

T:+61 8 6149 6100 E:info@malilithium.com W:malilithium.com

Suite 18, Level 2, Spectrum Building, 100-104 Railway Road, Subiaco 6008 Western Australia

## **ASX ANNOUNCEMENT**

22 January 2020

### **Additional High Grade Mineralisation Discovered at Goulamina**

Mali Lithium Ltd (ASX:MLL) ("Mali Lithium", "the Company") is pleased to announce that it has encountered additional, thick high grade mineralisation at its flagship Goulamina Lithium Project in southern Mali as part of its current drilling program.

The Company is extremely pleased with the drilling thus far, with numerous additional mineralised pegmatite intersections having been discovered. These are in many cases extensions to previously known pegmatites and indicate the potential to improve significantly the size of, and level of confidence in, the Goulamina Mineral Resource. Best results include **44m at 1.76% Li<sub>2</sub>O** from 159m (GMRC361), **50m at 1.60%** Li<sub>2</sub>O from 137m and **39m at 1.84%** Li<sub>2</sub>O from 36m (GMRC362) (See Table 1 below for a more comprehensive summary of recent results).

A Mineral Resource update for Goulamina is currently anticipated around the end of March 2020. A new Ore Reserve estimate that will be incorporated into the Definitive Feasibility Study (DFS) currently underway on the project is expected approximately four weeks later, at the end of April.

Along with revising the Mineral Resource and Ore Reserve, the current drilling program is testing geophysical and structural hydrological targets within Goulamina and aiding in the completion of geotechnical testwork relating to the construction of the process plant and tailings storage facility.

#### **Program summary**

- 27 reverse circulation (RC) holes completed for 5145 metres. (see Figure 1)
- 440 assays received of 2622 submitted to date.
- Dip of Sangar 1 and Sangar 2 zones at depth is less than previously interpreted, increasing the potential tonnes per vertical metre. Assays awaited. (See Figure 1)
- Improved confidence in the Sangar I and Sangar II interpretation and mineralisation



T : +61 8 6149 6100 E : info@malilithium.com W: malilithium.com

Suite 18, Level 2, Spectrum Building, 100-104 Railway Road, Subiaco 6008 Western Australia

# **ASX ANNOUNCEMENT**

- Sangar II model will extend below pit shell.
- A further 36 holes remain to be drilled including:
  - o 9 RC holes at Danaya
  - o 5 exploration holes at Bara (southern extension to Goulamina)
  - o 8 exploratory water bores (640m)
  - o 3 diamond tails (270m)
  - o 11 short HQ3 diamond geotech holes (165m)

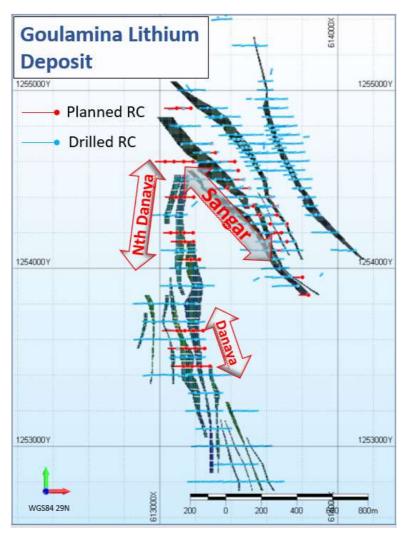



Figure 1 Resource development drilling (red) superimposed on existing drilling (blue) and original proposed Sangar and Main/West zone pits. Model is shown as a slice at 315m RL.



T : +61 8 6149 6100 E : info@malilithium.com W: malilithium.com

Suite 18, Level 2, Spectrum Building, 100-104 Railway Road, Subiaco 6008 Western Australia

# **ASX ANNOUNCEMENT**

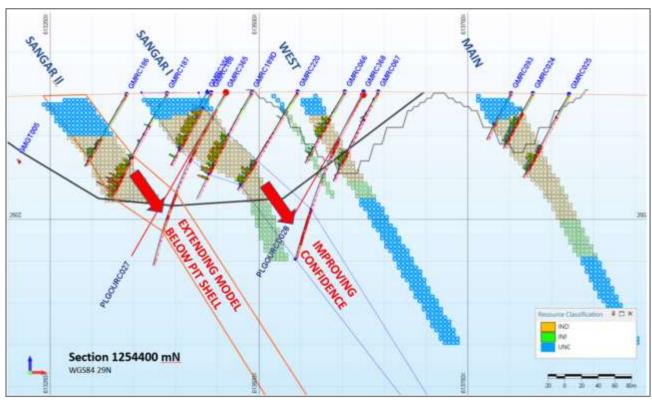



Figure 2 Section 1254400mN showing the newly modelled pegmatite intersections in Holes GMRC365 and GMRC368. The confidence in the interpretation is improved, and the model will no longer constrain the base of the pit in Sangar Il Assays awaited.

Table 1 Significant assays received to date

| Significar | nt interse | ctions as a | at 20/1/ | 2020  |        |      |     |          |       |                                                         |
|------------|------------|-------------|----------|-------|--------|------|-----|----------|-------|---------------------------------------------------------|
|            | Collar     | Collar      | Collar   | Dip   | Azi    | From | To  | Interval | Li2O  |                                                         |
| HoleID     | Easting    | Northing    | RL       | Dip   | AZI    | (m)  | (m) | (m)      | (pct) | Pegmatite                                               |
| GMRC358    | 613174     | 1254900     | 402      | -60   | 266    | 231  | 239 | 8        | 1.59  | Sangar I (Incomplete intersection to be diamond tailed) |
| GMRC359    | 613293     | 1254700     | 400      | -59   | 266    | 136  | 150 | 14       | 1.37  | Sangar I (Incomplete intersection to be diamond tailed) |
| GMRC360    | 613314     | 1254650     | 402      | -60   | 266    | 105  | 119 | 14       | 1.23  | Sangar I (Incomplete intersection to be diamond tailed) |
| GMRC361    | 613421     | 1254600     | 403      | -60   | 266    | 29   | 49  | 20       | 1.67  | Not yet modelled. West II or new pegmatite?             |
|            |            |             |          |       |        | 159  | 203 | 44       | 1.76  | Sangar I                                                |
| GMRC362    | 613440     | 1254550     | 403      | -61   | 267    | 137  | 187 | 50       | 1.60  | Sangar I                                                |
|            |            |             |          |       |        | 167  | 186 | 19       | 1.40  | Sangar I                                                |
| GMRC363    | 613504     | 1254450     | 403      | -60   | 266    | 59   | 71  | 12       | 1.39  | Not yet modelled. West II or new pegmatite?             |
|            |            |             |          |       |        | 113  | 166 | 53       | 1.57  | Sangar I                                                |
| GMRC364    | 613383     | 1254450     | 401      | -60   | 264    | 36   | 75  | 39       | 1.84  | Sangar I                                                |
| GMRC364    | from 75m t | to end of p | rogram - | Assay | s awai | ted  |     |          |       |                                                         |



T : +61 8 6149 6100 E : info@malilithium.com W: malilithium.com

Suite 18, Level 2, Spectrum Building, 100-104 Railway Road, Subiaco 6008 Western Australia

## **ASX ANNOUNCEMENT**

Mali Lithium is using a laboratory in Johannesburg, South Africa for assaying. Due to high levels of drilling activity in the region, samples are currently taking six weeks to be processed. An approximate timeline of drilling to Resource/Reserve update is as follows:

- Complete drilling mid-February 2020
- Final assays received mid-March 2020
- Resource updated end of March 2020
- Reserve updated end of April 2020

A revision of the Goulamina Ore Reserve resulting from this drilling program may have a material impact on the Net Present Value (NPV) of the Project. Given that the NPV will be one of the key outputs of the DFS, the Company believes it makes sense to include these results and re-estimate the Ore Reserve prior to completion of the study. This will mean a slight delay of around six weeks in the release of the DFS, with a mid-May date now likely.

The slight delay will also allow the improved lithium recovery results announced in December 2019 to be incorporated into the study, along with an optimisation of equipment sizing that may be justified with higher recovery and longer mine life.

Managing Director Chris Evans said: "In the current market, maximising the project value and further distinguishing Goulamina as a world leading Resource makes complete sense. We look forward to doing this through the delivery of the DFS and moving ahead with the project development from there."

-ENDS-

**Further Information:** 

Chris Evans
Managing Director
Mali Lithium
+61 419 853 904

Luke Forrestal M&C Partners +61 411 479 144

#### **About Mali Lithium**

Mali Lithium Limited (ASX:MLL) is developing the world class Goulamina Lithium Project in Mali, West Africa. Goulamina is fully permitted and is one of the world's largest uncommitted hard rock Lithium Reserves. The company is currently completing its Definitive Feasibility Study and has released the results of its Pre-Feasibility Study (PFS) on the project to



T:+61 8 6149 6100 E:info@malilithium.com W:malilithium.com

Suite 18, Level 2, Spectrum Building, 100-104 Railway Road, Subiaco 6008 Western Australia

## **ASX ANNOUNCEMENT**

the ASX on 4 July 2018. The Company also has a diversified commodity portfolio containing prospective gold tenements in southern Mali from which it intends to generate near term value for shareholders.

#### **Competent Person's Declaration**

The information in this announcement that relates to Exploration Results and exploration objectives is based on information compiled by Mali Lithium's Geology Manager, Mr Simon McCracken, a Competent Person. Mr McCracken is a member of the Australian Institute of Geoscientists. Mr McCracken has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ('the JORC Code')". Mr McCracken consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

**Annex 1 – Significant Pegmatite Intersections** 

| Hole ID | Collar  | Collar   | Collar RL | Dip | Azimuth | Pegmatit             | e Interval      |                           | Comment                                                                            |
|---------|---------|----------|-----------|-----|---------|----------------------|-----------------|---------------------------|------------------------------------------------------------------------------------|
|         | Easting | Northing |           |     |         | Depth<br>From<br>(m) | Depth<br>To (m) | Down<br>hole<br>width (m) |                                                                                    |
| GMRC358 | 613174  | 1254900  | 402       | -60 | 266     | 53                   | 66              | 13                        | Not modelled                                                                       |
|         |         |          |           |     |         | 231                  | 238             | 7                         | Sangar II Diamond tail required to extend mineralisation interpreted 50m DH width  |
| GMRC359 | 613293  | 1254700  | 400       | -59 | 266     | 137                  | 150             | 13                        | Sangar I. Diamond tail required to extend mineralisation interpreted 100m DH width |
| GMRC360 | 613314  | 1254650  | 402       | -60 | 266     | 106                  | 122             | 16                        | Sangar I. Diamond tail required to extend mineralisation interpreted 90m DH width  |
| GMRC361 | 613421  | 1254600  | 403       | -60 | 266     | 82                   | 91              | 9                         | Not modelled                                                                       |
|         |         |          |           |     |         | 159                  | 210             | 51                        | Sangar I                                                                           |
| GMRC362 | 613440  | 1254550  | 403       | -61 | 267     | 128                  | 188             | 60                        | Sangar I                                                                           |
| GMRC363 | 613504  | 1254450  | 403       | -60 | 266     | 31                   | 40              | 9                         | Not modelled                                                                       |
|         |         |          |           |     |         | 59                   | 66              | 7                         | Not modelled                                                                       |
|         |         |          |           |     |         | 78                   | 83              | 5                         | Not modelled                                                                       |
|         |         |          |           |     |         | 114                  | 168             | 54                        | Sangar I                                                                           |
| GMRC364 | 613383  | 1254450  | 401       | -60 | 264     | 35                   | 77              | 42                        | Sangar I                                                                           |
|         |         |          |           |     |         | 133                  | 195             | 62                        | Sangar II                                                                          |
| GMRC365 | 613460  | 1254400  | 402       | -59 | 266     | 23                   | 95              | 72                        | Sangar I                                                                           |
|         |         |          |           |     |         | 134                  | 184             | 50                        | Sangar II                                                                          |
| GMRC366 | 613625  | 1254350  | 402       | -60 | 265     | 138                  | 178             | 40                        | Sangar I                                                                           |
| GMRC367 | 613661  | 1254350  | 402       | -60 | 267     | 137                  | 144             | 7                         | West I                                                                             |
|         |         |          |           |     |         | 171                  | 206             | 35                        | Sangar I                                                                           |
| GMRC368 | 613625  | 1254400  | 403       | -61 | 266     | 67                   | 85              | 18                        | West I                                                                             |
|         |         |          |           |     |         | 154                  | 216             | 62                        | Sangar I                                                                           |
| GMRC369 | 613567  | 1254300  | 402.5     | -60 | 265     | 42                   | 65              | 23                        | Sangar I                                                                           |
|         |         |          |           |     |         | 115                  | 163             | 48                        | Sangar II                                                                          |
| GMRC370 | 613659  | 1254300  | 400       | -61 | 265     | 29                   | 51              | 22                        | West I                                                                             |

| Hole ID | Collar  | Collar   | Collar RL | Dip | Azimuth | Pegmatit             | e Interval      |                           | Comment                                                                        |
|---------|---------|----------|-----------|-----|---------|----------------------|-----------------|---------------------------|--------------------------------------------------------------------------------|
|         | Easting | Northing |           |     |         | Depth<br>From<br>(m) | Depth<br>To (m) | Down<br>hole<br>width (m) |                                                                                |
|         |         |          |           |     |         | 69                   | 71              | 2                         | Not Modelled                                                                   |
|         |         |          |           |     |         | 90                   | 95              | 5                         | West II                                                                        |
|         |         |          |           |     |         | 97                   | 101             | 4                         | West II                                                                        |
|         |         |          |           |     |         | 126                  | 128             | 2                         | Not Modelled                                                                   |
|         |         |          |           |     |         | 142                  | 165             | 23                        | Sangar I                                                                       |
| GMRC371 | 613621  | 1254250  | 400       | -60 | 266     | 24                   | 30              | 6                         | West II (Oxidised)                                                             |
|         |         |          |           |     |         | 43                   | 44              | 1                         | Not modelled                                                                   |
|         |         |          |           |     |         | 47                   | 50              | 3                         | Not modelled                                                                   |
|         |         |          |           |     |         | 75                   | 109             | 34                        | Sangar I                                                                       |
|         |         |          |           |     |         | 139                  | 172             | 33                        | Sangar II                                                                      |
| GMRC372 | 613715  | 1254250  | 400       | -60 | 265     | 54                   | 64              | 10                        | West I                                                                         |
|         |         |          |           |     |         | 131                  | 137             | 6                         | West II                                                                        |
|         |         |          |           |     |         | 168                  | 173             | 5                         | Not modelled                                                                   |
|         |         |          |           |     |         | 202                  | 222             | 20                        | Sangar 1                                                                       |
| GMRC373 | 613641  | 1254200  | 400       | -61 | 267     | 20                   | 27              | 7                         | West I                                                                         |
|         |         |          |           |     |         | 42                   | 44              | 2                         | Not modelled                                                                   |
|         |         |          |           |     |         | 75                   | 115             | 40                        | Sangar I                                                                       |
|         |         |          |           |     |         | 131                  | 169             | 38                        | Sangar II                                                                      |
| GMRC374 | 613683  | 1254200  | 400       | -60 | 265     | 67                   | 76              | 9                         | West II                                                                        |
|         |         |          |           |     |         | 127                  | 162             | 35                        | Sangar I. diamond tail required to intersect Sangar II (46m DH width expected) |
| GMRC375 | 613714  | 1254150  | 400       | -59 | 267     | 72                   | 80              | 8                         | West II                                                                        |
|         |         |          |           |     |         | 148                  | 193             | 45                        | Sangar I                                                                       |
|         |         |          |           |     |         | 196                  | 210             | 14                        | Sangar II (hole terminated in pegmatite)                                       |
| GMRC376 | 613687  | 1254100  | 399.3     | -60 | 267     | 91                   | 168             | 77                        | Sangar I and Sangar II                                                         |
| GMRC377 | 613801  | 1253950  | 400       | -60 | 263     | 65                   | 138             | 73                        | Sangar II                                                                      |
| GMRC378 | 613472  | 1254500  | 400       | -59 | 264     | 48                   | 61              | 13                        | Not modelled                                                                   |

| Hole ID | Collar  | Collar   | Collar RL | Dip | Azimuth | Pegmatit             | e Interval      |                           | Comment       |
|---------|---------|----------|-----------|-----|---------|----------------------|-----------------|---------------------------|---------------|
|         | Easting | Northing |           |     |         | Depth<br>From<br>(m) | Depth<br>To (m) | Down<br>hole<br>width (m) |               |
|         |         |          |           |     |         | 69                   | 71              | 2                         | Not modelled  |
|         |         |          |           |     |         | 126                  | 187             | 61                        | Sangar 1      |
| GMRC379 | 613095  | 1254900  | 400       | -61 | 265     | 9                    | 36              | 27                        | West II       |
| GMRC380 | 613132  | 1254900  | 400       | -61 | 265     | 7                    | 16              | 9                         | West II Oxide |
|         |         |          |           |     |         | 54                   | 67              | 13                        | Not modelled  |
|         |         |          |           |     |         | 109                  | 120             | 11                        | Sangar 1      |
| GMRC381 | 613097  | 1253650  | 400       | -60 | 270     | 18                   | 27              | 9                         | Danaya        |
|         |         |          |           |     |         | 53                   | 54              | 1                         | Danaya        |
|         |         |          |           |     |         | 63                   | 117             | 54                        | Danaya        |
|         |         |          |           |     |         | 139                  | 143             | 4                         | Danaya        |
| GMRC382 | 613140  | 1253650  | 400       | -60 | 266     | 7                    | 28              | 21                        | Danaya        |
|         |         |          |           |     |         | 57                   | 59              | 2                         | Danaya        |
|         |         |          |           |     |         | 64                   | 68              | 4                         | Danaya        |
|         |         |          |           |     |         | 70                   | 74              | 4                         | Danaya        |
| GMRC383 | 613188  | 1253650  | 400       | -60 | 270     | 127                  | 131             | 4                         | Danaya        |
|         |         |          |           |     |         | 134                  | 141             | 7                         | Danaya        |
|         |         |          |           |     |         | 143                  | 177             | 34                        | Danaya        |
|         |         |          |           |     |         | 179                  | 182             | 3                         | Danaya        |
|         |         |          |           |     |         | 184                  | 197             | 13                        | Danaya        |
| GMRC384 | 613242  | 1253650  | 400       | -60 | 270     | 108                  | 127             | 19                        | Danaya        |
|         |         |          |           |     |         | 140                  | 142             | 2                         | Danaya        |
|         |         |          |           |     |         | 154                  | 199             | 45                        | Danaya        |
| GMRC386 | 613147  | 1253550  | 400       | -60 | 270     | 5                    | 28              | 23                        | Danaya        |
|         |         |          |           |     |         | 28                   | 41              | 13                        | Danaya        |
|         |         |          |           |     |         | 46                   | 57              | 11                        | Danaya        |
|         |         |          |           |     |         | 72                   | 93              | 21                        | Danaya        |
|         |         |          |           |     |         | 97                   | 98              | 1                         | Danaya        |

| Hole ID | Collar  | Collar   | Collar RL | Dip | Azimuth | th Pegmatite Interval |                 |                           | Comment |
|---------|---------|----------|-----------|-----|---------|-----------------------|-----------------|---------------------------|---------|
|         | Easting | Northing |           |     |         | Depth<br>From<br>(m)  | Depth<br>To (m) | Down<br>hole<br>width (m) |         |
|         |         |          |           |     |         | 109                   | 110             | 1                         | Danaya  |
|         |         |          |           |     |         | 136                   | 137             | 1                         | Danaya  |
|         |         |          |           |     |         | 159                   | 165             | 6                         | Danaya  |
|         |         |          |           |     |         | 175                   | 179             | 4                         | Danaya  |

# **ANNEX 2 - JORC Code, 2012 Edition – Table 1**

### **Section 1 Sampling Techniques and Data**

(Criteria in this section apply to all succeeding sections.)

| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques   | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>One metre samples were collected using Reverse Circulation (RC) drilling with a ~140mm bit.</li> <li>The entire sample is collected from the cyclone on the rig in plastic bags and then split by hand using a riffle splitter to collect a nominal 2 kg sample in a prenumbered cotton sample bag.</li> <li>The entire sample is dried, then is crushed to 75% passing 2mm in a jaw crusher.</li> <li>A 1.5kgsample is split using a riffle splitter.</li> <li>The 1,5kg split is pulverised in a tungsten carbide ring and puck pulveriser to 805% passing 75 µm.</li> <li>Only samples that are not granitic material are prepared for assay.</li> <li>6m composite samples are split from the collected material in logged granitic rocks. To ensure that short mineralised intervals are recognized.</li> </ul> |
| Drilling<br>techniques   | <ul> <li>Drill type (eg core, reverse circulation, open-hole hammer, rotary air<br/>blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple<br/>or standard tube, depth of diamond tails, face-sampling bit or other<br/>type, whether core is oriented and if so, by what method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All samples in the current campaign were collected using RC drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Drill sample<br>recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>The entire sample was collected from the cyclone and subsequently split by hand in a riffle splitter.</li> <li>Condition of the sample is recorded (ie Dry, Moist, or Wet)</li> <li>Where samples were wet (due to ground water there is a possibility that the assay result could be biased through loss of fine material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Logging                  | <ul> <li>Whether core and chip samples have been geologically and<br/>geotechnically logged to a level of detail to support appropriate<br/>Mineral Resource estimation, mining studies and metallurgical<br/>studies.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Chips were geologically logged at site in their entirety, and a representative fraction collected in a chip tray. The logs are sufficiently detailed to support Mineral Resource estimation. Logged criteria included, lithology, weathering, alteration, mineralisation,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         | <ul> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>veining, and sample condition.</li> <li>Geological logging is qualitative in nature although percentages of different lithologies, sulphides, and veining are estimated.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sub-sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>All samples are riffle split by hand using a stand-alone splitter. This technique is appropriate for collecting statistically unbiassed samples. The riffle splitter is cleaned with compressed air and soft brushes between each sample</li> <li>Samples are weighed to ensure a sample weight of between 2 and 3 kg. Samples of between 2 and 3 kg are considered appropriate for determination of contained lithium and other elements using the sodium peroxide fusion process.</li> <li>Certified reference standards, Blanks, and duplicates are inserted into the sample stream as the samples are collected at a rate of 10%.         <ul> <li>Field duplicates are inserted every 20 samples</li> <li>Blanks (derived from unmineralized river sand) and Certified reference material standards (CRMs) are inserted alternately every 20 samples</li> </ul> </li> </ul>                                        |
| Quality of<br>assay data<br>and<br>laboratory<br>tests  | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul>                                                                             | <ul> <li>Samples are analysed for Lithium using an industry standard technique SGS method ICP90A.</li> <li>by:         <ul> <li>drying the sample</li> <li>crushing the sample to 75% passing -2mm</li> <li>1.5kg split by riffle splitter</li> <li>Pulverise to 85% passing 75 microns in a tungsten Carbide ring and puck pulveriser</li> <li>Samples are analysed for Lithium and other elements by ICPOES after a sodium peroxide fusion</li> </ul> </li> <li>Laboratory checks include         <ul> <li>Every 50th sample is screened to confirm % passing 2mm and 75 microns.</li> <li>1 reagent blank every 84 samples</li> <li>1 preparation blank every 84 samples</li> <li>2 weighed replicates every 84 samples</li> <li>1 preparation duplicate (re split) every 84 samples</li> <li>3 SRMs every 84 samples</li> </ul> </li> <li>Certified reference standards, Blanks, and duplicates are inserted into</li> </ul> |

| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         |                                                                                                                                                                                                                                                                                                                                                                    | the sample stream as the samples are collected at a rate of 10%.  Field duplicates are inserted every 20 samples  Blanks (derived from unmineralized river sand) and Certified reference standards (CRMs) are inserted alternately every 20 samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Verification of<br>sampling and<br>assaying             | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                    | <ul> <li>All drilling and exploration data are stored in the company database which is hosted by an independent geological database consultant.</li> <li>Drilling and sampling procedures have been developed to ensure consistent sampling practices are used by site personnel.</li> <li>Logging and sampling data are collected on a Toughbook PC at the drill site and provided directly to the database consultant, to limit the chance of transcription errors.</li> <li>Where duplicate assays are measured the value is taken as the first value, and not averaged with other values for the same sample.</li> <li>QAQC reports are generated regularly by the database consultant to allow ongoing reviews of sample quality.</li> </ul> |
| Location of<br>data points                              | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                              | <ul> <li>Drill hole collars are located using GPS.</li> <li>Down hole dip and azimuth are collected using a Gyro measuring every 20 to 50m for RC drilling.</li> <li>Coordinates are recorded in UTM WGS94 29N</li> <li>Topographic control is considered adequate for the current drill spacing.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Data spacing<br>and<br>distribution                     | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul> | <ul> <li>Drill holes are spaced approximately 30 to 50 metres apart on 50m spaced sections.</li> <li>The spacing is sufficient to establish grade and geological continuity and is appropriate for Mineral Resource and Ore Reserve estimation.</li> <li>Samples from unmineralized granites are collected every metre, but are composited to 6m prior to assay.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                       |
| Orientation of data in relation to geological structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a</li> </ul>                                  | <ul> <li>Mineralized zones are interpreted to dip moderately to the east, to<br/>northeast. Drilling is generally oriented -60 degrees due west.<br/>Intersection angles on the mineralised zone are between 35 and 65<br/>degrees depending on the local strike of the mineralised pegmatite.<br/>True widths of mineralisation are between about about 75% and 40%</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   |

| Criteria             | JORC Code explanation                                                 | Commentary                                                                                                                                                                                                                                                                  |
|----------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | sampling bias, this should be assessed and reported if material.      | <ul> <li>of downhole widths.</li> <li>The relationship between drilling orientation and structural orientation is not thought to have introduced a sampling bias.</li> </ul>                                                                                                |
| Sample<br>security   | The measures taken to ensure sample security.                         | Samples are delivered from the drilling site in batches of 300 to the SGS laboratory with appropriate paperwork to ensure the chain of custody is recorded. Prepared pulps are shipped by SGS using DHL from Bamako to their South African facility for assay determination |
| Audits or<br>reviews | The results of any audits or reviews of sampling techniques and data. | <ul> <li>QAQC checks of individual assay files are routinely made when the results are issued</li> <li>A QAQC report for the entire program is generated and reviewed at the end of the program to document any laboratory drift or assay bias.</li> </ul>                  |

### 1.1 Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul> | <ul> <li>The Goulamina Project is entirely within the Torakoro Exploitation<br/>Permit PE 19/25 in Mali, PE19/25 is 100% held Timbuktu<br/>Ressources SARL a 100% held subsidiary of Mali Lithium.</li> </ul>                                                                                                                                                                                  |
| Exploration<br>done by other<br>parties          | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Mali Lithium (Formerly Birimian Gold) has completed substantial<br/>exploration in the area including soil sampling, Auger Drilling, Air-core<br/>Drilling and RC Drilling as well as limited diamond drilling. The current<br/>program was designed to infill areas of broad spaced (100m sections)<br/>drilling and extend the depth potential of the Goulamina deposit.</li> </ul> |
| Geology                                          | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>The deposit is a pegmatite hosted spodumene lithium deposit. The<br/>pegmatites are hosted entirely within granitic rocks.</li> </ul>                                                                                                                                                                                                                                                 |
| Drill hole<br>Information                        | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> </ul> </li> </ul>                                                                     | <ul> <li>Drilling completed by Birimian Gold in the period from 2015 to 2018 has been reported in various market updates on the Goulamina Lithium deposit which are available on the Mali Lithium web site</li> <li>Drill hole collar information for all drilling in the Goulamina area is tabulated elsewhere in this report.</li> </ul>                                                     |

| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 | <ul> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul>                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Data<br>aggregation<br>methods                                                  | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul> | <ul> <li>All sample lengths are 1m. a weighting of 1 has been applied to all samples.</li> <li>Top cuts have not been used.</li> <li>Metal equivalent grades have not been reported</li> </ul>                                                                                                                                                                                                                                                        |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                                                                                                                                                                             | <ul> <li>Five northwest-southeast striking pegmatite and 11 north south<br/>striking pegmatities are interpreted to dip moderately to the northeast<br/>and steeply to the east respectively. Drilling is generally oriented -60<br/>degrees due west. Intersection angles on the mineralised pegmatites<br/>vary between 35 and 75 degrees. True widths of mineralisation vary<br/>depending on the local strike and dip of the pegmatite</li> </ul> |
| Diagrams                                                                        | <ul> <li>Appropriate maps and sections (with scales) and tabulations of<br/>intercepts should be included for any significant discovery being<br/>reported These should include, but not be limited to a plan view of<br/>drill hole collar locations and appropriate sectional views.</li> </ul>                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Balanced<br>reporting                                                           | <ul> <li>Where comprehensive reporting of all Exploration Results is not<br/>practicable, representative reporting of both low and high grades<br/>and/or widths should be practiced to avoid misleading reporting of<br/>Exploration Results.</li> </ul>                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Other<br>substantive<br>exploration<br>data                                     | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Further work                                                                    | The nature and scale of planned further work (eg tests for lateral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Criteria | JORC Code explanation                                                                                                                                                                                                                                                                            | Commentary |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|          | <ul> <li>extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul> |            |