8	14.8	1.0	3.0	Saprolith
BSMD073	15.8	16.5	0.7	3.8	Saprolith
	16.5	17.1	0.6	5.2	
BSMD073 BSMD073	17.1	17.5	0.6	4.0	Saprolith Saprolith
BSMD073	17.5	17.3	0.4	3.0	Saprolith
				3.5	
BSMD073 BSMD073	18.3 19.4	<u>19.4</u> 20.1	1.1	2.6	Saprolith Saprolith
BSMD073	20.1	20.7	0.6	1.9	Saprolith
BSMD073 BSMD073	20.7	21.1 21.9	0.4	3.0 7.4	Saprolith
	21.1			6.1	Saprolith
BSMD073 BSMD073	21.9 22.7	22.7	0.8	6.5	Saprolith Saprolith
BSMD073 BSMD073		23.4			
	23.4	24.2	0.8	6.3	Saprolith
BSMD073	24.2	25.0	0.8	3.6	Saprolith
BSMD073	25.0	25.7	0.7	1.1	Saprolith
BSMD073	25.7	26.2	0.5	1.0	Saprolith
BSMD073	26.2	27.3	1.1	0.9	Saprolith
BSMD073	27.3	28.2	0.9	0.7	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD073	28.2	29.1	0.9	1.7	Saprolith
BSMD073	29.1	30.3	1.3	4.9	Saprolith
BSMD073	30.3	31.8	1.4	0.9	Saprolith
BSMD073	31.8	32.8	1.0	1.1	Saprolith
BSMD073	32.8	34.1	1.3	1.5	Saprolith
BSMD073	34.1	34.9	0.9	1.9	Saprolith
BSMD073	34.9	35.8	0.8	2.8	Saprolith
BSMD073	35.8	36.6	0.8	4.9	Graphitic Gneiss
BSMD073	36.6	37.8	1.2	2.8	Graphitic Gneiss
BSMD073	37.8	38.6	0.8	1.5	Graphitic Gneiss
BSMD073	38.6	39.5	0.9	2.2	Graphitic Gneiss
BSMD073	39.5	40.3	0.8	0.9	Graphitic Gneiss
BSMD074	0.0	0.6	0.6	1.3	Saprolith
BSMD074	0.6	1.2	0.6	1.2	Saprolith
BSMD074	1.2	2.1	0.9	0.8	Saprolith
BSMD074	2.1	2.6	0.5	0.7	Saprolith
BSMD074 BSMD074	2.6	3.2	0.6	0.6	Saprolith
BSMD074	3.2	3.8	0.6	1.6	Saprolith
BSMD074	3.8	4.3	0.4	5.0	Saprolith
BSMD074 BSMD074	4.3	4.9	0.6	1.2	Saprolith
BSMD074 BSMD074	4.9	5.3	0.4	1.1	Saprolith
			1.0	2.7	Saprolith
BSMD074	5.3 6.3	6.3 6.8	0.5	2.7	
BSMD074					Saprolith
BSMD074	6.8	7.1	0.3	3.9	Saprolith
BSMD074	7.1	7.4	0.3	1.3	Saprolith
BSMD074	7.4	8.3	0.9	2.7	Saprolith
BSMD074	8.3	9.3	1.0	6.3	Saprolith
BSMD074	9.3	10.3	1.0	3.7	Saprolith
BSMD074	10.3	11.3	1.0	3.1	Saprolith
BSMD074	11.3	12.0	0.8	1.6	Saprolith
BSMD074	12.0	12.8	0.8	2.5	Saprolith
BSMD074	12.8	13.4	0.6	4.1	Saprolith
BSMD074	13.4	13.7	0.3	8.1	Saprolith
BSMD074	13.7	14.3	0.7	3.1	Saprolith
BSMD074	14.3	15.1	0.7	2.9	Saprolith
BSMD074	15.1	15.9	0.9	2.8	Saprolith
BSMD074	15.9	16.8	0.8	2.6	Saprolith
BSMD074	16.8	17.4	0.6	3.6	Graphitic Gneiss
BSMD074	17.4	18.0	0.7	2.6	Graphitic Gneiss
BSMD074	18.0	19.0	1.0	0.0	Dolerite
BSMD075	0.0	1.0	1.0	0.4	Saprolith
BSMD075	1.0	1.8	0.8	1.5	Saprolith
BSMD075	1.8	2.3	0.5	8.3	Saprolith
BSMD075	2.3	3.2	0.9	2.7	Saprolith
BSMD075	3.2	4.1	0.9	1.7	Saprolith
BSMD075	4.1	5.1	1.0	3.2	Saprolith
BSMD075	5.1	5.9	0.8	2.2	Saprolith
BSMD075	5.9	6.7	0.8	2.7	Saprolith
BSMD075	6.7	7.5	0.8	1.8	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD075	7.5	8.3	0.7	2.7	Saprolith
BSMD075	8.3	9.5	1.2	4.7	Saprolith
BSMD075	9.5	9.9	0.4	2.1	Saprolith
BSMD075	9.9	10.9	1.0	3.2	Saprolith
BSMD075	10.9	11.5	0.5	2.3	Saprolith
BSMD075	11.5	12.0	0.6	1.7	Saprolith
BSMD075	12.0	12.3	0.3	3.7	Saprolith
BSMD075	12.3	13.4	1.1	2.9	Saprolith
BSMD075	13.4	14.3	0.9	3.0	Saprolith
BSMD075	14.3	15.3	1.0	3.5	Saprolith
BSMD075	15.3	15.9	0.6	4.9	Saprolith
BSMD075	15.9	16.8	0.9	5.6	Saprolith
BSMD075	16.8	17.3	0.5	8.6	Saprolith
BSMD075	17.3	17.8	0.6	7.1	Saprolith
BSMD075	17.8	18.5	0.7	4.9	Saprolith
BSMD075	18.5	19.3	0.8	5.2	Saprolith
BSMD075	19.3	20.2	0.9	7.6	Saprolith
BSMD075	20.2	21.5	1.3	4.1	Saprolith
BSMD075	21.5	22.6	1.1	2.5	Saprolith
BSMD075	22.6	23.3	0.7	0.1	Saprolith
BSMD075	23.3	23.3	0.7	0.3	Saprolith
BSMD075	24.0	24.8	0.8	1.5	Saprolith
BSMD075	24.0	24.8	1.0	0.9	Saprolith
	24.8	26.6	0.8	0.9	
BSMD075					Saprolith
BSMD075	26.6	27.4	0.8	1.3	Saprolith
BSMD075	27.4	28.5	1.1	1.6	Saprolith
BSMD075	28.5	29.6	1.1	1.2	Saprolith
BSMD075	29.6	30.3	0.7	2.0	Saprolith
BSMD075	30.3	31.3	1.0	1.1	Saprolith
BSMD075	31.3	32.3	1.0	1.2	Saprolith
BSMD075	32.3	33.3	1.0	0.9	Saprolith
BSMD075	33.3	34.2	0.9	1.4	Saprolith
BSMD075	34.2	34.8	0.6	1.2	Saprolith
BSMD075	34.8	35.7	0.9	1.5	Saprolith
BSMD075	35.7	36.3	0.6	7.3	Saprolith
BSMD075	36.3	36.9	0.6	1.6	Saprolith
BSMD075	36.9	37.6	0.8	2.0	Saprolith
BSMD075	37.6	38.3	0.7	3.0	Saprolith
BSMD075	38.3	39.5	1.2	2.7	Graphitic Gneiss
BSMD075	39.5	40.4	0.9	2.4	Graphitic Gneiss
BSMD075	40.4	41.3	0.9	1.6	Graphitic Gneiss
BSMD076	1.8	2.7	1.0	0.1	Saprolith
BSMD076	2.7	3.4	0.7	2.0	Saprolith
BSMD076	3.4	4.1	0.7	13.6	Saprolith
BSMD076	4.1	4.9	0.8	10.4	Saprolith
BSMD076	4.9	5.8	0.9	10.4	Saprolith
BSMD076	5.8	6.5	0.8	2.0	Saprolith
BSMD076	6.5	7.7	1.1	0.8	Saprolith
BSMD076	7.7	8.4	0.7	0.5	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD076	8.4	9.0	0.6	0.4	Saprolith
BSMD076	9.0	9.6	0.6	1.0	Saprolith
BSMD076	9.6	10.6	1.0	0.9	Saprolith
BSMD076	10.6	11.2	0.5	1.3	Saprolith
BSMD076	11.2	12.4	1.2	1.0	Saprolith
BSMD076	12.4	13.2	0.9	1.9	Saprolith
BSMD076	13.2	14.2	0.9	1.8	Saprolith
BSMD076	14.2	15.1	0.9	3.2	Saprolith
BSMD076	15.1	16.0	0.9	2.4	Saprolith
BSMD076	16.0	17.0	1.0	4.5	Saprolith
BSMD076	17.0	17.8	0.8	3.8	Saprolith
BSMD076	17.8	18.7	0.9	4.2	Saprolith
BSMD076	18.7	19.5	0.9	2.4	Saprolith
BSMD076	19.5	20.3	0.8	3.5	Saprolith
BSMD076	20.3	20.5	0.7	1.5	Saprolith
BSMD076	21.0	21.0	0.4	1.8	Saprolith
BSMD076	21.0	22.3	0.4	3.6	Saprolith
BSMD076	22.3	23.3	1.0	1.3	
BSMD076	23.3	23.3	1.0	0.0	Saprolith Saprolith
BSMD076 BSMD077	1.5	1.9	0.4	0.1	•
					Saprolith
BSMD077	1.9	2.6	0.7	1.2	Saprolith
BSMD077	2.6	3.8	1.2	0.5	Saprolith
BSMD077	4.3	5.1	0.9	1.5	Saprolith
BSMD077	5.1	5.6	0.5	0.8	Saprolith
BSMD077	5.6	6.4	0.8	0.8	Saprolith
BSMD077	6.4	7.3	0.9	0.8	Saprolith
BSMD077	7.3	8.1	0.9	0.8	Saprolith
BSMD077	8.1	9.0	0.8	0.5	Saprolith
BSMD077	9.0	9.4	0.5	0.6	Saprolith
BSMD077	9.4	10.2	0.7	1.0	Saprolith
BSMD077	10.2	10.9	0.8	1.8	Saprolith
BSMD077	10.9	11.6	0.7	1.3	Saprolith
BSMD077	11.6	12.4	0.8	1.1	Saprolith
BSMD077	12.4	13.2	0.8	1.9	Saprolith
BSMD077	13.2	14.0	0.8	1.3	Saprolith
BSMD077	14.0	14.9	0.9	4.2	Saprolith
BSMD077	14.9	15.9	1.0	1.4	Saprolith
BSMD077	15.9	16.3	0.4	0.7	Saprolith
BSMD077	16.3	16.7	0.4	2.1	Saprolith
BSMD077	16.7	17.5	0.8	1.0	Saprolith
BSMD077	17.5	18.3	0.8	4.3	Saprolith
BSMD077	18.3	19.1	0.8	1.2	Saprolith
BSMD077	19.1	19.9	0.8	1.8	Saprolith
BSMD077	19.9	20.9	0.9	1.8	Saprolith
BSMD077	20.9	21.8	0.9	1.6	Saprolith
BSMD077	21.8	22.7	1.0	3.5	Saprolith
BSMD077	22.7	23.7	1.0	1.1	Saprolith
BSMD077	23.7	24.5	0.8	7.0	Saprolith
BSMD077	24.5	25.5	1.0	0.8	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD077	25.5	26.3	0.8	0.5	Saprolith
BSMD077	26.3	26.8	0.6	1.1	Saprolith
BSMD077	26.8	27.4	0.6	1.2	Saprolith
BSMD077	27.4	28.4	1.0	0.5	Saprolith
BSMD077	28.4	29.5	1.1	0.5	Saprolith
BSMD077	29.5	30.4	0.9	1.6	Saprolith
BSMD077	30.4	31.2	0.8	1.4	Saprolith
BSMD077	31.2	32.0	0.8	2.7	Saprolith
BSMD077	32.0	32.8	0.8	1.9	Saprolith
BSMD077	32.8	33.5	0.7	6.6	Graphitic Gneiss
BSMD077	33.5	34.2	0.7	6.2	Graphitic Gneiss
BSMD077	34.2	34.8	0.6	3.3	Graphitic Gneiss
BSMD078	0.9	1.9	1.0	2.7	Pedolith
BSMD078	1.9	2.6	0.7	1.8	Saprolith
BSMD078	2.6	3.2	0.6	4.1	Saprolith
BSMD078	3.2	4.0	0.8	2.3	Saprolith
BSMD078	4.0	4.9	0.9	3.0	Saprolith
BSMD078	4.9	5.5	0.6	3.2	Saprolith
BSMD078	5.5	6.1	0.5	1.5	Saprolith
BSMD078	6.1	6.6	0.6	3.2	Saprolith
BSMD078	6.6	7.3	0.7	4.2	Saprolith
BSMD078	7.3	8.0	0.6	3.1	Saprolith
BSMD078	8.0	9.0	1.1	2.3	Saprolith
BSMD078	9.0	9.8	0.8	2.2	Saprolith
BSMD078	9.8	10.6	0.7	2.6	Saprolith
BSMD078	10.6	11.3	0.7	0.0	Dolerite
BSMD078	11.3	12.2	1.0	0.0	Dolerite
BSMD078	12.2	13.2	1.0	0.0	Dolerite
BSMD078	13.2	14.3	1.1	0.0	Dolerite
BSMD078	14.3	15.3	1.1	0.0	Dolerite
BSMD078	15.3	16.9	1.6	1.5	Saprolith
BSMD078	16.9	18.0	1.1	2.1	Saprolith
BSMD078	18.0	18.4	0.5	0.4	Saprolith
BSMD078	18.4	19.5	1.1	3.7	Saprolith
BSMD078	19.5	20.5	1.0	0.4	Saprolith
BSMD078	20.5	21.6	1.2	0.2	Saprolith
BSMD078	21.6	22.5	0.8	2.7	Saprolith
BSMD078	22.5	23.1	0.7	2.4	Saprolith
BSMD078	23.1	23.7	0.6	7.2	Graphitic Gneiss
BSMD078	23.7	24.4	0.7	4.6	Graphitic Gneiss
BSMD078	24.4	25.1	0.7	2.5	Graphitic Gneiss
BSMD078	25.1	25.9	0.8	5.0	Graphitic Gneiss
BSMD078	25.9	26.3	0.5	3.5	Graphitic Gneiss
BSMD079	0.0	0.7	0.7	0.0	Saprolith
BSMD079	0.7	1.1	0.4	0.2	Saprolith
BSMD079	1.1	1.7	0.5	1.3	Saprolith
BSMD079	1.7	2.3	0.6	2.6	Saprolith
BSMD079	2.3	3.0	0.7	3.0	Saprolith
BSMD079	3.0	3.8	0.8	4.2	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD079	3.8	4.4	0.7	4.0	Saprolith
BSMD079	4.4	5.1	0.6	3.7	Saprolith
BSMD079	5.1	5.9	0.9	3.3	Saprolith
BSMD079	5.9	6.8	0.9	3.2	Saprolith
BSMD079	6.8	7.6	0.8	2.5	Saprolith
BSMD079	7.6	8.5	0.9	3.3	Saprolith
BSMD079	8.5	9.4	0.8	3.0	Saprolith
BSMD079	9.4	10.2	0.8	3.0	Saprolith
BSMD079	10.2	11.0	0.8	3.0	Saprolith
BSMD079	11.0	12.0	1.1	0.2	Dolerite
BSMD079	12.0	13.0	1.0	0.0	Dolerite
BSMD079	13.0	14.2	1.1	0.0	Dolerite
BSMD079	14.2	15.1	0.9	0.0	Dolerite
BSMD079	15.1	16.1	1.0	0.0	Dolerite
BSMD079	16.1	17.1	1.0	3.9	Saprolith
BSMD079	17.1	17.7	0.6	2.5	Saprolith
BSMD079	17.1	18.4	0.7	2.3	Saprolith
BSMD079	18.4	19.0	0.6	1.2	Saprolith
BSMD079	19.0	19.8	0.9	2.6	Saprolith
BSMD079	19.8	20.7	0.9	2.1	Saprolith
BSMD079	20.7	20.7	0.8	1.8	Saprolith
BSMD079 BSMD079	21.5	22.6	1.1	0.0	Saprolith
BSMD079 BSMD079	22.6	23.3	0.7	0.9	Saprolith
		23.3	0.7	1.1	•
BSMD079	23.3		0.7		Saprolith
BSMD079	24.1	24.9 25.6	0.8	1.8 1.1	Saprolith
BSMD079	24.9				Saprolith
BSMD079	25.6	26.5	0.9	1.5	Saprolith
BSMD079	26.5	27.3	0.8	1.0	Saprolith
BSMD079	27.3	28.0	0.7	0.9	Saprolith
BSMD079	28.0	28.6	0.6	1.7	Saprolith
BSMD079	28.6	29.5	0.9	3.2	Saprolith
BSMD079	29.5	30.3	0.8	5.6	Saprolith
BSMD079	30.3	30.9	0.6	3.5	Saprolith
BSMD079	30.9	31.5	0.6	4.5	Saprolith
BSMD079	31.5	32.4	1.0	3.7	Graphitic Gneiss
BSMD079	32.4	33.4	0.9	2.9	Graphitic Gneiss
BSMD079	33.4	34.3	1.0	2.4	Graphitic Gneiss
BSMD079	34.3	35.2	0.9	1.4	Graphitic Gneiss
BSMD080	1.1	1.9	0.8	0.1	Pedolith
BSMD080	1.9	2.8	0.9	0.2	Saprolith
BSMD080	2.8	3.6	0.8	0.0	Saprolith
BSMD080	3.6	4.1	0.5	0.0	Saprolith
BSMD080	4.1	4.7	0.6	0.0	Saprolith
BSMD080	4.7	5.4	0.7	0.0	Saprolith
BSMD080	5.4	6.1	0.7	0.0	Saprolith
BSMD080	6.1	6.7	0.6	0.4	Saprolith
BSMD080	6.7	7.6	0.9	1.2	Saprolith
BSMD080	7.6	8.4	0.8	3.2	Saprolith
BSMD080	8.4	9.2	0.8	3.5	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD080	9.2	10.0	0.8	3.0	Saprolith
BSMD080	10.0	10.9	0.9	3.2	Saprolith
BSMD080	10.9	11.8	0.9	3.5	Saprolith
BSMD080	11.8	12.6	0.8	4.2	Saprolith
BSMD080	12.6	13.4	0.8	6.7	Saprolith
BSMD080	13.4	14.3	1.0	6.5	Saprolith
BSMD080	14.3	15.4	1.1	10.9	Saprolith
BSMD080	15.4	16.4	1.0	10.1	Saprolith
BSMD080	16.4	16.7	0.4	3.1	Saprolith
BSMD080	16.7	17.6	0.8	1.9	Saprolith
BSMD080	17.6	18.5	0.9	0.8	Saprolith
BSMD080	18.5	19.1	0.6	3.4	Saprolith
BSMD080	19.1	20.0	0.9	1.4	Saprolith
BSMD080	20.0	20.8	0.8	1.0	Saprolith
BSMD080	20.8	21.2	0.5	1.1	Saprolith
BSMD080	21.2	22.1	0.9	1.8	Saprolith
BSMD080	22.1	23.1	1.0	1.7	Saprolith
BSMD080	23.1	23.6	0.5	0.4	Saprolith
BSMD080	23.6	24.5	0.9	1.3	Saprolith
BSMD080	24.5	25.2	0.8	1.4	Saprolith
BSMD080	25.2	26.0	0.8	1.7	Saprolith
BSMD080	26.0	27.4	1.4	4.8	Saprolith
BSMD080	27.4	28.0	0.6	5.6	Saprolith
BSMD080	28.0	28.6	0.6	2.9	Saprolith
BSMD080	28.6	29.6	1.0	2.6	Graphitic Gneiss
BSMD080	29.6	30.6	1.0	3.4	Graphitic Gneiss
BSMD080	30.6	31.5	0.9	2.4	Graphitic Gneiss
BSMD080	31.5	32.4	0.9	2.9	Graphitic Gneiss
BSMD081	8.3	9.6	1.2	0.3	Saprolith
BSMD081	9.6	10.2	0.6	3.4	Saprolith
BSMD081	10.2	11.0	0.9	1.0	Saprolith
BSMD081	11.0	11.7	0.7	1.3	Saprolith
BSMD081	11.7	12.3	0.7	2.9	Saprolith
BSMD081	12.3	12.9	0.6	6.1	Saprolith
BSMD081	12.9	13.6	0.7	7.8	Saprolith
BSMD081	13.6	14.2	0.6	10.1	Saprolith
BSMD081	14.2	14.9	0.6	7.0	Saprolith
BSMD081	14.9	15.6	0.7	9.6	Saprolith
BSMD081	15.6	16.5	0.9	7.6	Saprolith
BSMD081	16.5	17.4	1.0	10.0	Saprolith
BSMD081	17.4	18.0	0.6	4.7	Saprolith
BSMD081	18.0	19.3	1.4	5.6	Saprolith
BSMD081	19.3	19.9	0.5	6.8	Saprolith
BSMD081	19.9	20.6	0.7	3.9	Saprolith
BSMD081	20.6	21.5	0.9	1.9	Saprolith
BSMD081	21.5	22.5	1.0	2.1	Saprolith
BSMD081	22.5	23.3	0.8	2.8	Saprolith
DONDOOT					
BSMD081	23.3	24.3	1.0	2.7	Graphitic Gneiss

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD081	25.1	26.3	1.2	2.5	Graphitic Gneiss
BSMD082	4.9	5.8	0.9	<0.05	Saprolith
BSMD082	5.8	6.2	0.5	0.3	Saprolith
BSMD082	6.2	7.5	1.3	0.3	Saprolith
BSMD082	7.5	8.4	0.9	3.6	Saprolith
BSMD082	8.4	8.8	0.4	0.1	Saprolith
BSMD082	8.8	9.4	0.6	2.6	Saprolith
BSMD082	9.4	10.1	0.7	1.2	Saprolith
BSMD082	10.1	10.9	0.8	1.1	Saprolith
BSMD082	10.9	11.6	0.8	3.8	Saprolith
BSMD082	11.6	12.6	0.9	1.0	Saprolith
BSMD082	12.6	13.9	1.3	6.2	Saprolith
BSMD082	13.9	14.7	0.8	7.7	Saprolith
BSMD082	14.7	16.4	1.8	6.4	Saprolith
BSMD082	16.4	17.2	0.8	5.3	Saprolith
BSMD082	17.2	18.0	0.8	8.5	Saprolith
BSMD082	18.0	18.9	0.9	4.8	Saprolith
BSMD082	18.9	19.8	0.9	5.3	Saprolith
BSMD082	19.8	20.4	0.6	5.4	Saprolith
BSMD082	20.4	21.5	1.1	2.4	Graphitic Gneiss
BSMD082	21.5	22.5	1.0	2.4	Graphitic Gneiss
BSMD082	22.5	23.4	0.9	1.9	Graphitic Gneiss
BSMD082	23.4	24.4	1.0	2.3	Graphitic Gneiss
BSMD083	9.3	9.8	0.5	0.2	Saprolith
BSMD083	9.8	10.2	0.4	5.6	Saprolith
BSMD083	10.2	10.6	0.4	1.0	Saprolith
BSMD083	10.6	11.4	0.8	10.9	Saprolith
BSMD083	11.4	11.7	0.4	4.9	Saprolith
BSMD083	11.7	12.2	0.5	7.4	Saprolith
BSMD083	12.2	12.7	0.5	4.0	Saprolith
BSMD083	12.7	13.1	0.4	12.0	Saprolith
BSMD083	13.1	13.8	0.7	5.7	Saprolith
BSMD083	13.8	14.5	0.7	12.6	Saprolith
BSMD083	14.5	15.2	0.7	8.9	Saprolith
BSMD083	15.2	15.9	0.7	8.9	Saprolith
BSMD083	15.9	16.6	0.7	8.1	Saprolith
BSMD083	16.6	17.3	0.7	11.3	Saprolith
BSMD083	17.3	18.2	0.9	7.3	Saprolith
BSMD083	18.2	19.0	0.8	5.9	Saprolith
BSMD083	19.0	19.9	0.9	7.8	Saprolith
BSMD083	19.9	20.9	1.0	4.9	Saprolith
BSMD083	20.9	20.9	1.0	5.9	Saprolith
BSMD083	20.9	22.8	0.9	7.7	Saprolith
BSMD083	22.8	23.6	0.8	6.5	Saprolith
BSMD083	23.6	24.5	0.9	0.7	Saprolith
BSMD083	24.5	25.5	1.0	2.3	Saprolith
BSMD083	25.5	26.4	0.9	2.7	Saprolith
BSMD083	26.4	27.4	1.0	2.7	Saprolith
			1.0		Japivilli

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD083	28.0	29.0	1.0	2.7	Saprolith
BSMD083	29.0	30.0	0.9	1.8	Saprolith
BSMD083	30.0	31.1	1.1	6.8	Saprolith
BSMD083	31.1	32.3	1.2	10.8	Saprolith
BSMD083	32.3	33.3	1.0	8.7	Saprolith
BSMD083	33.3	34.3	1.1	9.7	Saprolith
BSMD083	34.3	35.0	0.7	9.6	Saprolith
BSMD083	35.0	36.4	1.4	5.8	Saprolith
BSMD083	36.4	37.4	1.0	4.8	Saprolith
BSMD083	37.4	38.4	1.0	6.6	Saprolith
BSMD083	38.4	39.5	1.0	4.3	Saprolith
BSMD083	39.5	40.1	0.7	4.0	Saprolith
BSMD083	40.1	40.9	0.7	5.3	Saprolith
BSMD083	40.9	41.6	0.7	6.1	Saprolith
BSMD083	41.6	41.9	0.4	6.6	Saprolith
BSMD083	41.9	42.8	0.8	5.7	Saprolith
BSMD083	42.8	43.8	1.0	5.4	Saprolith
BSMD083	43.8	44.6	0.9	4.2	Saprolith
BSMD083	44.6	45.5	0.8	8.7	Saprolith
BSMD083	45.5	46.5	1.0	5.8	Graphitic Gneiss
BSMD083	46.5	47.3	0.9	6.8	Graphitic Gneiss
BSMD084	6.9	7.7	0.8	0.1	Pedolith
BSMD084	7.7	8.6	0.8	0.7	Saprolith
BSMD084	8.6	9.3	0.8	6.2	Saprolith
BSMD084	9.3	10.2	0.9	9.3	Saprolith
BSMD084	10.2	10.2	0.5	8.0	Saprolith
BSMD084	10.2	11.4	0.7	10.1	Saprolith
BSMD084	11.4	12.3	0.9	6.0	Saprolith
BSMD084	12.3	13.1	0.9	6.3	Saprolith
BSMD084	13.1	13.9	0.8	11.9	Saprolith
BSMD084	13.9	14.8	0.8	3.4	Saprolith
BSMD084	14.8	14.8	0.9	5.6	Saprolith
BSMD084	14.8	16.3	0.9	6.6	Saprolith
					•
BSMD084	16.3	17.0 17.7	0.7	5.6 6.1	Saprolith
BSMD084	17.0 17.7		0.7	7.0	Saprolith
BSMD084		18.4			Saprolith
BSMD084	18.4	18.7	0.3	0.2	Saprolith
BSMD084	18.7	19.3	0.6	1.4 2.5	Saprolith
BSMD084	19.3	20.0	0.7		Saprolith
BSMD084	20.0	20.8	0.7	3.0	Saprolith
BSMD084	20.8	21.7	0.9	3.0	Saprolith
BSMD084	21.7	22.6	1.0	1.7	Saprolith
BSMD084	22.6	23.3	0.7	0.9	Saprolith
BSMD084	23.3	23.9	0.6	1.2	Saprolith
BSMD084	23.9	24.6	0.7	2.4	Saprolith
BSMD084	24.6	25.3	0.6	1.8	Saprolith
BSMD084	25.3	26.0	0.8	10.2	Saprolith
BSMD084	26.0	27.6	1.6	5.2	Saprolith
BSMD084	27.6	28.9	1.4	8.9	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD084	28.9	29.6	0.6	18.4	Saprolith
BSMD084	29.6	30.7	1.2	7.7	Saprolith
BSMD084	30.7	31.3	0.5	4.2	Saprolith
BSMD084	31.3	31.9	0.6	4.3	Saprolith
BSMD084	31.9	32.6	0.7	5.8	Graphitic Gneiss
BSMD084	32.6	33.5	0.9	4.5	Graphitic Gneiss
BSMD084	33.5	34.3	0.9	2.0	Graphitic Gneiss
BSMD084	34.3	35.3	0.9	1.9	Graphitic Gneiss
BSMD089	5.5	6.7	1.2	0.4	Saprolith
BSMD089	6.7	7.3	0.6	1.9	Saprolith
BSMD089	7.3	8.3	0.9	2.9	Saprolith
BSMD089	8.3	8.9	0.6	2.2	Saprolith
BSMD089	8.9	9.3	0.5	3.7	Saprolith
BSMD089	9.3	9.9	0.6	3.6	Saprolith
BSMD089	9.9	10.5	0.6	3.7	Saprolith
BSMD089	10.5	11.3	0.8	5.9	Saprolith
BSMD089 BSMD089	11.3	11.9	0.6	4.7	Saprolith
BSMD089 BSMD089	11.9	12.6	0.6	4.6	Saprolith
BSMD089	12.6	13.2	0.7	5.7	Saprolith
BSMD089	13.2	13.8	0.6	6.9	Saprolith
BSMD089 BSMD089	13.8	14.3	0.5	7.7	Saprolith
BSMD089 BSMD089	14.3	14.9	0.5	8.1	Saprolith
			0.5	6.6	
BSMD089	14.9 15.3	15.3 15.9	0.5	4.6	Saprolith
BSMD089					Saprolith
BSMD089	15.9	17.1	1.2	2.0	Saprolith
BSMD089	17.1	18.2	1.1	1.7	Graphitic Gneiss
BSMD089	18.2	19.1	0.9	0.1	Gneiss
BSMD089	19.1	20.0	0.9	1.8	Graphitic Gneiss
BSMD089	20.0	21.2	1.2	0.7	Graphitic Gneiss
BSMD089	21.2	22.1	0.9	1.5	Graphitic Gneiss
BSMD089	22.1	23.1	1.0	0.9	Graphitic Gneiss
BSMD089	23.1	24.3	1.2	1.7	Graphitic Gneiss
BSMD090	5.9	7.4	1.5	1.1	Saprolith
BSMD090	7.4	8.5	1.2	2.5	Saprolith
BSMD090	8.5	9.6	1.1	2.6	Saprolith
BSMD090	9.6	10.7	1.1	3.5	Saprolith
BSMD090	10.7	11.2	0.5	2.9	Saprolith
BSMD090	11.2	12.4	1.1	6.3	Saprolith
BSMD090	12.4	13.3	1.0	6.9	Saprolith
BSMD090	13.3	14.0	0.6	6.5	Saprolith
BSMD090	14.0	14.7	0.7	8.3	Saprolith
BSMD090	14.7	15.4	0.7	7.0	Saprolith
BSMD090	15.4	15.6	0.2	4.2	Saprolith
BSMD090	15.6	16.5	0.9	3.9	Saprolith
BSMD090	16.5	17.4	0.8	2.0	Saprolith
BSMD090	17.4	18.1	0.7	1.5	Saprolith
BSMD090	18.1	19.4	1.3	0.0	Saprolith
BSMD090	19.4	20.4	1.1	1.6	Saprolith
BSMD090	20.4	21.5	1.1	0.8	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD090	21.5	22.5	1.0	1.2	Saprolith
BSMD090	22.5	23.5	1.0	1.1	Saprolith
BSMD090	23.5	24.5	1.0	1.1	Saprolith
BSMD090	24.5	25.5	1.0	1.2	Saprolith
BSMD090	25.5	26.4	1.0	4.3	Graphitic Gneiss
BSMD090	26.4	27.4	0.9	5.2	Graphitic Gneiss
BSMD086	4.4	6.0	1.6	0.0	Saprolith
BSMD086	6.0	6.5	0.5	1.5	Saprolith
BSMD086	6.5	7.6	1.2	1.5	Saprolith
BSMD087	1.1	1.9	0.8	0.2	Pedolith
BSMD087	1.9	2.3	0.4	6.2	Saprolith
BSMD087	2.3	2.8	0.5	0.9	Saprolith
BSMD087	2.8	3.4	0.6	3.3	Saprolith
BSMD087	3.4	4.3	0.9	3.0	Saprolith
BSMD087	4.3	5.0	0.7	2.3	Saprolith
BSMD087	5.0	5.6	0.6	2.1	Saprolith
BSMD087	5.6	6.3	0.7	1.5	Saprolith
BSMD087	6.3	7.0	0.7	0.8	Saprolith
BSMD087	7.0	7.5	0.5	1.8	Saprolith
BSMD087	7.5	7.8	0.3	1.5	Saprolith
BSMD087 BSMD087	7.8	8.3	0.5	0.8	Saprolith
BSMD087 BSMD087	8.3	8.8	0.5	1.8	Saprolith
BSMD087 BSMD087	8.8	9.3	0.5	1.0	Saprolith
	9.3	9.9	0.5		•
BSMD087		10.4		1.2	Saprolith
BSMD087	9.9		0.5	1.2 1.5	Saprolith
BSMD087	10.4	11.6			Saprolith
BSMD087	11.6	12.0	0.4	2.7	Saprolith
BSMD087	12.0	12.6	0.7	1.2	Saprolith
BSMD087	12.6	12.9	0.3	1.4	Saprolith
BSMD087	12.9	13.3	0.4	1.0	Saprolith
BSMD087	13.3	14.0	0.6	2.6	Saprolith
BSMD087	14.0	14.7	0.8	1.8	Saprolith
BSMD087	14.7	15.3	0.6	1.0	Saprolith
BSMD087	15.3	15.9	0.6	2.1	Saprolith
BSMD087	15.9	16.4	0.5	2.9	Saprolith
BSMD087	16.4	17.3	0.8	3.1	Saprolith
BSMD087	17.3	18.1	0.9	1.4	Saprolith
BSMD087	18.1	18.9	0.8	1.4	Saprolith
BSMD087	18.9	19.5	0.5	0.7	Saprolith
BSMD087	19.5	20.0	0.6	1.4	Saprolith
BSMD087	20.0	21.0	0.9	1.0	Saprolith
BSMD087	21.0	21.9	1.0	2.0	Saprolith
BSMD087	21.9	22.9	0.9	2.0	Saprolith
BSMD087	22.9	24.0	1.1	1.4	Saprolith
BSMD087	24.0	24.8	0.8	1.7	Saprolith
BSMD087	24.8	25.6	0.8	6.6	Graphitic Gneiss
BSMD087	25.6	26.4	0.8	2.1	Graphitic Gneiss
BSMD087	26.4	27.4	1.0	2.5	Graphitic Gneiss
BSMD087	27.4	28.2	0.8	2.7	Graphitic Gneiss

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD087	28.2	29.3	1.1	3.8	Graphitic Gneiss
BSMD088	5.6	6.3	0.7	0.1	Saprolith
BSMD088	6.3	7.4	1.1	3.3	Saprolith
BSMD088	7.4	8.4	1.0	4.3	Saprolith
BSMD088	8.4	9.4	1.0	4.5	Saprolith
BSMD088	9.4	10.6	1.2	3.1	Saprolith
BSMD088	10.6	11.7	1.1	3.0	Saprolith
BSMD088	11.7	13.2	1.6	0.0	Dolerite
BSMD088	13.2	14.9	1.7	0.0	Dolerite
BSMD088	14.9	16.5	1.6	0.0	Dolerite
BSMD088	16.5	17.6	1.1	2.4	Saprolith
BSMD088	17.6	18.4	0.9	4.9	Saprolith
BSMD088	18.4	19.4	1.0	3.0	Saprolith
BSMD088	19.4	20.3	0.9	1.5	Saprolith
BSMD088	20.3	20.9	0.6	0.5	Saprolith
BSMD088	20.9	22.4	1.5	2.7	Saprolith
BSMD088	22.4	23.4	1.0	1.6	Saprolith
BSMD088	23.4	24.1	0.7	2.1	Saprolith
BSMD088	24.1	24.9	0.8	3.0	Saprolith
BSMD088	24.9	25.3	0.4	1.5	Saprolith
BSMD088	25.3	25.9	0.6	0.7	Saprolith
BSMD088	25.9	26.7	0.8	1.9	Saprolith
BSMD088	26.7	27.4	0.8	1.7	Saprolith
BSMD088	27.4	28.4	0.9	1.4	Saprolith
BSMD088	28.4	28.9	0.6	2.2	Saprolith
BSMD088	28.9	29.6	0.7	3.0	Saprolith
BSMD088	29.6	30.7	1.1	2.9	Graphitic Gneiss
BSMD088	30.7	31.7	0.9	6.5	Graphitic Gneiss
BSMD088	31.7	32.4	0.7	3.2	Graphitic Gneiss
BSMD091	6.3	7.6	1.4	1.5	Saprolith
BSMD091	7.6	8.3	0.7	3.5	Saprolith
BSMD091	8.3	8.8	0.6	3.9	Saprolith
BSMD091	8.8	9.8	1.0	9.1	Saprolith
BSMD091	9.8	10.2	0.4	4.6	Saprolith
BSMD091	10.2	10.8	0.6	5.7	Saprolith
BSMD091	10.8	11.7	0.9	4.0	Saprolith
BSMD091	11.7	12.7	1.0	3.1	Saprolith
BSMD091	12.7	13.5	0.8	8.7	Saprolith
BSMD091	13.5	13.8	0.3	9.9	Saprolith
BSMD091	13.8	14.8	1.0	3.6	Saprolith
BSMD091	14.8	15.9	1.1	4.2	Saprolith
BSMD091	15.9	16.6	0.7	2.7	Saprolith
BSMD091	16.6	17.2	0.6	1.9	Saprolith
BSMD091	17.2	17.9	0.7	3.5	Saprolith
BSMD091	17.9	18.6	0.7	5.2	Saprolith
BSMD091	18.6	19.3	0.7	4.4	Saprolith
BSMD091	19.3	20.0	0.7	5.2	Saprolith
BSMD091	20.0	20.6	0.7	4.5	Saprolith
BSMD091	20.6	21.4	0.8	4.7	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD091	21.4	22.4	1.0	6.2	Saprolith
BSMD091	22.4	23.6	1.2	4.3	Saprolith
BSMD091	23.6	24.6	1.0	5.3	Saprolith
BSMD091	24.6	25.6	1.0	5.4	Saprolith
BSMD091	25.6	26.5	1.0	6.9	Saprolith
BSMD091	26.5	27.6	1.1	5.2	Saprolith
BSMD091	27.6	28.3	0.7	3.3	Saprolith
BSMD091	28.3	29.1	0.8	4.1	Saprolith
BSMD091	29.1	30.0	0.9	5.6	Saprolith
BSMD091	30.0	30.8	0.8	6.8	Saprolith
BSMD091	30.8	31.9	1.1	5.9	Saprolith
BSMD091	31.9	32.6	0.8	4.9	Saprolith
BSMD091	32.6	33.2	0.6	5.1	Saprolith
BSMD091	33.2	33.5	0.4	3.5	Saprolith
BSMD091	33.5	34.5	1.0	2.4	Saprolith
BSMD091	34.5	35.2	0.7	0.1	Saprolith
BSMD091	35.2	35.7	0.5	1.5	Saprolith
BSMD091	35.7	37.0	1.3	0.5	Saprolith
BSMD091	37.0	38.0	1.0	1.0	Saprolith
BSMD091	38.0	39.1	1.1	2.6	Saprolith
BSMD091	39.1	39.8	0.8	2.5	Saprolith
BSMD091	39.8	40.7	0.9	1.0	Graphitic Gneiss
BSMD091	40.7	41.5	0.9	1.6	Graphitic Gneiss
BSMD091	41.5	42.5	0.9	1.8	Graphitic Gneiss
BSMD091	42.5	43.4	0.9	1.7	Graphitic Gneiss
BSMD092	3.7	4.3	0.6	0.1	Saprolith
BSMD092	4.3	5.1	0.8	5.0	Saprolith
BSMD092	5.1	5.9	0.8	4.9	Saprolith
BSMD092	5.9	6.9	1.0	8.8	Saprolith
BSMD092	6.9	7.6	0.7	6.1	Saprolith
BSMD092	7.6	8.4	0.8	6.3	Saprolith
BSMD092	8.4	9.0	0.6	2.9	Saprolith
BSMD092	9.0	9.7	0.7	0.3	Saprolith
BSMD092	9.7	10.1	0.4	2.5	Saprolith
BSMD092	10.1	10.7	0.7	0.1	Saprolith
BSMD092	10.7	11.2	0.4	0.8	Saprolith
BSMD092	11.2	11.9	0.7	1.4	Saprolith
BSMD092	11.9	12.9	1.0	1.0	Saprolith
BSMD092	12.9	14.0	1.1	0.7	Saprolith
BSMD092	14.0	14.9	0.9	1.0	Saprolith
BSMD092	14.9	15.6	0.7	0.8	Saprolith
BSMD092	15.6	16.4	0.8	1.1	Saprolith
BSMD092	16.4	17.0	0.5	0.8	Saprolith
BSMD092	17.0	18.3	1.4	1.3	Saprolith
BSMD092	18.3	19.4	1.1	1.5	Saprolith
BSMD092	19.4	20.1	0.6	3.3	Saprolith
BSMD092	20.1	20.8	0.7	1.3	Saprolith
BSMD092	20.8	21.3	0.5	1.1	Saprolith
BSMD092	21.3	22.1	0.8	1.6	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD092	22.1	22.8	0.8	2.2	Saprolith
BSMD092	22.8	23.9	1.0	1.2	Saprolith
BSMD092	23.9	24.7	0.8	1.0	Saprolith
BSMD092	24.7	25.7	1.0	1.3	Saprolith
BSMD092	25.7	26.7	0.9	3.0	Saprolith
BSMD092	26.7	27.6	1.0	2.2	Saprolith
BSMD092	27.6	28.6	1.0	2.1	Saprolith
BSMD092	28.6	29.7	1.1	2.8	Saprolith
BSMD092	29.7	31.6	1.9	0.1	Dolerite
BSMD092	31.6	33.4	1.8	0.0	Dolerite
BSMD092	33.4	35.3	1.9	0.1	Dolerite
BSMD092	35.3	36.4	1.1	1.6	Saprolith
BSMD092	36.4	37.4	1.0	1.6	Saprolith
BSMD092	37.4	38.4	1.0	2.6	Saprolith
BSMD092	38.4	39.4	1.0	0.8	Saprolith
BSMD092	39.4	40.5	1.1	2.0	Saprolith
BSMD092	40.5	41.3	0.8	4.9	Saprolith
BSMD092	41.3	42.0	0.8	3.4	Saprolith
BSMD092	42.0	42.9	0.8	1.4	Saprolith
BSMD092	42.9	43.9	1.0	0.9	Saprolith
BSMD092	43.9	44.8	0.9	2.3	Saprolith
BSMD092	44.8	45.4	0.6	0.9	Saprolith
BSMD093	0.0	0.7	0.7	5.0	Saprolith
BSMD093	0.7	1.6	0.8	2.8	Saprolith
BSMD093	1.6	2.2	0.6	1.5	Saprolith
BSMD093	2.2	3.0	0.8	2.0	Saprolith
BSMD093	3.0	3.5	0.5	1.7	Saprolith
BSMD093	3.5	4.0	0.5	4.0	Saprolith
BSMD093	4.0	5.2	1.2	1.9	Saprolith
BSMD093	5.2	5.8	0.6	1.5	Saprolith
BSMD093	5.8	6.7	1.0	5.6	Saprolith
BSMD093	6.7	7.5	0.8	2.4	Saprolith
BSMD093	7.5	8.2	0.7	2.6	Saprolith
BSMD093	8.2	9.0	0.7	2.5	Saprolith
BSMD093	9.0	9.5	0.6	2.9	Saprolith
BSMD093	9.5	9.9	0.4	2.3	Saprolith
BSMD093	9.9	11.0	1.0	3.3	Saprolith
BSMD093	11.0	12.0	1.0	2.8	Saprolith
BSMD093	12.0	13.0	1.0	3.0	Saprolith
BSMD093	13.0	14.0	1.0	2.8	Saprolith
BSMD093	14.0	15.0	0.9	2.3	Graphitic Gneiss
BSMD093	15.0	15.9	0.9	1.9	Graphitic Gneiss
BSMD093	15.9	16.8	0.9	2.7	Graphitic Gneiss
BSMD093	16.8	18.5	1.7	0.0	Dolerite
BSMD093	18.5	20.3	1.8	0.0	Dolerite
BSMD093	20.3	22.0	1.7	0.0	Dolerite
BSMD093	22.0	23.8	1.8	0.0	Dolerite
BSMD093	23.8	25.5	1.7	0.0	Dolerite
				-	

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD093	27.3	29.1	1.9	0.0	Dolerite
BSMD093	29.1	29.9	0.8	1.4	Graphitic Gneiss
BSMD093	29.9	30.8	0.8	1.7	Graphitic Gneiss
BSMD093	30.8	31.5	0.8	1.7	Graphitic Gneiss
BSMD093	31.5	32.2	0.7	0.8	Graphitic Gneiss
BSMD093	32.2	32.8	0.6	3.1	Graphitic Gneiss
BSMD093	32.8	33.5	0.7	2.7	Graphitic Gneiss
BSMD094	5.0	6.0	1.0	0.6	Saprolith
BSMD094	6.0	6.8	0.7	1.1	Saprolith
BSMD094	6.8	7.8	1.1	2.1	Saprolith
BSMD094	7.8	8.3	0.4	0.6	Saprolith
BSMD094	8.3	8.8	0.6	0.6	Saprolith
BSMD094	8.8	11.0	2.2	2.0	Saprolith
BSMD094	11.0	11.9	0.9	8.3	Saprolith
BSMD094	11.9	12.9	1.0	1.6	Saprolith
BSMD094 BSMD094	12.9	13.7	0.8	0.6	Saprolith
BSMD094 BSMD094	13.7	14.7	1.0	0.8	Saprolith
BSMD094 BSMD094	14.7	15.5	0.8	0.7	Saprolith
BSMD094 BSMD094	15.5	16.5	1.0	2.7	Saprolith
BSMD094 BSMD094	16.5	17.1	0.5	0.7	Saprolith
BSMD094 BSMD094	17.1	18.0	0.9	1.6	Saprolith
	-				
BSMD094	18.0	19.2	1.2	1.4	Saprolith
BSMD094	19.2	19.5	0.3	5.1	Saprolith
BSMD094	19.5	20.3	0.8	7.7	Saprolith
BSMD094	20.3	21.2	0.9	7.0	Saprolith
BSMD094	21.2	22.0	0.8	4.7	Saprolith
BSMD094	22.0	23.2	1.2	2.9	Saprolith
BSMD094	23.2	24.5	1.4	2.6	Saprolith
BSMD094	24.5	25.3	0.8	4.3	Saprolith
BSMD094	25.3	26.0	0.8	2.6	Saprolith
BSMD094	26.0	26.9	0.9	3.3	Saprolith
BSMD094	26.9	28.1	1.2	2.5	Graphitic Gneiss
BSMD094	28.1	29.1	1.1	1.2	Graphitic Gneiss
BSMD094	29.1	30.8	1.7	0.0	Dolerite
BSMD094	30.8	32.5	1.7	0.0	Dolerite
BSMD094	32.5	34.3	1.8	0.0	Dolerite
BSMD094	34.3	35.9	1.6	0.0	Dolerite
BSMD094	35.9	36.5	0.6	0.4	Graphitic Gneiss
BSMD094	36.5	37.5	1.0	0.0	Gneiss
BSMD095A	10.8	11.0	0.3	1.1	Saprolith
BSMD095A	11.0	11.7	0.7	2.5	Saprolith
BSMD095A	11.7	12.5	0.7	3.6	Saprolith
BSMD095A	12.5	13.2	0.7	4.0	Saprolith
BSMD095A	13.2	13.5	0.4	4.4	Saprolith
BSMD095A	13.5	14.5	0.9	3.8	Saprolith
BSMD095A	14.5	15.1	0.6	3.6	Saprolith
BSMD095A	15.1	16.3	1.2	4.1	Saprolith
BSMD095A	16.3	17.1	0.8	2.3	Saprolith
BSMD095A	17.1	18.0	0.8	1.7	Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD095A	18.0	18.5	0.5	4.4	Saprolith
BSMD095A	18.5	19.0	0.5	2.1	Saprolith
BSMD095A	19.0	19.6	0.5	0.5	Saprolith
BSMD095A	19.6	20.4	0.8	6.8	Saprolith
BSMD095A	20.4	20.9	0.5	10.9	Saprolith
BSMD095A	20.9	21.6	0.7	11.3	Saprolith
BSMD095A	21.6	22.3	0.7	10.5	Saprolith
BSMD095A	22.3	23.4	1.1	7.6	Saprolith
BSMD095A	23.4	24.4	1.0	13.5	Saprolith
BSMD095A	24.4	25.0	0.6	8.4	Saprolith
BSMD095A	25.0	25.7	0.7	5.6	Saprolith
BSMD095A	25.7	26.2	0.5	5.8	Saprolith
BSMD095A	26.2	26.5	0.3	0.0	Saprolith
BSMD095A	26.5	27.4	0.9	0.3	Saprolith
BSMD095A	27.4	28.3	0.8	0.0	Dolerite
BSMD095A	28.3	29.1	0.9	0.0	Dolerite
BSMD095A	29.1	29.9	0.8	0.0	Dolerite
BSMD095A	29.9	30.8	0.8	0.0	Dolerite
BSMD095A	30.8	31.6	0.9	0.1	Dolerite
BSMD095A	31.6	32.2	0.6	6.4	Saprolith
BSMD095A	32.2	33.0	0.9	5.8	Saprolith
BSMD095A	33.0	33.8	0.8	4.9	Saprolith
BSMD095A	33.8	34.7	0.8	4.0	Saprolith
BSMD095A	34.7	35.5	0.8	3.3	Saprolith
BSMD095A	35.5	37.1	1.7	4.6	Saprolith
BSMD095A	37.1	38.1	0.9	6.1	Saprolith
BSMD095A	38.1	39.0	0.9	6.4	Saprolith
BSMD095A	39.0	40.1	1.1	6.6	Saprolith
BSMD095A	40.1	40.5	0.5	6.0	Saprolith
BSMD095A	40.5	41.3	0.8	6.7	Saprolith
BSMD095A	41.3	42.0	0.7	4.8	Saprolith
BSMD095A	42.0	42.8	0.7	4.2	Graphitic Gneiss
BSMD095A	42.8	43.4	0.6	3.4	Graphitic Gneiss
BSMD095A	43.4	44.0	0.7	2.9	Graphitic Gneiss
BSMD095A BSMD096	5.8	6.4	0.6	0.2	Saprolith
BSMD096	6.4	7.1	0.7	1.5	Saprolith
BSMD096	7.1	7.6	0.5	3.6	Saprolith
BSMD096	7.6	8.1	0.5	3.8	Saprolith
BSMD090 BSMD096	8.1	8.8	0.7	3.4	Saprolith
BSMD090	8.8	9.6	0.8	1.5	Saprolith
BSMD090 BSMD096	9.6	10.3	0.7	2.1	Saprolith
BSMD090	10.3	11.1	0.7	0.1	Saprolith
BSMD090	11.1	12.0	0.9	1.0	Saprolith
BSMD090 BSMD096	12.0	12.0	0.7	0.8	Saprolith
BSMD090	12.0	13.1	0.4	0.9	Saprolith
BSMD090 BSMD096	13.1	13.1	0.4	1.5	Saprolith
	14.0	1/1 6	0.6	0.2	Dolarita
BSMD096 BSMD096	14.0 14.6	14.6 15.2	0.6	0.2 1.4	Dolerite Saprolith

Drill hole ID	From (m)	To (m)	Interval (m)	TGC (%)	Lithology
BSMD096	15.8	17.3	1.5	0.0	Dolerite
BSMD096	17.3	19.0	1.6	0.0	Dolerite
BSMD096	19.0	19.6	0.6	3.6	Saprolith
BSMD096	19.6	20.5	0.9	3.5	Saprolith
BSMD096	20.5	21.4	0.9	1.9	Saprolith
BSMD096	21.4	22.3	0.9	2.0	Saprolith
BSMD096	22.3	23.3	1.0	4.4	Graphitic Gneiss
BSMD096	23.3	24.3	0.9	1.6	Graphitic Gneiss
BSMD096	24.3	26.2	2.0	0.0	Dolerite
BSMD096	26.2	28.0	1.8	0.0	Dolerite
BSMD096	28.0	29.7	1.8	0.5	Dolerite
BSMD096	29.7	30.2	0.5	2.6	Graphitic Gneiss
BSMD096	30.2	30.8	0.5	3.2	Graphitic Gneiss
BSMD096	30.8	31.3	0.6	3.5	Graphitic Gneiss
BSMD097	0.0	0.8	0.8	9.6	Saprolith
BSMD097	0.8	1.3	0.5	2.8	Saprolith
BSMD097	1.3	2.0	0.8	16.1	Saprolith
BSMD097	2.0	3.5	1.5	1.4	Saprolith
BSMD097	3.5	3.7	0.2	8.0	Saprolith
BSMD097	3.7	4.3	0.6	7.1	Saprolith
BSMD097	4.3	4.7	0.4	3.8	Saprolith
BSMD097 BSMD097	4.7	5.4	0.4	8.2	Saprolith
BSMD097 BSMD097	5.4	6.3	0.8	7.1	Saprolith
BSMD097 BSMD097	6.3	7.2	1.0	5.4	•
					Saprolith
BSMD097	7.2	8.3 9.4	1.0	7.4 3.2	Saprolith
BSMD097	8.3	-	1.1		Saprolith
BSMD097	9.4	10.4	1.0	3.8	Saprolith
BSMD097	10.4	11.0	0.7	4.2	Saprolith
BSMD097	11.0	12.0	1.0	2.3	Saprolith
BSMD097	12.0	13.6	1.6	5.0	Saprolith
BSMD097	13.6	14.2	0.7	5.5	Saprolith
BSMD097	14.2	15.0	0.8	3.6	Saprolith
BSMD097	15.0	15.9	0.9	2.8	Saprolith
BSMD097	15.9	16.6	0.7	3.2	Saprolith
BSMD097	16.6	17.5	0.9	2.1	Saprolith
BSMD097	17.5	18.5	1.0	3.6	Graphitic Gneiss
BSMD097	18.5	19.4	0.9	2.5	Graphitic Gneiss
BSMD097	19.4	20.3	0.9	2.3	Graphitic Gneiss
BSMD097	20.3	22.5	2.2	0.0	Dolerite
BSMD097	22.5	24.3	1.8	0.0	Dolerite
BSMD097	24.3	26.6	2.3	0.0	Dolerite
BSMD097	26.6	28.2	1.6	0.0	Dolerite
BSMD097	28.2	30.1	1.9	0.0	Dolerite
BSMD097	30.1	32.0	1.9	0.0	Dolerite
BSMD097	32.0	32.6	0.7	2.8	Graphitic Gneiss
BSMD097	32.6	33.5	0.9	2.1	Graphitic Gneiss

JORC CODE, 2012 EDITION – TABLE 1

Discussion and results within this appendix relate to Mahefedok Deposit.

Section 1 Sampling Techniques and Data

Criteria	Commentary
Sampling techniques	 Diamond drilling was used to obtain NTW size core, with the core split (either manually hand split or sawn using a circular saw) 50:50 to collect samples in 1-metre intervals. Samples were taken along the depth intervals and lithological sub-division mark-ups to gather representative samples. Visual estimation of graphite percentages and flake sizes have been used to define mineralization prior to sampling and assaying. Whole core samples were removed for bulk density testing before splitting and sampling. Upon completion of bulk density measurements, the whole core samples were placed back. Samples were collected within lithological sub-divisions only and not across geological boundaries A total of 3,033 samples were taken from 2,961 meters of diamond drilling (1,869m in 2017 and 1,092m in 2019) at the Mahafedok deposit. BSMD095 was not used in the updated Mineral Resource Estimation due to poor recovery and was re-drilled as BSMD095A. Samples were collected and included composite samples of the graphite bearing host rocks. Visual estimation of graphite percentages and flake sizes have been used to define mineralisation prior to return of assays. The samples were oven dried, crushed to -2mm, split twice through a 50/50 riffle splitter to obtain a representative subsample, weighing between 100-150g and then pulverized that 85% pass -75µm. The pulp samples were sent to the Bass Metals in-house laboratory for preliminary Fixed Carbon (FC) analysis and to a SANAS accredited laboratory (SGS) in South Africa for Graphitic Carbon (GC), Total Carbon (TC) and Sulphur (S) analysis.
Drilling techniques	Conventional wireline diamond drilling was used to obtain all drill core and drilling was undertaken with an EP200 man portable drilling rig. The nominal core diameter was 56.2 mm (NTW). Coring was completed with appropriate diamond impregnated tungsten carbide drilling bits. Drill holes were inclined at -60 °, direction East and three drill holes were drilled vertical -90 °. The core was not orientated as the material recovered was predominantly soft saprolitic material not conducive to orientation.
Drill sample recovery	At the completion of each drill run the steel splits containing the core were pumped out of the retrieved core tube. Core was then carefully transferred from the core barrel into plastic sleeves, which were transferred to core trays for recovery measurements and calculations recorded by both the driller and the Company geologist. Drilling, orientated perpendicular to the orebody, was conducted with specific drilling mud additives to aid drill hole wall integrity, along with slow drilling rates to maximize sample recovery and ensure representative nature of the samples. An overall core recovery of >90% was achieved for all sampled core. One drill hole BSMD095 was re-drilled due to poor core recovery and/or core loss within mineralisation zones. There is no known relationship that exists between sample recovery and grade at this time. Inconsequential sample bias would have occurred due to preferential loss/gain of fine/coarse material.
Logging	Drill core were geologically logged, and the recording of relevant data was captured on Bass Metals logging templates. All data was codified to a set company codes system as per sampling and logging procedures, which are in place. This offers sufficient detail for the purposes of geological interpretation, further studies and resource estimation where continuity of the orebody needs to be proved and understood. All logging included lithological features, estimates of graphite percentages and flake

Sub-sampling techniques and sample preparation	sizes, which is quantitative and is recorded on the logging sheets. All drill core was photographed prior to geological logging and after sampling and images were digitally catalogued. Photographs have been taken as a qualitative check on logging when the need arises. All drill core intersections (100%) were logged by experienced, competent geoscientists are considered to be reliable and reproducible semi-quantitative estimates of the abundance of minerals present in samples when referenced to past drilling assay data and current mining operations undertaken by the Company in the same style of mineralisation. The NTW core was manually hand split and where appropriate sawn to produce half core (50:50) samples. All equipment was cleaned according to best practise procedures prior to cutting and sampling. Appropriate and documented techniques were used to collect samples in 1-metre intervals. Samples were taken along the depth intervals and lithological sub-division mark-ups to gather representative samples. The samples were oven dried, crushed to -2mm, split twice through a 50/50 riffle splitter to obtain a representative sub-sample, weighing between 100-150g and then pulverized that 85% pass -75µm. The pulp samples were sent to the Bass Metals in- house laboratory for preliminary Fixed Carbon (FC) analysis and to a SANAS accredited laboratory (SGS) in South Africa for Graphitic Carbon (GC), Total Carbon (TC) and Sulphur (S) analysis. Certified graphite standards (GC-09 and GC-11) and silica blanks (AMIS0484 and AMIS0439) and duplicates (a second sample of the same interval) were inserted with the dispatch of the samples to the SANAS accredited laboratory (SGS) in South Africa.
	The insertion rate of standards/blanks were 1 in 20, and duplicates were 2 in 100. The SANAS Laboratory will insert check samples (blanks, standards and duplicates) to maintain QAQC standards.
	Samples were analysed at the Bass Metals in-house laboratory for a preliminary evaluation of the carbon grade. The Muffle Furnace method was used to determine Loss on Ignition (LoI), Volatile Matter (VM) and Fixed Carbon (FC). LoI Test: a crucible is placed on an electronic balance, primarily zeroed and the weight recorded. 1 gram +- 0.01 of the sample are added, the weight of crucible + sample are recorded. The crucible is placed in the Muffle Furnace at 950°C +-25°C for 8 hours continuously. After the crucible is removed and cooled, the ash + crucible is then weighed and recorded. The LoI % is calculated as follows: LOI % = $(1 - \frac{\text{Weight of ash}}{\text{Weigh of original sample}}) \times 100$
Quality of assay data and laboratory tests	VM Test: a crucible is placed on an electronic balance, primarily zeroed and the weight recorded. 2 grams +- 0.01 of the sample are added, the weight of crucible + sample are recorded. The crucible is placed in the Muffle Furnace at 950°C +- 25°C for 7 minutes. After the crucible is removed and cooled, the ash + crucible is then weighed and recorded. The VM % is calculated as follows: V M % = $(1 - \frac{\text{Weight of ash}}{\text{Weigh of original sample}}) \times 100$
	The FC % of the sample is calculated as follows: FC % = (LOI % - VM %)
	Analysis by the SANAS Accredited Laboratory (SGS) in South Africa may include sub- sample preparation included sorting and pulverizing such that 80% of the sample is -75 micron or less in size. A split of the sub-sample will be analysed using a LECO Analyser to determine Total Carbon (TC), Sulphur (S) and Graphitic Carbon (GC) contents (these are considered both partial and total digestion analyses). For TC and S, a stream of oxygen passes through a prepared sample (2g), it is heated in a furnace to approximately 1350°C and the sulphur dioxide and carbon dioxide released from the sample are measured with infrared detection. For GC, a 0.2g sample is leached with dilute hydrochloric acid to remove inorganic carbon. After filtering, washing and drying, the remaining sample residue is roasted at

	425°C to remove organic carbon. The roasted residue is analysed for Carbon - High temperature LECO furnace with infra-red detection.
	Internal Laboratory check samples (blanks, standards and duplicates) are also analysed as per normal laboratory practice.
	All in-house and laboratory standards, blanks and duplicate results were reviewed. Performance of the accredited laboratory (SGS) across all assay batches were within acceptable tolerance levels.
	All work was completed by Bass Metals personnel. Significant mineralization intersections were verified by an external consultant and by internal peer review. No twinned holes were drilled.
Verification of sampling and assaying	All data was collected initially on paper log sheets by Bass Metals personnel. This data was hand entered into spreadsheets and validated by an external consultant. All paper log sheets were scanned, and electronic spreadsheets stored together with the photographs of the geological features logged.
	The master collar, geotechnical, density, lithology and assay database with all photographs are backed-up and stored on an external hard drive. No adjustments were made to the data.
Location of data points	DGPS's were used to locate collar locations, and final location coordinates were completed with estimated positional errors between 15 and 30 centimetres. The WGS84 UTM Zone 39S projection system is used at the Mahafedok Project.
Data spacing and distribution	Collars were spaced along a 50m and infilled at 25m on an orientated grid, with drill hole inclination and strike aligned perpendicular to the orebody orientation. The data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Sample compositing has not been applied.
Orientation of data in relation to geological	Drilling was approx. orientated perpendicular to the estimated dip and strike of the mineralization to limit bias. Drill holes were inclined at -60 °, direction East and three drill holes were drilled vertical -90 °.
structure	Subsequent samples are deemed to be unbiased in terms of known structures and the deposit type.
Sample security	Samples were stored in a secure storage area at the Bass Metals sample storage facility. Samples bags were sealed as soon as sampling was completed and stored securely until dispatch to the preparation laboratory in Antananarivo and after to the laboratory (SGS) in South Africa via courier.
Audits or reviews	The sampling techniques and data were reviewed by an external consultant and internally peer reviewed. It is considered by the Company that industry best practice methods have been implemented by the Company at all stages of exploration.

Section 2 Reporting of Exploration Results

Criteria listed in the preceding section also applies to this section.

Criteria	Commentary
Mineral tenement and land tenure status	Exploitation permit no PE 26670 is located in the Toamasina Province of Madagascar and held by the Malagasy company, Graphmada SARL which is a wholly owned subsidiary of the ASX listed company, Bass Metals Ltd. Permit no PE 26670 was granted on 21/01/2008 and is valid for 40 years. The permit is in good standing, and all statuary approvals are in place to conduct exploration and exploitation activities throughout this permit area, including mining.
Exploration done by other parties	Mahefedok – Prior to the Company's ownership, Graphmada SARL excavated 4 pits in the northern part of the Mahefedok Deposit in 2013, which revealed significant regolith- hosted graphite mineralization at depth. These pits were excavated over a north-south distance (and along strike of the Mahefedok Orebody) of approx. 70 meters and Graphmada's in-house laboratory analysis of the pit samples returned up to 3 m @ 7.04 % Total Carbon (TC).

	In 2015, Stratmin Global Resources PLC, through its subsidiary Graphmada SARL, collected 34 outcrop samples over PE 26670. Also, in 2015 ground magnetic, self-potential, induced polarization and electric resistivity surveys were completed and 75 pits (up to depths of 5.9m) and 6 trenches (up to depths of 6.0m) were excavated over the Mahefedok Deposit. For the ground magnetic survey, a Geotron GS magnetometer was used and readings were recorded every 10 m in nanotesla (nT). A base station was set-up using a second Geotron GS magnetometer and readings were recorded every 30 seconds in nT. Diurnal drift corrections were completed using Geotron Dump GS software. The corrected ground magnetic data were processed (including, gridding, filtering, and contouring) using Encom DiscoverTM (v12) software. The processing methodology involved gridding the diurnally corrected data using the Inverse Distance Weighting (IDW2) interpolation algorithm (to the power of 2), a search distance of 200 m and a spatial resolution / cell size of 5 m. Filtering involved the application of a 3x3 cell averaging filter and contouring was at an interval of 25 m. For the ground self-potential (SP) survey a pair of non-polarising electrodes (e.g. IRIS copper-sulphate pots), a reel of insulated wire and a high impedance voltmeter were used. Procedures for SP surveys involved a series of parallel lines orientated perpendicular to the strike direction of the anticipated mineralization and spaced to suit the required resolution. For the Mahefedok surveys, line and station spacing was 10 m and the survey base there were two corrections: the drift correction, and the base erocedure. Data at each station relative to the survey base there were to corrections stell with any solute voltage of a station relative to the survey base there were used. Procedures for TP/ERT surveys involve a series of insecting user station or a line was determined by adding the normal voltage that station to the appropriate drift and tie-in correction. The absolute voltage f
	<150 microns). The Company is currently mining the Mahefedok North Pit having estimated a Maiden
Caalagu	Mineral Resource of 3.5 Mt at 4.2% Total Graphitic Carbon (TGC) in June 2017. Crystalline "hard rock" flake graphite deposits occur in graphitic gneisses within
Geology	Neoproterozoic metasedimentary type rocks and include accessory minerals of biotite $(\pm \text{ sillimanite } / \text{ kyanite, } \pm \text{ garnet}).$ Due to the tropical climate and because graphite is comparatively inert, weathering of
L	the "hard rock" graphitic gneiss units further concentrate the graphite to form residual

	regolith-hosted accumulations within the weathered profile. Regolith refers to weathered material that occurs above unweathered bedrock. Two primary subdivisions are the pedolith (PED) and the saprolith (SAP). Secondary subdivisions of the pedolith, from the surface downwards, include soil (SL), ferruginous zone (FZ), and the mottled zone (MZ). Secondary subdivisions of the saprolith, include saprolite (SP) and saprock (SR). The Mahafedok deposit contains 3 broad north-south striking graphite mineralisation zones; the northern zone has a strike length of approximately 500 m, the centre zone approximately 850 m, and the southern zone approximately 300 m for a cumulative strike of approximately 1,650 m. The deposit dips to the west at between 30° and 45°. It consists up to seven lenses in the northern and central zones of the deposit, and three in the southern zone. Individual lenses are nominally between 2 m and 14 m in true thickness.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of visually logged data is supplied in the above announcement.
Data aggregation methods	Samples has been reported as in-situ Total Graphitic Carbon (TGC) grades as analysed by the SANAS accredited (SGS) laboratory in South Africa. No Metal Equivalents have been stated.
Relationship between mineralisation widths and intercept lengths	The mineralization is hosted within a weathered regolith profile and the main mineralized lenses / horizons dip towards the west at between 30° and 45°. Only the down hole lengths are reported - true width has not been estimated and tables have been annotated in the above announcement.
Diagrams	This information has been accurately represented in the announcement and contains all relevant information required for the reader to understand the nature of the graphitic mineralization.
Balanced reporting	The Company believes logging, sampling, estimation and reporting by experienced, competent geoscientists are considered to be reliable and reproducible. A table of all the samples and relevant information such as grades used in the Mineral Resource estimation is contained within the Appendices.
Other substantive exploration data	Previous exploration by the Company has demonstrated widespread mineralization at Mahefedok, with mining now underway at Mahefedok. Please reference ASX releases: 03/06/19 'Significant Exploration Program to commence at Graphmada.' 09/04/19 'Bass progresses exploration at Graphmada Graphite Mine.' 14/12/19 'Bass completes Capital Raising for Expansion and Drilling.'
Further work	Further exploration will be planned across the deposit, in addition to further work in estimating flake size distribution and metallurgical testing.

Section 3 Estimation and Reporting of Mineral Resources

Criteria	Commentary
Database Integrity	Data provided for use in the Mineral Resource estimate (MRE) is stored in MS Excel spreadsheets by Bass Metals. Supporting data in the form of pdf format laboratory certificates, pdf format geological logging sheets and survey reports have also been provided. Bass has conducted random checks of the assay data against the pdf laboratory certificates and has found no import errors. Random comparisons of the geological data against the provided logging sheets also showed no errors. Validation of the data import included checks for overlapping intervals, missing survey data, missing assay data, missing lithological data, and missing collars. No significant issues were found in this validation process.
Site Visits	The Competent Person has frequently visited the project site and is familiar with the extents of the surface expression of the modelled mineralization.
Geological Interpretation	The geology and mineral distribution of the system appears to be reasonably consistent in 3 broad zones of nominally north-south striking, westward dipping, graphite mineralized lenses, separated by apparent structural breaks as shown by the diagrams in the body of this announcement. The mineralization has been intersected by trenching, diamond and

	auger drilling, and a test pit has been mined over a portion of the mineralization in the north of the deposit. The interpreted graphite mineralized zones broadly coincide with lows in the ground magnetics modelling. Drill hole intercept logging and sample analysis results have formed the basis for the mineralization domain interpretation. Assumptions have been made on the depth and strike extent of the mineralization based on the available drill hole and geophysical data. The extents of the modelled zones are constrained by the available trench and drill data and the geophysical data. Alternative interpretations are unlikely to have a significant influence on the global MRE. An overburden layer of roughly one metre thickness of soil has been modelled based on drill logging and is depleted from the model. The base of the pedolith, base of saprolite, and top of fresh rock weathering boundary surfaces have been modelled based on the drill logging. The mineralization lens interpretation is based on a nominal 3% TGC lower cut-off grade. The graphite mineralization at this grade cut-off has been recognized by on site geological staff, with their visual grade range estimates of graphite content fairly well correlating with analysis results. Continuity of geology and grade can be identified and traced between drill holes by visual, geological and geochemical characteristics. Additional data is required to more accurately
	model the effect of any potential structural or other influences on the down dip and strike extents of the defined mineralized geological units. Confidence in the grade and geological continuity is reflected in the Mineral Resource classification.
Dimensions	The northern zone of the deposit has a strike length of roughly 500 m, the centre zone a strike length of approximately 850 m, and the southern zone about 300 m strike length for a cumulative strike of roughly 1,650 m. The interpreted mineralization in the deposit dips to the west at between 30° and 45°. It consists of up to seven lenses in the north and central zones of the deposit, and three in the southern zone. Individual lenses are nominally between 2 m and 14 m in true thickness as shown in the diagrams in the body of this announcement. The mineralization is nominally extrapolated 50m along strike and down dip based on the available drill, trench and geophysical data. Maximum interpreted depth below the topographic surface is roughly 70 m.
Estimation and modelling techniques	The mineralization has been estimated using Ordinary Kriging (OK). The northern and central zones of the deposit each consist of seven individual solid wireframes, that have been grouped into four mineralization units for estimation purposes, based on being contained within four separate lower grade mineralization halos. The southern zone of the deposit consists of three separate solid mineralization wireframes, each separately estimated. Drill hole samples were selected from within each lens and grouped appropriately for data analysis. Statistical analysis was completed for each lens or lens grouping to determine if any outlier grades required top-cutting. The statistical analysis using summary statistics, histograms and probability plots were completed. Based on the low coefficient of variation and no significant outlier grades being noted in the populations, no top cuts were deemed to be required. An inverse distance weighting to the power of two (IDW) grade estimate was completed concurrently with the OK estimate in a number of estimation runs with varying parameters. Block model results were compared against each other and the drill hole results to ensure an estimate that best honours the drill sample data is reported. A small trial mining pit was dug in the north east of the deposit, for metallurgical and plant testing purposes, with the reported head grade of 4.1% FC being very similar to the mined block grades in this area. The trial mining pit volume is depleted from the model. No mining assumptions have been made in respect of the MRE, other than confirming the confidence in classification, having current mining and processing operations in the area. The mining pit volume is depleted from the model. No other elements have been estimated. Interpreted domains are built into a sub-celled block model with a 25m N by 5m E by 3m RL parent block size. Search ellipsoids for each lens or lens grouping have been separately orientated based on their overall geometry. The search ellipsoid dimensions have been est

	have been reduced for each search pass, with the search ellipsoid doubled for the second search pass and increased 20 fold on the third search pass to ensure all blocks were estimated.
	In the grade estimate, soft boundaries have been employed within the separate lens groupings, and hard boundaries are used between separate lens groupings and also between the remaining lenses.
	Validation checks included statistical comparison between drill sample grades, the OK estimate and the IDW estimate for each mineralization lens or lens grouping. Visual validation of grade trends along the drill sections was completed and trend plots comparing the drill sample grades and model grades for northings, eastings and elevation were completed. These checks show a reasonable correlation between estimated block grades for each estimation method and with the drill sample grades. No reconciliation of model grade with the trial mining pit has been completed, however the visual comparison of the model grades around the pit show a similar grade tenor to the
	reported average head grade of the material from the pit.
Moisture	Tonnages have been estimated on a dry, in-situ basis, due to the analysis being completed on dry samples. Density measurements have been completed by means of the caliper method with samples measured and weighed both wet and after drying. Based on a comparison of the mean wet versus dry density, the fully weathered materials contain roughly 15 weight percent moisture, with the transitional material containing roughly 10 and the fresh rock roughly less than 5 weight percent moisture.
Cut-off parameters	Statistical analysis of the raw un-domained sample analysis results showed two reasonable potential mineralization population cut-off grade interpretation values at 2% and 3% TGC respectively. The initial mineralization interpretation was completed at the statistically based 2% lower cut-off grade. A test estimate then demonstrated that low grade smearing was overwhelming the higher grade zones, resulting in a poor grade estimate that did not adequately honour the drill sample data. The mineralization was then reinterpreted based on a nominal 3% TGC lower cut-off grade within the broader 2% lower grade halo. Based on analysis of the visual grade estimate logging by on site geologists, and visual analysis of the drill core photography, the statistically based 3% mineralization threshold appears to be more sensible and practical from a potential future mining perspective, as mineralization lenses are generally recognizable around and above this level. Reasonable strike and sectional continuity was found when defining the mineralization lenses at the 3% TGC threshold. Test modelling at the 3% cut-off showed the grade estimates better honouring the drill data, and this was then selected as the most appropriate mineralization cut-off grade to complete the MRE.
Mining factors or assumptions	It has been assumed that these deposits will be amenable to the open cut mining methods already being deployed in the area and are economic to exploit to the depths currently modelled. No assumptions regarding minimum mining widths and dilution have been made.
Metallurgical factors or assumptions	Flotation tests were carried out on samples from the Mahefedok trial mining pit by Independent Metallurgical Operations of Perth during 2016. These tests confirmed that a range of concentrates with overall grades between approximately 83-96% Total Carbon, with approximately 50-60% of the flakes larger than 150 µm could be produced depending on process parameters. The best overall Total Carbon grade (TC) of 96% was achieved using IMO's standard graphite processing flowsheet (test BAS10), which includes rougher flotation, followed by several regrind and cleaner flotation stages. Recoveries ranged from approximately 75-92%. The flake size distribution and purity are considered by the Competent Person (industrial minerals) to be favourable for product marketability. A concentrate sample was submitted to Dorfner ANZAPLAN of Germany for analysis. The particle size distribution was concluded to be coarse, with approximately 70% of the sample larger than 180 micron. The main chemical impurities were Si, Al and Fe, which is consistent with quartz and clay impurities, verified by XRD analysis. ANZAPLAN concluded that the concentrate had potential for use in foundry, crucible and refractory applications due to: high resistance against oxidation; low LOI at 420°C, no carbonates such as calcite and dolomite being identified, along with no other fluxes of any significance; and low Sulphur (SO3) content at 0.02 wt% Bass has mined and sold product produced from the MRE area. The concentrates are sold into traditional and specialty carbon markets throughout Europe, China, India and USA.

Environmental factors or assumptions	No assumptions regarding waste and process residue disposal options have been made. It is assumed that such disposal will not present a significant hurdle to exploitation of the deposit and that any disposal and potential environmental impacts would be correctly managed as required under the regulatory permitting conditions and as per current operational methods.
Bulk Density	In situ dry bulk density values have been applied to the modelled mineralization based on the mean measured values for each of the weathering zones. Density measurements have been completed by means of the calliper method for each of the modelled weathering state domains and from within the mineralized material and surrounding waste. The mean density measurements, all in t/m3, for mineralization were:, 1.8 in the saprolite, 2.0 in the saprock and 2.4 in the bedrock graphitic gneiss. It is assumed that use of the mean measured density for each of the different weathering zones is an appropriate method of representing the expected dry bulk density for the deposit.
Classification	Classification of the MRE was carried out taking into account the level of geological understanding of the deposit, quality of samples, density data and drill hole spacing and current mining operations. The MRE has been classified in accordance with the JORC Code, 2012 Edition using a qualitative approach. All factors that have been considered have been adequately communicated in Section 1 and Section 3 of this Table. Overall the mineralization trends are reasonably consistent over numerous drill sections. The MRE appropriately reflects the view of the Competent Person.
Audits or reviews	Internal audits were completed by experience geoscientists, which verified the technical inputs, methodology, parameters and results of the estimate. No external audits have been undertaken.
Discussion of relative accuracy / confidence	The relative accuracy of the MRE is reflected in the reporting of the Mineral Resource as per the guidelines of the 2012 JORC Code. The Mineral Resource statement relates to global estimates of in situ tonnes and grade.