

ASX RELEASE 11 February 2020

Acquisition of Sewa Bay Nickel Project

Highlights

- Sewa Bay is a prospective nickel project located in Papua New Guinea ("PNG")
- Significant historical exploration work undertaken yielding positive results
- Expands nickel portfolio of PM1

Pure Minerals Limited (ASX:PM1) ("**PM1**" or "the **Company**") has acquired the Sewa Bay nickel project ("**Sewa Bay**" or the "**Project**") from Highlands Pacific Resources Ltd ("**Highlands**").

Sewa Bay consists of Exploration Licence EL 1761, located on Normanby Island near Esa'ala and Sewa Bay in the Milne Bay Province, located on the south eastern side of mainland PNG.

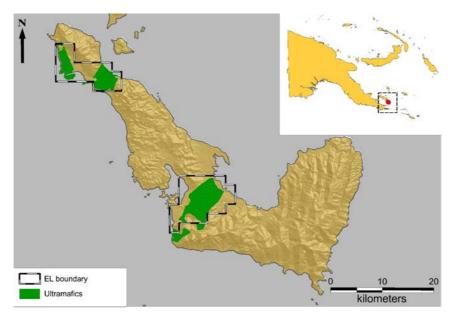


Figure 1: Sewa Bay Location

Competent Persons Statement: Details contained in this report that pertain to exploration results and exploration targets are based upon, and fairly represent, information and supporting documentation compiled by Mr Larry Queen, a member of the Australasian Institute of Mining and Metallurgy, and who is a full-time employee of Queen & Associates. Mr Queen has sufficient experience relevant to the style of mineralisation and the type of deposit under consideration, and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Queen consents to the inclusion in the report of the matters based on the information compiled by him in the form and context in which it appears.

Pure Minerals Limited (A.C.N: 125 368 658) A: Level 1, 1 Altona Street, West Perth, WA, 6005 Sewa Bay hosts ultramafic bedrock (as shown in Figure 1) which has wide spread nickeliferous laterite over these rocks.

In 2015, Highlands and its partner Sojitz Group completed a US\$460,000 exploration program which identified extensive nickel mineralisation from surface. The auger drilling program encountered the following intercepts:

- 1.1 metres at 1.61% Ni from surface
- 1 metre at 1.43% Ni from surface
- 2.4 metres at 1.42% Ni from surface
- 1 metre at 1.41% Ni from surface
- 1.9 metres at 1.4% Ni from surface
- 6.3 meters at 1.12% Ni from surface
- 4.6 meters at 1.11% Ni from surface

The figures below show the distribution of 2015 drill holes. Two main areas of mineralisation above 1% Ni cover an area of approximately 7 square kilometres as shown in Figure 3 below.

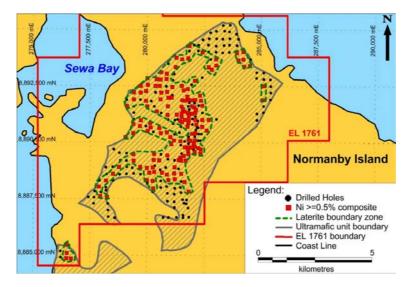


Figure 2: Location map showing distribution of Sewa Bay 2015 drill holes and highlighting holes with composite grades greater than 0.5% Ni

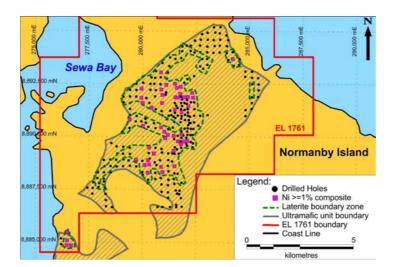


Figure 3: Location map showing distribution of Sewa Bay 2015 drill holes and highlighting holes with composite grades greater than 1% Ni

Terms of the Acquisition

The key terms of the acquisition are detailed in the table below:

Consideration	Conditions					
 A\$50,000 in cash or PM1 shares upon delineation of a JORC 2012 Resource greater than 10Mt @ 1.2% nickel A\$100,000 in cash or PM1 shares upon delineation of a JORC 2012 Reserve greater than 10Mt @ 1.2% nickel 5% trailing royalty on future FOB revenue 	 PNG Minister approving the transfer of Sewa Bay from Highlands to PM1 under section 118 of the Mining Act PNG Registrar registering in the Register the transfer of Sewa Bay from Highlands to PM1 in accordance with the Mining Act 					

PM1 Managing Director John Downie commented:

"Sewa Bay has the potential to be a low cost mining operation with nickel laterite mineralisation from surface. Whilst our focus remains on importing ore from our ore supply partners in New Caledonia, Sewa Bay provides us with some risk diversification and future optionality at no initial cost outlay."

This announcement has been approved by the Board of PM1.

For more information, please contact:

John Downie Managing Director jdownie@qpmetals.com.au +61 (0) 408 329 262 Luke Forrestal Media Enquiries luke.forrestal@mcpartners.com.au +61 (0) 411 479 144

About Pure Minerals

Pure Minerals (ASX: PM1), through its wholly owned subsidiary Queensland Pacific Metals Pty Ltd (QPM), is focused on developing a modern battery metals refinery in northern Queensland.

The Townsville Energy Chemicals Hub or TECH, will process imported, high grade Ni-Co laterite ore from New Caledonia to produce nickel sulphate, cobalt sulphate and other valuable co-products.

With established infrastructure, a well-developed labour pool and a long history of processing imported laterite ore, Townsville is the ideal location for the project.

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	 The reported results are for an auger soil sampling program Drilling was done on a predetermined grid Auger holes sampled the soil profile from surface down to first rock Sample length was 1m except at the end of the hole Sample lengths varied from 0.1m to 1.0m, averaging 0.85m 677 auger samples were collected in this program In addition to the auger drilling three test pits were dug in areas of better developed laterite. Due to safety considerations the test pits were limited to two meters depth.
	• In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 Pits were logged and photographed Pits were sampled on 0.5m intervals from the surface.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Mechanical auger with 62mm general purpose soil sampling bit. Bit is a 2 slot, 2 cutter, with a spiral tip design. Holes were drilled to refusal (i.e. auger encountered rocks) or to water table.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Auger samples were retrieved every 0.5m as the hole was drilled. Each sample was visually assessed for recovery. Recoveries appeared to be good except when the drilling hit the water table. Below the water table no samples were recovered. Recovered material was all soil with some small rocks in material near the top of rocky saprolite.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical	 Sample runs were 1m except at end of the hole. Samples less than 1m at the bottom of the hole vary from 0.2m to 0.9m All samples were logged for lithology, color, presence of magnetic

Criteria	JORC Code explanation	Commentary
	 studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	grains and degree of weathering.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The entire soil sample recovered by the auger was sent for assay. Soil auger sampling is a suitable method for reconnaissance definition of the nickel laterite deposits.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples dried at 105° prior to crushing and pulverising All drill core samples were assayed using a HF-HNO3-HCIO4 acid digest with HCI leach and ICP-AES finish. Sample assaying greater than 10000 ppm Ni were re-assayed by XRF fusion. Loss on ignition (LOI) by thermos gravimetric analysis Assaying carried out by ALS Townsville, an accredited lab. Extensive QAQC programme with blanks, sample splits, laboratory standards and duplicates & secondary lab checks. Outcomes indicate acceptable precision and no obvious biases
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 There has been no adjustment to the assay data. Significant intercepts are assessed by at least two Highlands Pacific geologists Work was carried according to existing Highlands Pacific protocols
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations 	 Hole collars and pits were located using handheld GPS units. All GPS coordinates are assumed to be accurate ±10m

Criteria	JORC Code explanation	Commentary
	used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Coordinates are reported in grid system AMG66 Zone 56 Topographic control is from the Shuttle Radar Topographic Mission 90m Digital Elevation Model
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The current program is a nominal 300m x 300m scout drill program. Areas at the top of the main ridge were drilled at 150m x 150m. Results are reported as composites based on classification into the following categories: Overburden (<0.5% Ni at top of hole), Laterite (≥0.5% Ni soil), Waste (<0.5% Ni not at the top of hole)
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The nickel laterite is a weathered geomorphic surface drape over ultramafic rocks. All holes and pits were vertical and represent true intersections.
Sample security	The measures taken to ensure sample security.	• Chain of custody was managed by Highlands Pacific. Samples were collected and stored on site by Highlands Pacific personnel. Samples are shipped directly to ALS Townsville by freight courier. Tracking sheets were set up to track the progress of sample batches.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 There have been no audits or reviews of the existing sampling techniques or data

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The results reported for the Sewa Bay exploration fall under EL 1761 that Highlands Pacific holds on Normanby Island, Milne Bay Province, Papua New Guinea. The licenses issued under the authority of the PNG Mining Act (1992)
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Nickle laterite potential was identified by geologists from the Australian BMR in the 1960s. Grades and thickness reported here are similar to those reported by the BMR.
Geology	• Deposit type, geological setting and style of mineralisation.	The Sewa Bay nickel laterite is a wet tropical laterite developed over variably serpentinized peridotites, dunites, and pyroxenites.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drill hole information is included as Table 3 Hole coordinates are in AMG66 Zone 56 Hole RLs are from the SRTM 90M DEM All holes were vertical Full depths of holes are reported in Table 3
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 Only length weighting has been applied to the reporting of the results. Assay intervals were 1m except at the bottom of the holes. No high grade cuts have been applied to the data. Reported composites are for ≥0.5% Ni and ≥1.0% Ni 0.5% Ni is the lower cutoff grade used at HPL's Kurumbukari Mine 1.0% Ni was chosen to highlight the potential for higher grades.

Criteria	JORC Code explanation	Commentary
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The nickeliferous laterite is thin but present where soil has developed and is preserved over the ultramafic rocks. Intercepts are essentially perpendicular to the mineralization. Drilling was largely limited to areas with slopes less than ~ 20 where significant lateritic soil has been preserved.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See figures 1 and 2
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 The attached tables and maps report all the holes drilled in this program
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The extent of the potential laterites was based on existing published 1:250 000 scale geological maps, satellite image interpretation and analysis of the SRTM 90m DEM.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work is being assessed. Any follow up work will focus on the identified >0.5% and >1.0% Ni areas.

Hole_ID	Northing	Easting	RL	From	То	Interval	Ni%	Co%	Mg%
3	8884844	276481	67	0	1.7	1.7	1.05	0.16	0.29
4	8885078	276502	57	0	1	1	1.32	0.09	0.65
5	8885454	276498	120	0	1.6	1.6	1.08	0.10	1.36
6	8884823	276685	114	0	3.6	3.6	1.13	0.07	1.55
20	8893045	280847	235	0	1.4	1.4	1.09	0.08	6.11
116	8891592	279997	214	0	1	1	1.15	0.07	2.65
117	8891833	279930	177	0	1	1	1.14	0.09	5.12
118	8892271	279939	196	0	1	1	1.18	0.09	2.54
130	8890506	280016	345	0	1.2	1.2	1.05	0.10	2.30
154	8891368	280411	331	0	3	3	1.17	0.08	3.97
161	8888648	280104	527	0	1.1	1.1	1.12	0.13	3.02
168	8888882	280255	555	0	1.7	1.7	1.10	0.14	4.25
170	8889484	280311	521	0	4.6	4.6	1.11	0.07	1.91
176	8889204	280529	580	0	3.6	3.6	1.12	0.09	1.13
184	8888576	280880	689	0	1	1	1.06	0.07	1.31
233	8891592	280901	428	0	1	1	1.39	0.11	2.11
236	8891972	280921	420	0	1	1	1.41	0.06	4.76
237	8892230	280865	290	0	0.7	0.7	1.08	0.08	4.01
241	8889922	281061	538	0	1.1	1.1	1.38	0.07	7.05
242	8890235	281015	524	0	2.4	2.4	1.42	0.12	4.95
265	8892450	281089	419	0	1.5	1.5	1.24	0.06	1.36
278	8888609	281500	793	0	3	3	1.00	0.13	1.32
283	8891284	281502	646	0	2.8	2.8	1.32	0.19	1.87
287	8891860	281524	623	0	1.5	1.5	1.18	0.09	4.07
289	8892313	281596	654	0	1	1	1.24	0.11	0.42
291	8892500	281509	575	0	1	1	1.28	0.13	1.44
294	8890054	281460	666	0	2.5	2.5	1.04	0.10	1.16
307	8892025	281757	669	0	1	1	1.43	0.10	1.28
309	8892360	281768	597	0	1	1	1.13	0.10	0.37
312	8890105	281816	737	0	2.4	2.4	1.15	0.07	2.05
322	8889803	282087	805	0	2.7	2.7	1.26	0.06	4.40
332	8891852	282352	736	0	1.9	1.9	1.40	0.05	4.39
333	8892085	282312	693	0	1.1	1.1	1.61	0.16	3.13
425	8889650	281799	750	0	2	2	1.03	0.08	1.22
426	8889784	281951	766	0	4	4	1.09	0.08	0.41
434	8889789	281652	732	0	2.5	2.5	1.05	0.13	0.56
439	8891851	281662	666	0	3	3	1.25	0.18	0.57
449	8891169	281821	683	0	6.3	6.3	1.12	0.12	1.00

Table 2 Composited hole summary showing results greater than or equal to 1.0% Ni shown.

Table 3 Composited hole summary for all holes drilled in Sewa Bay March –May 2015 field program. Sample data is composited by material- type Overburden (O), Laterite (L), Waste (W). All composites greater than or equal to 0.5% Ni shown.

Hole_ID	Northing	Easting	RL	From	То	Interval	Classification	Ni%	Co%	Mg%
1	8884885	276226	43	0	0.7	0.7	0			
2	8885158	276215	52	0	0.8	0.8	0			
3	8884844	276481	67	0	1.7	1.7	L	1.05	0.16	0.29
4	8885078	276502	57	0	1	1	L	1.32	0.09	0.65
5	8885454	276498	120	0	1.6	1.6	L	1.08	0.10	1.36
6	8884823	276685	114	0	3.6	3.6	L	1.13	0.07	1.55
8	8886693	278306	385	0	1	1	0			
9	8886989	278302	362	0	0.8	0.8	0			
10	8886647	278591	441	0	1	1	0			
12	8892839	279996	150	0	0.7	0.7	L	0.50	0.03	9.99
13	8887571	277430	66	0	0.6	0.6	0			
14	8887285	277662	112	0	1	1	0			
15	8892801	280405	318	0	1	1	L	0.56	0.04	8.74
16	8892786	280580	293	0	1	1	L	0.87	0.08	5.95
17	8893105	280607	300	0	1	1	L	0.79	0.04	8.54
18	8886671	280722	614	0	1	1	0			
19	8892813	280838	284	0	0.7	0.7	L	0.74	0.06	8.33
20	8893045	280847	235	0	1.4	1.4	L	1.09	0.08	6.11
21	8893488	280910	258	0	0.6	0.6	0			
22	8886678	280951	660	0	0.6	0.6	0			
23	8892748	281112	438	0	0.5	0.5	0			
24	8893035	281163	297	0	1	1	0			
25	8893334	281238	206	0	0.8	0.8	L	0.88	0.08	4.04
26	8893746	281267	277	0	0.6	0.6	L	0.77	0.05	9.57
27	8886672	281301	710	0	2	2	0			
31	8893689	281513	198	0	1	1	0			
31	8893689	281513	198	1	1.2	0.2	L	0.56	0.03	9.99
33	8887564	277679	117	0	0.8	0.8	0			
34	8887824	277713	96	0	0.7	0.7	0			
36	8887607	277948	152	0	0.8	0.8	L	0.82	0.09	2.35
37	8891609	279106	58	0	1	1	0			
37	8891609	279106	58	1	1.2	0.2	L	0.61	0.05	2.05
38	8886669	281597	720	0	1.2	1.2	0			
39	8886780	281595	654	0	2.6	2.6	0			
40	8891883	279092	48	0	0.6	0.6	0			
42	8890220	279056	91	0	2	2	L	0.67	0.03	7.72
42	8890220	279056	91	2	2.6	0.6	W			
43	8891308	279410	91	0	1	1	0			
47	8893718	281785	157	0	1.2	1.2	L	0.59	0.04	4.84
48	8894048	281831	185	0	1.9	1.9	0			

Hole_ID	Northing	Easting	RL	From	То	Interval	Classification	Ni%	Co%	Mg%
49	8894274	281838	132	0	1	1	L	0.68	0.04	5.30
50	8886691	281850	717	0	1	1	0			
51	8887096	281810	655	0	1.8	1.8	0			
52	8892563	281939	501	0	1	1	0			
56	8892727	282082	200	0	0.7	0.7	L	0.51	0.03	9.99
57	8887786	277987	162	0	0.5	0.5	0			
58	8888021	277894	102	0	1.5	1.5	L	0.59	0.04	6.15
59	8894058	282228	114	0	2	2	0			
60	8891587	279403	60	0	0.5	0.5	0			
61	8891892	279404	70	0	1.5	1.5	L	0.53	0.04	6.12
62	8894320	282042	147	0	1.3	1.3	0			
63	8888302	277919	82	0	0.6	0.6	0			
64	8887280	278290	218	0	0.7	0.7	0			
66	8892203	279403	40	0	4.4	4.4	L	0.68	0.04	5.34
69	8890406	279390	108	0	1.7	1.7	L	0.39	0.03	2.94
70	8887560	278255	144	0	1	1	L	0.79	0.07	3.95
71	8887863	278203	128	0	1	1	0			
72	8887997	278193	152	0	0.7	0.7	0			
74	8890800	279391	139	0	3.3	3.3	L	0.84	0.04	2.68
75	8891020	279415	113	0	1.3	1.3	0			
77	8888300	278202	171	0	1	1	L	0.59	0.05	9.99
78	8888588	278226	130	0	1	1	0			
79	8888889	278194	77	0	1.8	1.8	0			
80	8888305	278508	278	0	1	1	0			
81	8888596	278506	214	0	1	1	L	0.56	0.05	6.10
81	8888596	278506	214	1	2	1	0			
82	8892876	282403	291	0	1	1	0			
86	8888904	278495	148	0	1	1	0			
89	8891892	279696	79	0	1	1	0			
90	8892199	279705	68	0	1	1	0			
90	8892199	279705	68	1	1.47	0.47	L	0.60	0.02	7.27
93	8892504	279701	90	0	1	1	L	0.54	0.03	9.99
93	8892504	279701	90	1	1.3	0.3	W			
94	8893993	282414	132	0	0.6	0.6	L	0.66	0.06	8.07
95	8889690	278535	152	0	2	2	0			
96	8888579	278803	334	0	1.7	1.7	0			
97	8894313	282232	68	0	1	1	0			
100	8894554	282424	61	0	0.8	0.8	0			
101	8888901	278771	204	0	1	1	L	0.53	0.05	3.04
101	8888901	278771	204	1	1.3	0.3	W			
102	8889195	278830	200	0	1.2	1.2	0			
105	8893218	282817	212	0	1	1	L	0.87	0.06	7.21
106	8893340	282680	217	0	1	1	L	0.70	0.04	9.99
107	8893683	282775	167	0	0.5	0.5	0			
108	8894009	282672	153	0	1.9	1.9	0			

Hole_ID	Northing	Easting	DI	From	То	Interval	Classification	Ni%	Co%	N/~9/
110	Northing 8889532	278785	RL 175	From 0	1	1	O	INI%	C0%	Mg%
110	8888597	278785	347	0	2.5	2.5	0			
112	8890712	279679	219	0	1	1	L	0.71	0.06	9.24
113	8890975	279715	215	0	1	1	L	0.95	0.00	7.08
114	8891592	279997	213	0	1	1	L	1.15	0.07	2.65
117	8891833	279930	177	0	1	1	L	1.14	0.09	5.12
118	8892271	279939	196	0	1	1	L	1.18	0.09	2.54
119	8892546	280019	169	0	0.8	0.8	L	0.90	0.12	3.23
122	8888915	279105	282	0	1.5	1.5	0			
123	8889189	279097	200	0	0.8	0.8	0			
124	8889511	279105	182	0	2	2	0			
125	8888617	279413	379	0	1.5	1.5	0			
126	8888871	279350	298	0	1.3	1.3	0			
127	8889179	279416	298	0	1.3	1.3	L	0.66	0.09	0.98
128	8889473	279402	204	0	1	1	L	0.77	0.05	9.47
130	8890506	280016	345	0	1.2	1.2	L	1.05	0.10	2.30
131	8894323	282662	65	0	2.3	2.3	0			
132	8894596	282700	47	0	2	2	0			
133	8894861	282761	71	0	0.6	0.6	0			
137	8893406	283014	176	0	0.8	0.8	L	0.92	0.05	8.86
138	8893686	283006	125	0	0.7	0.7	L	0.64	0.03	9.99
139	8894006	283001	110	0	0.5	0.5	0			
140	8894274	283010	94	0	1.2	1.2	0			
141	8894599	283020	89	0	1.7	1.7	0			
142	8894932	283009	65	0	1.1	1.1	0			
146	8890721	279937	322	0	5	5	0			
147	8890846	280122	353	0	1	1	0			
147	8890846	280122	353	1	2	1	L	0.71	0.06	1.09
147	8890846	280122	353	2	3	1	W			
150	8893980	283293	88	0	0.6	0.6	0			
151	8894300	283351	85	0	0.4	0.4	0			
152	8894588	283294	64	0	0.4	0.4	0			
153	8894938	283372	50	0	0.5	0.5	0			
154	8891368	280411	331	0	3	3	L	1.17	0.08	3.97
155	8888583	279719	408	0	1.3	1.3	0			
156	8888902	279704	420	0	3	3	L	0.83	0.06	2.39
159	8888190	280021	467	0	2	2	0			
160	8888321	279999	461	0	3	3	L	0.82	0.07	3.00
160	8888321	279999	461	3	4	1	W			
161	8888648	280104	527	0	1.1	1.1	L	1.12	0.13	3.02
162	8888855	279998	514	0	2.1	2.1	L	0.93	0.05	2.60
165	8887960	280274	530	0	1	1	L	0.68	0.10	0.57
166	8888286	280256	527	0	2	2	L	0.79	0.12	0.70
167	8888682	280309	516	0	1.8	1.8	L	0.99	0.14	4.96
168	8888882	280255	555	0	1.7	1.7	L	1.10	0.14	4.25

Hole_ID	Northing	Easting	RL	From	То	Interval	Classification	Ni%	Co%	Mg%
169	8889216	280292	497	0	0.8	0.8	L	0.61	0.06	1.68
170	8889484	280311	521	0	4.6	4.6	L	1.11	0.07	1.91
171	8887800	280256	504	0	1.3	1.3	0			
172	8887994	280605	551	0	1.3	1.3	0			
173	8888290	280603	641	0	0.8	0.8	0			
174	8888653	280659	615	0	1	1	L	0.62	0.08	0.62
174	8888653	280659	615	1	2	1	W			
175	8888785	280579	583	0	1.2	1.2	0			
176	8889204	280529	580	0	3.6	3.6	L	1.12	0.09	1.13
177	8889470	280605	607	0	1.6	1.6	0			
178	8887391	280904	498	0	1.2	1.2	0			
179	8887743	280899	566	0	2	2	0			
180	8891587	280301	250	0	0.8	0.8	0			
181	8891817	280170	321	0	1.6	1.6	0			
182	8888039	280867	596	0	1.7	1.7	0			
183	8888327	280943	731	0	3.1	3.1	L	0.89	0.08	2.76
184	8888576	280880	689	0	1	1	L	1.06	0.07	1.31
185	8888888	280826	669	0	2.8	2.8	0			
186	8889252	280915	661	0	1.5	1.5	0			
187	8889421	280891	607	0	3	3	L	0.74	0.12	1.44
188	8887111	281208	557	0	2	2	0			
189	8887371	281203	580	0	0.9	0.9	0			
190	8887702	281201	583	0	1.4	1.4	0			
191	8887963	281227	659	0	1.2	1.2	0			
192	8895190	283310	9	0	1.5	1.5	0			
198	8892216	280352	320	0	1	1	0			
199	8892498	280348	312	0	1	1	0			
199	8892498	280348	312	1	1.5	0.5	L	0.51	0.04	5.13
200	8894003	283584	52	0	0.4	0.4	0			
201	8894321	283586	50	0	0.7	0.7	0			
202	8894603	283603	22	0	0.5	0.5	0			
203	8894908	283586	21	0	0.6	0.6	0			
204	8895196	283616	21	0	2.4	2.4	0			
209	8890460	280268	384	0	1.1	1.1	0			
210	8890659	280148	358	0	1	1	0			
210	8890659	280148	358	1	2	1	L	0.71	0.02	0.98
214	8891301	280604	340	0	1	1	0			
215	8893650	283991	63	0	1	1	L	0.76	0.04	6.02
216	8893970	283915	61	0	0.9	0.9	L	0.78	0.03	5.33
218	8891905	280577	362	0	1	1	L	0.94	0.06	3.66
219	8894298	283925	37	0	1.2	1.2	0		-	_
220	8894579	283987	23	0	4	4	0			
220	8892194	280611	304	0	1	1	L	0.96	0.07	3.89
222	8892495	280536	335	0	1	1	L	0.77	0.05	6.25
223	8894813	283892	26	0	3	3	0			0.20

Hole_ID	Northing	Easting	RL	From	То	Interval	Classification	Ni%	Co%	Mg%
229	8890404	280605	446	0	1.3	1.3	L	0.68	0.10	0.44
230	8890629	280532	396	0	1	1	L	0.72	0.07	3.82
232	8891216	280889	363	0	1	1	0			
232	8891216	280889	363	1	2	1	L	0.66	0.05	2.47
233	8891592	280901	428	0	1	1	L	1.39	0.11	2.11
234	8893372	284245	111	0	0.5	0.5	L	0.56	0.02	9.51
235	8893684	284203	71	0	1	1	0			
235	8893684	284203	71	1	2.1	1.1	L	0.96	0.04	7.08
236	8891972	280921	420	0	1	1	L	1.41	0.06	4.76
237	8892230	280865	290	0	0.7	0.7	L	1.08	0.08	4.01
238	8894023	284195	35	0	1.5	1.5	L	0.77	0.05	3.08
240	8892486	280826	290	0	0.8	0.8	0	4.20	0.07	7.05
241	8889922	281061	538	0	1.1	1.1	L	1.38	0.07	7.05
242	8890235	281015	524	0	2.4	2.4	L	1.42	0.12	4.95
245	8890442	280869	525	0	3.2	3.2	L	0.84	0.09	0.79
247	8891012	280913	387	0	1	1	0	0.02	0.07	0.40
248	8891232	281294	541	0	1	1	L	0.83	0.07	0.40
249	8893408	284494	49	0	1	1	0	0.72	0.07	1 20
249	8893408	284494	49 23	1 0	1.8	0.8	L O	0.72	0.07	1.30
250 252	8893689 8891984	284518	478	0	2.2	2.2		0.94	0.05	5.37
252	8892848	281069 284785	69	0	1	1	L 0	0.94	0.05	5.57
255	8893102	284792	22	0	1	1	0			
255	8892509	285110	68	0	0.5	0.5	L	0.78	0.08	4.68
250	8888364	281223	778	0	3.2	3.2	L	0.78	0.08	0.40
258	8888621	281223	807	0	2.2	2.2	L	0.51	0.08	1.78
258	8892807	285101	19	0	1.1	1.1	0	0.51	0.05	1.78
260	8893097	285101	15	0	0.5	0.5	0			
261	8892491	285412	34	0	1.2	1.2	0			
262	8892096	281095	398	0	0.7	0.7	0			
263	8888900	281212	750	0	1	1	L	0.50	0.14	0.21
263	8888900	281212	750	1	2.4	1.4	0	0.00	0.2.1	0.21
264	8892796	285390	23	0	2.1	2.1	0			
265	8892450	281089	419	0	1.5	1.5	L	1.24	0.06	1.36
266	8889206	281209	646	0	1.8	1.8	0			
271	8890089	281179	575	0	2	2	L	0.95	0.10	1.82
272	8887311	281633	601	0	1.9	1.9	0	_	-	
273	8887455	281574	642	0	3	3	0			
274	8887781	281496	665	0	1.6	1.6	0			
275	8888001	281472	732	0	1.1	1.1	0			
276	8888269	281508	782	0	1.3	1.3	0			
277	8890362	281203	577	0	1.7	1.7	0			
278	8888609	281500	793	0	3	3	L	1.00	0.13	1.32
279	8890825	281137	470	0	1	1	0			
280	8888830	281388	775	0	2.9	2.9	0			

281 282	Northing 8890991	Easting	RL	_						
282	8890991		I.L	From	То	Interval	Classification	Ni%	Co%	Mg%
		281213	516	0	2	2	0			
282	8889192	281502	713	0	1	1	0			
	8889192	281502	713	1	3.1	2.1	L	0.70	0.08	1.03
283	8891284	281502	646	0	2.8	2.8	L	1.32	0.19	1.87
284	8889501	281518	690	0	2.8	2.8	0			
285	8891591	281504	647	0	2	2	L	0.65	0.12	0.32
286	8887286	281730	598	0	1	1	0			
287	8891860	281524	623	0	1.5	1.5	L	1.18	0.09	4.07
288	8887453	281744	634	0	2.6	2.6	0			
289	8892313	281596	654	0	1	1	L	1.24	0.11	0.42
290	8887825	281834	708	0	1.1	1.1	L	0.90	0.07	2.44
291	8892500	281509	575	0	1	1	L	1.28	0.13	1.44
292	8889887	281473	635	0	1	1	0			
292	8889887	271473	635	1	1.8	0.8	L	0.70	0.09	1.88
294	8890054	281460	666	0	2.5	2.5	L	1.04	0.10	1.16
295	8890438	281409	556	0	1.5	1.5	0			
296	8888254	281650	775	0	1	1	0			
296	8888254	281650	775	1	4	3	L	0.58	0.05	1.74
297	8890704	281484	557	0	3.5	3.5	0			
299	8890945	281444	552	0	2.8	2.8	L	0.66	0.06	2.11
301	8891303	281795	691	0	2	2	L	0.87	0.18	0.27
303	8891598	281796	710	0	2	2	0			
304	8889480	281811	770	0	0.8	0.8	L	0.68	0.09	0.23
305	8891896	281793	690	0	2	2	L	0.65	0.12	2.07
307	8892025	281757	669	0	1	1	L	1.43	0.10	1.28
309	8892360	281768	597	0	1	1	L	1.13	0.10	0.37
311	8889788	281795	752	0	3.2	3.2	L	0.80	0.05	1.63
312	8890105	281816	737	0	2.4	2.4	L	1.15	0.07	2.05
	8890396	281803	674	0	1.8	1.8	0			
	8890693	281767	621	0	1	1	L	0.56	0.13	0.33
	8890693	281767	621	1	2.5	1.5	W			
	8890991	281818	665	0	3	3	L	0.86	0.14	0.18
	8891305	282102	714	0	1	1	0			
	8891305	282102	714	1	2.7	1.7	L	0.57	0.07	0.10
	8891555	282062	728	0	3	3	0			
	8891555	282062	728	3	4	1	L	0.86	0.07	2.13
	8891887	282108	704	0	1.8	1.8	L	0.89	0.13	0.52
	8889803	282087	805	0	2.7	2.7	L	1.26	0.06	4.40
	8890089	282098	796	0	3	3	0			
	8890089	282098	796	3	5	2	L	0.60	0.06	0.62
	8890400	282111	770	0	3	3	0			
	8890400	282111	770	3	4	1	L	0.60	0.07	1.98
	8890658	282181	771	0	1.7	1.7	0	0.00	0.07	1.00
	8890994	282101	718	0	1.7	1.7	L	0.54	0.08	0.26
	8890994	282110	718	1	3.6	2.6	W	0.54	0.00	0.20

Hole_ID	Northing	Easting	RL	From	То	Interval	Classification	Ni%	Co%	Mg%
330	8891313	282421	768	0	0.5	0.5	0			
331	8891627	282412	751	0	1	1	L	0.65	0.07	0.31
331	8891627	282412	751	1	1.2	0.2	W			
332	8891852	282352	736	0	1.9	1.9	L	1.40	0.05	4.39
333	8892085	282312	693	0	1.1	1.1	L	1.61	0.16	3.13
334	8889695	282359	826	0	0.8	0.8	L	0.60	0.08	0.37
335	8890083	282337	874	0	0.8	0.8	0			
336	8890380	282383	828	0	1.5	1.5	0	0.50		
337	8890685	282401	843	0	1.8	1.8	L	0.52	0.06	0.18
338	8890998	282413	838	0	1	1	0	0.00	0.40	4.45
338	8890998	282413	838	1	2	1	L	0.90	0.18	1.45
340	8889578	282089	814	0	0.8	0.8	L	0.81	0.12	0.47
348	8889511	282342	824	0	1.3	1.3	L	0.68	0.11	0.11
355	8890531	282604	755	0	2	2	0	0.74	0.10	1 77
355	8890531	282604	755	2	3.6 2	1.6 2	L	0.74	0.10	1.77
357 357	8891003 8891003	282696 282696	780 780	0	4	2	L	0.72	0.10	0.35
366	8891003	282090	690	0	0.8	0.8	0	0.72	0.10	0.55
411	8891030	283034	84	0	0.6	0.8	0			
411	8890997	284817	130	0	0.0	0.0	0			
416	8891335	285096	68	0	1.5	1.5	0			
417	8891608	285099	22	0	0.6	0.6	0			
418	8891884	285096	88	0	0.9	0.9	L	0.61	0.02	9.76
420	8891904	285402	27	0	0.9	0.9	0			
421	8892213	285412	49	0	0.8	0.8	0			
422	8888959	280340	533	0	1.8	1.8	0			
425	8889650	281799	750	0	2	2	L	1.03	0.08	1.22
426	8889784	281951	766	0	4	4	L	1.09	0.08	0.41
427	8889405	281615	725	0	1	1	0			
427	8889405	281615	725	1	5	4	L	0.70	0.07	1.83
428	8889669	282039	798	0	3	3	0			
429	8891152	282115	725	0	4.5	4.5	0			
430	8889752	282255	837	0	2.5	2.5	L	0.78	0.05	1.71
431	8891272	281959	710	0	3	3	0			
431	8891272	281959	710	3	5	2	L	0.62	0.12	0.15
432	8890079	282243	826	0	1.2	1.2	0			
433	8891454	281833	712	0	1.5	1.5	0			
434	8889789	281652	732	0	2.5	2.5	L	1.05	0.13	0.56
435	8891602	281954	736	0	1	1	0			
435	8891602	281954	736	1	3	2	L	0.59	0.09	0.65
436	8889944	281823	763	0	3.7	3.7	0			
437	8891768	281845	706	0	2	2	0			
438	8890041	281645	713	0	2	2	0			
439	8891851	281662	666	0	3	3	L	1.25	0.18	0.57
440	8890246	281814	718	0	1.8	1.8	0			

Page **18**

Hole_ID	Northing	Easting	RL	From	То	Interval	Classification	Ni%	Co%	Mg%
441	8891864	281951	686	0	3	3	L	0.77	0.09	2.13
442	8890247	282089	769	0	2	2	0			
443	8891747	282077	715	0	2.7	2.7	0			
444	8890384	281965	741	0	1	1	0			
444	8890384	281965	741	1	1.8	0.8	L	0.80	0.06	1.61
445	8891636	282247	734	0	7	7	0			
446	8890373	282256	785	0	1.6	1.6	0			
447	8891450	282133	740	0	5	5	L	0.75	0.10	0.85
449	8891169	281821	683	0	6.3	6.3	L	1.12	0.12	1.00
450	8890551	282131	768	0	2.5	2.5	0			
451	8891044	281978	706	0	5	5	0			
452	8890655	282242	783	0	2	2	0			
453	8890958	282212	757	0	1.9	1.9	0			
454	8890790	282162	742	0	1.6	1.6	L	0.57	0.18	0.47
455	8889201	281688	741	0	4	4	L	0.79	0.07	3.18
456	8890790	281984	687	0	1.8	1.8	0			
457	8889213	281391	686	0	1	1	0			
457	8889213	281391	686	1	2	1	L	0.76	0.09	0.70
457	8889213	281391	686	2	3	1	W			
458	8890860	281804	647	0	4	4	0			
458	8890860	281804	647	4	6.5	2.5	L	0.65	0.08	0.42
459	8889331	281457	701	0	4	4	L	0.99	0.08	0.61
460	8891001	281649	620	0	1	1	0			
460	8891001	281649	620	1	5	4	L	0.66	0.10	0.90
461	8890888	281521	582	0	7.3	7.3	L	0.69	0.08	0.29
462	8891017	281334	562	0	3	3	0			
463	8891137	281500	591	0	1	1	0			
463	8891137	281500	591	1	3	2	L	0.64	0.10	0.25
464	8891359	281639	675	0	1	1	0			
464	8891359	281639	675	1	5	4	L	0.74	0.09	0.30
465	8891466	281577	680	0	3	3	L	0.73	0.11	0.87
466	8890064	281907	760	0	2	2	L	0.84	0.10	0.53
467	8889960	282047	799	0	1	1	0			
467	8889960	282047	799	1	3	2	L	0.53	0.10	0.18
467	8889960	282047	799	3	6	3	W			

