ASX Announcement 4th February 2020 | ASX: M<u>ZZ_M</u>

Gold resource increases to 1.2M ounces at Cape Ray Gold Project

Highlights

- The resource at the Cape Ray Project increased by 18% to 1.2M oz Au and 3.9M oz Ag (16.6Mt at 2.2g/t Au and 7g/t Ag).
 - 55% of this resource is classified in the Indicated category (650k oz Au at 2.9 g/t Au).
- The major focus for the 2019 exploration program was at Window Glass Hill (WGH) which grew by 71% to 230koz Au (previously 134koz Au). The grade at WGH also increased by 34% to 1.6g/t Au (previously 1.2g/t Au).

- 90% of the resource at WGH is less than 100m from surface.

- The discovery cost per oz at WGH was exceptionally low at a cost of US\$5/oz (A\$8/oz).¹²³
 - Drilling, structural mapping and high-grade rock chips samples have identified priority targets for the 2020 exploration program at WGH.
- The PW deposit at the southern extension of the Central Zone, grew by 185% to 80koz Au (previously 28koz Au) with a discovery cost of just US\$7/oz (A\$10/oz).¹²⁴
- The total discovery cost per ounce was US\$12/oz (\$18/oz).¹²⁵ This cost is inclusive of all drilling during the 2019 exploration program including greenfield drilling.
- The updated Mineral Resource will underpin the upcoming Scoping Study which remains on track to be released in late March.

1. Total drilling costs for 2019 \$3m- inclusive of drilling, assays, contractors and personnel; 2. WGH - total meters drilled – 3,523m; 3. \$A\$:US exchange rate – 0.67; 4. PW - total meters drilled – 2,341; 5. total meter drilled 2019 exploration program – 12,632

Matador Mining Limited (ASX: MZZ, MZZO) ("**Matador**" or the "**Company**") is pleased to announce a significant increase in the Mineral Resource at its Cape Ray Gold Project ("**Cape Ray**") located in Newfoundland Canada, as shown below in Table 1 and Appendix 1.

The updated Mineral Resource, which has delivered an 18% increase in contained gold metal, follows a 12,600m drilling program carried out at Cape Ray during 2019. The Assessment and Reporting Criteria in accordance with the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' is presented in Appendix 2.

Table 1: CAPE RAY GOLD PROJECT, JORC 2012 Classified Resource Summary – Gold resource only

	Indicated			Inferred			Total		
	Mt	Au (g/t)	Moz (Au)	Mt	Au (g/t)	Moz (Au)	Mt	Au (g/t)	Moz (Au)
Central Zone	7.0	2.9	0.7	4.0	1.6	0.2	11.0	2.4	0.9
Isle Aux Mort	-	-	-	0.8	2.4	0.1	0.8	2.4	0.1
Big Pond	-	-	-	0.1	5.3	0.1	0.1	5.3	0.1
WGH	-	-	-	4.5	1.6	0.2	4.5	1.6	0.2
Total	7.0	2.9	0.7	9.6	1.7	0.5	16.6	2.2	1.2

T: 08 6143 6710 Info@mafadormining.com.au	Matador Mining Limited	1202 Hay Street	www.matadormining.com.au
		West Perth WA 6005 T: 08 6143 6710	into@matadormining.com.au

Executive Director Keith Bowes commented:

"Following the completion of the largest drill program at Cape Ray in more than 30 years, we are pleased to report the resource has grown to 1.2 million ounces of gold and 3.9 million ounces of silver. Importantly, this growth has not been to the detriment of the resource grade, as the total average grade remains at just over 2.2g/t Au. Notably, at Window Glass Hill, which saw the most significant growth in resource size, the grade of this deposit also increased significantly by approximately 34%. Window Glass Hill is our second largest deposit and will be an important part of the development plans going forward.

"It is also very pleasing to note that the discovery costs at Window Glass Hill of US\$5/oz were very low and exceeded our expectations. Overall, total discovery costs, which included all greenfield drilling, were also very competitive at just US\$12/oz.

"In addition to the increased resource, our regional exploration program has identified additional targets. Regional exploration is expected to form a more significant part of future exploration at Cape Ray."

Image 1: Showing Location of Deposits (PW and Z51 are at Central Zone)

Trading halt

Please note that the Company's securities remain in a trading halt, pending release of an announcement on a capital raising.

Mineral Resource Description and Methodology

Geology and Geological Interpretation

The Cape Ray Shear Zone forms a structural boundary between the Late Precambrian – Early Palaeozoic Dunnage and Gander tectonostratigraphic zones that define the geology of western Newfoundland.

Mineralisation in the main, drilled portion of the project area occurs as quartz veins and vein arrays either along or as splays off the main Cape Ray Shear Zone. The gold bearing quartz veins, which are typically tabular, locally stacked and dip steeply towards the south-east, are typically developed within sediments at or near the contact with footwall graphitic schist or granitoids. Mineralisation extends to the surface with little or no overburden present in what is essentially a glacial-stripped terrain. At Window Glass Hill, gold-mineralisation is present in flat-lying sheets that are developed within a large altered granitic intrusive known as the Window Glass Hill Granite.

Key rock types identified by geological mapping together with logging and multi-element geochemistry allowed the creation of a geological interpretation of the mineralised domains that were used for resource estimation. The interpretation is consistent with other shear-hosted and granite-hosted gold deposits elsewhere in the world.

Drilling Techniques

Sampling specific to resource estimation at Cape Ray has been carried out using diamond drilling (DD) exclusively. A total of 90,060m drilling has been completed, with 638 holes distributed among the deposits. Matador undertook 76 holes for 12,630m in 2019, which were incorporated into the 2020 resource studies. Historically, the core diameter is predominantly NQ (47.6mm) with BQ (36.5mm) used at times. Drilling undertaken by Matador in 2019 utilised NQ core diameter. Drill spacing in 2019 varied from 40x60m to broader spacing depending on region and previous drilling. Holes were drilled from - 90 to -80 degrees (WGH) -60 degrees towards the north-west (e.g. PW and Z51). This orientation resulted in generally sub-perpendicular intercepts to mineralisation.

Sampling and Sub Sampling Techniques

The majority of historical drill hole core sampling was done using either half core mechanical splitting, half core cutting or whole core sampling. Drilling by Matador was sampled by half core cutting. Sampling of diamond core was based on geological intervals with the average sample width of 1.01m over 32,899 assay intervals.

Sample Analysis Method

The majority of the assays were carried out at Eastern Analytical Laboratories, Springdale, Newfoundland. The sample preparation of diamond core involved oven drying, coarse crushing of the half core sample down to -10 mesh followed by riffle splitting of a 300g sample that was then ring milled, with 98% passing 150 mesh. Small variations to the split sample size and fine grind occurred at times. Selected high-grade intervals were also submitted for screen-fire assay as a verification of the original assay. In 2019, Matador undertook a re- sampling program of the historic drill core in order to obtain additional QAQC verification of the historical assays and to assay previously unsampled intervals; additionally, substantial re-sampling and screen-fire check assays were also identified in the period.

Image 2: Modelled mineralised zones at Window Glass Hill (top), PW (middle) and (Zone 51 (bottom)

Criteria used for Classification and Estimation Methodology

Gold and silver grades were estimated using Ordinary Kriging (OK). Samples were composited to 1m and coded by wireframe/rock code domain. Assay outliers were controlled using top-cutting where appropriate. Variogram analysis was carried out on the gold and silver composites within each deposit and domain. Variograms were modelled to provide an assessment of the sill of the variogram, downhole variograms were modelled to determine the nugget, and directional variograms were modelled to identify the three main directions of continuity. The size and orientation of the search ellipsoid for the estimation process was based on the variogram parameters modelled for gold and silver for all deposits.

The WGH, PW and Zone 51 Mineral Resources were classified as either Indicated or Inferred based on a combination of interpreted geological and grade continuity, data quality, multiples of the variogram ranges of the second structure, average distance of samples to the block centroid, overall data spacing, and a 3D review of the overall grade interpretation. The average distance of composites from the block centroid were considered to assist classification criteria with Indicated Resources considered based on an average distance of less than 40m and Inferred for blocks > 40m. Digitised boundaries were developed taking all considerations into account, which were then applied to the block models to apply the classification criteria (refer Appendix 1 for diagrams). Due to the generally broader drill spacing, the Window Glass Hill and PW deposits were classified as Inferred. The Zone 51 deposit was classified as a combination of Indicated and Inferred.

Cutoff Grade, Mining and Metallurgical Parameters

It has been assumed that, subject to permitting, a combination of conventional open cut and underground mining methods will be utilised at Cape Ray based on orebody geometry and orebody depth from surface. The Window Glass Hill and PW deposits could be amenable to open cut mining and a reporting cut-off grade of 0.25g/t Au for open pit resources is considered appropriate for these generally shallow deposits. A 0.5g/t reporting cut-off grade has been utilised for Zone 51.

Historic metallurgical test work shows that extractable gold is reported to be as high as 98% and extractable silver between 50 and 70% with conventional cyanide leach. Recoveries of gold by gravity has shown potential to be greater than 50%.

Discussion of modifying factors

Metallurgical testwork is currently being undertaken to quantify recoveries of gold and base metals from the 04, 41, Big Pond and Window Glass Hill deposits. At present, no material progress has been made regarding other modifying factors.

About the Company

Matador Mining Limited (ASX: MZZ) is a gold exploration company with tenure covering 80km of continuous strike along the highly prospective Cape Ray Shear in Newfoundland, Canada. Within the package is a 14km zone of drilled strike which hosts a JORC resource of 1.2Moz Au (16.6Mt at 2.2g/t Au) (see Table 1 and Appendix 1 for a full summary of Resources) (ASX announcement 4th February 2020). The exploration opportunity at Cape Ray is extensive, with only a small portion of the 80km strike drilled, and high-grade gold occurrences observed along trend. The current drilling program is part of a larger-scale exploration and project development program that is focused on unlocking the value in this considerable package.

To learn more about the Company, please visit www.matadormining.com.au, or contact:

Keith Bowes – Executive Director (Technical) +61 8 6117 0478

Adam Kiley – Executive Director (Corporate) +61 8 6117 0478

Competent Person's Statement

The information in this document that relates to the exploration and drill hole data, and the classification scheme applied to Window Glass Hill, PW and 51 deposits, is based upon information compiled by Mr. Neil Inwood, an independent consultant to Matador Mining Limited. Mr. Inwood is a Fellow of the Australian Institute of Mining and Metallurgy and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the December 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr. Inwood consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

The information contained in this announcement that relates to the mineral resource estimate for Zone 51 was undertaken by Mr. Brian Wolfe, an independent consultant to Matador Mining Limited, and is a Member of the Australian Institute of Geoscientists. The classification scheme for Zone 51 was developed by Mr Wolfe and reviewed by Mr Inwood. Mr. Wolfe was engaged as a consultant to Matador Mining Limited and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Wolfe consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

The information contained in this announcement that relates to the grade estimate for Window Glass Hill and PW was undertaken by Mr. Patrick Rice, an independent consultant to Matador Mining Limited. Mr. Rice is a Fellow of the Australian Institute of Mining and Metallurgy and was engaged as a consultant to Matador Mining Limited. Mr. Rice has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Rice consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

The information in this announcement that relates to Mineral Resources for Z41, Zone 4, H Zone, Big Pond and IAM at the Cape Ray Project was first reported by the Company in an announcement to the ASX on 30 January 2019. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements, and in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Appendix 1 Cape Ray JORC 2012 Classified Resource (Feb 2020)

	February 2020 Resource Summary															
			Indicated Inferred						Total							
Deposit	Cutoff	Mt	Au ppm	Ag ppm	Oz (Moz)	Oz Ag (M Oz)	Mt	Au ppm	Ag ppm	Au (M Oz)	Ag (M Oz)	Mt	Au ppm	Ag ppm	Au (M Oz)	Ag (M Oz)
Z4	0.5	3.85	3.1	8	0.38	0.97	1.37	2.4	9	0.10	0.39	5.22	2.9	8	0.48	1.36
Z41	0.5	1.75	2.2	8	0.12	0.43	0.09	2.7	6	0.01	0.02	1.84	2.2	8	0.13	0.45
Z51	0.5	1.15	3.8	8	0.14	0.31	0.40	1.7	2	0.02	0.03	1.55	3.3	7	0.16	0.33
HZ zone	0.5	0.21	1.1	1	0.01	0.01	0.00	0.9	1	0.00	0.0	0.21	1.1	1	0.01	0.01
PW Zone	0.25					-	2.21	1.1	4	0.08	0.26	2.21	1.1	4	0.08	0.26
Central Zone Total		6.96	2.9	8	0.65	1.71	4.08	1.6	5	0.21	0.69	11.04	2.4	7	0.86	2.41
Isle aux Mort	0.5					-	0.78	2.4	2	0.06	0.06	0.78	2.4	2	0.06	0.06
WGH	0.25					-	4.65	1.6	10	0.23	1.45	4.65	1.6	10	0.23	1.45
Big Pond	0.5					-	0.11	5.3	3	0.02	0.01	0.11	5.3	3	0.02	0.01
Total		6.96	2.9	8	0.65	1.71	9.62	1.7	7	0.53	2.22	16.59	2.2	7	1.18	3.93
			Note:	Figures	have been	rounded,	and indiv	vidual cel	Is may not	t add due to	rounding	errors.				

Matador Mining Limited	1202 Hay Street	www.matadormining.com.au
	West Perth WA 6005	info@matadormining.com.au
	T: 08 6143 6710	

Appendix 2 JORC Code, 2012 Edition Table 1

Section 1 Sampling Techniques and Data

Criteria	Explanation	Commentary
Sampling Techniques	Nature and quality of sampling (eg cut channels, random chips,	Sampling specific to resource estimation of the Cape Ray Gold Project has been carried out using diamond drilling (DD).
_	or specific specialised industry	Historical exploration activities are summarised in Appendix 2.
	standard measurement tools	Pre-2004 Exploration works: Between 1977 and 2004, 484 diamond drillholes were
	appropriate to the minerals under	drilled by various companies including Rio Tinto Canada Exploration (Riocanex),
	investigation, such as down hole	Mascot Gold Mines Ltd. Dolphin Exploration Ltd., Tenacity Gold Mining Company,
	gamma sondes, or handheld XRF	Terra Nova, Cornerstone Capital Resources Inc. Core sizes were either BQ (36.5
	instruments, etc). These examples	mm) or NQ (4/.6 mm).
	should not be taken as limiting the broad meaning of sampling.	Cornerstone Capital Resources Inc. (Cornerstone) , 2004-2006: 28 NQ diamond drillholes as well as undertaking rock chip sampling and soil sampling. A total of 189 rock samples, including 13 channel samples, were collected in 2004.
		Benton Resources Inc. (Benton) , 2013-2015: Completed an exploration program consisting of line-cutting, IP geophysical survey, prospecting/mapping, and geochemical rock/soil sampling. A total of 96 rock samples and 588 soil samples were collected within the licence 17072M. A mini bulk sample was collected from an old trench which exposed the 51 Zone.
		Between January 2014 and November 2014, Benton Resources Inc. completed a 19-hole diamond drill program, a bulk sampling program, a line-cutting program, and a geochemical rock and soil sampling program. A total of 941 core samples were collected.
		Diamond drillcore was logged and half core samples were collected using a rock saw and submitted for analysis. Detailed descriptions of drilling orientation relative to deposit geometries, and sample nature and quality are given below.
		Nordmin, 2016: completed 29 NQ diamond drillholes the 04, 41, and 51 Deposits. Diamond drillcore was logged and half core samples were collected using a rock saw and submitted for analysis. Detailed descriptions of drilling orientation relative to deposit geometries, and sample nature and quality are given below.
		Matador Mining Ltd: In 2018 33 holes for 4,400M NQ diamond drilling was completed and in 2019, 76 holes for 12600m of NQ diamond drilling was completed. Samples of half core were processed to produce a 30g sub-sample for assaying (Au by fire assay; Ag, Cu, Pb, Zn by aqua regia/ICP-MS).

Matador Mining Limited	1202 Hay Street	www.matadorn
	West Perth WA 6005	info@matadormi
	T: 08 6143 6710	

Aspects of the	e determination of Pre-20	04 Exploration works
mineralisation the Public Rep	that are Material to Diamo port. Diamo	ond drilling was completed using either a BQ (36.5 mm) or NQ (47.6 mm) drill all holes.
	Riocar visible were t litholog well m minera over la	nex did selective sampling of drill core based on geological criteria such as mineralisation or the presence of quartz veining. Core sample intervals ypically laid out based on visually determined mineralized zone limits or gic boundaries, with individual samples ranging from less than 50 cm for ineralized intercepts to several metres in graphitic schist and less alized veined intervals. Continuous sampling was not typically carried out onger logged sections of non-mineralized lithologies.
	Limited Mining detern length	a information is available for the sampling methods used by Tenacity Gold g Company, and Terra Nova, but sampling was based on visually nined mineralised zone limits or lithological boundaries and ranged in from 50 cm to several metres.
	Contir non-m recogi	nuous sampling was not typically carried out of longer logged sections of ineralised lithologies. Guidance appears to have been based on visual nition of alteration changes and associated sulphide mineralisation.
	Gener	rally, most of the historical core was split in half using mechanical splitting.
	Dolphi overco	in submitted whole core samples for numerous holes in an attempt to ome possible sampling problems associated with gold deposits.
	Evaluc hamp	ating available resources for precious metal deposits, especially gold, is ered by a number of risks. These include:
	"High (precio	grade" actually being represented by minute quantities of a particular bus metal.
	The us minute submit	e of smaller diameter drill core make representative sampling of such e quantities difficult, especially when only a half of the core is actually tted for analysis.
	The us results actual	e of manual splitting rather than the use of a diamond saw commonly in biased sampling as more or less material than intended is included in the I sample.
	The rel materi as golo comm	liance of using only a 30 gram sample is based on the assumption that the ial being analysed has been thoroughly homogenised. Ductile metals, such d, typically fail to be homogenised and thus the 30 gram sample nonly can be biased high or low.
	As pre the na that a core sl	cious metals are difficult even under the best of conditions to be seen by aked eye and as they may or may not be associated with other minerals re easily recognised it is imperative that sampling not be selective. All drill hould be sampled to ensure mineralisation is not missed.
	The mo all of t chara sample must b	ajority of historical drilling done on the Cape Ray Gold Project suffers from he above, in particular, the non-continuous sampling based solely on visual cterisation of the core. As a result, gold-bearing rock may not have been ed. By necessity all non-sampled intervals in-between sampled intervals be assigned a zero grade which can introduce a negative bias.
	Corne	rstone: The 2004 and 2006 drilling programs by Cornerstone were
	compi sampli proce: 1.20 m was sc	ing and analysis were marked by the geologist during the core logging ss. In most cases, core samples did not exceed a recommended length of a and a minimum sample length of 0.5m was generally applied. The core sampled by sawing it in half longitudinally using a diamond bladed core saw.
	Drill cc by geo	ore was continuously sampled through the entire mineralised zone identified ological logging.
	Bentor Selecti minerc	n: The 2014 diamond drilling was completed using a NQ drill bit for all holes. ive sampling of drill core was based on geological criteria such as visible alisation or the presence of quartz veining. Samples were generally no

		greater than 1.5 metres in length and no shorter than 0.3 metres, with the
		average length being 1.1 metres. Core was cut in half using a rock saw.
		Nordmin: The 2016 diamond drilling was completed using a NQ drill bit for all
		holes. Selective sampling of drill core was based on geological criteria such as
		visible mineralisation or the presence of quartz veining. Samples were generally
		no greater than 1.5 metres in length and no shorter than 0.3 metres, with the
		average length being 1.1 metres. The core was sawn on site with a rock saw.
		Matador : Diamond drilling was completed using an NQ drill bit for all holes. Samples were selected based on geological criteria (quartz veining, sulphides, alteration). Samples were generally no greater than 1.5 metres in length and no
		shorter than 0.3 metres, with the average length being 1.1 metres. Core was cut in half on site with a rock saw.
Drilling	Drill type (ea core, reverse	Pre-2004 Exploration works: Diamond drillcore is either BQ (36.5 mm) or NQ (47.6
techniques	circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core	mm). The Royal Oak drillcore was oriented, but details regarding methodology have not been sighted by Matador at this stage. Details regarding orientation methodology of other historical drillholes have not been sighted by Matador at this stage.
	dopth of diamond tails face	Cornerstone : The 2004 drilling program by Cornerstone included the diamond
	sampling bit or other type, whether core is oriented and if so, by what method, etc).	drilling of 18 holes which was carried out by Petro Diamond Drilling Ltd. (a division of Cabo Drilling Corp.) of Springdale, NL. An EZY-Mark device was also used to obtain oriented drill core when ground conditions permitted.
		The 2006 drilling program by Cornerstone included the diamond drilling of 10
		holes by Lantech Drilling Services Ltd. of Dieppe, New Brunswick. Drill holes were near vertical (-80° to -87° inclination) and ranged from 50 to 179 m in length.
		Benton : Diamond drilling was carried out in two (2) phases. Cabo Drilling Ltd. (Cabo) of Springdale, NL, carried out the first phase of diamond drilling using a Nodwell-mounted Boyles B15 diamond drill rig equipped to drill NQ sized core from June to August 2014. West Bottom Drilling Inc. completed the second phase of diamond drilling using a skid-mounted Duralite 500 diamond drill.
		Nordmin: NQ-sized (47.6 mm diameter) core drilling program was carried out by
		Lantech Drilling Services Ltd. of Dieppe, New Brunswick. Two drill rigs of type DDM(EF50) were used to complete the campaign. Holes were inclined at -65° to -50° inclination and ranged from 117 to 237 m in length.
		Details regarding drillhole orientated methodology have not been sighted by Matador.
		Matador : Diamond drilling was carried out by Logan Drilling Pty Ltd, Nova Scotia, using a Duralite 500 drill rig. Hole diameter was NQ, and all holes were orientated where possible using a Reflex ACT III core orientation tool. Triple tube drilling was utilised in areas of strong faulting/fracturing where historical recoveries were affected.

Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 The original Riocanex drill hole logs show that core loss through poor recovery was commonly identified but was not determined to be problematic. Much of the early exploration drilling carried out by Riocanex and Corona-Dolphin recovered BQ size drill core (36.4 mm diameter) in the mineralized zones and this would generally be expected to show greater loss in areas of broken or disrupted ground (i.e. fault zones) than the larger NQ (47.6 mm) core that was favoured later in the project's history. Where present, core recoveries were recorded in the log as a percentage. Details regarding how the core recovery % was calculated in the historical drilling is not known at this stage. Nordmin: Drillhole recoveries for the 2016 diamond drillholes were recorded during geotech logging by physically measuring by tape measure the length of core recovered per 3m core run. Core recovery was calculated as a percentage recovery of actual core length divided by expected core length. Matador: All drillholes were marked up and orientated in full using a tape measure and core orientation bar. Core boxes were labelled with the hole number and start/end depths of core contained in each box.
		measured depths compared and validated against reported drilling depths.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Triple tube drilling was utilised in areas of strong faulting/fracturing where historical recoveries were affected.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material	Sample bias has not been identified with respect to recovery, nor has a relationship between recovery and grade yet been identifed
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Core was logged in full for geological (colour, grainsize, texture, lithology, weathering, alteration, sulphides, veining), geotechnical (fracture frequency, RQD, specific gravity) and structural (alpha/beta measurements of planar/linear features) data. All logs were recorded on paper templates and entered into spreadsheets for validation and uploading to a centralized database. The geological and geotechnical logging is completed at a level appropriate to support Mineral Resource estimation, mining studies and metallurgical studies.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography	Core logging is qualitative in nature. All Matador core is photographed wet and dry.
	The total length and percentage of the relevant intersections logged.	All Matador drill holes were logged in full.
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Core samples are cut in half with a rock saw. Samples are consistently taken from the same side of the core.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	No non-core samples have been used.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The Matador sample preparation techniques are considered industry practice and are conducted at an ISO-accredited external laboratory, all considered appropriate to the style of mineralisation.

	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Sub-sampling preparation techniques are considered industry practice and are conducted at an ISO-accredited external laboratory, all considered appropriate to maximise the representivity of samples. Historical sampling was undertaken by reputable companies of the time; spot check by Matador personnel have not identified any material errors with respect to sampling. Of historical core.
	Measures taken to ensure that the sampling is representative of the <i>in</i> situ material collected, including for instance results for field duplicate/second-half sampling.	Matador undertook 41 core duplicates of core, with acceptable results obtained. Additionally, 130 screen fire assays were undertaken on coarse rejects, which also reported similar to the original results. Half core samples are retained on site to facilitate validation of results and further re-sampling.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered appropriate to the grain size (90% passing 75 microns) sampled.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Core samples are analysed using a 30g fire assay with AAS finish, and aqua- regia/ICP-MS finish for Ag, Cu, Pb and Zn. The methods are total digest and considered appropriate for determining gold grades.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools, spectrometers, handheld XRF instruments, etc used.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Matador certified reference materials are inserted 1 in 25 samples. Certified reference materials used are: CDN-GS-14A (14.9g/t Au); CDN-GS-4H (5.01g/t Au); CDN-GS-5PG (0.562g/t Au) and CDN-BL-10 (<0.01 g/t Au). 41 field duplicates were also submitted. Selected high-grade intervals were also submitted for screen-fire assay as a verification of the original assay. In 2019, Matador undertook a re-sampling program of the historic drill core in order to obtain additional QAQC verification of the historical assays QAQC data of assays is validated internally by Matador with re-assaying of batches with standards reporting greater than 2 standard deviations from expected values.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intercepts were verified by the Matador Competent Person. Significant effort has been made to verify historical assay values from original records.
	The use of twinned holes.	No twinned holes were used.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All logging is completed into spreadsheets, which are validated and uploaded to a centralised Access database. Selected paper logs are retained on site and scanned for digital backups.
	Discuss any adjustment to assay data.	Historical non-sampled intervals or intervals with missing assay data were assigned zero grades. No adjustments have been made to Matador assay data.

Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collars were located using a handheld GPS unit with a stated 3-5m accuracy. At the completion of each hole, the drill hole collar coordinates were re-surveyed with handheld GPS units. During 2019 a program of locating historical drill holes was undertaken and their co-ordinates recorded using a handheld GPS unit, with approximately 250 identified. The locations correlated well with the locations in the database.
	Specification of the grid system used.	Grid System NAD 1983 Zone 21N
	Quality and adequacy of topographic control.	Topographic control is from a 2019 Drone survey with DGPS control. The data was used to create a 5m DEM surface with 10cm accuracy on the RL. Elevations of drill holes were adjusted to suit the DEM surface.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill hole spacing varied from 25/40m 40x60m (WGH central) to 60 x 100m (WGH extents) to broader spacing depending on the region and previous drilling.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing and distribution was considered sufficient to establish geological and grade continuity appropriate for the applied JORC classifications.
	Whether sample compositing has been applied.	Samples were composited to 1 metre intervals for determination of significant intercepts.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	All samples were generally perpendicular to the strike orientation of structures, and shallow dip angles of drill holes reduces the down-dip component of intersections through structures.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sample bias is considered to have been introduced from the current drilling program through drilling orientation.
Sample security	The measures taken to ensure sample security.	Matador samples were collected in pre-numbered bags with waterproof sample tags and sealed. Samples are delivered direct to Eastern Analytical or collected by Eastern Analytical. Sample submissions are documented via email submissions and assays are delivered via email as signed PDF documents and spreadsheets.
Audits or reviews	The results of any audits or reviews of sampling techniques and data	Multiple internal audits have been undertaken on the database, drilling data and historical sampling data. Matador is not aware of any material omissions within the database used for estimation studies. An external audit of sampling and QAQC procedures undertaken in 2018/2019 resulted in increased QAQC sampling (standards, duplicates and alternate assay methods) being undertaken in 2019.

Section 2 Reporting of Exploration Results

Criteria	Explanation	Commenta	iry					
Mineral tenement and land tenure	Type, reference name/number, location and ownership including agreements or material issues with	Matador has entered into a Sale agreement to acquire an 80% initial interest in the Cape Ray Gold Project, which is located approximately 20km northeast of Port aux Basques, Newfoundland, Canada. The projects are also subject to a						
status	third parties such as joint ventures, partnerships, overriding royalties,	Licence No.	Known Deposit	No. of Claims	Area (km2)	Royalty*		
native title interests, historical sites, wilderness or national park and environmental settings.	017072M	Window Glass Hill (WGH) and 51	183	45.7	(a) & (b)			
	onvioninonal sonings.	007833M	-	1	0.25	none		
		008273M	Isle aux Mort (IaM)	7	1.75	(c)		
		009839M	Big Pond (BP)	26	6.5	(C)		
		009939M	04 and 41	12	3.0	(C)		
		024125M	-	14	3.5	none		
		024359M	-	7	1.75	none		
		025560M	-	20	5.0	none		
		025854M	-	53	13.25	(d)		
		025855M	-	32	8.0	(d)		
		025858M	-	30	7.5	(d)		
		025856M	-	11	2.75	(d)		
		025857M	-	5	1.25	(d)		
			Total	401	100.2			
		The most pro community i approximate time if the Pr sites, lands o Indigenous F environmen ⁻ The Crown h adjacent are environmen ⁻ land claims o There has be report.	oximate Aboriginal co in Bay d'Espoir, forme ely 230 kilometres to t oject site is proximate or resources currently l Peoples. This informati tal baseline studies. nolds all surface rights eas are encumbered tally or archeological or entitlements in this een no commercial p	ommunity to the rly known as the he east of the to any traditi being used for on will be acco in the Project in any way. The ly sensitive zon region of the p roduction at the	e Project site is ne "Conne Rive Project site. It is onal territories, a traditional purp juired as part of area. None of t ne area is not in he and there are province. he property as a	the Miawpukek r". It is not known at tl archaeological poses by future he property or an e no aboriginal of the time of th		
	The security of the tenure held at	The claims a	re in good standing.					
	the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Permits that will potentially be required for exploration work include a Surface Lease and Mineral Exploration Approval both issued by the Newfoundland Department of Natural Resources, Mineral Development Division. A Water Use Licence has been acquired from the Newfoundland Department of the Environment and Conservation, Water Resources Division, as well as a Certificate						

Criteria	Explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The Cape Ray Gold Deposit was initially discovered in 1977 by Rio Canada Exploration Limited (Riocanex). Since that period the area has been the subject of numerous academic and government geological studies, and exploration by various mining companies. Historical work is summarised in Matador Announcement 19 th July 2018.
Geology	Deposit type, geological setting and style of mineralisation	 The Cape Ray Project lies within the Cape Ray Fault Zone (CRFZ), which acts as a major structural boundary and hosts the Cape Ray Gold Deposits consisting of the 04, the 41, the S1 Zones, Window Glass Hill, Big pond and Isle Aux Morts. The CRFZ is approximately 100km long and up to 1km wide extending from Cape Ray in the southwest to Granite Lake to the northeast. Areas along and adjacent to the southwest portion of the Cape Ray Fault Zone have been subdivided into three major geological domains. From northwest to southeast they include: the Cape Ray Igneous Complex (CRIC), the Windsor Point Group (WPG) and the Port aux Basques gneiss (PABG). These units are intruded by several pre- to late-tectonic granitoid intrusions. The Cape Ray Igneous Complex complex smainly large mafic to ultramafic intrusive bodies that are intruded by granitoid rocks. Unconformably overlying the Cape Ray Igneous Complex somplex is the Windsor Point Group, which consists of bimodal volcanics and volcanoclastics with associated sedimentary rocks. The Port aux Basques gneiss is a series of high grade, kyanite-sillimanite-gamet, quartzofedspathic pelitic and granitic rocks intercalated with homblende schist or amphibolite. Hosted by the Cape Ray Fault Zone are the Cape Ray Gold Deposits consisting of three main mineralised zones: the 04, the 41 and the 51 Zones, which have historically been referred to as the "Main Zone". These occur as quartz veins and vein arrays along a 1.8 km segment of the fault zone at or near the tectonic boundary between the Windsor Point Group and the Port aux Basques gneiss. The gold bearing quartz veins are typically located at or near the southeast limit of a sequence of highly deformed and brecciated graphitic schist. Other veins are present in the structural footwall and represent secondary lodes hosted by more competent lithologies. Gold bearing quartz veins are typically located at or near the southeast limit of a se

Criteria	Explanation	Commentary
Drill hole	A summary of all information	2019 drill hole details are provided in Appendix 3. For previous drilling refer to MZZ
information	material to the understanding of	ASX Announcements 30 th January 2019, 1 October 2019, 17 October 2019, 19
	the exploration results including a	November 2019 and 17 December 2019
	tabulation of the following	
	information for all Material drill	
	holes:	
	 easting and northing of the 	
	drill hole collar	
	 elevation or RL (Reduced 	
	Level – elevation above	
	sea level in metres) of the	
	drill hole collar	
	 dip and azimuth of the 	
	hole	
	 down hole length and 	
	interception depth	
	 hole length. 	
Data	In reporting Exploration Results,	Significant reported intercepts were determined based on 1m composite
aggregation	weighting averaging techniques,	samples as length-weighted averages. – refer ASX Announcements 30th January
methods	maximum and/or minimum grade	2019, 1 October 2019, 17 October 2019,19 November 2019, and 17 December
	truncations (eg cutting of high	2019
	grades) and cut-off grades are	
	usually Material and should be	
	stated.	
	Where aggregate intercepts	Significant reported intercepts are reported with a cut-off grade of 0.5 g/t Au,
	incorporate short lengths of high-	and internal dilution of up to 3m. – refer ASX Announcements 30th January 2019, 1
	grade results and longer lengths of	October 2019, 17 October 2019, 19 November 2019, and 17 December 2019
	low-grade results, the procedure	
	used for such aggregation should	
	be stated and some typical	
	examples of such aggregations	
	should be shown in detail.	
	The assumptions used for any	No metal equivalents are reported.
	reporting of metal equivalent	
	values should be clearly stated.	
Relationship	These relationships are particularly	All reported intercepts were reported as downhole lengths.
between	important in the reporting of	
mineralisation	Exploration Results.	
widths and	If the geometry of the	
intercept	minerglisation with respect to the	
lengths	drill halo angle is known, its nature	
iongo	anii nole angle is known, iis nature	
	If it is not known only the down	
	hole lengths are reported, there	
	should be a clear statement to this	
	effect (eg 'down hole length, true	
	width not known').	

Criteria	Explanation	Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See body of announcement for diagrams.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All exploration results were reported in full - – refer ASX Announcements 30 th January 2019, 1 October 2019, 17 October 2019,19 November 2019, and 17 December 2019
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Soil geochemistry sampling and structural geology mapping programs were undertaken on the property in 2018 and 2019 – refer to previous exploration announcements.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further drilling may be carried out to extend the strike and depth extents of the current resource, planning for further progams is currently in progress.

Section 3 Estimation and Reporting of Mineral Resources

Criteria	Explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	A total of 560 surface drillhole sample records, lithological logs, available assay laboratory results, and associated drill hole information for all drill programs completed by Riocanex, Corona-Dolphin, Royal Oak and Cornerstone were digitally compiled by Matador against original source documents available through the NLDNR online database, and both consistency and accuracy of such records were assessed. Checks included validation of collar coordinates, down hole survey values, hole depths, sample intervals, assay values and lithology coding in the digital database compiled by Cornerstone with original source documents for 20% of the database. Recent drilling by Matador (2018 -33 holes, 4,400m and 2019 76 holes, 12630m) was imported and directly validated in the centralised database.
	Data validation procedures used.	For the 2020 Mineral Resource estimate, drill hole data was validated by Matador through database import validation and additional verification of database records against historical data. 257 historical drill hole co-ordinates were checked in the field against handheld GPS co-ordinates collected in 2019.
Site Visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	Mr Neil Inwood, a consultant to Matador Mining Ltd, conducted a site visit during July 2019 during which a representative number of drill collars were verified. Mr Inwood also inspected historical core at the site core yard and the Government core library in Pasadena, Newfoundland. Mr Brian Wolfe, a consultant to Matador Mining Ltd, conducted a site visit during July 2019. The project site was visited, and diamond core drilling operations were reviewed. Relevant drill core samples were inspected and sampling and assaying protocols were reviewed.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The control on mineralization of the 51 Zone consists of a single shear zone associated with a graphitic schist unit. This vein-type orebody is oriented at an azimuth of approximately 50° and dipping at approximately 60° to the southeast. The modelling process comprises of the interpretation of geologic units in combination with the gold and silver grades. These interpretations were digitized and snapped to drill holes on northwest-southeast sections, and then linked together in 3-D as a wireframe in the Vulcan software. The mineralised zone at Window Glass Hill and PW is primarily hosted in sulphidic quartz veins in late-stage granitic intrusives. The Window Galss Hill Granite is largely exposed, and the PW mineralisation is interpreted to be geologically similar to those observed at Window Glass Hill but with the orientation strongly controlled by the Cape Ray Shear. The Window Glass hill mineralisation foillows a corridor of 040 degrees, with individual quartz vein sets having a 140 degree strike and 230 degree dip orientation. The PW mineralisation strikes around 040° and dips shallowly around -40° to the southeast. The modelling process comprises of the interpretations were snapped to drill holes and then linked together in 3-D as wireframes in the Surpac® software.

	Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource	Drillhole data was primarily used to build the geological model of the deposits, which has been aided by geophysical data and geological mapping. All missing samples were replaced with a 0.01 g/t value for gold and silver on the assumption that all unsampled intervals are barren. No other assumptions have been made. Test estimates (both ID2 and OK) were undertaken for PW, Zone 51 and WGH – the final reported resources fall within the bracketed test estimates.
	estimation.	
	The use of geology in guiding and controlling Mineral Resource estimation.	The modelling process comprised the interpretation of geologic units in combination with the gold and silver grades. The control on mineralisation is associated with both structure and lithology. The use of geology (structure and lithology) has been used in guiding and controlling the wireframe modelling process in all of the deposits estimated.
	The factors affecting continuity both of grade and geology.	The Cape Ray Fault Zone, which hosts the deposits (Zone 04, 41, 51, PW, H Isle aux Mort and Big Pond), is the main control over geological continuity. Mineralisation occurs within quartz veins, vein breccia, fault fill veins, and vein arrays hosted by a graphitic schist within the CRGD, which control grade continuity. The orientation and geometry of these deposits is controlled by a NE trending fault/shear zone that dipping moderately to the SE. Granitic intrusions at PW and Isle Aux Mort are a primary control on mineralisation with mineralised veins occurring in the graphitic schists and extending into the intrusive bodies. The Window Glass Hill mineralisation occurs predominantly in a set of flat-lying sulphide- rich quartz veins hosted in the relatively un-deformed Window Glass Hill Granite near the CRFZ. Two sets of sulphide-bearing quartz veins at the WGHD cut the Window Glass Hill Granite, with the first set hosting the majority of the Au, Ag, Pb and Zn mineralisation. The second set of veins, which strike northeast and dip steeply southeast at approximately 80°, post-date those of the first set and are mineralised only where they intersect mineralised veins of the first set
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 51 Zone: The extent of Au-Ag mineralization of the 51 Zone includes a strike length of approximately 685 m and aggregate down-dip extent of approximately 300 m, with an average thickness of 4-5 m. PW Zone: Located along strike from the 51 Zone, mineralisation is hosted in 4 major tabular veins around 250-300m in length, with 4 minor stacked veins around 90m in length. The veins strike around 45° and dip variably from 65° to 45° to the southeast. Window Glass Hill: Vein sets are mapped and interpreted to strike at 140 degrees a with a dip to 230 degrees, individual vein sets plunge along a 040 degree trend defined by the gross orientation of the WGH granite.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a	 Resource estimation for Window Glass Hill, PW Zone, (Jan 2020) was carried out by Mr Patrick Rice (Rice Advice, Perth) using Datamine software. Gold and silver grades for WGH and PW was estimated by Ordinary Kriging (OK). The resource estimates were also reviewed by Mr Neil Inwood (Sigma Resources Consulting, Perth). Block Model Parameters are shown below For WGH and PW Estimates were carried out using validated data and within the modelled wireframes provided by the project Competent Person. The drillhole data was composited to 1m. Variogram analysis was undertaken for gold (Au) and silver (Ag). Downhole variograms were used to determine the nugget (C0), and an omnidirectional variogram provided the structure (sill and range) of the variogram. The variogram range defined the limits of the three (3) search volume passes. Pass1, minimum samples=8, maximum samples=16, omnidirectional at the range of the variogram; Pass2, min. samples=4, maximum samples=16 and one and a half times (1.5x) the variogram range;

computer assisted	Pass	s3, min. sa	mples=2	, max. samp	oles=16 and	three times	(3x) the variog	ram
estimation method	ranç	ge. Due to	the limit	ted data a	limit of 10 sc	amples per o	drillhole was set.	. No
was chosen include a	octo	ant or othe	er contro	olling limits w	vere set.			
description of								
computer software	P	arent/Sub-						
and parameters used.	B Deposit Si	lock ize (X,Y,Z)	Model Origin X	Model Origin Y	Model Origin Z	Blocks X,Y,Z	Block Model Rotation	
	WGH 1	0x10x5	352700	5288900	180	115,105,40	No Rotation	
	PW 1	0x10x5	354200	5289800	180	55.50.60	No Rotation	
	Resource estim	nation for	51 Zone	was carriec	out by Mr	Brian Wolfe	(International	
	Resource Solut	tions Pty Lt	d) using	a combina	tion of Vulc	an and Isat	is software. Zon	ne 51
	Geole	oaical and	d minerc	lisation cor	straints as p	previously de	escribed were	
	impo	rted to Vu	lcan. Th	ie constrain	ts thus deve	, eloped were	e subsequently u	used
	in ge	ostatistics,	variogra	aphy, block	model dor	nain coding	and grade	
		olation.		lacted or th	o most and	oropriato m	othod for actions	atina
	• Ordir Au ar	nd Aa. Blo	g was se ick size o	of 5mF by 15	ie mosi app im N by 5m	RI was seled	ated for the pur	noses
	of gro	ade estimo	ation giv	en the drill s	spacing an	d the likely p	potential future	
	selec	tive minin	g unit (i.e	e. approprio	ate for pote	ntial open p	pit mining).	
	Dowr	nhole asso	iys interc	epts were f	lagged (co	ded) by the	e interpreted	1
	inter	ralisation v cents Vari		undertake	n from the i	generaiea main domai	in indicates a	a
	mode	erate nug	get of ap	oproximate	y 35%, with	maximum r	ange of 80m (st	rike),
	interr	nediate ro	ange of	(dip) 50m a	nd minor ax	kis of 3m. Ell	iptical search	
	neigh	hourhood	ds within	domains w	ere used or	ientated pa	rallel to the	
	orien	tation of fl	he shear 50m alor	. Search ra	nges were m down dir	based on tr and 20m t	ne variograms a 2 40m across str	ind iko
	 Wiref 	ramed mi	neralisat	ion domain	s were used	d as "hard bo	oundaries" for	INC.
	estim	ation						
	• Typic	ally, betw	een 6 ar	nd 12 sampl	es were sel	ected for th	e OK estimates.	. A
	two p	oass estimo	ation stro	ategy was c imatod in t	levised whe	ereby any bl	locks not estime	ated
	in the tirst pass were estimated in the second using relaxed estimation neighbourhood parameters							
	• High	grade cut	ting was	undertake	n prior to th	e experime	ntal variogram	
	calculations and all subsequent work. High grade cuts were typically light							
	and	were cons	idered t	o have a m	oderate eff	fect on the o	overall mean gr	ades.
	High 4a/t	graae cut Au and 50	s were v a/t Au (i	ariable aep main Doma	in) Ad cuts	aomain and were alobe	a rangea betwe ally set at 80a/t.	een Aa
	 Additionally, in the case of the Aulestimates, a distance restriction was set up 							
	where	eby the bl	lock estir	mates could	d not use co	omposite go	old grades over	20g/t
	if the	block cer	ntroid wa	as more tha	n a set dista	ance from th	ne composite. T	his
	limit v hiah i	vas chose arades ov	er block	iualiy per do	omain. Prac at areater d	istance from	n block centroic	ce ot
	where	e the con	tinuity of	the high ar	ades is less	certain.		
	• The b	lock mod	el estimo	ates were vo	alidated by	visual com	parison of whole	Э
	block	grades to	o drillhole	e composite	es, compari	son of comp	posite and bloc	k
	mode	el statistics	, genero	ating grade	shells and N	visually asses	ssing them and	swath
	piots	or compo	sile vers	us whole Di	JCK MODEL	grades		
	Drill Hole Sc	ample Sun	nmary Tc	ıble:				
	Deposit	Holes	Me	tres Drilled	Samples			
	PW		39	6476	3	062		
	WGH	1	07	9862	6	310		

	Z51	192	26966	5730	
 The assumptions made regarding recovery of by- products	Both gold and will be recover	silver grades H ed during pro	nave been interpo icessing.	olated indeper	ndently. It is assumed silver
Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).	No deleterious	elements or c	other non-grade v	ariables have l	been estimated.
In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	Block sizes were drilled portions smoothing of o the broader do	e based upor of the deposi verly large bla ita spacing.	n an analysis of $\frac{1}{2}$ it. This method reflocks and the selection	to ¼ to drill hol flects a compr ction of a bloc	es spacing for the better omise between grade k size too small relative to
Any assumptions about correlation between variables	The deposits di exception bein between gold mineralisation e	splay a mode g Window Gl and silver. Ge envelopes de	erate to strong cor ass Hill, which sho old and silver grad fined by a nomine	relation betwe ws a weak to r des have been al 0.5g/t Au cu	en gold and silver. The noderate correlation interpolated into the t off.
Description of how the geological interpretation was used to control the resource estimates.	Gold and silver on first principle combination w	grades were as and genero ith the gold c	interpolated into ated based on int and silver grades.	wireframes the erpretation of	at were developed based geologic units in
Discussion of basis for using or not using grade cutting or capping.	Samples were t applied) to mir The following to PW: Au 18g/t, A 51: Au 50g/t, Au WGH: Au 18g/t	op-cut prior t himise the effe op cuts were &g 80g/t g 80g/t (main , Ag 80g/t	o grade interpolc ect of outliers, whi applied to gold a domains)	ition (see belov ch resulted in c nd silver assays	w table for cut-off grades a reduction in CV. ::
The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	Validation tests a bias and to c Visual Inspectic plans, and nort estimates. Obse sections indica grades and the according to th Global Bias Tes declustered co global bias of t and silver grad estimation of th	were carried uantify the le on: A visual ins hwest-southe ervations from ted that there e estimates. The projection t: The compa imposites and he estimates. es of more the block grad	tout on the estima- evel of smoothing/ spection of the bla ast cross-sections in stepping through was overall a go and eorientations of angles defined b rison of the avera d the estimated bl As a guideline, a an ± 10% would in les and the possib	ates to examin (variability. ock estimates v was performent the estimated y the search el ge gold and si ock grades ex- difference beto dicate a significate presence of	e the possible presence of with the drill hole grades on d as a first check of the s along the different t between the drill hole grades were also lipsoid. Iver grades from the amines the possibility of a tween the average gold icant over- or under- a bias. It would be a sign

		of difficulties encountered in the estimation process and would require further investigation.
		Results of this average gold and silver grade comparison indicate that Window Glass Hill estimated grades were within acceptable limits, whilst Zone 51 and 04 were generally underestimating grades in comparison to the declustered composites. Zone 41 estimated grades were within acceptable limits for gold, but not for silver. Local Bias Test: A comparison of the grade from composites within a block with the estimated grade of that block provides an assessment of the estimation process close to measured data. Pairing of these grades on a scatterplot gives a statistical valuation of the estimates. It is anticipated that the estimated block grades should be similar to the composited grades within the block prover without being of exactly the same
		value. Thus, a high correlation coefficient will indicate satisfactory results in the interpolation process, while a medium to low correlation coefficient will be indicative of larger differences in the estimates and would suggest a further review of the interpolation process.
Maistura	Whether the	Results indicate a strong correlation coefficient in all estimates. Grade Profile Plots: The comparison of the grade profiles of the declustered composites with that of the estimates allows for a visual verification of an over- or under-estimation of the block estimates at the global and local scales. A qualitative assessment of the smoothing/variability of the estimates can also be observed from the plots. The output consists of three graphs displaying the average grade according to each of the coordinate axes (east, north, elevation). The ideal result is a grade profile from the estimates that follows that of the declustered composites along the three coordinate axes, in a way that the estimates have lower high-grade peaks than the composites, and higher low-grade peaks than the composites. A smoother grade profile for the estimates, from low to high grade areas, is also anticipated in order to reflect that these grades represent larger volumes than the composites. The grade profile plots illustrate that overall the block estimates globally perform well against the declustered composites, However, as anticipated, some smoothing of the block estimates can be seen in the profiles, where estimated grades are higher in lower grade areas and lower in higher grade areas due to the use of OK.
Moisture	whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	Matador considers 0.5g/t Au to be appropriate based on similar deposits and operations. Resources are reported as a global resource.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external)	It has been assumed that, subject to permitting, a combination of conventional open cut and underground mining methods will be utilised at Cape Ray based on orebody geometry and orebody depth from surface. The relative location and geometry of the WGH deposit to surface warrant an open pit mine scenario, whilst the PW, H, 04, 41, 51, Isle aux Mort and Big Pond deposits could be amenable to open cut mining followed by underground mining using a long-hole stope method. No allowances for dilution or mining recovery were made in the Mineral Resource

MATADOR MINING LTD

	mining dilution. It is	Estimate.
	always necessary as	
	part of the process of	
	determining	
	reasonable prospects	
	for eventual	
	economic extraction	
	to consider potential	
	mining methods, but	
	the assumptions	
	made regarding	
	mining methods and	
	parameters when	
	estimating Mineral	
	Resources may not	
	always be rigorous.	
	Where this is the case,	
	this should be	
	reported with an	
	explanation of the	
	basis of the minina	
	assumptions made.	
Motallurgical factors	The basis for	A Preliminary Economic Assossment (PEA) undertaken by provinus operator Nordmin in
		A Freiminiary economic Assessment (FEA) undertaken by previous operation Noramin in
or assumptions	assumptions of	2016 envisioned the process plant to include conventional croshing, ginaling, gravity,
	predictions regarding	and cyanide leach. A gold and silver dore would be produced on sile. These
	metallurgical	predictions by Noramin were based on metallurgical testwork results received to date.
	amenability. It is	Historical metallurgical test campaigns align well with recent bench scale tests. At a lab
	always necessary as	scale level, extractable gold is reported to be as high as 98% and extractable silver
	part of the process of	between 50 and 70% with cyanide leach. Gravity recoverable gold has shown
	aetermining	potential to be greater than 50%. Further work is required for flowsheet development
	reasonable prospects	and optimization.
	for eventual	
	economic extraction	
	to consider potential	
	metallurgical	
	methods, but the	
	assumptions	
	regarding	
	metallurgical	
	treatment processes	
	and parameters	
	made when reporting	
	Mineral Resources	
	may not always be	
	rigorous. Where this is	
	the case, this should	
	be reported with an	
	explanation of the	
	basis of the	
	metallurgical	
	assumptions made.	

Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential	The PEA undertaken by Nordmin envisioned a thickened tailings disposal with placement in a tailings management facility. Surface waste dumps will be used to store waste material from mining. Environmental baselines studies were initiated in 2016, but Environmental Assessment and Impact reviews have not been completed at this stage. The area is not in an environmentally or archeologically sensitive zone and there are no aboriginal land claims or entitlements in this region of the province. There are no known designated environmentally sensitive or cultural heritage sites within the Project lands. Aboriginal consultation, as well as biological and archaeological assessment work that is planned as part of the EA process will identify any environmentally sensitive sites and cultural heritage sites.
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	An SG value of 2.8 was assigned to PW and WGH, based upon the analysis of 39 water immersion bulk density readings taken on whole core. Values ranged from 2.56 to 4.11 with a mean value of 2.8t/m ³ applied. An Sg of 2.8 was applied to Zone 51 based upon the the analysis of 10 core immersion samples taken within modelled zone 1 (average 2.9tt/m ³). Additionally, the average of all density samples > 0.05g/t Au was 2.85t/m ³ .

		Zone 51: (green indicated)
	Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	Drillhole spacing, accuracy of data location, grade and geological continuity have been used in combination for the classification of resources at Cape Ray. Resource tonnages calculated accounted for the block fraction within the mineralized zones wireframe, as well as the block fraction below the topography surface.
	Whether the result appropriately reflects the Competent Person's view of the deposit.	The Competent Person considers the results to be a reasonable estimate of the resource as defined by drilling.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	Matador has not undertaken an independent review or audit of the Mineral Resource estimates.
Discussion of relative accuracy/confidence	Discussion of relative accuracy/confidence Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of	Industry-standard techniques and methodologies have been applied throughout resource estimation process. The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resources under the guidelines of JORC (2012).

MATADOR MINING LTD

statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	
The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The Mineral Resource Estimates are global estimates. The confidence intervals have been based on estimates at the parent block size.
These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	No production data is available. No commercial production has taken place at Cape Ray.

Appendix 3. 2019 Drill Hole Collar Information

				Hole Depth		
Hole Id	Easting	Northing	RL	(m)	Azimuth	Dip
CRD035	356340	5291341	321	266	-57	323.7
CRD036	356313	5291328	322	260	-46	321.7
CRD037	356307	5291282	323	303	-60	318.2
CRD038	356256	5291273	324	273	-61	321.7
CRD039	356269	5291198	326	347	-60	320.7
CRD040	356180	5291237	325	275	-66	323.3
CRD041	356385	5291351	321.31	317	-66	317.7
CRD042	356458	5291258	326	425	-70	323.7
CRD043	356095	5291121	321	273	-66	325.7
CRD044	355971	5290986	329	218	-55	323.7
CRD045	355681	5290615	346	341	-75	323.7
CRD046	355684	5290613	346	263	-62	321.7
CRD047	355295	5290366	330	200	-58	336.8
CRD048	355229	5290296	323.07	215.5	-60	324.7
CRD049	355050	5290240	298.07	149	-55	323.3
CRD050	354971	5290136	291	242	-65	323.3
CRD051	354538	5289891	222	317.25	-55	321.7
CRD052	354427	5289898	210	203	-53	321.3
CRD053	354398	5289818	206.97	272	-55	317.3
CRD054	354476	5289848	215	289	-55	323.7
CRD055	354405	5289802	207.27	308	-60	323.7
CRD056	352903	5289241	342.07	200	-90	173.3
CRD057	352854	5289310	352	200	-90	253.3
CRD058	353389	5289402	333	200	-90	173.3
CRD059	353338	5289466	342	101	-90	253.3
CRD060	353581	5289552	328.93	101	-90	0
CRD061	356676	5291704	310	152	-55	323.7
CRD062	350898	5288882	270.02	101	-50	323.7
CRD063	350906	5288864	269.14	101	-60	323.7
CRD064	364967	5298607	449.45	101	-50	323.7
CRD065	365018	5298688	451.18	101	-50	323.7
CRD066	365231	5298856	461.12	101	-50	3.7
CRD067	365302	5298844	467.56	101	-50	3.7
CRD068	356466	<u>529162</u> 3	310	36	-50	315.7
CRD069	356782	5291800	315	131	-50	321.7

Matador Mining Limited

1202 Hay Street West Perth WA 6005 T: 08 6143 6710 www.matadormining.com info@matadormining.com

-						
CRD070	354960	5290184	282.07	227	-50	321.7
CRD071	356454	5291590	313	101	-60	319.7
CRD072	356437	5291607	311	43	-50	317.7
CRD073	356481	5291607	308.93	101	-60	318.7
CRD074	362073	5295651	360.77	122	-50	331.7
CRD075	362016	5295649	366.99	122	-58	331.7
CRD076	356705	5291710	313	159	-52	331.7
CRD077	356980	5291920	324	200	-65	321.7
CRD078	356763	5291848	309	200	-55	321.7
CRD079	354334	5289894	196	152	-55	325.7
CRD080	354361	5289873	202	170	-55	321.7
CRD081	354655	5290235	234.07	99	-50	321.7
CRD082	354689	5290186	238.27	182	-70	325.7
CRD083	354593	5290038	233.07	200	-60	321.7
CRD084	353478	5289666	362	101	-90	330.3
CRD085	353376	5289526	349.73	131	-90	235.3
CRD086	353311	5289501	347	152	-90	341.7
CRD088	354380	5289948	202.27	149	-55	321.7
CRD089	353423	5289463	337.03	131	-90	133.3
CRD090	353461	5289511	336	134	-80	325.7
CRD091	353435	5289544	346	137	-80	325.7
CRD092	353409	5289576	352	126.44	-81	321.7
CRD093	353383	5289607	356	101	-80	321.7
CRD094	353536	5289517	331.03	80	-80	321.7
CRD095	353506	5289543	339.73	80	-80	321.7
CRD096	353480	5289579	349	80	-80	327.7
CRD097	353459	5289612	356	80	-80	325.7
CRD098	353435	5289641	361	131	-70	341.7
CRD099	353513	5289651	359	131	-70	341.7
CRD100	353535	5289618	350.73	92	-70	325.7
CRD101	353482	5289481	330	131	-70	331.7
CRD102	356476	5291555	313.03	200	-70	323.7
CRD103	353559	5289585	340.73	92	-70	326.7
CRD104	353289	5289533	352.03	91.4	-70	331.7
CRD105	353352	5289558	353.07	92	-70	323.7
CRD106	353617	5289614	329.65	92	-70	317.7
CRD107	353590	5289651	343.73	90	-70	331.7
CRD108	353560	5289678	354	92	-70	327.7
CRD109	353535	5289713	364.03	92	-70	331.7
CRD110	353517	5289736	371	131	-70	325.7

Appendix 4. 2019 Significant Intercepts used in Mineral Resource Estimates (0.5% cut-off grade)

Hole Id	mFrom	mTo	Width (m)	Au g/t
CRD035	165	166	1	0.52
CRD035	207	208	1	1.03
CRD035	225	226	1	0.95
CRD035	227	228	1	6.85
CRD035	230	232.22	2.22	3.47
CRD035	246	247	1	0.91
CRD037	215	216	1	0.51
CRD037	229	230	1	5.52
CRD037	231	232	1	7.91
CRD037	234	235	1	3.20
CRD037	239	245	6	5.03
CRD037	251	252	1	4.26
CRD037	255	256	1	0.97
CRD037	277	278	1	0.55
CRD038	210	211	1	4.27
CRD038	220	222	2	0.72
CRD039	236.95	238	1.05	0.53
CRD039	337	338.15	1.15	0.74
CRD040	215	216	1	2.40
CRD040	228	229	1	2.68
CRD041	222	224	2	2.32
CRD041	231	237	6	3.59
CRD041	257	258	1	1.12
CRD042	399.64	402	2.36	0.71
CRD042	403	405	2	1.45
CRD042	418	420	2	2.17
CRD044	157.74	159	1.26	0.79
CRD045	320	322	2	2.73
CRD046	217	218	1	0.57
CRD047	197	198	1	0.58
CRD051	142	143	1	2.37
CRD051	191	192	1	0.64
CRD051	200	202	2	1.09
CRD051	216	217	1	0.59
CRD051	270.2	271.73	1.53	1.59
CRD052	68	69	1	0.56
CRD052	74	75	1	1.09
CRD052	148.17	151	2.83	1.71
CRD052	160	161	1	0.72
CRD052	162	164	2	20.95

Hole Id	mFrom	mTo	Width (m)	Au g/t
CRD052	175.5	176.57	1.07	0.89
CRD053	226	227	1	0.71
CRD053	237	238	1	1.09
CRD053	250	251.5	1.5	0.53
CRD054	246	247	1	0.63
CRD057	6	8.8	2.8	1.08
CRD058	42.88	44	1.12	0.75
CRD058	57.95	59	1.05	2.78
CRD058	107	108	1	4.10
CRD059	3	4	1	0.61
CRD059	58	59	1	0.66
CRD059	83.2	84.95	1.75	0.76
CRD060	35	36.46	1.46	6.71
CRD069	91	92.34	1.34	5.32
CRD071	73.62	76.75	3.13	7.09
CRD071	78	79	1	0.72
CRD071	95.62	96.67	1.05	1.01
CRD073	83	84	1	0.51
CRD078	50	51	1	0.77
CRD080	148	149	1	0.63
CRD081	14	15	1	0.55
CRD083	101	102	1	0.83
CRD083	137	138	1	0.93
CRD084	62.6	65.4	2.8	2.90
CRD085	69.8	71	1.2	4.08
CRD085	75	78	3	1.21
CRD086	89.4	91.6	2.2	4.80
CRD086	100	101	1	0.76
CRD086	113	114	1	1.01
CRD087	43.45	44.66	1.21	1.38
CRD088	59.3	60.3	1	10.07
CRD088	60.75	61.8	1.05	1.03
CRD089	50	51	1	3.92
CRD091	44.04	47	2.96	9.67
CRD091	68	69	1	0.57
CRD094	48	49	1	0.69
CRD101	7	8	1	0.62
CRD101	43.87	46	2.13	0.64
CRD102	74	77	3	2.80