

14th JANUARY 2020

NEW DISCOVERY CONFIRMED 2KM SOUTH OF SEKO WITH DRILLING RETURNING 37m at 3.24g/t GOLD and 29m at 3.52g/t GOLD

HIGHLIGHTS

- ► Assay results received from 14 step out RC holes located to the immediate south of Seko.
- ► Significant gold mineralisation confirmed at the Koko prospect (formerly known as Sory). Significant intersections include:
 - ► 37m at 3.24g/t gold from 11m including;
 - ▶ 12m at 5.14g/t gold from 15m, and
 - ► 4m at 7.48g/t gold from 37m
 - ▶ 29m at 3.52g/t gold from 36m including;
 - ▶ 9m at 5.60g/t gold from 38m, and
 - ▶ 3m at 9.56g/t gold from 42m, and
 - ➤ 3m at 10.13g/t gold from 50m
- ▶ The Company is mobilising another drill rig to test the 2km zone extending from SK1 to Koko with drilling to commence at the end of the week. Ongoing drilling success at Koko could materially influence the outcome of the maiden Mineral Resource estimate scheduled for completion in Q2 2020.
- ▶ Steady flow of new results expected over coming weeks from resource definition drilling at Seko, including; assay results for the remaining 11 holes from the shallow AC/RC program, first results from the follow-up deeper RC and DD resource drilling program and the expanded program over the northern part of SK1 where **47m** at **10.95g/t gold** from 48m was recently reported¹.

"The widths and grade of mineralisation intersected from Koko are comparable to the early drill results received from Seko and demonstrate that there is excellent potential to materially grow the Seko footprint. We also remain optimistic that the host 12km-long Dandoko gold corridor will continue to deliver further discoveries.

The 2km zone separating Koko from Seko is now a high priority target and we are mobilising another drill rig to test this zone. In the meantime, we look forward to reporting the remaining assay results (11 holes) from the shallow drill program, and first results from the follow-up drilling at SK1 and the deeper RC and DD drilling at the other Seko trends." - commented Oklo's Managing Director, Simon Taylor.

¹ Refer ASX Announcement of 20 November 2019, "Spectacular Hit of 10.97g/t Gold from Seko"

Oklo Resources Limited ("Oklo" or "the Company") is pleased to announce further assay results from the 10,000m drilling program currently in progress at Seko and surrounds within the Company's flagship Dandoko Project. The drilling program, comprising aircore (AC), reverse circulation (RC) and diamond core (DD) drilling, is the precursor to a maiden Mineral Resource estimate scheduled for completion early in Q2 2020.

Oklo's Dandoko Project is located within the Kenieba Inlier of west Mali, approximately 30km east of B2Gold's 7.1Moz Fekola Project and 50km south-southeast of Barrick's 12.5Moz Loulo Project (Figure 1(a)). The Company currently holds ~500km² of highly prospective ground in this emerging world-class gold region.

Extensive gold anomalies have previously been outlined by auger drilling along the 12km-long Dandoko gold corridor (Figure 1(b)). The potential of this corridor to host large, gold mineralised systems has been demonstrated by the recent drilling success at Seko and several other nearby prospect areas.

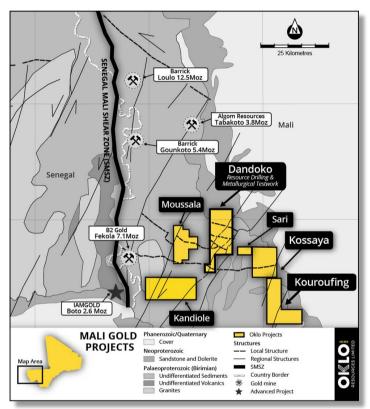


Figure 1(a): Location of Oklo's gold projects in west Mali.

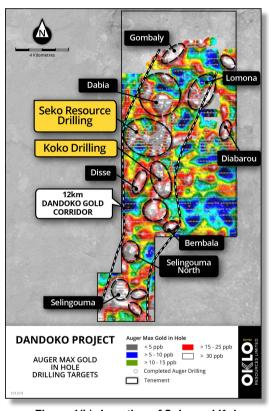


Figure 1(b): Location of Seko and Koko within the Dandoko gold corridor

DRILLING

Oklo's current field program is focusing on infill drilling and closing off areas of near surface mineralisation at Seko anomalies 1-5 and surrounding areas in advance of a maiden Mineral Resource estimate. Seko comprises five coherent auger gold trends (SK1-5) with a combined strike length of ~7km.

The initial phase of shallow AC and RC drilling was recently completed (57 holes for 5,045m) testing the gold mineralisation to depths averaging 85m and up to 184m. The deeper RC and DD drilling phase is currently in progress using a more powerful rig.

This announcement summarises assay results received from 14 RC holes drilled at the Koko prospect (formerly known as Sory) located to the immediate south of Seko. All holes were drilled in a 'heel-to-toe' manner at -55°.

The significant drill hole intersections are summarised in Table 1 and Table 3. All drill hole locations are summarised in Table 2 and are graphically represented in Figures 2 - 4.

KOKO DRILLING

The Koko prospect is located approximately 2km south of Seko (Figure 3) and was identified from Oklo's reconnaissance auger drilling program that successfully outlined the 12km-long Dandoko gold corridor (Figure 1 (b)).

Oklo previously reported significant intersections from wide-spaced reconnaissance AC and first pass RC drilling over this prospect including **5m at 2.82g/t gold** from 49m, **5m at 2.27g/t gold** from 14m, **44m at 1.37g/t gold** from 33m and **35m at 1.00g/t gold** from 19m².

As part of the current drilling program, 14 holes tested these previously reported intersections including potential extensions towards the Seko gold system. Eight of these holes were drilled at Koko with a further six holes completed at Koko North.

The best intersections were returned from section 1394440mN at Koko – A-A' (Figure 4). In particular, hole RCSR19-123 intersected numerous zones of gold mineralisation including;

- ▶ 37m at 3.24g/t gold from 11m, including
 - ▶ 12m at 5.14g/t gold from 15m, and
 - ► 4m at 7.48g/t gold from 37m,
- ► 5m at 1.19g/t gold from 50m,
- ▶ 5m at 1.01g/t gold from 79m, and
- ▶ 3m at 1.19g/t gold from 87m with the hole ending in mineralisation.

On the same section, hole RCSR19-124 intersected;

- ▶ 29m at 3.52g/t gold from 36m, including
 - ▶ 9m at 5.60g/t gold from 38m, and
 - ▶ 3m at 9.56g/t gold from 42m, and
 - ▶ 3m at 10.13g/t gold from 50m.

At Koko North, hole RCSR19-118 intersected **3m at 2.50g/t gold** from 57m with the hole ending in mineralisation, and hole RCSR19-122 intersected **1m at 5.03g/t gold** from 13m.

Significantly there is a 2km zone extending from SK1 to Koko that requires further drill testing with the option of mobilising another drill rig to test this zone currently being investigated. Ongoing drilling success at Koko could materially influence the outcome of the maiden Mineral Resource estimate scheduled for completion in Q2 2020.

DRILL RESULTS PENDING

Further assay results are expected in coming weeks for the remaining 11 holes from the shallow AC/RC program, along with first results from the follow-up deeper RC and DD resource drilling program, including the expanded program over the northern part of SK1 where **47m at 10.95g/t gold** from 48m was recently reported³.

² Refer ASX announcements of 22 February 2018, "New Gold Discovery South of Seko" and 19 September 2018 "Final Phase 2 Results Elevate Dandoko Corridor"

Refer ASX Announcement of 20 November 2019, "Spectacular Hit of 10.97g/t Gold from Seko"

Table 1: Summary of significant SK3 drill intersections

AREA	HOLE No.	FROM (m)	TO (m)	WIDTH (m)	GOLD (g/t)
	RC D	RILLING			
KOKO	RCSR19-118	57	60	3	2.50*
NORTH	RCSR19-122	13	14	1	5.03
	RCSR19-123	11	48	37	3.24
	Includes	15	27	12	5.14
	Includes	37	41	4	7.48
		50	55	5	1.19
		79	84	5	1.01
		87	90	3	1.19*
	RCSR19-124	36	65	29	3.52**
KOKO	Includes	38	47	9	5.60
	Includes	42	45	3	9.56
	Includes	50	53	3	10.13
	Includes	64	65	1	5.12
	RCSR19-125	32	36	4	2.28
	RCSR19-126	49	52	3	2.61
	RCSR19-128	9	15	6	1.11
	RCSR19-129	40	42	2	1.30

^{*} hole ended in mineralisation. Intervals are reported using a threshold where the interval has a 0.3g/t Au average or greater over the sample interval and selects all material greater than 0.10g/t Au allowing for up to 2 samples of included dilution every 10m.Sampling was completed as 1m for RC/AC drilling.

** Poor sample recovery was observed at 62-64m and these samples have been given a value of 0.00g/t for the purpose of calculating the interval.

- ENDS -

This announcement is authorised for release by Oklo's Managing Director, Simon Taylor.

For further information, please contact:

Simon Taylor

Managing Director

T: +61 2 8319 9233

E: staylor@okloresources.com

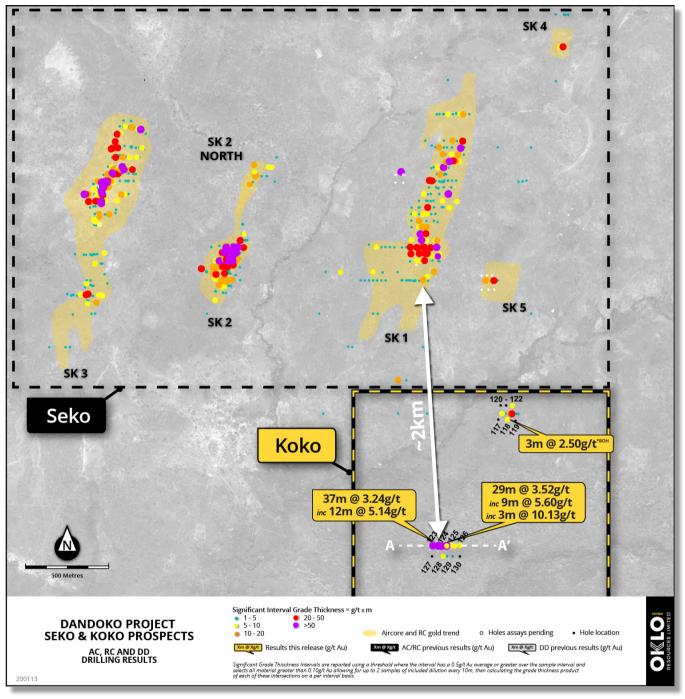


Figure 2: Location of previous and new results from AC, RC and DD drill holes over Seko Anomalies SK1-SK5 and Koko.

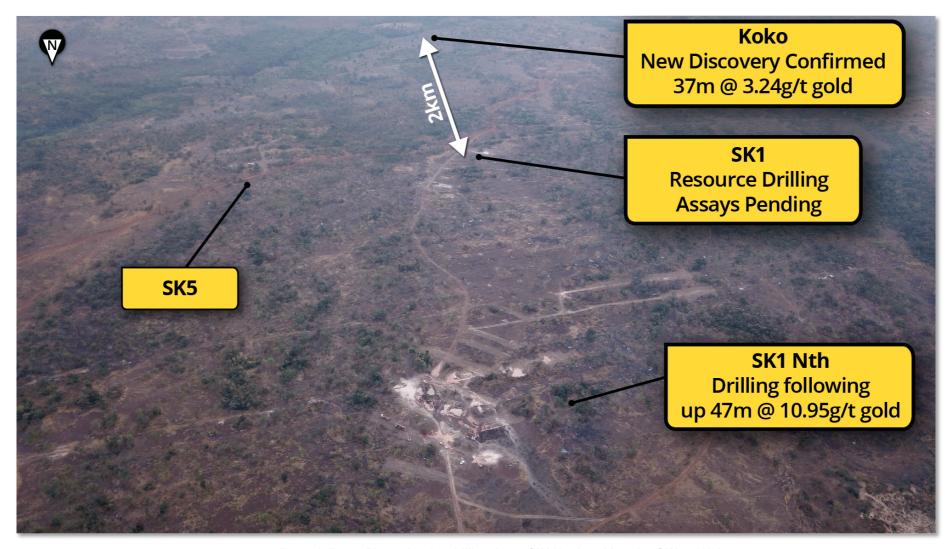


Figure 3: Drone Photo showing drilling rigs at SK1 North and location SK1and Koko.

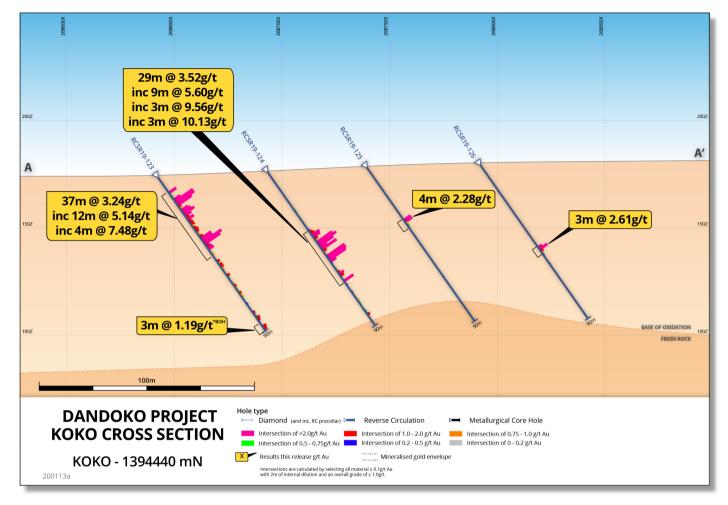


Figure 4: Koko Cross Section A-A', 1394440mN

Table 2: Koko RC drill hole locations

Location	Hole ID	EAST	NORTH	RL	LENGTH	AZI.	INC.
	RCSR19-117	269160	1395361	168	60	90	-55
	RCSR19-118	269202	1395364	170	60	90	-55
КОКО	RCSR19-119	269237	1395363	171	60	90	-55
NORTH	RCSR19-120	269177	1395440	168	60	90	-55
	RCSR19-121	269207	1395439	169	60	90	-55
	RCSR19-122	269239	1395439	170	60	90	-55
	RCSR19-123	268641	1394440	176	90	90	-55
	RCSR19-124	268692	1394440	178	90	90	-55
	RCSR19-125	268738	1394440	180	90	90	-55
коко	RCSR19-126	268791	1394442	181	90	90	-55
KOKO	RCSR19-127	268638	1394360	174	60	90	-55
	RCSR19-128	268688	1394360	176	60	90	-55
	RCSR19-129	268742	1394361	178	60	90	-55
	RCSR19-130	268790	1394360	179	60	90	-55

ABOUT OKLO RESOURCES

Oklo Resources is an ASX listed gold exploration company with a total landholding of 1,405km² covering highly prospective greenstone belts in Mali, West Africa. The Company's current focus is on its West Mali landholding (~405km²), and in particular its flagship Dandoko Project located east of the prolific Senegal-Mali Shear Zone and in close proximity to numerous world-class gold operations. The Company has a corporate office located in Sydney, Australia and an expert technical team based in Bamako, Mali, led by Dr Madani Diallo who has previously been involved in several significant discoveries totalling circa 30Moz gold.

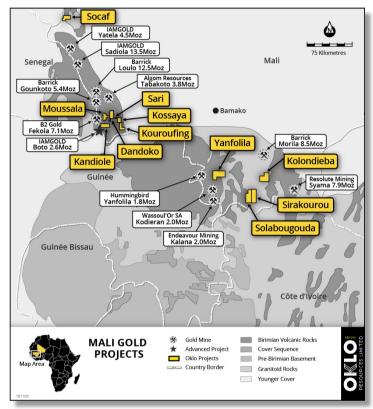


Figure 5: Location of Oklo Projects in West and South Mali

Competent Person's Declaration

The information in this announcement that relates to Exploration Results is based on information compiled by geologists employed by Africa Mining (a wholly owned subsidiary of Oklo Resources) and reviewed by Mr Simon Taylor, who is a member of the Australian Institute of Geoscientists. Mr Taylor is the Managing Director of Oklo Resources Limited. Mr Taylor is considered to have sufficient experience deemed relevant to the style of mineralisation and type of deposit under consideration, and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the 2012 JORC Code). Mr Taylor consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

This report contains information extracted from previous ASX market announcements reported in accordance with the JORC Code (2012) and available for viewing at www.okloresources.com. Oklo Resources confirms that in respect of these announcements it is not aware of any new information or data that materially affects the information included in any original ASX market announcement. The announcements are as follows:

DANDOKO PROJECT:

Announcements dated 21st December 2016, 30th January 2017, 21st February 2017, 3rd March 2017, 7th March 2017, 15th March 2017, 30th March 2017, 6th April 2017, 26th April 2017, 29th May 2017, 21st June 2017, 12th July 2017, 25th July 2017, 14th August 2017, 16th August 2017, 4th September 2017, 28th November 2017, 5th December 2017, 20th December 2017, 5th February 2018, 22nd February 2018, 8th March 2018, 28th March 2018, 3rd May 2018, 16th May 2018, 22nd May 2018, 2nd July 2018, 6th August 2018, 28th August 2018, 3rd September 2018, 19th September 2018, 30th January 2019, 6th March 2019, 15th August 2019, 22nd October 2019, 20th November 2019, 10th December 2019 and 17th December 2019.

Table 3: Koko RC assay results ≥0.10g/t Au

HOLEID	EDOM	TO	Au
HOLE ID	FROM	TO	ppm
RCSR19-118	9	10	0.12
RCSR19-118	44	45	0.39
RCSR19-118	46	47	0.43
RCSR19-118	47	48	1.37
RCSR19-118	48	49	0.35
RCSR19-118	49	50	0.80
RCSR19-118	50	51	0.92
RCSR19-118	51	52	0.88
RCSR19-118	52	53	0.24
RCSR19-118	53	54	0.26
RCSR19-118	54	55	0.49
RCSR19-118	57	58	4.76
RCSR19-118	58	59	1.07
RCSR19-118	59	60	1.68
RCSR19-119	21	22	0.31
RCSR19-119	24	25	0.15
RCSR19-119	55	56	0.10
RCSR19-119	56	57	0.64
RCSR19-119	59	60	0.36
RCSR19-120	17	18	0.71
RCSR19-120	18	19	0.16
RCSR19-120	19	20	0.18
RCSR19-120	29	30	0.15
RCSR19-122	5	6	0.10
RCSR19-122	11	12	0.10
RCSR19-122	12	13	0.14
RCSR19-122	13	14	5.03
RCSR19-122	14	15	0.10
RCSR19-122	15	16	0.25
RCSR19-122	16	17	0.14
RCSR19-122	25	26	0.10
RCSR19-122	26	27	0.10
RCSR19-122	27	28	0.30
RCSR19-122	28	29	0.10
RCSR19-122	29	30	0.13
RCSR19-122	30	31	0.12
RCSR19-123	10	11	0.33
RCSR19-123	11	12	4.01
RCSR19-123	12	13	0.51
RCSR19-123	13	14	0.33
RCSR19-123	14	15	0.61
RCSR19-123	15	16	3.61
RCSR19-123	16	17	13.80

			Au
HOLE ID	FROM	ТО	ppm
RCSR19-123	17	18	11.50
RCSR19-123	18	19	7.90
RCSR19-123	19	20	1.30
RCSR19-123	20	21	0.96
RCSR19-123	21	22	3.69
RCSR19-123	22	23	4.65
RCSR19-123	23	24	5.82
RCSR19-123	24	25	3.41
RCSR19-123	25	26	1.61
RCSR19-123	26	27	3.46
RCSR19-123	27	28	1.33
RCSR19-123	28	29	1.70
RCSR19-123	29	30	1.74
RCSR19-123	30	31	0.98
RCSR19-123	31	32	1.22
RCSR19-123	32	33	1.92
RCSR19-123	33	34	1.39
RCSR19-123	34	35	0.76
RCSR19-123	35	36	0.90
RCSR19-123	36	37	1.68
RCSR19-123	37	38	5.61
RCSR19-123	38	39	5.66
RCSR19-123	39	40	10.00
RCSR19-123	40	41	8.63
RCSR19-123	41	42	1.79
RCSR19-123	42	43	2.48
RCSR19-123	43	44	2.78
RCSR19-123	44	45	0.26
RCSR19-123	45	46	0.51
RCSR19-123	46	47	0.95
RCSR19-123	47	48	0.10
RCSR19-123	48	49	0.21
RCSR19-123	49	50	0.27
RCSR19-123	50	51	1.38
RCSR19-123	51	52	0.32
RCSR19-123	52	53	1.49
RCSR19-123	53	54	1.44
RCSR19-123	54	55	0.96
RCSR19-123	55	56	0.32
RCSR19-123	57	58	0.32
RCSR19-123	58	59	1.42
RCSR19-123	59	60	0.55
RCSR19-123	60	61	0.15

			Au
HOLE ID	FROM	TO	ppm
RCSR19-123	61	62	0.19
RCSR19-123	62	63	0.34
RCSR19-123	63 64	64 65	0.83
RCSR19-123 RCSR19-123	65	66	1.07 0.82
RCSR19-123	66	67	0.02
RCSR19-123	67	68	0.77
RCSR19-123	68	69	1.07
RCSR19-123	69	70	0.93
RCSR19-123	70	71	0.80
RCSR19-123	71	72	0.14
RCSR19-123	72	73	0.14
RCSR19-123	74	75	0.48
RCSR19-123	75	76	0.28
RCSR19-123	76	77	0.25
RCSR19-123	77	78	0.13
RCSR19-123	78	79	0.15
RCSR19-123	79	80	1.07
RCSR19-123	80	81	0.43
RCSR19-123	81	82	0.72
RCSR19-123	82	83	1.65
RCSR19-123	83	84	1.19
RCSR19-123	84	85	0.42
RCSR19-123	85	86	0.23
RCSR19-123	86	87	0.33
RCSR19-123	87	88	1.84
RCSR19-123	88	89	1.34
RCSR19-123	89	90	0.39
RCSR19-124	13	14	0.11
RCSR19-124	22	23	0.13
RCSR19-124	24	25	0.52
RCSR19-124	25	26	0.18
RCSR19-124	26	27	0.10
RCSR19-124	28	29	0.10
RCSR19-124	34	35	0.18
RCSR19-124	35	36	0.41
RCSR19-124	36	37	1.08
RCSR19-124	37	38	1.89
RCSR19-124	38	39	4.15
RCSR19-124	39	40	3.66
RCSR19-124	40	41	1.71
RCSR19-124	41	42	0.57
RCSR19-124	42	43	8.61
RCSR19-124	43	44	12.20
RCSR19-124	44	45	7.77

			Au
HOLE ID	FROM	ТО	ppm
RCSR19-124	45	46	3.62
RCSR19-124	46	47	8.16
RCSR19-124	47	48	1.81
RCSR19-124	48	49	0.78
RCSR19-124	49	50	0.13
RCSR19-124	50	51	9.96
RCSR19-124	51	52	11.20
RCSR19-124	52	53	9.23
RCSR19-124	53	54	3.12
RCSR19-124	54	55	0.40
RCSR19-124	56	57	0.19
RCSR19-124	57	58	0.54
RCSR19-124	58	59	0.76
RCSR19-124	59	60	1.05
RCSR19-124	60	61	2.57
RCSR19-124	61	62	1.82
RCSR19-124	64	65	5.12
RCSR19-124	65	66	0.11
RCSR19-124	66	67	0.44
RCSR19-124	70	71	0.45
RCSR19-124	71	72	0.41
RCSR19-124	72	73	0.13
RCSR19-124	73	74	0.32
RCSR19-124	74	75	0.35
RCSR19-124	75	76	0.79
RCSR19-124	76	77	0.33
RCSR19-124	77	78	0.50
RCSR19-124	79	80	0.14
RCSR19-124	80	81	0.15
RCSR19-124	81	82	0.66
RCSR19-124	82	83	0.42
RCSR19-124	83	84	1.23
RCSR19-124	84	85	0.28
RCSR19-124	85	86	0.21
RCSR19-124	86	87	0.12
RCSR19-124	87	88	0.10
RCSR19-124	88	89	0.21
RCSR19-124	89	90	0.21
RCSR19-125	18	19	0.16
RCSR19-125	32	33	3.70
RCSR19-125	33	34	3.82
RCSR19-125	34	35	0.96
RCSR19-125	35	36	0.66
RCSR19-125	36	37	0.33
RCSR19-125	37	38	0.19

			Au
HOLE ID	FROM	TO	ppm
RCSR19-125	38	39	0.12
RCSR19-125	40	41	0.11
RCSR19-125	49	50	0.29
RCSR19-125	50	51	0.18
RCSR19-125	51	52	0.14
RCSR19-125	53	54	0.14
RCSR19-125	54	55	0.12
RCSR19-125	55	56	0.12
RCSR19-125	57	58	0.16
RCSR19-125	87	88	0.10
RCSR19-126	38	39	0.13
RCSR19-126	39	40	0.26
RCSR19-126	40	41	0.12
RCSR19-126	41	42	0.15
RCSR19-126	45	46	0.11
RCSR19-126	46	47	0.12
RCSR19-126	47	48	0.14
RCSR19-126	48	49	0.33
RCSR19-126	49	50	2.12
RCSR19-126	50	51	4.35
RCSR19-126	51	52	1.36
RCSR19-126	52	53	0.84
RCSR19-126	53	54	0.46
RCSR19-126	54	55	0.22
RCSR19-126	55	56	0.20
RCSR19-126	56	57	0.13
RCSR19-126	57	58	0.20
RCSR19-126	58	59	0.33
RCSR19-126	59	60	0.20
RCSR19-126	60	61	0.12
RCSR19-126	69	70	0.10
RCSR19-127	7	8	0.19
RCSR19-127	8	9	0.19
RCSR19-127	9	10	0.15
RCSR19-128	1	2	0.20
RCSR19-128	2	3	0.10
RCSR19-128	3	4	0.12
RCSR19-128	5	6	0.23
RCSR19-128	6	7	0.59
RCSR19-128	7	8	0.32
RCSR19-128	8	9	0.36
RCSR19-128	9	10	0.71
RCSR19-128	10	11	1.61
RCSR19-128	11	12	1.27
RCSR19-128	12	13	0.92

HOLE ID	FROM	то	Au
RCSR19-128	13	14	ppm 1.52
RCSR19-128	14	15	0.60
RCSR19-128	15	16	0.14
RCSR19-128	16	17	0.14
RCSR19-128	17	18	0.26
RCSR19-128	18	19	0.22
RCSR19-128	20	21	0.23
RCSR19-128	21	22	0.95
RCSR19-128	22	23	0.85
RCSR19-128	23	24	0.26
RCSR19-128	25	26	0.22
RCSR19-128	27	28	0.13
RCSR19-128	28	29	0.35
RCSR19-128	29	30	1.20
RCSR19-128	30	31	0.15
RCSR19-128	31	32	0.15
RCSR19-128	32	33	0.59
RCSR19-128	33	34	0.18
RCSR19-128	34	35	0.80
RCSR19-128	35	36	0.91
RCSR19-128	36	37	0.42
RCSR19-128 RCSR19-128	37 38	38 39	0.26
RCSR19-128	40	41	0.32
RCSR19-128	41	42	0.15
RCSR19-128	43	44	0.13
RCSR19-128	44	45	0.20
RCSR19-128	45	46	0.36
RCSR19-128	46	47	0.44
RCSR19-128	47	48	0.45
RCSR19-128	50	51	0.29
RCSR19-128	51	52	0.20
RCSR19-128	52	53	0.69
RCSR19-128	53	54	0.12
RCSR19-128	56	57	0.56
RCSR19-128	57	58	0.74
RCSR19-128	58	59	0.22
RCSR19-128	59	60	0.13
RCSR19-129	17	18	0.11
RCSR19-129	18	19	0.23
RCSR19-129	21	22	0.19
RCSR19-129	22	23	0.12
RCSR19-129	23	24	0.10
RCSR19-129	24	25	0.15
RCSR19-129	25	26	1.50

14th JANUARY 2020

ASX ANNOUNCEMENT

HOLE ID	FROM	то	Au ppm
RCSR19-129	26	27	0.47
RCSR19-129	27	28	0.16
RCSR19-129	29	30	0.24
RCSR19-129	30	31	0.13
RCSR19-129	31	32	0.20
RCSR19-129	32	33	0.35
RCSR19-129	33	34	0.77
RCSR19-129	34	35	0.31
RCSR19-129	35	36	0.16
RCSR19-129	37	38	0.13
RCSR19-129	38	39	0.27
RCSR19-129	39	40	0.67
RCSR19-129	40	41	1.39
RCSR19-129	41	42	1.20

HOLE ID	FROM	то	Au ppm
RCSR19-129	42	43	0.62
RCSR19-129	44	45	0.36
RCSR19-129	45	46	0.46
RCSR19-129	46	47	0.31
RCSR19-129	47	48	0.40
RCSR19-129	48	49	0.64
RCSR19-129	49	50	0.24
RCSR19-129	50	51	0.60
RCSR19-129	51	52	0.37
RCSR19-129	52	53	0.28
RCSR19-129	53	54	0.10

NB: All gold assays ≥0.1g/t are listed.

JORC CODE, 2012 EDITION – TABLE 1 Section 1 Sampling Techniques and Data

ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarrine nodules) may warrant disclosure of detailed information. Drilling techniques Porill type (eg core, reverse circulation, open-chole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond talis, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). Porill sample recovery Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Method of recording and assessing core and chip sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature.	CRITERIA	JORC CODE EXPLANATION	COMMENTARY
hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face/sampling bit or other type, whether core is oriented and if so, by what method, etc). Drill sample recovery Method of recording and assessing core and chip sample recoveries and results assessed.		es ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of	sample. RC Samples were collected at the drill site and then split to a 1m sample All samples were submitted SGS, Bamako Mali and analysis in Mali using a 50g Fire Assay gold analysis with a 10ppb Au detection level.
sample recoveries and results assessed. ▶ Measures taken to maximise sample recovery and ensure representative nature of the samples. ▶ Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. ▶ Some samples had poor volume of sample recovered. These have been assessed and be treated as having a grade of 0.00g/t in compound therefore considered that both sample recover and quality is adequate for the drilling technique membry detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. ▶ Whether logging is qualitative or quantitative in nature.	•	hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face <sampling and="" bit="" by<="" core="" if="" is="" or="" oriented="" other="" so,="" th="" type,="" whether=""><th>, ,</th></sampling>	, ,
geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Mesources subsidiary Africa Mining geologists Geological logging used a standardised logging system. Whether logging is qualitative or quantitative in nature.		 sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of 	was undertaken at the drill rig for each sample metre collected. Collected samples were weighed to ensure consistency of sample size and monitor sample recoveries. Some samples had poor volume of sample recovered. These have been assessed and been treated as having a grade of 0.00g/t in compositing. No sampling issue or bias was picked up and it is therefore considered that both sample recovery and quality is adequate for the drilling technique
Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	Logging	geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant	Resources subsidiary Africa Mining geologists. • Geological logging used a standardised logging system.
techniques and sample preparation If non <core, "chain="" %="" (50g="" (jaw="" 1m="" 70%="" 75="" 85="" <="" <2mm="" a="" adopted="" all="" an="" and="" appropriateness="" assay="" assayed="" at="" being="" by="" charge)="" collected,="" control="" crushed="" crusher),="" custody"<="" drie="" dry.="" duplicates="" ensure="" etc="" evaluate="" field="" fine="" finish.="" fire="" for="" from="" further="" gold="" in="" including="" instance="" is="" laboratories="" laboratory="" laboratory,="" material="" maximise="" measures="" nature,="" of="" or="" preparation="" procedures="" pulps="" pulverized="" quality="" representative="" representativeness="" representivity="" results="" returned="" riffled,="" rotary="" sample="" sampled="" sampled,="" samples="" samples.="" sampling="" secure="" sgs="" situ="" split="" split,="" staff="" stages="" sub<sampling="" taken="" taken.="" technique.="" th="" that="" the="" to="" tube="" types,="" um.="" under="" undertaken="" was="" weighed,="" were="" wet="" whether="" with="" ▶=""><th>techniques and sample</th><th>half or all core taken. If non<core, adopted="" all="" and="" appropriateness="" collected,="" control="" dry.="" ensure="" etc="" field<="" for="" in="" including="" instance="" is="" material="" maximise="" measures="" nature,="" of="" or="" preparation="" procedures="" quality="" representative="" representivity="" results="" riffled,="" rotary="" sample="" sampled="" sampled,="" samples.="" sampling="" situ="" split,="" stages="" sub<sampling="" taken="" technique.="" th="" that="" the="" to="" tube="" types,="" wet="" whether=""><th>with a 1m sample being taken. Duplicates were taken to evaluate representativeness Further sample preparation was undertaken at the SGS laboratories by SGS laboratory staff At the laboratory, samples were weighed, dried and fine crushed to 70% <2mm (jaw crusher), pulverized and split to 85 % < 75 um. Gold is assayed by fire assay (50g charge) with an AAS Finish. Sample pulps were returned from the SGS</th></core,></th></core,>	techniques and sample	half or all core taken. If non <core, adopted="" all="" and="" appropriateness="" collected,="" control="" dry.="" ensure="" etc="" field<="" for="" in="" including="" instance="" is="" material="" maximise="" measures="" nature,="" of="" or="" preparation="" procedures="" quality="" representative="" representivity="" results="" riffled,="" rotary="" sample="" sampled="" sampled,="" samples.="" sampling="" situ="" split,="" stages="" sub<sampling="" taken="" technique.="" th="" that="" the="" to="" tube="" types,="" wet="" whether=""><th>with a 1m sample being taken. Duplicates were taken to evaluate representativeness Further sample preparation was undertaken at the SGS laboratories by SGS laboratory staff At the laboratory, samples were weighed, dried and fine crushed to 70% <2mm (jaw crusher), pulverized and split to 85 % < 75 um. Gold is assayed by fire assay (50g charge) with an AAS Finish. Sample pulps were returned from the SGS</th></core,>	with a 1m sample being taken. Duplicates were taken to evaluate representativeness Further sample preparation was undertaken at the SGS laboratories by SGS laboratory staff At the laboratory, samples were weighed, dried and fine crushed to 70% <2mm (jaw crusher), pulverized and split to 85 % < 75 um. Gold is assayed by fire assay (50g charge) with an AAS Finish. Sample pulps were returned from the SGS

Whether sample sizes are appropriate to the grain

size of the material being sampled.

stored in a secure location for possible future

techniques are considered to be appropriate for this

Sample sizes and laboratory preparation

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		early stage exploration and the commodity being targeted.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Analysis for gold on AC, RC and diamond samples is undertaken at SGS Bamako by 50g Fire Assay with an AAS finish to a lower detection limit of 10ppb Au. Fire assay is considered a "total" assay technique. No field non assay analysis instruments were used in the analyses reported. A review of certified reference material and sample blanks inserted by the Company indicated no significant analytical bias or preparation errors in the reported analyses. Results of analyses for field sample duplicates are consistent with the style of mineralisation evaluated and considered to be representative of the geological zones which were sampled. Internal laboratory QAQC checks are reported by the laboratory and a review of the QAQC reports suggests the laboratory is performing within acceptable limits.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All drill hole data is paper logged at the drill site and then digitally entered by Company geologists at the site office. All digital data is verified and validated by the Company's database consultant in Paris before loading into the drill hole database. No twinning of holes was undertaken in this program. Reported drill results were compiled by the company's geologists, verified by the Company's database administrator and exploration manager. No adjustments to assay data were made.
Location of data points	 ▶ Accuracy and quality of surveys used to locate drill holes (collar and down<hole and="" estimation.<="" in="" li="" locations="" mine="" mineral="" other="" resource="" surveys),="" trenches,="" used="" workings=""> ▶ Specification of the grid system used. ▶ Quality and adequacy of topographic control. </hole>	 AC, RC and diamond drill hole collars are positioned using differential GPS (DGPS). Accuracy of the DGPS < +/< 0.1m and is considered appropriate for this level of exploration The grid system is UTM Zone 29N
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 AC were located on a nominal 50x80m spaced pattern to cover auger gold anomalies Along line spacing varied from 50m so as to provide 'heel-to-toe' overlapping coverage. RC drilling was at a variable spacing to infill existing drilling Drilling reported in this program is being designed to infill or extend known mineralisation to a sufficient density of drilling to enable the estimation of a maiden resource.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Exploration is at an early stage and, as such, knowledge on exact location of mineralisation and its relation to lithological and structural boundaries is not accurately known. However, the current hole orientation is considered appropriate for the program to reasonably assess the prospectivity of known structures interpreted from other data sources.
Sample security	► The measures taken to ensure sample security.	► AC, RC and diamond samples were collected from the company camp by SGS and taken to the SGS laboratory in Bamako under secure "chain of custody" procedure by Africa Mining staff.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		Sample pulps were returned from the SGS laboratory under secure "chain of custody" procedure by Africa Mining staff and have been stored in a secure location.
		► The AC samples remaining after splitting are removed from the site and trucked to the exploration camp where they are stored under security for future reference for a minimum of 6 months
Audits or reviews	► The results of any audits or reviews of sampling techniques and data.	There have been no external audit or review of the Company's sampling techniques or data at this early exploration stage.

Section 2 Reporting of Exploration Results

dip and azimuth of the hole

CRITERIA	JORC CODE EXPLANATION	CRITERIA
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The results reported in this report are all contained within the Dandoko Exploration Permit, Gombaly Exploration Permit which are held 100% by Africa Mining SARL, a wholly owned subsidiary of Oklo Resources Limited. The Dandoko permit (100km²) which was renewed on the 10/8/17, for a period of 3 years and renewable twice, each for a period of 2 years: The Gombaly permit (34km²) which was granted on the 10/8/17, for a period of 3 years and renewable twice, each for a period of 2 years
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The area that is presently covered by the Dandoko permit was explored intermittently by Compass Gold Corporation between 2010 and 2013. Exploration consisted of aeromagnetic surveys, gridding, soil sampling and minor reconnaissance (RC) drilling. The area that is presently covered by the Mousalla permit was explored intermittently by Compass Gold Corporation between 2010 and 2013. Exploration consisted of aeromagnetic surveys, gridding, soil sampling. Ashanti Mali undertook reconnaissance soil sampling surveys over part of the license area.
Geology	▶ Deposit type, geological setting and style of mineralisation.	 The deposit style targeted for exploration is orogenic lode gold. This style of mineralisation can occur as veins or disseminations in altered (often silicified) host rock or as pervasive alteration over a broad zone. Deposit are often found in close proximity to linear geological structures (faults & shears) often associated with deep<seated li="" structures.<=""> Lateritic weathering is common within the project area. The depth to fresh rock is variable and may extend up to 50-70m below surface and in this drill program weathering of >150m was encountered </seated>
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	 Locations are tabulated within the report and are how on plans and sections within the main body of this announcement. Dip of lithologies and/or mineralisation are not currently known. Drilling was oriented based on dips of lithologies observed ~5km to the north of the prospect and may not reflect the actual dip.

CRITERIA	JORC CODE EXPLANATION	CRITERIA
	 down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut<off and="" are="" be="" grades="" li="" material="" should="" stated.<="" usually=""> Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. </off>	 Intervals are reported using a threshold where the interval has a 0.3 g/t Au average or greater over the sample interval and selects all material greater than 0.10 g/t Au allowing for up to 2 samples of included dilution every 10m. No grade top cut off has been applied to full results presented in Significant Intersection Table. No metal equivalent reporting is used or applied
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The results reported in this announcement are considered to be of an early stage in the exploration of the project. Mineralisation geometry is not accurately known as the exact orientation and extent of known mineralised structures are not yet determined. Mineralisation results are reported as "downhole" widths as true widths are not yet known
Diagrams	► Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Drill hole location plans are provided in earlier releases with new holes tabulated within this release.
Balanced reporting	➤ Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Drill hole locations are provided in earlier reports. All assays received of >=0.1ppm have been reported. No high cuts to reported data have been made.
Other substantive exploration data	▶ Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data that is considered meaningful and material has been omitted from this report
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large<scale drilling).<="" li="" step<out=""> Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. </scale>	► AC, RC and diamond drilling to continue and follow up these results is scheduled to commence in late November 2019.

