

12 February 2020

Silver Lake Resources Limited

Suite 4, Level 3 South Shore Centre 85 South Perth Esplanade South Perth WA 6151 TEL +61 8 6313 3800 FAX +61 8 6313 3888 ABN 38 108 779 782

Board of Directors:

David Quinlivan Luke Tonkin Kelvin Flynn Peter Alexander

ASX Code: SLR

Further high-grade mineralisation identified within Mount Monger's key growth corridors

Further outstanding results at Easter Hollows and development commenced

- Ongoing drilling to infill and test for immediate extensions to the Easter Hollows lodes at the Daisy Complex has returned further outstanding highgrade intersections, including:
 - 4.94m @ 20.2 g/t Au
 - 0.45m @ 122 g/t Au
 - 2.70m @ 29.6 g/t Au
 - 3.25m @ 13.0 g/t Au
 - 6.95m @ 8.87 g/t Au
- Development has commenced to access the Easter Hollows lodes located ~350m west of existing development, with the target zone expected to be reached late Q4 FY20
- Easter Hollows is expected to provide a shallower mining front, with the dual purpose development drive to provide access to defined lodes and the necessary drill platforms for further Resource definition and infilling the broader mineralised system of lodes defined over 1,000m of plunge

Santa lode extensions & a new zone of high-grade mineralisation identified

- Surface drilling at Santa designed to infill and extend Resources on the Western Limb successfully intersected mineralisation in target areas, while also intersecting a new zone of high-grade mineralisation on the Eastern Limb, highlights include:
 - 0.27m @ 135 g/t Au
 - 2.13m @ 31.4 g/t Au
 - 1.13m @ 34.2 g/t Au
 - 2.09m @ 13.2 g/t Au

Tank Area drilling enhances the development path for the recently discovered shallow, wide, high-grade Tank South deposit

- Infill drilling to convert the Tank South Inferred Resource to higher confidence Resource classifications has confirmed the continuity and geometry of high-grade mineralisation, highlights include:
 - 14.9m @ 10.6 g/t Au
 - 9.23m @ 15.4 g/t Au
- Validation and extensional drilling of the historical Tank Open Pit Resources has identified mineralisation beyond the prevailing resource envelop, including:
 - 8.00m @ 6.00 g/t Au
 - 16.0m @ 2.19 g/t Au
 - 18.0m @ 2.31 g/t Au
- Mine optimisation studies to be progressed with the open pit drilling results highlighting the potential to mine significant ounces as part of an integrated open pit and underground development

Overview

Silver Lake's exploration strategy at Mount Monger targets established and proven mineralised corridors to deliver extensions to existing mines and identify the next generation of mines proximal to existing mining and services infrastructure, to drive both life of mine sustainability and margin growth.

The recent focus of the strategy has been the progression of three discoveries through to advanced exploration projects:

- Easter Hollows at the Daisy Mining Centre
- Santa at the Mount Belches Mining Centre
- Tank South at the Aldiss Mining Centre

The continued exploration success of these projects has led to investment decisions accessing Easter Hollows and Santa Underground. At Tank South, the most recent discovery, a maiden Inferred Resource was declared in August 2019, only 6 months after discovery following an intensive and targeted drill program.

The results of Mount Monger drilling in 1H FY20 released today provide further support for these discoveries and the potential for extensions beyond known mineralisation. These discoveries continue to demonstrate the endowment of proven mineralised corridors at all three Mount Monger Mining Centres and the potential to host further discoveries.

Ongoing Easter Hollows drilling returns further outstanding high-grade assays and development commenced

The exploration strategy at Easter Hollows to deliver a new, shallower mining area proximal to established mine infrastructure at the Daisy Complex was initiated 2 years ago¹ and has progressively been ramped up, with sufficient data now available to provide confidence to commence development to access the identified lodes.

The recently completed 25 hole drill program designed to infill and extend the Easter Hollows lodes, representing 155,000 ounces of the broader 599,000 ounce Inferred Resource² at the Daisy Complex, returned a number of spectacular intersections which will be incorporated into the 2020 Daisy Complex Mineral Resource. Highlights include:

¹ Refer ASX releases 23 March 2018 "Exploration Update" and 14 September 2018 "Drilling highlights significant upside at Daisy Complex"

² Refer ASX release August 2019 "Reserve growth reshapes Silver Lake's portfolio"

Hole #	From (m)	To (m)	Interval (m)	Gold (g/t)
EH266004	160.9	164.1	3.25	13.0
EH266006	132.9	133.3	0.45	122
	219.1	222.2	3.15	5.76
EH266007	168.2	168.5	0.30	58.5
	214.0	215.7	1.70	6.68
	262.0	262.2	0.20	90.3
EH266009	121.2	122.2	1.03	40.2
EH266010	237.9	242.8	4.96	4.31
Including &	239.7	242.8	3.08	6.48
	252.2	252.4	0.24	54.1
EH266013	291.7	294.4	2.70	29.6
Including	292.5	292.7	0.25	161
	294.2	294.4	0.20	159
EH266014	3.65	4.05	0.40	77.4
EH266015	11.2	11.5	0.32	71.0
	272.1	272.3	0.20	330
EH266018	231.2	240.0	8.77	11.6
Including	235.1	240.0	4.94	20.2
	236.5	238.7	2.25	39.7
EH266022	209.7	212.7	3.02	5.39
EH266023	263.8	268.0	4.23	4.53
Including	265.5	268.0	2.83	6.40
EH266027	228.4	235.4	6.95	8.87
Including	232.8	233.1	0.35	47.5
	234.4	234.9	0.46	83.6
EH266028	306.0	307.0	1.00	39.0
Including	306.8	307.0	0.20	190

Table 1: Assay highlights from latest round of Easter Hollows drilling

The recent exploration results supported the decision to commence development to access the Easter Hollows lodes between the 520RL and 660RL. The target area is located ~350m to the west of current underground infrastructure and is expected to be reached towards the end of Q4 FY20. All underground development costs are included in Silver Lake's FY20 AISC guidance for Mount Monger.

Development into Easter Hollows serves a dual purpose by providing access to the Easter Hollows lodes currently in Resources to deliver near term production whilst also providing the necessary drill platforms for Resource definition and extensional drilling to target the broader Easter Hollows system which has a plunge extent of 1,000m.

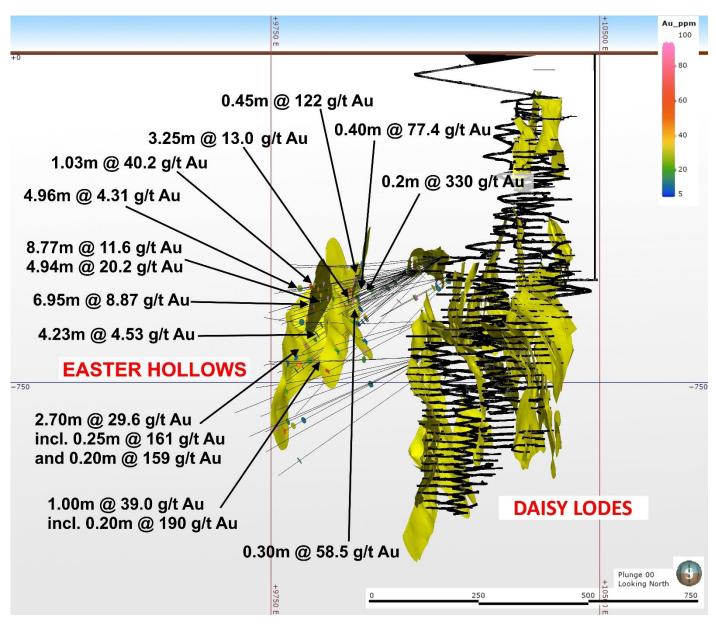


Figure 1: Oblique 3D view looking north highlighting the Easter Hollows target area and showing the modelled lode wireframes, recent drilling, assay highlights and existing underground development

Santa drilling extends West Limb and identifies a new zone of high-grade mineralisation

The Santa exploration strategy has centred on defining shallow, high-grade mineralisation beneath the Santa North Open Pit (West Limb) to provide a development path to access the large Santa Resource which is predominantly located on the eastern limb. The eastern limb was the focus of historical exploration programs prior to the discovery of high-grade mineralisation on the western limb beneath the Santa North open pit in June 2018.

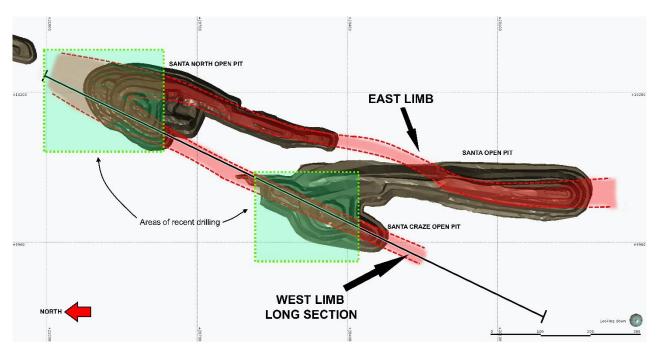


Figure 2: Plan view of the Santa area showing historical open pits and location of western and eastern limbs

Following the delineation of a maiden Santa Ore Reserve in August 2019, the development of the shallow, high-grade Santa underground mine was subsequently approved in October 2019³ with underground development to commence in Q4 FY20.

Surface exploration drilling has been ongoing targeting infill and further extensions to the north of the Ore Reserve and to the south, immediately beneath the Santa Craze open pit. Drilling has successfully intersected mineralisation in these target areas and provides further support for mine extensions beyond the current Santa Ore Reserve.

The drill program also intersected a new, high-grade zone on the eastern limb in several drill holes which were targeting the western limb. This discovery is particularly encouraging given the majority of the Santa Resource resides on the eastern limb. Highlights include:

³ Refer ASX release 25 October 2019 "Silver Lake to develop Santa Underground Mine"

Hole #	From (m)	To (m)	Interval (m)	Gold (g/t)
19SADD012	289.1	291.2	2.09	13.2
	295.9	302.9	7.05	2.62
19SADD016	240.8	243.4	2.53	7.95
19SADD019	96.2	96.5	0.27	135
	118.0	120.2	2.24	7.71
19SADD020	115.9	116.1	0.23	56.0
	160.9	163.1	2.13	31.4
19SADD021	128.7	130.8	2.06	9.03
	257.9	259.2	1.29	15.6
19SADD022	208.1	212.8	4.72	3.88
	252.3	255.3	2.99	4.85
19SADD023	105.5	106.6	1.13	34.2
19SADD024	93.0	96.4	3.34	3.57
	100.4	102.5	2.08	7.26
	110.7	115.0	4.27	4.66
19SADD027	114.0	120.0	6.01	4.33

Table 2: Assay highlights from latest round of Santa drilling

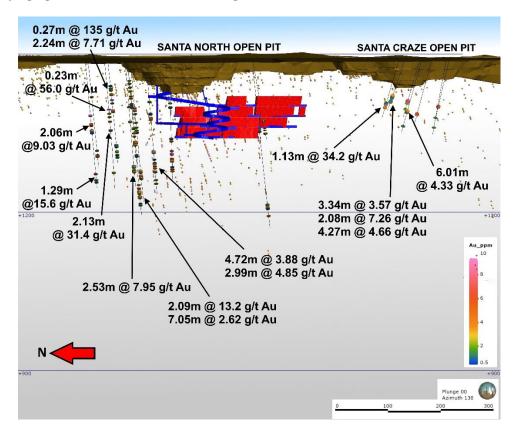


Figure 3: Santa West Limb long section, highlighting planned development for the 2019 Santa Underground Ore Reserve and assay highlights outside of the Ore Reserve

The established BIF hosted Mount Belches mines, Maxwells and Cock-eyed Bob have an established track record of Reserve replacement and Resource conversion, and the drilling results released today provide further support for life of mine extensions at Santa in excess of the current Ore Reserve.

Figure 4: Mount Belches Mining Centre underground Ore Reserves and cumulative production

Tank Area drilling enhances the development path for the shallow, wide, high-grade Tank South deposit

Silver Lake announced the discovery of the high-grade Tank South deposit in June 2019^4 with a maiden Inferred Mineral Resource of 662,000 tonnes at 3.6 g/t for 71,000 ounces, subsequently reported in August 2019^5 .

Infill drilling has confirmed the continuity and geometry of high-grade mineralisation over the 120m strike length of the 2019 Mineral Resource. The 120m strike is drilled on 20m x 20m spacing and the information will be used to convert the Tank South Inferred Resource to the higher confidence Indicated Resource status. Highlights include:

⁴ Refer ASX release June 2019 "Spectacular gold intersections at Tank South"

⁵ Refer ASX release August 2019 "Reserve growth reshapes Silver Lake's portfolio"

Hole #	From (m)	To (m)	Interval (m)	Gold (g/t)
19STRC016	116	124	8.00	5.23
	127	146	19.0	4.45
19STRC020	132	154	22.0	5.15
19STRC022D	139	152	13.0	11.0
19STRC023D	152.5	165.0	12.5	5.41
	193.0	202.0	9.00	10.4
19STDD024	163.0	172.8	9.88	3.89
	180.1	195.0	14.9	10.6
19STDD025	119.0	137.5	18.5	6.51
19STDD028	130.1	135.7	5.6	4.15
	141.0	147.9	6.88	8.32
19STDD031	135.0	144.2	9.23	15.4
19STDD039	189.0	201.0	12.0	7.65
19STDD045	208.0	214.0	6.00	8.54
19STDD046	131.4	142	10.6	6.12

Table 3: Assay highlights from latest round of Tank South drilling

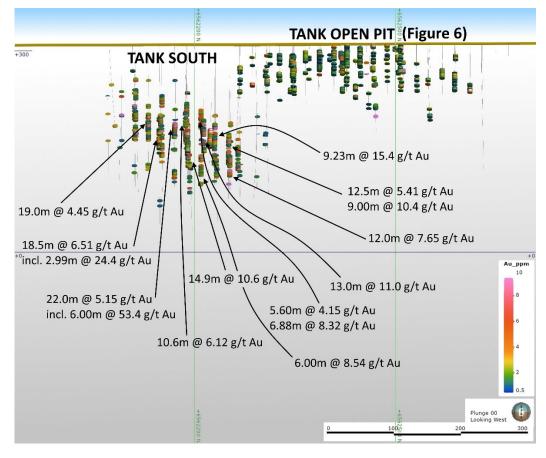


Figure 5: Assay highlights from latest round of Tank South drilling, highlighting proximity to Tank open pit lodes

Tank Open Pit

The historical Tank Open Pit lodes on the SAT trend were elevated in exploration priority following the discovery of the Tank South deposit and subsequent delineation of the maiden Mineral Resource in August 2019. The pit's proximity presents an opportunity to mine ounces from a potential Tank Open Pit as part of an integrated open pit/underground development strategy, with the Tank South portal to be located within the potential open pit.

A 25 hole RC drill program was commenced in October 2019 to validate and convert the historical Tank Open Pit Inferred Resource⁶ to Indicated status and test for continuity of mineralisation beyond the Mineral Resource limit to the north.

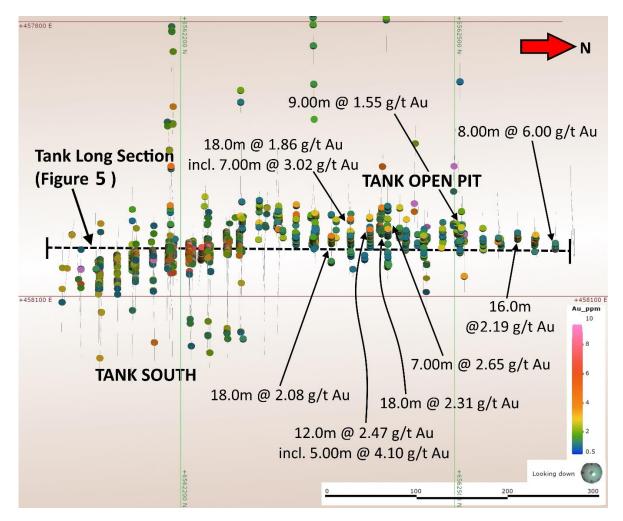


Figure 6: Plan view of Tank area, highlighting significant assays from Tank open pit drilling

The infill component of the program was designed to infill historical drill spacing to $20m \times 20m$, with the step out program to the north designed to validate a significant historical intercept and subject to success, test for further continuity to the north. Hole 19TKRC002 which returned 8m @ 6.00 g/t is located 65m to the north of the historical Mineral Resource. Highlights include:

⁶ Refer ASX release August 2019 "Reserve growth reshapes Silver Lake's portfolio"

Hole #	From (m)	To (m)	Interval (m)	Gold (g/t)
19TKRC002	74	82	8.00	6.00
19TKRC004	42	58	16.0	2.19
19TKRC007	19	28	9.00	1.55
19TKRC011	71	78	7.00	2.65
19TKRC012	11	29	18.0	2.31
19TKRC014	38	50	12.0	2.47
19TKRC015	25	43	18.0	1.86
19TKRC017	9	27	18.0	2.08

Table 4: Assay highlights from latest round of Tank Open Pit drilling

Mine optimisation studies will now be progressed, with the open pit drilling results highlighting the potential to mine significant economic ounces as part of an integrated open pit and underground development to access the thick, high-grade Tank South deposit.

Further exploration at Tank South will focus on identifying lode extensions with mineralisation presently constrained to the north and south by sharp post mineralised faults.

The successful infill drilling at Tank South increases confidence in the potential for a medium term underground development, highlighting the emerging underground potential at the broader Aldiss Mining Centre. Silver Lake has previously highlighted the potential for gold lodes at Karonie to remain open down plunge beneath the existing Karonie open pit and proposed Karonie South cut back, which will be subject to further drilling⁷.

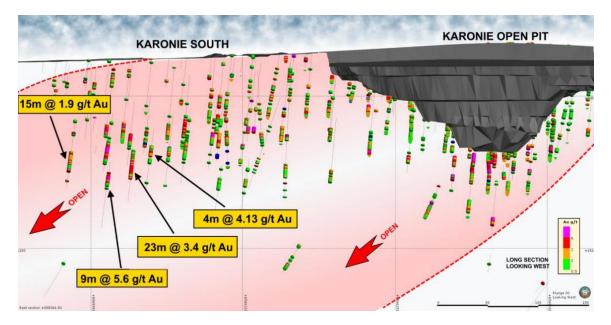


Figure 7: Karonie long section highlighting potential down plunge extension of mineralised lodes

⁷ Refer ASX release 27 June 2019 "75% increase in Aldiss Mining Centre Ore Reserves"

This announcement was authorised for release to ASX by Luke Tonkin, Managing Director. For more information about Silver Lake and its projects please visit our web site at <u>www.silverlakeresources.com.au</u>.

For further information concerning this announcement, please contact:

Luke Tonkin Managing Director +61 8 6313 3800 contact@silverlakeresources.com.au

Len Eldridge Corporate Development Officer +61 8 6313 3800 contact@silverlakeresources.com.au

Appendix 1: Mount Monger Ore Reserve Statement as at 30 June 2019

	Prov	ed Ore Rese	rves	Prob	able Ore Res	erves	Tot	al Ore Reser	ves
June 2019	Tonnes ('000s)	Grade (g/t Au)	Ounces (Au '000s)	Tonnes ('000s)	Grade (g/t Au)	Ounces (Au '000s)	Tonnes ('000s)	Grade (g/t Au)	Ounces (Au '000s)
Aldiss Mining Centre	(0003)	(g/t Au)	(Au 0003)	(0003)	(g/t Au)	(Au 0003)	(0003)	(g/t Au)	(Au 0003)
French Kiss	-	-	-	177	3.6	21	177	3.6	21
Harrys Hill	-	-	-	568	2.4	43	568	2.4	43
, Karonie	-	-	-	1,620	1.6	82	1,620	1.6	82
Sub Total	-	-	-	2,366	1.9	146	2,366	1.9	146
Daisy Mining Centre									
Daisy Complex	41	6.7	9	277	8.8	78	318	8.5	87
Mirror/Magic	-	-	-	-	-	-	-	-	-
Sub Total	41	6.7	9	277	8.8	78	318	8.5	87
Imperial/Majestic Mini	ng Centre								
Imperial	-	-	-	-	-	-	-	-	-
Majestic	-	-	-	169	3.8	21	169	3.8	21
Sub Total	-	-	-	169	3.8	21	169	3.8	21
Mount Belches Mining	Centre								
Cock-eyed Bob	242	5.7	44	143	6.2	28	385	5.9	73
Maxwells	107	5.9	20	354	6.0	68	462	6.0	88
Santa	-	-	-	257	3.5	29	257	3.5	29
Sub Total	349	5.8	65	754	5.2	125	1,103	5.3	190
Stockpile	1,127	1.4	49	-	-	-	1,127	1.4	49
Total Gold Ore Reserves	1,517	2.5	122	3,565	3.2	370	5,083	3.0	492

Appendix 2: Mount Monger Mineral Resource Statement as at 30 June 2019

	Measure	ed Mineral R	esources	Indicate	ed Mineral Re	esources	Inferre	d Mineral Re	sources	Total	Mineral Reso	ources
June 2019	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces
	('000s)	(g/t Au)	(Au '000s)	('000s)	(g/t Au)	(Au '000s)	('000s)	(g/t Au)	(Au '000s)	('000s)	(g/t Au)	(Au '000s)
Aldiss Mining Centre												
French Kiss	-	-	-	646	2.7	55	808	1.7	45	1,454	2.1	100
Harrys Hill	-	-	-	1,094	2.6	90	417	2.4	32	1,511	2.5	122
Italia/Argonaut	-	-	-	409	1.4	19	-	-	-	409	1.4	19
Karonie	-	-	-	2,967	2.0	188	770	1.3	31	3,737	1.8	219
Spice	-	-	-	78	2.4	6	64	1.3	3	142	1.9	9
Tank South	-	-	-	-	-	-	622	3.6	71	622	3.6	71
Tank/Atriedes	-	-	-	236	1.4	11	604	1.5	29	840	1.5	39
Sub Total	-	-	-	5,430	2.1	368	3,285	2.0	211	8,715	2.1	579
Daisy Mining Centre												
Costello	-	-	-	-	-	-	111	4.0	14	111	4.0	14
Daisy Complex	103	27.8	92	1,099	13.9	492	1,036	18.0	599	2,238	16.4	1,183
Fingals	-	-	-	131	2.7	11	1,043	2.3	77	1,174	2.3	88
Hammer & Tap	-	-	-	-	-	-	350	2.4	27	350	2.4	27
Lorna Doone	-	-	-	686	2.0	44	641	3.5	72	1,327	2.7	116
Mirror/Magic	507	2.6	43	549	2.5	45	663	3.6	77	1,719	3.0	165
Wombola Dam	13	3.2	1	164	2.6	14	120	3.0	12	297	2.8	27
Wombola Pit	-		-	47	3.1	5	20	4.0	3	67	3.3	7
Sub Total	623	6.8	136	2,676	7.1	611	3,984	6.9	881	7,283	7.0	1,628
Imperial/Majestic Mining	Centre											
Imperial	-	-	-	504	2.7	44	216	2.0	14	720	2.5	58
Majestic	-	-	-	1,673	2.6	142	790	2.3	58	2,463	2.5	200
Sub Total	-	-	-	2,177	2.7	186	1,006	2.2	72	3,183	2.5	258
Mount Belches Mining Ce	entre											
Anomaly A	-	-	-	232	1.9	14	44	1.4	2	276	1.8	16
Cock-eyed Bob	798	4.9	125	485	4.6	72	490	3.4	53	1,773	4.4	250
Maxwells	307	5.1	50	1,239	4.9	197	745	4.5	107	2,291	4.8	354
Rumbles	-	-	-	351	2.2	24	851	2.2	59	1,202	2.2	83
Santa	-		-	3,670	2.6	307	1,336	3.4	147	5,006	2.8	454
Sub Total	1,105	4.9	175	5,977	3.2	614	3,466	3.3	368	10,548	3.4	1,157
Randalls Mining Centre												
Lucky Bay	13	4.6	2	34	4.8	5	8	7.2	2	55	5.1	9
Randalls Dam	-	-	-	107	2.1	7	6	1.2	0	113	2.1	7
Sub Total	13	4.6	2	141	2.8	13	14	4.6	2	168	3.0	16
Stockpile	1,127	1.4	49	-	-	-	-	-	-	1,127	1.4	49
Total Gold Mineral	2,868	3.9	362	16,400	3.4	1,792	11,755	4.1	1,533	31,024	3.7	3,688
Resources	,			.,		,	,		,			.,

Appendix 3: Competent person requirements

The information in this presentation that relates to Exploration Targets and Exploration Results is based on information compiled by Mr Antony Shepherd, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Shepherd is a fulltime employee of Silver Lake Resources Ltd and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Shepherd consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

All information on Mineral Resources and Ore Reserves has been extracted from the ASX Announcement entitled "Reserve growth reshapes Silver Lake's portfolio" dated 27 August 2019 which is available to view at www.silverlakeresources.com.au. Silver Lake confirms that it is not aware of any new information or data that materially affects the information included in the original ASX announcement and that all material assumptions and technical parameters underpinning the estimates in the ASX announcement continue to apply and have not materially changed. Silver Lake confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original ASX announcement.

Appendix 4: Drillhole Information Summary

Underground Diamond Drilling - Easter Hollows

Drill hole Intersections are calculated with at a 1g/t Au lower cut, including 1m on internal dilution and minimum width of 0.2m High grade Intersections (within lower grade zones) are calculated with a 30g/t Au lower cut, including 1m on internal dilution and minimum sample width of 0.2m

Assays are analysed by a 30g Fire Assay Digest and ICP-AAS or Photon analysis with 500g sub-sample. NSI = No significant assay intersections; (AP) = Assays Pending. Collar coordinates in MGA.

Hole_ID	Collar E	Collar N	Collar RL	Dip	Azimuth	Depth_From	Depth_To	Gold Intersection
	(MGA)	(MGA)	(MGA)		(MGA)	(m)	(m)	(down hole width)
						57	57.7	0.70m @ 1.17 g/t Au
						208.45	208.65	0.20m @ 21.4 g/t Au
						296.5	299.69	3.19m @ 5.54 g/t Au
EH246013	397110	6569120	102	10	250	308.85	309.05	0.20m @ 1.40 g/t Au
EHZ40013	39/110	6568139	-103	-18	258	319.75	319.95	0.20m @ 26.5 g/t Au
						338.3	338.6	0.30m @ 1.26 g/t Au
						370	370.65	0.65m @ 2.48 g/t Au
					374	375	1.00m @ 2.84 g/t Au	
						59.54	59.89	0.35m @ 20.6 g/t Au
						230	231	1.00m @ 11.1 g/t Au
						248.35	249	0.65m @ 3.56 g/t Au
						265.95	266.15	0.20m @ 1.07 g/t Au
EH246014	397110	6568140	-103	-29	262	273.3	273.5	0.20m @ 2.24 g/t Au
LNZ40014	EH246014 397110 6568140	0308140	-103	-29	262	281	281.2	0.20m @ 1.02 g/t Au
						355	357	2.00m @ 2.28 g/t Au
						367.9	370.35	2.45m @ 4.17 g/t Au
						372	372.2	0.20m @ 5.43 g/t Au
						388.1	389.2	1.10m @ 20.7 g/t Au
							146	146.6
						162	162.45	0.45m @ 1.08 g/t Au
						254.6	254.8	0.20m @ 5.49 g/t Au
						257.25	257.45	0.20m @ 2.39 g/t Au
						260	261	1.00m @ 0.68 g/t Au
						267.95	268.5	0.55m @ 3.11 g/t Au
EH246015	397110	6568140	-103	-20	309	276.74	277.3	0.56m @ 1.60 g/t Au
L112-0013	337110	0000140	100	20	505	297	297.2	0.20m @ 4.72 g/t Au
					340.8	341	0.20m @ 1.34 g/t Au	
					343.91	346.3	2.39m @ 0.52 g/t Au	
				346.1	346.3	0.20m @ 4.60 g/t Au		
					349.7	349.9	0.20m @ 4.41 g/t Au	
				355	355.9	0.90m @ 2.46 g/t Au		
						368.4	368.6	0.20m @ 1.87 g/t Au
EH246016	397110	6568141	-103	-2	287	81.45	81.65	0.20m @ 28.3 g/t Au

						88.85	90.44	1.59m @ 58.5 g/t Au
						182.8	183	0.20m @ 1.40 g/t Au
						193.25	193.45	0.20m @ 1.65 g/t Au
						221.04	222	0.96m @ 2.50 g/t Au
						243.33	245.75	2.42m @ 4.58 g/t Au
						247.74	248.03	0.29m @ 12.0 g/t Au
						251.25	251.45	0.20m @ 1.18 g/t Au
						285.65	285.85	0.20m @ 1.00 g/t Au
						317.9	318.1	0.20m @ 2.03 g/t Au
						380.65	382	1.35m @ 3.33 g/t Au
						2	2.34	0.34m @ 1.71 g/t Au
						81.32	81.52	0.20m @ 1.79 g/t Au
						134.38	134.6	0.22m @ 5.38 g/t Au
						160.89	164.14	3.25m @ 13.0 g/t Au
						173.89	174.1	0.21m @ 10.3 g/t Au
						180.93	181.47	0.54m @ 2.84 g/t Au
511266004	10000 4	10207.2	405 50	22.00	206 75	209.2	210.2	1.00m @ 1.02 g/t Au
EH266004	10066.4	19397.2	-495.52	-23.99	286.75	212.2	213.2	1.00m @ 1.85 g/t Au
						216.07	217.2	1.13m @ 2.27 g/t Au
						219.79	221.9	2.11m @ 1.51 g/t Au
						227.3	227.68	0.38m @ 3.71 g/t Au
						232.64	232.84	0.20m @ 2.18 g/t Au
						256.1	257.85	1.75m @ 3.52 g/t Au
						270.78	271.02	0.24m @ 1.15 g/t Au
						1.75	2.5	0.75m @ 5.80 g/t Au
						49.8	50.1	0.30m @ 1.00 g/t Au
						153.3	153.6	0.30m @ 2.81 g/t Au
EH266005	10066.4	19397.2	-495.52	-18.5	279.59	154.95	155.45	0.50m @ 22.9 g/t Au
LH200003	10000.4	19397.2	-495.52	-10.5	279.39	218.6	218.85	0.25m @ 1.76 g/t Au
						225.35	225.7	0.35m @ 10.1 g/t Au
						233.75	234.87	1.12m @ 6.27 g/t Au
						243.8	244	0.20m @ 7.36 g/t Au
						1.6	1.9	0.30m @ 12.8 g/t Au
						1.6	1.9	0.30m @ 12.8 g/t Au
						105.15	107.1	1.95m @ 4.59 g/t Au
						105.15	107.1	1.95m @ 4.59 g/t Au
EH266006	10066.4	19397.2	-495.52	-10.04	286.64	121.4	121.6	0.20m @ 1.23 g/t Au
						128.65	129.45	0.80m @ 1.62 g/t Au
						131.25	131.5	0.25m @ 1.55 g/t Au
						132.9	133.35	0.45m @ 122 g/t Au
						136.05	136.35	0.30m @ 1.15 g/t Au

						216.86	217.4	0.54m @ 4.69 g/t Au
						219.1	222.25	3.15m @ 5.76 g/t Au
						2.45	2.65	0.20m @ 2.88 g/t Au
						9.65	10	0.35m @ 1.69 g/t Au
						87	88	1.00m @ 1.84 g/t Au
						142.95	143.15	0.20m @ 3.65 g/t Au
						159	160	1.00m @ 1.12 g/t Au
						166.75	166.95	0.20m @ 5.08 g/t Au
						168.18	168.48	0.30m @ 58.5 g/t Au
EH266007	10066.4	19397.2	-495.52	-14.23	302.68	176.9	177.2	0.30m @ 2.55 g/t Au
						180	183	3.00m @ 4.12 g/t Au
						199.6	201	1.40m @ 2.61 g/t Au
						214	215.7	1.70m @ 6.68 g/t Au
						231	232	1.00m @ 1.74 g/t Au
						254.6	254.8	0.20m @ 8.01 g/t Au
						262	262.2	0.20m @ 90.3 g/t Au
						274.8	275	0.20m @ 7.89 g/t Au
						3.05	3.25	0.20m @ 6.35 g/t Au
						51.5	51.7	0.20m @ 3.40 g/t Au
					148.3	149.4	1.10m @ 4.03 g/t Au	
						151.2	151.75	0.55m @ 3.31 g/t Au
						154.1	154.3	0.20m @ 1.54 g/t Au
						174.65	175.35	0.70m @ 3.30 g/t Au
EH266008	10066.4	19397.2	-495.52	-23.55	298.11	177.9	178.1	0.20m @ 6.46 g/t Au
						200.6	201.4	0.80m @ 1.08 g/t Au
						205.75	205.95	0.20m @ 1.60 g/t Au
						248.25	249.6	1.35m @ 1.60 g/t Au
						253.2	253.4	0.20m @ 2.24 g/t Au
						264.9	265.1	0.20m @ 11.8 g/t Au
						279.6	279.8	0.20m @ 1.86 g/t Au
						1.35	1.55	0.20m @ 3.05 g/t Au
						56.8	57.12	0.32m @ 1.63 g/t Au
						64.4	66.65	2.25m @ 0.31 g/t Au
						94.61	94.94	0.33m @ 2.47 g/t Au
EH266009	10066.4	19397.2	7.2 -495.52	-10.9	250.7	109.1	109.3	0.20m @ 10.4 g/t Au
211200000	10000.4	19997.2	400.02	10.5	200.7	116	117	1.00m @ 0.50 g/t Au
						121.21	122.24	1.03m @ 40.2 g/t Au
						131.65	132.02	0.37m @ 1.33 g/t Au
						198	198.4	0.40m @ 14.3 g/t Au
						202	202.23	0.23m @ 2.28 g/t Au
EH266010	10066.4	19397.2	-495.52	-7.4	268.3	1.44	1.68	0.24m @ 12.6 g/t Au

						66.43	66.67	0.24m @ 1.25 g/t Au
						130.7	131.7	1.00m @ 0.50 g/t Au
						220.7	221.21	0.51m @ 1.79 g/t Au
						223.92	224.22	0.30m @ 1.73 g/t Au
						230.7	230.9	0.20m @ 1.62 g/t Au
						235.44	235.64	0.20m @ 1.11 g/t Au
						237.86	242.82	4.96m @ 4.31 g/t Au
						239.74	242.82	3.08m @ 6.48 g/t Au
						242.07	242.47	0.40m @ 28.6 g/t Au
						252.17	252.41	0.24m @ 54.1 g/t Au
						2.25	2.45	0.20m @ 2.41 g/t Au
						23.9	24.5	0.60m @ 8.95 g/t Au
						159.65	162.05	2.40m @ 0.17 g/t Au
						174.3	175.45	1.15m @ 1.17 g/t Au
511266044	40066.4	10007.0	405 50	20.6	250.2	183	183.25	0.25m @ 3.93 g/t Au
EH266011	10066.4	19397.2	-495.52	-30.6	259.3	194.45	194.7	0.25m @ 1.15 g/t Au
						253.2	253.4	0.20m @ 2.83 g/t Au
						255	256	1.00m @ 1.21 g/t Au
						267.7	267.9	0.20m @ 17.4 g/t Au
						286	286.2	0.20m @ 37.5 g/t Au
						1.7	1.9	0.20m @ 22.6 g/t Au
						14.75	15.74	0.99m @ 1.47 g/t Au
						19.3	19.6	0.30m @ 4.19 g/t Au
						136	136.2	0.20m @ 4.80 g/t Au
						161	163.3	2.30m @ 1.61 g/t Au
						161.6	163.3	1.70m @ 1.89 g/t Au
						175.55	175.63	0.08m @ 3.81 g/t Au
						176.81	177.05	0.24m @ 2.61 g/t Au
						178.4	178.6	0.20m @ 4.15 g/t Au
EH266012	10066.4	19397.2	-495.52	-30.7	248.3	185.35	185.55	0.20m @ 4.63 g/t Au
EHZOOOIZ	10000.4	19397.2	-495.52	-30.7	240.5	194.15	197	2.85m @ 1.58 g/t Au
						227.75	229.05	1.30m @ 1.88 g/t Au
						228.15	229.05	0.90m @ 2.53 g/t Au
						240	240.2	0.20m @ 4.62 g/t Au
						245.85	246.05	0.20m @ 4.34 g/t Au
						250	251	1.00m @ 1.05 g/t Au
						253.05	253.25	0.20m @ 1.06 g/t Au
						273.6	274.4	0.8m @ 3.39 g/t Au
						287	289.98	2.98m @ 0.99 g/t Au
						289	289.98	0.98m @ 2.56 g/t Au
EH266013	10066.4	19397.2	-495.52	-35.5	243.1	1.75	1.95	0.20m @ 4.08 g/t Au

						17	17.31	0.31m @ 1.48 g/t Au
						41	42	1.00m @ 3.90 g/t Au
						88.5	88.7	0.20m @ 1.55 g/t Au
						148.9	150.7	1.80m @ 1.26 g/t Au
						150.22	150.7	0.48m @ 4.21 g/t Au
						167.5	167.7	0.20m @ 4.74 g/t Au
						176	177.35	1.35m @ 2.87 g/t Au
						188.6	188.8	0.20m @ 2.81 g/t Au
						192.4	192.68	0.28m @ 1.57 g/t Au
						254.9	256.5	1.60m @ 2.50 g/t Au
						276.1	276.3	0.20m @ 1.56 g/t Au
						286.5	286.7	0.20m @ 8.91 g/t Au
						291.7	294.4	2.70m @ 29.6 g/t Au
						292.47	292.72	0.25m @ 161 g/t Au
						294.2	294.4	0.20m @ 159 g/t Au
						0.8	1	0.20m @ 1.42 g/t Au
						3.65	4.05	0.40m @ 77.4 g/t Au
						52.6	52.8	0.20m @ 1.56 g/t Au
						152.1	152.3	0.20m @ 9.88 g/t Au
						160	162	2.00m @ 0.67 g/t Au
						169.6	170.6	1.00m @ 1.94 g/t Au
						202	203	1.00m @ 1.01 g/t Au
EH266014	10066.4	19397.2	-495.52	-19.1	278.8	221.15	221.45	0.30m @ 10.6 g/t Au
						233.8	236.5	2.70m @ 0.40 g/t Au
						236	236.5	0.50m @ 1.53 g/t Au
						241.5	241.75	0.25m @ 5.24 g/t Au
						253.5	253.8	0.30m @ 18.9 g/t Au
						256	256.3	0.30m @ 1.01 g/t Au
						267.55	267.75	0.20m @ 14.5 g/t Au
						292.45	292.65	0.20m @ 1.90 g/t Au
						140.2	142.6	2.40m @ 0.58 g/t Au
						149.37	149.66	0.29m @ 1.24 g/t Au
						157.05	157.27	0.22m @ 9.58 g/t Au
						194	194.54	0.54m @ 16.9 g/t Au
EH266018	10088.3	19339.5	-496.8	-16.6	253.2	194.3	194.54	0.24m @ 36.2 g/t Au
						231.23	240	8.77m @ 11.6 g/t Au
						233.08	233.83	0.75m @ 1.49 g/t Au
						235.06	240	4.94m @ 20.2 g/t Au
						236.47	238.72	2.25m @ 39.7 g/t Au
EH266015	10066.2	19401	-496.4	-23.4	291.1	0	0.9	0.90m @ 4.99 g/t Au
211200013	10000.2	101		23.7	~~	11.18	11.5	0.32m @ 71.0 g/t Au

						41.9	42.2	0.30m @ 1.88 g/t Au
						52	53	1.00m @ 3.53 g/t Au
						57.55	57.75	0.20m @ 1.46 g/t Au
						141.95	142.55	0.60m @ 1.02 g/t Au
						171	172	1.00m @ 0.80 g/t Au
						229.3	230.1	0.80m @ 2.21 g/t Au
						272.1	272.3	0.20m @ 330 g/t Au
						297.1	297.3	0.20m @ 1.88 g/t Au
						304.8	305	0.20m @ 1.37 g/t Au
						323.8	324.65	0.85m @ 4.61 g/t Au
						0	0.4	0.40m @ 2.93 g/t Au
						7.55	8.3	0.75m @ 4.02 g/t Au
						17.02	20	2.98m @ 2.22 g/t Au
						42	43	1.00m @ 0.50 g/t Au
						49	49.2	0.2m @ 19.2 g/t Au
						65	67	2.00m @ 1.00 g/t Au
EH266016	10066.2	19401	-496.4	-31.8	280.6	66	66.2	0.20m @ 3.96 g/t Au
						74.15	74.35	0.20m @ 16.5 g/t Au
						222.75	222.95	0.20m @ 1.29 g/t Au
						224.75	224.95	0.20m @ 5.66 g/t Au
						265.9	266.15	0.25m @ 10.9 g/t Au
						282.4	282.6	0.20m @ 1.39 g/t Au
						323	323.84	0.84m @ 5.66 g/t Au
						2.95	3.15	0.20m @ 31.5 g/t Au
						13.15	13.4	0.25m @ 1.33 g/t Au
						58.45	58.65	0.20m @ 1.07 g/t Au
						149.55	150.05	0.50m @ 1.49 g/t Au
EH266017	10066.2	19401	-496.4	-13.2	280.9	170.88	171.25	0.37m @ 3.35 g/t Au
L11200017	10000.2	19401	-490.4	-13.2	200.9	174.2	175	0.80m @ 2.33 g/t Au
						186.2	186.4	0.20m @ 22.7 g/t Au
						218.95	219.15	0.20m @ 31.6 g/t Au
						246.1	246.3	0.20m @ 1.06 g/t Au
						255.95	256.75	0.80m @ 3.14 g/t Au
						14	15	1.00m @ 1.21 g/t Au
						111	112	1.00m @ 0.53 g/t Au
						141.1	141.75	0.65m @ 2.08 g/t Au
EH266019	10088.3	19339.5	-496.8	-24.6	254.4	155.45	156.45	1.00m @ 0.98 g/t Au
L11200013	10000.3	1,333.3		-24.0	234.4	192.68	194.2	1.52m @ 0.60 g/t Au
						194	194.2	0.20m @ 1.66 g/t Au
						200	201	1.00m @ 1.64 g/t Au
						206.35	206.65	0.3m @ 1.15 g/t Au

						249.3	249.6	0.30m @ 3.97 g/t Au
						291.35	291.8	0.45m @ 9.03 g/t Au
						295	296	1.00m @ 0.96 g/t Au
						303.5	303.85	0.35m @ 1.74 g/t Au
						305.57	307.05	1.48m @ 0.87 g/t Au
						322.8	323.05	0.25m @ 6.34 g/t Au
						13	13.88	0.88m @ 2.12 g/t Au
						36	37	1.00m @ 2.40 g/t Au
						81.25	81.45	0.20m @ 2.20 g/t Au
EH266020	10088.3	19339.5	-496.8	-12.9	246.8	201.35	203	1.65m @ 0.67 g/t Au
						207	209.56	2.56m @ 4.80 g/t Au
						208.6	209.56	0.96m @ 11.7 g/t Au
						209.19	209.56	0.37m @ 28.7 g/t Au
						13	14	1.00m @ 0.50 g/t Au
						37	38	1.00m @ 2.61 g/t Au
						80.8	81.05	0.25m @ 3.37 g/t Au
						128	129	1.00m @ 0.55 g/t Au
						195.7	195.9	0.20m @ 2.15 g/t Au
EH266021	10088.3	19339.5	-496.8	-22.7	248.2	227.2	227.4	0.20m @ 1.04 g/t Au
						235.7	235.9	0.20m @ 6.84 g/t Au
						240	240.85	0.85m @ 1.49 g/t Au
						242.55	242.75	0.20m @ 1.91 g/t Au
						252.26	252.66	0.40m @ 1.30 g/t Au
						257.6	257.8	0.20m @ 2.67 g/t Au
						79.7	81.05	1.35m @ 0.81 g/t Au
						80.7	81.05	0.35m @ 1.18 g/t Au
						134.5	136	1.50m @ 0.65 g/t Au
						135.2	135.4	0.20m @ 1.46 g/t Au
						209.72	212.74	3.02m @ 5.39 g/t Au
EH266022	10088.3	19339.5	-496.8	-22.5	242.1	210.78	210.99	0.21m @ 26.9 g/t Au
						233.11	233.33	0.22m @ 1.18 g/t Au
						253.3	253.65	0.35m @ 3.99 g/t Au
						257.1	258.1	1.00m @ 0.82 g/t Au
						262.59	262.9	0.31m @ 1.35 g/t Au
						268.93	269.73	0.80m @ 1.49 g/t Au
						30.83	31.85	1.02m @ 1.02 g/t Au
						133.45	134.45	1.00m @ 2.83 g/t Au
EH266023	10088.3	19339.5	-496.8	-28.8	241.1	236.85	237.1	0.25m @ 1.44 g/t Au
11200023	10000.0	19999.9		20.0	271,1	263.8	268.03	4.23m @ 4.53 g/t Au
						265.2	268.03	2.83m @ 6.40 g/t Au
						284.55	284.85	0.3m @ 19.43 g/t Au

						291	292	1.00m @ 1.03 g/t Au
						300.55	302.12	1.57m @ 2.47 g/t Au
						0.85	1.05	0.20m @ 5.26 g/t Au
						8.19	11.39	3.20m @ 2.40 g/t Au
						49.87	56.12	6.25m @ 2.28 g/t Au
						120	121	1.00m @ 4.32 g/t Au
						128.27	128.52	0.25m @ 21.7 g/t Au
						162.87	163.2	0.33m @ 1.47 g/t Au
						180	180.22	0.22m @ 3.04 g/t Au
EH266026	10066.2	19401	-496.4	-18.2	286.6	197.32	197.57	0.25m @ 2.89 g/t Au
						242.84	243.46	0.62m @ 1.40 g/t Au
						253.52	253.72	0.20m @ 4.90 g/t Au
						262.68	263.21	0.53m @ 1.08 g/t Au
						269.27	269.54	0.27m @ 12.5 g/t Au
						281	281.31	0.31m @ 2.24 g/t Au
						307.88	311.09	3.21m @ 0.87 g/t Au
					310.06	311.09	1.03m @ 2.62 g/t Au	
						37.75	37.95	0.20m @ 1.33 g/t Au
						46	47	1.00m @ 0.67 g/t Au
					190.94	193	2.06m @ 2.32 g/t Au	
						199	199.2	0.20m @ 6.17 g/t Au
						205.25	205.45	0.20m @ 11.9 g/t Au
						212.95	213.15	0.20m @ 1.25 g/t Au
						220	222.43	2.43m @ 1.37 g/t Au
						222.23	222.43	0.20m @ 4.27 g/t Au
						234	236	2.00m @ 2.13 g/t Au
						238.48	238.93	0.45m @ 9.97 g/t Au
EH266024	10088.3	19339.5	-496.8	-34.3	248.51	282	282.85	0.85m @ 2.51 g/t Au
						284.9	285.1	0.20m @ 1.77 g/t Au
						287.2	289.1	1.90m @ 0.93 g/t Au
						288.73	289.1	0.37m @ 3.96 g/t Au
						304.35	304.55	0.20m @ 3.06 g/t Au
						319.7	319.9	0.20m @ 1.38 g/t Au
					324	326.8	2.80m @ 3.15 g/t Au	
				326	326.8	0.8m @ 10.39 g/t Au		
					326.6	326.8	0.20m @ 32.2 g/t Au	
						331	332.2	1.20m @ 1.83 g/t Au
						333.5	333.75	0.25m @ 14.8 g/t Au
EH266025	10088.3	19339.5	-496.8	-41.1	253.81	15.64	16.5	0.86m @ 3.61 g/t Au
211200020	10000.5	19999.0	-10.0	71.1	200.01	215	216	1.00m @ 1.02 g/t Au

						221.25	221.45	0.20m @ 1.20 g/t Au	
						228	228.26	0.26m @ 3.85 g/t Au	
						231	233	2.00m @ 0.40 g/t Au	
						319	320	1.00m @ 0.58 g/t Au	
						327	327.2	0.20m @ 1.31 g/t Au	
						373.62	374.3	0.68m @ 1.50 g/t Au	
						386.75	387	0.25m @ 17.5 g/t Au	
						1	2	1.00m @ 2.20 g/t Au	
						82.85	83.05	0.20m @ 3.16 g/t Au	
						137	137.21	0.21m @ 9.63 g/t Au	
						156.1	156.3	0.20m @ 2.73 g/t Au	
EH266027	10066.4	19397.2	-495.5	-22.84	247.86	158.8	161.25	0.26m @ 3.85 g/t Au 2.00m @ 0.40 g/t Au 1.00m @ 0.58 g/t Au 0.20m @ 1.31 g/t Au 0.68m @ 1.50 g/t Au 0.25m @ 17.5 g/t Au 1.00m @ 2.20 g/t Au 0.20m @ 3.16 g/t Au 0.21m @ 9.63 g/t Au	
						228.45	235.4	6.95m @ 8.87 g/t Au	
						232.8	233.15	0.35m @ 47.5 g/t Au	
						234.41	234.87	0.46m @ 83.6 g/t Au	
						251.65	251.85	0.20m @ 1.04 g/t Au	
						1.5	2	0.50m @ 2.46 g/t Au	
						27.3	28	0.70m @ 3.52 g/t Au	
						165	166	1.00m @ 0.54 g/t Au	
						177.75	177.95	0.20m @ 2.69 g/t Au	
						188.9	189.15	0.25m @ 1.34 g/t Au	
						193.3	193.6	0.30m @ 1.15 g/t Au	
						197.85	201	3.15m @ 0.34 g/t Au	
						200	201	1.00m @ 0.62 g/t Au	
						229.35	229.55	0.20m @ 1.91 g/t Au	
EH266028	10066.4	19397.2	-496.7	-40.95	239.61	252.55	252.75	0.20m @ 3.36 g/t Au	
EH200028	10000.4	19597.2	-490.7	-40.95	259.01	256	257	1.00m @ 2.40 g/t Au	
						259.5	259.7	0.20m @ 1.65 g/t Au	
						277.3	277.7	0.40m @ 2.76 g/t Au	
						282	282.3	0.30m @ 3.07 g/t Au	
						290	290.95	0.95m @ 4.18 g/t Au	
						306	307	1.00m @ 39.0 g/t Au	
						306.8	307	0.20m @ 190 g/t Au	
						340.75	341.1	0.35m @ 1.44 g/t Au	
						367.35	367.55	0.20m @ 8.35 g/t Au	
						369	371.15	2.15m @ 1.46 g/t Au	

Surface RC and Diamond Drilling - Santa Deposit Drill hole Intersections are calculated with at a 1g/t Au lower cut and minimum sample width of 0.2m. Assays are analysed by photon assay on a 500g sub sample (PAAU2). NSI = no significant assay intersections. (VG) = Visible gold logged.

Hole_ID	Collar E	Collar N	Collar RL	Dip	Azimuth	Depth_From	Depth_To	Gold Intersection
	(MGA)	(MGA)	(MGA)		(MGA)	(m)	(m)	(down hole width)
						156.55	159.08	2.53m @ 2.21 g/t Au
						168.01	168.42	0.41m @ 2.00 g/t Au
						(m) (down hole width) 156.55 159.08 2.53m @ 2.21 g/t Au		
						188.19	189.72	1.53m @ 2.15 g/t Au
						192.99	193.55	0.56m @ 5.91 g/t Au
						194.67	195.28	0.61m @ 2.57 g/t Au
19SADD012	424653	6565825	355	-60	261	282.08	283.01	0.93m @ 5.67 g/t Au
						289.1	291.19	2.09m @ 13.2 g/t Au
						295.86	302.91	7.05m @ 2.62 g/t Au
						307.6	309.66	2.06m @ 2.01 g/t Au
						311.22	311.88	0.66m @ 2.51 g/t Au
						323.89	324.17	0.28m @ 1.14 g/t Au
						327.11	328.02	0.91m @ 1.59 g/t Au
						53.66	53.97	0.31m @ 2.45 g/t Au
						59.95	60.32	0.37m @ 1.62 g/t Au
						68	69	1.00m @ 1.91 g/t Au
						76	77	1.00m @ 2.52 g/t Au
						87.72	88.43	_
						92.67	93	0.33m @ 4.82 g/t Au
405400045	424572	6565025	250	64	264	104.26	104.87	-
19SADD015	424572	6565825	356	-61	261	108.31	109.05	0.74m @ 1.14 g/t Au
						112.74	113.3	0.56m @ 1.56 g/t Au
						168	169	1.00m @ 3.61 g/t Au
						186.87	187.5	0.63m @ 4.62 g/t Au
						188.84	191.6	2.76m @ 2.78 g/t Au
						193.2	195.1	1.90m @ 2.50 g/t Au
						216.5	217.47	_
						220	220.3	0.30m @ 1.07 g/t Au
						110.02	110.35	0
						141.63	143.41	- 0.
						239	239.33	0.33m @ 1.69 g/t Au
19SADD016	424606	6565829	356	-61	260	240.83	243.36	-
						248.23	248.62	
								91 7.05m @ 2.62 g/t Au 66 2.06m @ 2.01 g/t Au 88 0.66m @ 2.51 g/t Au 17 0.28m @ 1.14 g/t Au 02 0.91m @ 1.59 g/t Au 07 0.31m @ 2.45 g/t Au 08 0.37m @ 1.62 g/t Au 09 1.00m @ 1.91 g/t Au 01 1.00m @ 1.91 g/t Au 02 0.37m @ 1.62 g/t Au 03 0.37m @ 1.62 g/t Au 03 0.37m @ 1.62 g/t Au 03 0.37m @ 1.91 g/t Au 03 0.71m @ 1.91 g/t Au 03 0.71m @ 1.91 g/t Au 03 0.71m @ 1.91 g/t Au 0.61m @ 6.27 g/t Au (VG) 05 0.74m @ 1.14 g/t Au .3 0.56m @ 1.56 g/t Au .4.2 g/t Au 0.61m @ 2.78 g/t Au .5 0.63m @ 4.62 g/t Au .6 2.76m @ 2.78 g/t Au .1 1.90m @ 2.50 g/t Au .3 0.33m @ 1.07 g/t Au .4 1.78m @ 1.40 g/t Au .3 0.33m @ 1.69 g/t Au .3 0.33m @ 1.69 g/t Au .3 0.33m @ 1.69 g/t Au <tr< td=""></tr<>
								- 0.
100400017	121520	6565274	240	40	70		99.5	
19SADD017	424530	6565271	346	-49	70	101.87	102.4	0.53m @ 8.58 g/t Au

						105.53	105.78	0.25m @ 1.90 g/t Au (VG)
						120.04	120.33	0.29m @ 1.75 g/t Au (VG)
105400010	121555	6565220	240	60	74	125.03	125.65	0.62m @ 1.51 g/t Au
19SADD018	424555	6565220	348	-60	71	146.45	146.89	0.44m @ 1.61 g/t Au
						65	66	1.00m @ 1.06 g/t Au
						70.78	72.14	1.36m @ 6.64 g/t Au (VG)
						74.37	75.5	1.13m @ 1.75 g/t Au
						82.6	83.97	1.37m @ 2.46 g/t Au
						85.25	85.55	0.30m @ 3.98 g/t Au (VG)
						96.2	96.47	0.27m @ 135 g/t Au (VG)
19SADD019	424559	6565862	356	-60	259	103.47	103.8	0.33m @ 1.35 g/t Au
						118	120.24	2.24m @ 7.71 g/t Au
						121.9	122.77	0.87m @ 4.02 g/t Au
						194.8	195.35	0.55m @ 22.0 g/t Au (VG)
						196.6	198.22	1.62m @ 1.35 g/t Au
						199.36	200.13	0.77m @ 1.27 g/t Au
						209.15	211.4	2.25m @ 1.19 g/t Au
						216.88	218.66	1.78m @ 0.93 g/t Au
						222.83	223.47	0.64m @ 1.60 g/t Au
						115.91	116.14	0.23m @ 56.0 g/t Au
						125	125.44	0.44m @ 4.18 g/t Au
						132.44	132.98	0.54m @ 1.77 g/t Au
19SADD020	424591	6565869	356	-60	260	142.04	143.04	1.00m @ 2.84 g/t Au
						160.92	163.05	2.13m @ 31.4 g/t Au (VG)
						255.01	256.63	1.62m @ 4.11 g/t Au
						128.7	130.76	2.06m @ 9.03 g/t Au
						147.94	148.3	0.36m @ 2.83 g/t Au
						150.56	152.48	1.92m @ 3.93 g/t Au
						161.76	162.06	0.30m @ 2.52 g/t Au
19SADD021	424578	6565905	356	-60	260	163.96	165.81	1.85m @ 7.62 g/t Au
						168	168.76	0.76m @ 1.05 g/t Au
						257.96	259.25	1.29m @ 15.6 g/t Au
						271.41	272.71	1.30m @ 7.55 g/t Au
						277	277.56	0.56m @ 1.02 g/t Au
						99.35	100.6	1.25m @ 1.74 g/t Au
						125.48	126.16	0.68m @ 1.07 g/t Au
						127.7	128.06	0.36m @ 1.10 g/t Au
19SADD022	424621	6565790	356	-60	260	134.75	135.55	0.80m @ 4.76 g/t Au (VG)
						260 134.75 135.55 136.65 137.4		0.75m @ 6.21 g/t Au
						138.54	139.2	0.66m @ 2.42 g/t Au

						208.11	212.83	4.72m @ 3.88 g/t Au
						227	227.4	0.40m @ 1.06 g/t Au
						234.39	235.19	0.80m @ 1.10 g/t Au
						237	237.45	0.45m @ 2.88 g/t Au
						241.5	242.55	1.05m @ 10.2 g/t Au (VG)
						246.29	246.93	0.64m @ 3.24 g/t Au
						252.29	255.28	2.99m @ 4.85 g/t Au
						272.1	272.4	0.30m @ 1.99 g/t Au (VG)
						280.16	280.75	0.59m @ 1.82 g/t Au
						103.4	104.2	0.80m @ 1.13 g/t Au
						105.46	106.59	1.13m @ 34.2 g/t Au (VG)
19SADD023	424518	6565310	346	-49	70	108.13	108.9	0.77m @ 4.27 g/t Au
						115.1	116.63	1.53m @ 8.46 g/t Au
								(VG)
19SADD024	424513	6565300	345	-45	72	93.05	96.39	3.34m @ 3.57 g/t Au (VG)
195ADD024	424513	0000300	345	-45	12	100.44	102.52	2.08m @ 7.26 g/t Au
						110.73	115	4.27m @ 4.66 g/t Au
						121.4	122.3	0.90m @ 4.31 g/t Au (VG)
19SADD025	424535	6565248	346	-55	68	123.32	123.8	0.48m @ 8.31 g/t Au
						124.81	125.67	0.86m @ 8.11 g/t Au (VG)
						88.66	89.42	0.76m @ 7.64 g/t Au
						206	206.55	0.55m @ 1.48 g/t Au
19SADD026	424542	6565900	356	-61	260	215.51	216.8	1.29m @ 0.90 g/t Au
						218.38	219.69	1.31m @ 4.67 g/t Au (VG)
19SADD027	424530	6565267	346	-54	67	114.03	120.04	6.01m @ 4.33 g/t Au (VG)
						150.93	151.94	1.01m @ 1.36 g/t Au
19SADD028	424557	6565214	348	-56	70	104.88	108.71	3.83m @ 3.74 g/t Au (VG)
						84.91	85.52	0.61m @ 1.13 g/t Au
20SADD001	6565254	424514	345	-52	68	145.67	149.03	3.36m @ 4.01 g/t Au (VG)
						37.72	38.39	0.67m @ 1.37 g/t Au
						99.15	100.5	1.35m @ 1.71 g/t Au
20SADD002	6565286	424525	346	-49	68	108.52	108.98	0.46m @ 3.15 g/t Au
						113.86	115.9	2.04m @ 3.39 g/t Au
						114.04	116.18	2.14m @ 7.00 g/t Au
2004000000	6565396	404505	246		68	117.54	118.28	0.74m @ 2.11 g/t Au
20SADD003	6565286	424525	346	-54		122.2	122.53	0.33m @ 2.63 g/t Au
		,5200 TZTJZJ		1		136.14	139.15	3.01m @ 3.29 g/t Au

						141.06	141.95	0.89m @ 16.9 g/t Au (VG)
						117.02	120.12	(VG) Assays pending
20SADD004	6565305	424511	346	-52	70	120.26	123.07	(VG) Assays pending
						128.35	131.94	(VG) Assays pending
20SADD005	6565220	424539	347	-57	69	144.44	150.1	(VG) Assays pending

Surface Diamond & Reverse Circulation Drilling - Tank South Drill hole Intersections are calculated with at a 1g/t Au lower cut, including 1m on internal dilution and minimum width of 0.2m High grade Intersections (within lower grade zones) are calculated with a 30g/t Au lower cut, including 1m on internal dilution and minimum sample width of 0.2m

Assays are analysed by a 30g Fire Assay Digest and ICP-AAS or Photon analysis with 500g sub-sample. NSI = No significant assay intersections; (AP) = Assays Pending. Collar coordinates in MGA.

Hole_ID	Collar E	Collar N	Collar RL	Dip	Azimuth	Depth_From	Depth_To	Gold Intersection
	(MGA)	(MGA)	(MGA)		(MGA)	(m)	(m)	(down hole width)
						77.6	78	0.40m @ 1.73 g/t Au
						85.87	86.5	0.63m @ 6.60 g/t Au
19STDD019	458129	6562091	308	-61	270	117.61	118.01	0.40m @ 30.1 g/t Au
						119.29	(m) (down hole width) 78 0.40m @ 1.73 g/t Au 78 0.63m @ 6.60 g/t Au 1 118.01 0.40m @ 30.1 g/t Au 9 120 0.71m @ 1.16 g/t Au 9 120 0.71m @ 1.06 g/t Au 9 162.3 1.00m @ 1.06 g/t Au 66 0.50m @ 2.25 g/t Au 1.06m @ 1.62 g/t Au 80 0.50m @ 2.87 g/t Au 108.36 108.36 0.36m @ 2.13 g/t Au 119.5 1.50m @ 1.18 g/t Au 119.5 1.50m @ 1.41 g/t Au 134 1.00m @ 2.53 g/t Au 5 255 0.25m @ 3.10 g/t Au 6 0.73m @ 1.88 g/t Au 7 97.03 0.36m @ 3.52 g/t Au 5 118 0.95m @ 1.66 g/t Au 9 127.88 0.89m @ 4.15 g/t Au 9 127.88 0.89m @ 4.12 g/t Au 5 161.62 0.27m @ 1.12 g/t Au 5 161.62 0.27m @ 1.21 g/t Au 5 3.05m @ 2.32 g/t Au 31.5 0.50m @ 2.27 g/t Au </td	
						161.3	162.3	1.00m @ 1.06 g/t Au
						65.5	66	0.50m @ 2.25 g/t Au
						72	73.06	1.06m @ 1.62 g/t Au
						79.5	80	0.50m @ 2.87 g/t Au
						82	83	1.00m @ 2.52 g/t Au
19STDD020	458160	6563340	313	-60	269	108	108.36	0.36m @ 2.13 g/t Au
						118	119.5	1.50m @ 1.18 g/t Au
						129.6	131.06	1.46m @ 1.41 g/t Au
						133	134	1.00m @ 2.53 g/t Au
						254.75	255	0.25m @ 3.10 g/t Au
						90.53	91.26	0.73m @ 1.88 g/t Au
						96.67	97.03	0.36m @ 3.52 g/t Au
						117.05	118	0.95m @ 1.66 g/t Au
19STDD021	458160	6563260	313	-60	271	122	124.51	2.51m @ 0.93 g/t Au
						126.99	127.88	0.89m @ 4.15 g/t Au
						132	137	5.00m @ 4.12 g/t Au
						161.35	161.62	0.27m @ 1.12 g/t Au
						25.5	28.55	3.05m @ 2.32 g/t Au
						31	31.5	0.50m @ 2.27 g/t Au
19STDD022	458221	6563570	314	-60	269	198.48	199.48	1.00m @ 1.51 g/t Au
						203.62	26.99 127.88 0.89m @ 4.15 g/t 132 137 5.00m @ 4.12 g/t 51.35 161.62 0.27m @ 1.12 g/t 25.5 28.55 3.05m @ 2.32 g/t 31 31.5 0.50m @ 1.51 g/t 98.48 199.48 1.00m @ 1.51 g/t 93.62 204.24 0.62m @ 4.30 g/t	0.62m @ 4.30 g/t Au
						209.9	210.53	0.63m @ 1.47 g/t Au

19STDD023	458159	6563420	313	-60	271	61.66	62.18	0.52m @ 1.28 g/t Au
						144.2	146.5	2.30m @ 3.10 g/t Au
						154.81	156	1.19m @ 2.02 g/t Au
						163	172.88	9.88m @ 3.89 g/t Au
19STDD024	458147	6562188	308	-60	271	180.11	195	14.9m @ 10.6 g/t Au including 6.50m @ 20.9 g/t Au
						197.5	200.86	3.36m @ 3.13 g/t Au
						204	208	4.00m @ 3.46 g/t Au
19STDD025	458126	6562148	308	-59	271	119	137.5	18.5m @ 6.51 g/t Au including 2.99m @ 24.4 g/t Au
						141	142.96	1.96m @ 5.69 g/t Au
						152	152.5	0.50m @ 1.67 g/t Au
						4.6	5.42	0.82m @ 1.05 g/t Au
100700000	450026	6562400	24.0	60	270	7.61	10.47	2.86m @ 2.21 g/t Au
19STDD026	458026	6562498	310	-60	270	81.1	81.72	0.62m @ 1.26 g/t Au
						136.97	137.67	0.70m @ 11.4 g/t Au
						28.79	29.43	0.64m @ 4.27 g/t Au
19STDD027	458022	6562456	308	-60	270	46.76	47.7	0.94m @ 12.05 g/t Au
					197.5 200.86 204 208 119 137.5 141 142.96 152 152.5 4.6 5.42 7.61 10.47 81.1 81.72 136.97 137.67 28.79 29.43	182	0.99m @ 2.10 g/t Au	
						117.26	118	0.74m @ 4.30 g/t Au
						121	121.98	0.98m @ 1.75 g/t Au
100700000	450420	6562240	200	5.4	270	125.05	126	0.95m @ 5.56 g/t Au
19STDD028	458129	6562210	308	-54	270	130.14	135.74	5.60m @ 4.15 g/t Au
						141	147.88	6.88m @ 8.32 g/t Au
						149.7	151	1.30m @ 3.94 g/t Au
						10.14	12.5	2.36m @ 1.73 g/t Au
						14.51	21.97	7.46m @ 4.32 g/t Au
100700000	450024	6562447	200	60	272	34.05	36.28	2.23m @ 1.65 g/t Au
19STDD029	458034	6562417	308	-60	272	42.52	43.64	1.12m @ 2.32 g/t Au
						44.84	45.09	0.25m @ 7.03 g/t Au
						149.6	150.8	1.20m @ 4.85 g/t Au
						143	144	1.00m @ 2.69 g/t Au
						153	153.4	0.40m @ 1.13 g/t Au
19STDD030	458168	6562111	308	-61	270	155.6	160	4.40m @ 3.63 g/t Au
						204	204.7	0.70m @ 1.07 g/t Au
						216	217	1.00m @ 1.84 g/t Au
						120.84	121.61	0.77m @ 3.23 g/t Au
19STDD031	458120	6562230	308	-59	269	135	144.23	9.23m @ 15.4 g/t Au including 4.30m @ 28.2 g/t Au

						151	154.23	3.23m @ 3.30 g/t Au
						156	157	1.00m @ 1.15 g/t Au
						160.7	162.5	1.80m @ 2.88 g/t Au
						192.57	194	1.43m @ 2.39 g/t Au
						205	206	1.00m @ 1.97 g/t Au
						21.9	26.5	4.60m @ 2.39 g/t Au
						28	28.5	0.50m @ 1.22 g/t Au
						31	32.1	1.10m @ 1.33 g/t Au
19STDD032	457992	6562420	308	-60	90	39.4	40.15	0.75m @ 1.62 g/t Au
						42	43	1.00m @ 2.63 g/t Au
						48.82	49.4	0.58m @ 2.12 g/t Au
						72	80.5	8.50m @ 1.48 g/t Au
						74.5	75	0.50m @ 1.40 g/t Au
						79.5	81	1.50m @ 6.30 g/t Au
						101	103	2.00m @ 4.67 g/t Au
400700000	450424	6562444	200	60	270	106	106.5	0.50m @ 1.28 g/t Au
19STDD033	458124	6562111	308	-60	270	110	111	1.00m @ 21.8 g/t Au
						115.2	117.39	2.19m @ 3.36 g/t Au
						118.5	121	2.50m @ 2.27 g/t Au
						123.5	125	1.50m @ 1.41 g/t Au
19STDD034	458126	6562266	308	-57	271	208	209	1.00m @ 1.67 g/t Au
						38.22	40.4	2.18m @ 2.74 g/t Au
	450450	65 699 66		6.0	0.74	147.3	148.3	1.00m @ 2.82 g/t Au
19STDD035	458159	6562266	308	-60	271	215	216	1.00m @ 1.50 g/t Au
						222	223	1.00m @ 1.15 g/t Au
19STDD036								Failed Hole
						122.06	122.45	0.39m @ 1.28 g/t Au
19STDD037	458087	6562290	307	-59	273	150.21	150.59	0.38m @ 1.14 g/t Au
						162.5	164.67	2.17m @ 1.47 g/t Au
						141.02	141.34	0.32m @ 4.06 g/t Au
19STDD038	458124	6562251	308	-55	272	145.2	146.2	1.00m @ 1.96 g/t Au
						175.5	176.01	0.51m @ 1.46 g/t Au
						18.5	22.4	3.90m @ 3.20 g/t Au
						28.3	28.8	0.50m @ 2.44 g/t Au
						30.9	31.13	0.23m @ 2.48 g/t Au
19STDD039	458150	6562251	308	-60	271	189	201	1.00m @ 1.50 g/t Au 1.00m @ 1.15 g/t Au Failed Hole 0.39m @ 1.28 g/t Au 0.38m @ 1.14 g/t Au 2.17m @ 1.47 g/t Au 0.32m @ 4.06 g/t Au 1.00m @ 1.96 g/t Au 0.51m @ 1.46 g/t Au 3.90m @ 3.20 g/t Au
						203.5	208.48	4.98m @ 3.00 g/t Au
						214	214.5	0.50m @ 19.5 g/t Au

						216	219.38	3.38m @ 3.30 g/t Au
						221	225.01	4.01m @ 2.39 g/t Au
19STDD040	458085	6562170	307					NSI
						58.3	58.94	0.64m @ 1.03 g/t Au
19STDD041	458085	6562170	307	-60	270	107.49	108.71	1.22m @ 1.76 g/t Au
						125	126	1.00m @ 1.09 g/t Au
						27.1	30	2.90m @ 1.14 g/t Au
						59	60.1	1.10m @ 1.89 g/t Au
						188	188.5	0.50m @ 1.32 g/t Au
						195	195.5	0.50m @ 3.79 g/t Au
19STDD042	458157	6562230	308	-60	270	197	199.5	2.50m @ 1.00 g/t Au
						204	209	5.00m @ 2.46 g/t Au
						218	219.7	1.70m @ 1.28 g/t Au
						220.9	224	3.10m @ 1.64 g/t Au
						225.5	226	0.50m @ 3.61 g/t Au
19STDD043	458082	6562147	307	-60	271			NSI
19STDD044	458088	6562130	307	-60	271	58.6	59.11	0.51m @ 2.62 g/t Au
						48	49	1.00m @ 1.50 g/t Au
						58.27	58.6	0.33m @ 1.39 g/t Au
						159	160	1.00m @ 1.13 g/t Au
						166.7	167	0.30m @ 7.26 g/t Au
19STDD045	458153	6562211	308	-61	270	186	196	10.0m @ 3.22 g/t Au
						203.16	206	2.84m @ 2.71 g/t Au
						208	214	6.00m @ 8.54 g/t Au
						217.46	221	3.54m @ 3.61 g/t Au
						114	125	11.0m @ 2.52 g/t Au
19STDD046	458125	6562186	307	-57	270	131.36	142	10.6m @ 6.12 g/t Au including 6.00m @ 9.34 g/t Au
						162	163	1.00m @ 2.85 g/t Au
						55	56	1.00m @ 2.02 g/t Au
19STRC010	457784	6562190	306	-61	271	144	145	1.00m @ 2.88 g/t Au
						172	173	1.00m @ 2.20 g/t Au
100700044	457054	6562400	200	64	274	88	91	3.00m @ 1.49 g/t Au
19STRC011	457854	6562190	306	-61	271	100	101	1.00m @ 1.36 g/t Au
						33	36	3.00m @ 1.79 g/t Au
19STRC012	457929	6562191	307	-60	273	72	73	1.00m @ 3.51 g/t Au
			307			194	195	1.00m @ 1.96 g/t Au
19STRC013	458007	6562190	307	-60	270	133	135	2.00m @ 1.93 g/t Au

						186	187	1.00m @ 1.82 g/t Au
						195	196	1.00m @ 1.28 g/t Au
19STRC014D	458167	6562091	307	-60	270	173.3	174.3	1.00m @ 1.53 g/t Au
						131	132	1.00m @ 1.11 g/t Au
						143	144	1.00m @ 1.00 g/t Au
						151	152	1.00m @ 2.54 g/t Au
						154	155	1.00m @ 1.18 g/t Au
19STRC015	458166	6562131	308	-60	270	157	161	4.00m @ 3.75 g/t Au
						163	164	1.00m @ 2.55 g/t Au
						205	206	1.00m @ 1.85 g/t Au
						209	210	1.00m @ 2.72 g/t Au
						214	215	1.00m @ 2.83 g/t Au
						101	103	2.00m @ 1.73 g/t Au
						105	106	1.00m @ 2.72 g/t Au
19STRC016	458126	6562131	308	-60	270	116	124	8.00m @ 5.23 g/t Au
						127	146	19.0m @ 4.45 g/t Au including 6.00m @ 8.72 g/t Au
19STRC017								Failed Hole
						39	40	1.00m @ 4.06 g/t Au
						152.55	153.6	1.05m @ 1.03 g/t Au
						154.8	155.79	0.99m @ 2.65 g/t Au
						176.07	176.29	0.22m @ 1.29 g/t Au
19STRC018D	458171	6562171	308	-61	271	178.68	179.31	0.63m @ 1.94 g/t Au
						212.67	219.4	6.73m @ 2.77 g/t Au
						220.6	221.8	1.20m @ 2.55 g/t Au
						225	227	2.00m @ 4.63 g/t Au
						232.31	233.03	0.72m @ 1.15 g/t Au
19STRC019								Failed Hole
19STRC020	458126	6562171	308	-60	271	132	154	22.0m @ 5.15 g/t Au including 6.00m @ 53.4 g/t Au and 5.00m @ 5.93 g/t Au
						156	157	1.00m @ 1.54 g/t Au
						175	177	2.00m @ 1.53 g/t Au
19STRC021	458124	6562211	308					Failed Hole
						124.99	130.79	5.80m @ 1.51 g/t Au
						134	135	1.00m @ 5.07 g/t Au
19STRC022D	458125	6562211	308		274	139	152	13.0m @ 11.0 g/t Au including 1.04m @ 44.5 g/t Au and 5.47m @ 14.7 g/t Au

						160.16	162	1.84m @ 3.86 g/t Au
						166	168.09	2.09m @ 1.24 g/t Au
						173	174	1.00m @ 1.54 g/t Au
						176	177	1.00m @ 3.14 g/t Au
						179	179.76	0.76m @ 1.65 g/t Au
						150	150.5	0.50m @ 2.09 g/t Au
						152.5	165	12.5m @ 5.41 g/t Au including 6.00m @ 9.22 g/t Au
						167.5	170.5	3.00m @ 0.93 g/t Au
19STRC023D	458128	6562252	308	-60	271	174	174.9	0.90m @ 6.80 g/t Au
						179.62	186.5	6.88m @ 2.13 g/t Au
						188	190	2.00m @ 1.60 g/t Au
						193	202	9.00m @ 10.4 g/t Au including 5.00m @ 17.0 g/t Au
						30	31	1.00m @ 1.11 g/t Au
19STRC024D	458170	6562211	308	-60	271	215.44	216.97	1.53m @ 1.67 g/t Au
						233.8	237.8	4.00m @ 1.87 g/t Au
105700050	458168	8 6562251	200	60	271	41	42	1.00m @ 1.56 g/t Au
19STRC025D			308	-60	271	235.15	236	0.85m @ 10.6 g/t Au
19STRC026D	458127	6562292	308	-61	273	220.83	221.87	1.04m @ 1.50 g/t Au
19TKRC001	458033	6562610	309	-61	91			NSI
107/0000	450000	0000 050000	200	60	0.1	67	71	4.00m @ 1.28 g/t Au
19TKRC002	458009	6562610	309	-60	91	74	82	8.00m @ 6.00 g/t Au
19TKRC003	458032	6562568	309	-60	91			NSI
19TKRC004	458009	6562569	309	-59	91	42	58	16.0m @ 2.19 g/t Au
19TKRC005	458032	6562530	309	-59	91			NSI
						32	34	2.00m @ 1.82 g/t Au
				309 -59	89	54	55	1.00m @ 1.08 g/t Au
19TKRC006	458009	458009 6562530	0 309			59	63	4.00m @ 2.25 g/t Au
						69	72	3.00m @ 1.33 g/t Au
						78	81	3.00m @ 1.45 g/t Au
						7	12	5.00m @ 1.50 g/t Au
						19	28	9.00m @ 1.55 g/t Au
19TKRC007	458018	018 6562505	2505 310	-59	89	32	34	2.00m @ 1.12 g/t Au
						46	50	4.00m @ 2.26 g/t Au
						59	60	1.00m @ 2.14 g/t Au
						23	24	1.00m @ 1.20 g/t Au
19TKRC008	458007	458007 6562487	309 -	-59	90	44	46	2.00m @ 2.07 g/t Au
						55	56	1.00m @ 2.14 g/t Au

						63	64	1.00m @ 1.22 g/t Au
19TKRC009	458056	6562446	308	-59	90			NSI
						82	84	2.00m @ 1.50 g/t Au
19TKRC010	457991	6562460	309	-59	91	101	102	1.00m @ 1.18 g/t Au
						108	109	1.00m @ 1.01 g/t Au
						25	28	3.00m @ 2.35 g/t Au
407/00044	453000	65 69 4 49		50	0.1	68	69	1.00m @ 1.60 g/t Au
19TKRC011	457990	6562440	308	-59	91	71	78	7.00m @ 2.65 g/t Au
						87	92	5.00m @ 2.06 g/t Au
19TKRC012	458017	6562426	308	-59	91	11	29	18.0m @ 2.31 g/t Au
407/00040	150017	65 69 49 4		50		15	16	1.00m @ 1.03 g/t Au
19TKRC013	458047	6562401	308	-59	90	22	26	4.00m @ 1.12 g/t Au
						16	18	2.00m @ 3.17 g/t Au
						20	21	1.00m @ 1.51 g/t Au
19TKRC014	458005	6562407	308	-60	90	38	50	12.0m @ 2.47 g/t Au including 5.00m @ 4.10 g/t Au
19TKRC015	458016	6562386	307	-59	89	25	43	18.0m @ 1.86 g/t Au including 7.00m @ 3.02 g/t Au
19TKRC016	458049	6562365	307	-59	90	23	28	5.00m @ 1.85 g/t Au
19TKRC017	458029	6562365	307	-59	89	9	27	18.0m @ 2.08 g/t Au
						18	20	2.00m @ 1.88 g/t Au
107/00010	458007				91	23	24	1.00m @ 1.24 g/t Au
19TKRC018		6562370	307	-59		40	41	1.00m @ 1.35 g/t Au
						56	58	2.00m @ 2.35 g/t Au
19TKRC019								Failed Hole
19TKRC020	457987	6562365	307	-59	89	45	48	3.00m @ 1.79 g/t Au
		28 6562326		-59	90	14	18	4.00m @ 1.25 g/t Au
19TKRC021	458028		562326 307			20	26	6.00m @ 1.30 g/t Au
						29	32	3.00m @ 1.58 g/t Au
					91	18	21	3.00m @ 2.09 g/t Au
407/00000	450000	6562226	207	50		31	32	1.00m @ 1.25 g/t Au
19TKRC022	458006	6562326	307	-59		46	54	8.00m @ 1.94 g/t Au
						60	61	1.00m @ 1.72 g/t Au
						30	34	4.00m @ 2.72 g/t Au
19TKRC023	457984	6562327	307	-59	90	51	61	10.0m @ 3.51 g/t Au including 8.00m @ 4.11 g/t Au
						93	94	1.00m @ 1.06 g/t Au
19TKRC024	458028	6562285	307	-59	91	19	20	1.00m @ 2.35 g/t Au
19TKRC025	458007	6562286	307	-59	90	33	34	1.00m @ 1.12 g/t Au

19TKRC026	457985	5 6562286	307 -5	50	91	18	21	3.00m @ 1.58 g/t Au
						28	34	6.00m @ 2.36 g/t Au
				-59		42	44	2.00m @ 1.92 g/t Au
						65	70	5.00m @ 5.72 g/t Au

Appendix 5:

JORC 2012 - Table 1: Easter Hollows Underground Diamond Drilling

Section 1 Sampling Techniques and Data

	section apply to all succeeding sections.)
Criteria	Commentary
Sampling techniques	 Two diamond core (DC) sizes were drilled LTK48 and NQ2. NQ2 core was drilled for exploration drilling and LTK48 was drilled for grade control drilling. NQ2 core was cut in half and sampled down to 20 cm as a minimum sample width. LTK48 was sampled in whole core and also sampled down to 20cm as a minimum sample width. Samples were taken to a commercial laboratory for assay. Sample preparation included all or part of: oven dry between 85°C & 105°C, jaw-crushing (nominal 10mm) & splitting to 3.5kg as required, pulverize sample to >85% passing 75um, complete a 40g fire assay charge. Uncertified blank material was inserted into the sampling sequence after samples where coarse gold was suspected. A barren flush was completed during the sample prep after suspected coarse gold samples. Uncertified blank material is sourced from a Proterozoic mafic dyke that is void of gold mineralisation. The blank is used not as an internal quality control check to ensure there is no cross-contamination between samples during the sample preparation process. Barren flushes are used to clean the mill during sample prep. In some cases, the barren flush is analysed for gold to quantify gold smearing in the milling process.
Drilling techniques	 Core types are: (1) LTK48 sampled as whole core; and (2) NQ2 sampled as half core. Diamond core samples were collected into core trays & transferred to core processing facilities for logging & sampling. The face sampling is conducted by rock chip sampling collected by a geologist across development face.
Drill sample recovery	 DC contractors use a core barrel & wire line unit to recover the DC, adjusting drilling methods & rates to minimize core loss (e.g. changing rock type, broken ground conditions etc.). Sample recovery issues from DC drilling are logged and recorded in the drill hole database.
Logging	 Rock chip samples, taken by the geologist UG, do not have sample recovery issues. All exploration DC is logged for core loss (and recorded as such), marked into 1m intervals, orientated, structurally logged and geologically logged for the following parameters: rock type, alteration, & mineralization. 100% of all core is photographed. Grade control drilling is processed and logged as described above except for core orientation and structural logging due to the context of the information. Geological logging is qualitative & quantitative in nature.
Sub-sampling techniques and sample preparation	 LTK48 core is sampled whole. Standards are placed every 20 samples which include a low grade, medium grade, or a high grade certified standard. NQ2 core is half core sampled. The remaining DC resides in the core tray & archived. Standards are placed every 20 samples which include a low grade, medium grade, or a high grade certified standard. The sample preparation has been conducted by commercial laboratories & involves all or part of: oven dried (between 85°C & 105°C), jaw crushed to nominal <10mm, riffle split to 3.5kg as required, pulverized in a one stage process to >85% passing 75um. The bulk pulverized sample is then bagged & approximately 200g extracted by spatula to a numbered paper bag that is used for the 40g fire assay charge. All diamond drill holes drilled since August 2019 have been analyzed for gold using photon assay on a 500g sub sample (PAAU2) The samples for photon assay were dried, crushed to a nominal 85% passing 2mm, linear split and a nominal 500g sub sample taken (PAP3512R) The photon assay technique is a chemical free and nondestructive process that utilizes a significantly larger sample than the conventional 50g fire assay.

Criteria	Commentary
Quality of assay data and laboratory tests	 Rock chip & DC samples submitted to the laboratory are sorted & reconciled against the submission documents. Routine CRM (standards) are inserted into the sampling sequence at a rate of 1:20 for standards & 1:33 for uncertified blanks or in specific zones at the Geologist's discretion. The commercial laboratories complete their own QC check. Barren quartz flushes are used between expected mineralized sample interval(s) when pulverizing. Selective field duplicate campaigns are completed throughout the fiscal year on DC and face data. Results show that there is significant grade variability between original and duplicate samples for all sampling techniques. Field duplicates are relatively accurate but not precise The sample & size (2.5kg to 4kg) relative to the grain size (>85% passing 75um) of the material sampled is a commonly utilised practice for gold deposits within the Eastern Goldfields of Western Australia for effective sample representivity. The assay method is designed to measure total gold in the sample. The laboratory procedures are considered appropriate for the testing of gold at this project, given its mineralization style. The technique involved uses a 40g sample charge with a lead flux, which is decomposed in a furnace, with the prill being totally digested by 2 acids (HCI & HN03) before measurement of the gold content by an AAS machine. The photon assays were analysed by MinAnalytical (NATA accredited for compliance with ISO/IEC17025:2018 testing) Data produced by Min-Analytical is reviewed and compared with the certified values to measure accuracy and precision. Selected anomalous samples are re-digested and analysed to confirm results. At Min-Analytical, 50g samples (diamond and RC) were assayed by fire assay (FA50AAS) and 500g samples were analysed by photon assay (PAAU2) No geophysical tools or other remote sensing instruments were utilized for reporting or interpretation of gold mineraliz
Verification of sampling and assaying Location of data points	 Independent verification of significant intersections not considered material. There is no use of twinned holes based on the high degree of gold grade variability from duplicate sampling of half core. Hole-twining would deliver a similar result. Primary data is sent digitally and merged into the commercially available SQL DataShed database software. Assay results are merged when received electronically from the commercial laboratory. The responsible Geologist reviews the data in the database to ensure that it is correct, has merged properly & that all data has been received & entered. Any variations that are required are recorded permanently in the database. No adjustments or calibrations were made to any assay data used in this report. All drill holes used have been surveyed for easting, northing & reduced level. Recent data is collected in Solomon local grid. The Solomon local grid is referenced back to MGA 94 and AHD using known control points. Drill hole collar positions are surveyed by the site-based survey department (utilizing
Data spacing and distribution	 conventional surveying techniques, with reference to a known base station) with a precision of less than 0.2m. The survey instrument used is a Leica Total Station tool. Down hole surveys consist of regular spaced Eastman single or mutli-shot borehole camera, & digital electronic multi-shot surveys (generally <30m apart down hole). Ground magnetics can affect the result of the measured azimuth reading for these survey instruments Daisy Milano. Topographic control was generated from survey pick-ups of the area over the last 20 years. The nominal drill spacing is 40m x 40m with some areas of the deposit at 80m x 80m or greater. This spacing includes data that has been verified from previous exploration activities on the project.

Criteria	Commentary
	 Grade control drill (LTK48) spacing is nominally 10m x 20m or 20m x 20m Level development is 15 metres between levels and face sampling is 2.5m to 10m spacing. This close spaced production data provides insights into the geological and grade continuity and forms the basis of exploration drill spacing. Samples were composited by creating a single composite for each drill hole intercept within a geological domain. This is completed for the resource modelling process.
Orientation of data in relation to geological structure	 Drilling is designed to cross the ore structures close to perpendicular as practicable. Most of the surface DC was drilled from the hanging wall to the footwall to achieve the best possible angle of intersection. Some of the surface holes intersect an orebody at acute angles. UG DC can be drilled from footwall to hanging wall. All FS sampling was performed across the mineralised veins. No drilling orientation and sampling bias has been recognized at this time.
Sample security	 Historical samples are assumed to have been under the security of the respective tenement holders until delivered to the laboratory where samples would be expected to have been under restricted access. Recent samples were all under the security of SLR until delivered to analytical laboratory in Kalgoorlie where they were in a secured fenced compound security with restricted entry. Min-Analytical check the samples received against the submission form and notify Silver Lake Resources (SLR) of any discrepancies. Following analysis, the crushed 500g photon assay sample, pulp packets, pulp residues and coarse rejects are held in their secure warehouse. On request, the pulp packets are returned to the Silver Lake Resources (SLR) warehouse on secure pallets where they are documented for long term storage and retrieval. Bureau Veritas operates an audit trail that has access to the samples at all times whilst in their custody.
Audits or reviews	 Internal reviews are completed on sampling techniques and data as part of the Silver Lake Resource continuous improvement practice Periodic audit of the commercial lab facilities and practices is undertaken by SLR geologists ensuring ongoing dialogue is maintained No external or third party audits or reviews have been completed.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
Mineral tenement and land tenure status	 The mining operations for Daisy Milano occurs on three granted Mining Leases - M26/129, M26/251 and M26/38, and are held by Silver Lake Resources Limited. There are five registered heritage sites on M26/251. All Mining Leases were granted pre-Native Title. Third party royalties are applicable to these tenements & are based on production (\$/ore tonne) or proportion of net profit. All production is subject to a WA state government NSR royalty of 2.5%
Exploration done by other parties	 A significant proportion of exploration, resource development & mining was completed by companies which held tenure over the Daisy Milano deposit since the mid 1990's. Companies included: Nickel Seekers, BGRM nominees and Ridgeview Nominees (1994-2002), Aberdeen Mining (2002-2003) and Perilya PL (2004-2007). Results of exploration & mining activities by the afore mentioned company's aids in SLR's exploration, resource development & mining. Reporting of results in this announcement only concerns results obtained by SLR.
Geology	 The deposit type is classified as an orogenic gold deposit within the Norseman-Wiluna greenstone sequence. The accepted interpretation for gold mineralization is related to (regional D2-D3) deformation of the stratigraphic sequence during an Archaean orogeny event. Locally, the mineralization is characterised as a deformed vein, hosted within intermediate volcanic and volcaniclastic units and closely associated with felsic intrusive rock types of the Gindalbie Terrane. The metamorphic grade is defined as lower green-schist facies.

Criteria	Commentary
Drill hole Information	• Tables containing drill hole collar, downhole survey and intersection data are included in the body of the announcement
Data aggregation methods	 All reported assay results have been length-weighted; no top cuts have been applied. Assay results are reported above a 1g/t Au lower cut. A maximum of 2m of internal dilution is included for reporting intercepts. Minimum reported interval is 0.2 for DC intercepts. No metal equivalent values are used for reporting exploration results
Relationship between mineralisation widths and intercept lengths	• Drill hole intersections vary due to infrastructure issues & drill rig access, but are at a high angle to each mineralized zone. Reported down hole intersections are documented as down hole width.
Diagrams	 Drilling is presented in long-section and/or cross section and reported regularly to the Australian Stock Market (ASX) in line with ASIC requirements
Balanced reporting	• All results have been reported (relative to the intersection criteria) including those results where no significant intercept (NSI) was recorded.
Other substantive exploration data	• No other exploration data that may have been collected is considered material to this announcement.
Further work	• Further work at Daisy Milano Complex will include additional resource development drilling to updating geological models.

JORC 2012 - Table 1: Exploration Surface RC & Diamond Drilling at Santa Deposit.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Criteria Sampling techniques	 Commentary RC Drilling Drill cuttings are extracted from the RC return via cyclone. The underflow from each 1 m interval then split with a variable aperture, cone splitter, delivering approximately 3 kg of the recovered material into calico bags for analysis. The residual material is retained in mining bags and stored in rows near the drill collar. The 1m samples collected during drilling at Santa were sent for analysis.
	 All HQ2 and NQ2 diamond holes have been half-core sampled over prospective mineralised intervals determined by the geologist. Within fresh rock, core is oriented for structural/geotechnical logging wherever possible. In oriented core, one half of the core was sampled over intervals ranging from 0.2 & 1.2 metre and submitted for fire assay analysis or photon analysis. The remaining core, including the bottom of-hole orientation line, was retained for geological reference and potential further sampling such as metallurgical test work. In intervals of un-oriented core, the same half of the core has been sampled where possible, by extending a cut line from oriented intervals through into the un-oriented intervals. The lack of a consistent geological reference plane, (such as bedding or a foliation), precludes using geological features to orient the core.

Criteria	Commentary
	 Aircore Drilling Drill spoils from Aircore drilling are collected in 1 m intervals and dumped in rows of 10 near the drill collar.
	• 3 m composite spear samples are collected and sent for analysis. Anomalous results are spear sampled at 1 m intervals and sent for further analysis.
Drilling techniques	 Both RC face sampling hammer drilling and HQ/NQ diamond drilling techniques have been used. Standard aircore drilling techniques were utilized during regional exploration within the mount Monger area.
Drill sample recovery	• RC sample recovery is recorded at 1 m intervals to assess that the sample is being adequately recovered during drilling operations. A subjective visual estimate is used and recorded as a percentage. Sample recovery is generally good, and there is no indication that sampling presents a material risk for the quality of the assay evaluation.
	• For diamond drilling recovered core for each drill run is recorded and measured against the expected core from that run. Core recovery is consistently very high, with minor loss occurring in heavily fractured ground. There is no indication that sampling presents a material risk for the quality of the evaluation of assay evaluation.
	• Aircore sample recovery is recorded at 1 m intervals to assess that the sample is being adequately recovered during drilling operations. A subjective visual estimate is used and recorded as a percentage. Sample recovery is generally good, and there is no indication that sampling presents a material risk for the quality of the assay evaluation
Logging	• All RC chips and diamond drill cores have been geologically logged for lithology, regolith, mineralisation, magnetic susceptibility and alteration utilising Silver Lake Resources (SLR)'s standard logging code library.
	• Diamond core has also been logged for geological structure. Sample quality data recorded includes recovery,
	• sample moisture (i.e. whether dry, moist, wet or water injected) and sampling methodology.
	 Diamond drill core and RC chip trays are routinely photographed and digitally stored for future reference.
	 Diamond drill holes are routinely orientated, and structurally logged with orientation confidence recorded. All drill hole logging data is digitally captured and the data is validated prior to being uploaded to the database.
	• Aircore spoils are geologically logged for lithology, regolith, veining, mineralisation, alteration & magnetic susceptibility using Logchief digital data capture software, and Silver Lake Resources (SLR)'s standard logging code library.
	 Data Shed has been utilised for the majority of the data management of the SQL database. The SQL database utilises referential integrity to ensure data in different tables is consistent and restricted to defined logging codes.
Sub-sampling techniques	 All diamond cores are halved using a diamond-blade saw, with one half of the core consistently taken for analysis.
and sample preparation	 The 'un-sampled' half of diamond core is retained for check sampling if required. For RC & Aircore chips, regular field duplicates, standards and blanks are inserted into the sample stream to ensure sample quality and assess analysed samples for significant variance to primary results, contamination and repeatability.
	 All RC and diamond drill hole samples were analysed by Min-Analytical or SGS using 50g fire assay using Atomic Absorption Spectrometry (FA50AAS)

Criteria	Commentary
Quality of assay data and laboratory tests	 All diamond drill holes drilled since August 2018 have been analyzed for gold using photon assay were dried, crushed to a nominal 85% passing 2mm, linerar split and a nominal 500g sub sample taken (PAP3512R) The photon assay technique is a chemical free and nondestructive process that utilizes a significantly larger sample than the conventional 50g fire assay. All aircore samples are analysed using 10 g aqua regia digest (AR10MS) All samples are sorted and dried upon arrival to ensure they are free of moisture prior to pulverising. Samples that are too coarse to fit directly into a pulverising vessel will require coarse crushing to nominal 10 mm. Samples ya gare sub split to a size that can be effectively pulverised. Representative sample volume reduction is achieved by either inffle splitting for free flowing material or rotary splitting for pre-crushed (2 mm) product. All samples are pulverised utilising 300 g, 1000 g, 2000 g and 3000 g grinding vessels determined by the size of the sample. Dry crushed or fine samples are pulverised to produce a homogenous representative sub-sample for analysis. A grind quality target of 85% passing 75mm has been established and is relative to sample size, type and hardness. Min-Analytical utilise low chrome steel bowls for pulverising. On completion of analysis all solid samples are stored for 60 days. All sample size is considered appropriate for the grain size of the material being sampled. Sample size is considered appropriate for the style of mineralisation being tested for - this technique is industry standard across the Eastern Goldfields. All samples were analysed by Min-Analytical (NATA accredited for compliance with ISO/IEC17025:2005) or SOS (ISO 9001:2008 & NATA ISO 17025 accredited) The photon assays were analysed by MinAnalytical (NATA accredited for compliance with ISO/IEC17025:2018 testing) Data
Verification of sampling and assaying	 On receipt of assay results from the laboratory the results are verified by the data manager and by geologists who compare results with geological logging. No independent or alternative verifications are available.
	 All data used in the calculation of resources and reserves are compiled in databases (underground and open pit) which are overseen and validated by senior geologists. No adjustments have been made to any assay data.

Criteria	Commentary
	 All drill hole data is digitally captured using Logchief software and the data is validated prior to being uploaded to the database. Data Shed (SQL database) has been utilised for the majority of the data management. The SQL database utilises referential integrity to ensure data in different tables is consistent and restricted to defined logging codes.
Location of data points	 Collar coordinates for surface Aircore RC and diamond drill-holes were generally determined by either RTK-GPS or a total station survey instrument. Historic drill hole collar coordinates have been surveyed using various methods over the years using several grids. Recent diamond holes were surveyed during drilling with down-hole single shot cameras and then at the end of the hole by Gyro-Inclinometer at 10 m intervals. Recent RC holes were surveyed during drilling with down-hole single shot cameras and then at the end of the hole by Gyro-Inclinometer at 10 m intervals. Aircore drill holes are not down hole surveyed. Topographic control is generated from RTK GPS. This methodology is adequate for the resources and exploration activities in question. All RC, Diamond and Aircore drilling activities are carried out in MGA94_51 grid All resource estimations are undertaken in local Mine grid.
Data spacing and distribution	 Drilling completed at Santa is resource definition phase and has been carried out at approximately ~20m x ~40m spacing to an average depth of ~200 vertical metres below surface.
Orientation of data in relation to geological structure	 The majority of RC & Diamond drilling is orientated to intersect mineralisation as close to normal as possible. Analysis of assay results based on RC & Diamond drilling direction show minimal sample and assay bias. Aircore drilling is preliminary in nature and mineralisation orientations are yet to be accurately defined.
Sample security	 Aircore, RC and diamond samples are sealed in calico bags, which are in turn placed in green mining bags for transport. Green mining bags are secured on metal crates and transported directly via road freight to the laboratory with a corresponding submission form and consignment note. Min-Analytical check the samples received against the submission form and notify Silver Lake Resources (SLR) of any discrepancies. Following analysis, the crushed 500g photon assay sample, pulp packets, pulp residues and coarse rejects are held in their secure warehouse. On request, the pulp packets are returned to the Silver Lake Resources (SLR) warehouse on secure pallets where they are documented for long term storage and retrieval.
Audits or reviews	• Field quality control and assurance has been assessed on a daily, monthly and quarterly basis.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
Mineral tenement and land tenure status	• There are no known heritage or environmental impediments over the leases covering the Mineral Resource and Ore Reserve. The tenure is secure at the time of reporting. No known impediments exist to operate in the area.
Exploration done by other parties	 Silver Lake tenements have a long history of exploration and mining activities. The tenements have been variously mapped, drilled and sampled and mined since the early 1900's Data from historic exploration is rigorously assessed prior to use in current exploration and development activities carried out by Silver Lake Resources.

Criteria	Commentary
	• Erroneous and unsubstantiated data is excluded from datasets utilised for Silver Lake Resources exploration and development activities
Geology	 The 'Maxwells', CEB and 'Flora Dora' deposits are hosted within the lower 'Maxwells' member of The Mount Belches group and the 'Santa' deposit is hosted within the upper 'Santa'' member both members are located in the southern Eastern Goldfields Superterrane, Yilgarn Craton, Western Australia. The iron formation is a silicate/oxide-facies unit with over printing sulphides, and has undergone metamorphism (upper-greenschist facies) and deformation (two generations of folds). The gold deposits are hosted in both the hinge zone and along the limbs of a regional scale, chevron folded BIF package. Gold dominantly occurs as inclusions of native gold and/or electrum within or around pyrrhotite, magnetite, and arsenopyrite, and economic mineralisation is typically restricted to the BIF horizons. The Mt Monger area is comprised of reworked intermediate to felsic volcanic rocks. The entire sequence is intruded by felsic quartz-feldspar porphyries'. Mineralisation typically occurs in steep north - south to north northwest trending quartz veins commonly on or proximal to the porphyry contacts. The Aldiss Area gold deposit lies within a north-trending ductile shear zone as the Karonie Main and West Zones, It consists of a series of steeply west dipping, right-stepping; en echelon lenses. Foliation-parallel quartz veins (1-15 cm wide) are relatively common and include some late, flat-lying veins. Mineralisation tends to be flanked by pyroxene-bearing calc-silicate assemblages. Ore lenses tend to be biotitized (up to 40% biotite) and there is a consistent presence of biotite in ore zones.
Drill hole Information	 Tables containing drill hole collar, downhole survey and intersection data are included in the body of the announcement
Data aggregation methods	 All results presented are weighted average. No high-grade cuts are used. Reported diamond and RC drill results have been calculated using a 1g/t Au lower cut-off grade with a minimum intercept width of 0.2 m. A total up to 1.0 metres of internal waste can be included in the reported intersection. No metal equivalent values are stated. Aircore drill results have been calculated using a 100 ppb Au lower cut-off grade with a minimum intersection width of 1m. A total up to 1.0 metres of internal waste can be included in the reported intersection.
Relationship between mineralisation widths and intercept lengths	 Unless indicated to the contrary, all results reported are down hole width. All RC & Diamond drill holes are drilled 'normal' to the interpreted mineralisation.
Diagrams	Appropriate diagrams have been provided the body of the announcement.
Balanced reporting	Appropriate balance in exploration results reporting is provided.
Other substantive exploration data	• There is no other substantive exploration data associated with this announcement.
Further work	• Ongoing drilling, resource evaluation and modelling activities will be undertaken to support the development of mining operations at Santa

JORC 2012 - Table 1: Exploration Surface RC & Diamond Drilling at Tank Deposit.

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling techniques	RC Drilling
	 Drill cuttings are extracted from the RC return via cyclone. The underflow from each 1 m interval is split with a variable aperture, cone splitter, delivering approximately 3 kg of the recovered material into calico bags for analysis. The residual material is retained in mining bags and stored in rows near the drill collar. The 1 m samples collected during drilling were submitted for Photon assay analysis. Fire assay analysis is used for umpire assay validation.
	Diamond Drilling
	 All HQ2 diamond holes have been half-core sampled over prospective mineralised intervals determined by the geologist. Core is oriented for structural/geotechnical logging wherever possible. In oriented core, one half of the core is sampled over intervals ranging from 0.2 & 1.2 metre and submitted for Photon assay analysis. Fire assay analysis is used for umpire assay validation. The remaining core, including the bottom of-hole orientation line, is retained for geological reference and potential further sampling such as metallurgical test work. In intervals of unoriented core, the same half of the core has been sampled where possible, by extending a cut line from oriented intervals through into the un-oriented intervals. The lack of a consistent geological reference plane, (such as bedding or a foliation), precludes using geological features to orient the core.
Drilling techniques	• RC face sampling hammer drilling and HQ diamond drilling techniques have been used.
Drill sample recovery	 RC sample recovery is recorded at 1 m intervals to assess that the sample is being adequately recovered during drilling operations. A subjective visual estimate is used and recorded as a percentage. Sample recovery is generally good, and there is no indication that sampling presents a material risk for the quality of the assay evaluation. Diamond drilling recovered core for each drill run is recorded and measured against the expected core from that run. Core recovery is consistently very high, with minor loss occurring in heavily fractured ground. There is no indication that sampling presents a material risk for the evaluation of assay evaluation.
Logging	 All RC chips and diamond drill cores have been geologically logged for lithology, regolith, mineralisation, magnetic susceptibility, veining and alteration utilising Silver Lake Resources (SLR)'s standard logging code library. Diamond core has also been logged for geological structure. Diamond drill holes are routinely orientated, and structurally logged with orientation confidence recorded. Diamond drill core and RC chip trays are routinely photographed and digitally stored for future reference. Sample quality data recorded for all drilling methods includes recovery and sampling methodology. RC sample quality records also include sample moisture (i.e. whether dry, moist, wet or water injected).

Criteria	Commentary
	 All drill hole logging data is digitally captured, and the data is validated prior to being uploaded to the database. Data Shed has been utilised for the majority of the data management of the SQL database. The SQL database utilises referential integrity to ensure data in different tables is consistent and restricted to defined logging codes.
Sub-sampling techniques and sample preparation	 All diamond cores are halved using a diamond-blade saw, with the same half of the core consistently taken for analysis. The 'un-sampled' half of diamond core is retained for check sampling if required. For RC and diamond cores, regular field duplicates, standards and blanks are inserted into the sample stream to ensure sample quality and assess analysed samples for significant variance to primary results, contamination and repeatability. All RC and diamond drill hole samples were analysed by Min-Analytical or SGS using 50g fire assay using Atomic Absorption Spectrometry (FA50AAS) All diamond drill holes drilled since August 2018 have been analyzed for gold using photon assay on a 500g sub sample (PAAU2) The samples for photon assay were dried, crushed to a nominal 85% passing 2mm, linear split and a nominal 500g sub sample taken (PAP3512R) The photon assay technique is a chemical free and nondestructive process that utilizes a significantly larger sample than the conventional 50g fire assay. All samples are sorted and dried upon arrival to ensure they are free of moisture prior to pulverising. Samples that are too coarse to fit directly into a pulverising vessel will require coarse crushing to nominal 10 mm. Samples are sub split to a size that can be effectively pulverised. Representative sample volume reduction is achieved by either riffle splitting for free flowing material or rotary splitting for pre-crushed (2 mm) product. All samples are pulverised utilising 300 g, 1000 g, 2000 g and 3000 g grinding vessels determined by the size of the sample. Dry crushed or fine samples are pulverised to produce a homogenous representative sub-sample for analysis. A grind quality target of 85% passing 75µm has been established and is relative to sample size, type and hardness. Min-Analytical utilise low chrome steel bowls for pulverising. On completion of analysis al
Quality of assay data	 being tested for - this technique is industry standard across the Eastern Goldfields. All samples were analysed by Min-Analytical (NATA accredited for compliance with ISO (ISC 47035-2005) or SCS (ISO 2004-2008 St NATA ISO 47035 accredited)
assay data and laboratory tests	 ISO/IEC17025:2005) or SGS (ISO 9001:2008 & NATA ISO 17025 accredited) The photon assays were analysed by MinAnalytical (NATA accredited for compliance with ISO/IEC17025:2018 testing) Data produced by Min-Analytical is reviewed and compared with the certified values to measure accuracy and precision. Selected anomalous samples are re-digested and analysed to confirm results. At Min-Analytical, 50g samples (diamond and RC) were assayed by fire assay (FA50AAS) and 500g samples were analysed by photon assay (PAAU2) Min-Analytical insert blanks and standards at a ratio of one in 20 samples in every batch. Repeat assays were completed at a frequency of 1 in 20 and were selected at random throughout the batch. In addition, further repeat assays were selected at random by the quality control officer, the frequency of which was batch dependent. Contamination between samples is checked for by the use of blank samples. Assessment of accuracy is carried out by the use of certified standards (CRM). QAQC results are reviewed on a batch by batch and monthly basis. Any deviations from acceptable precision or indications of bias are acted on with repeat and check assays. Overall performance of Min-Analytical laboratory QAQC and field based QAQC has been satisfactory. Field duplicates, standards and blanks were inserted throughout the hole during drilling operations, with increased QAQC sampling targeting mineralised zones.

Criteria	Commentary
	 The QAQC procedures used are considered appropriate and no significant QAQC issues have arisen in recent drilling results. These assay methodologies are appropriate for the resource evaluation and exploration activities in question.
Verification of sampling and assaying	 On receipt of assay results from the laboratory the results are verified by the data manager and by geologists who compare results with geological logging. No independent or alternative verifications are available. All data used in the calculation of resources and reserves are compiled in databases (underground and open pit) which are overseen and validated by senior geologists. No adjustments have been made to any assay data. All drill hole data is digitally captured using Logchief software and the data is validated prior to being uploaded to the database. Data Shed (SQL database) has been utilised for the majority of the data management. The SQL database utilises referential integrity to ensure data in different tables is consistent and restricted to defined logging codes.
Location of data points	 Collar coordinates for surface RC and diamond drill-holes were generally determined by either RTK-GPS or a total station survey instrument. Historic drill hole collar coordinates have been surveyed using various methods over the years using several grids. Recent diamond holes were surveyed during drilling with down-hole single shot cameras and then at the end of the hole by Gyro-Inclinometer at 10 m intervals. Recent RC holes were surveyed during drilling with down-hole single shot cameras and then at the end of the hole by Gyro-Inclinometer at 10 m intervals. Topographic control is generated from RTK GPS. This methodology is adequate for the resources and exploration activities in question. All RC and diamond drilling activities are carried out in MGA94_51 grid
Data spacing and distribution	• Recent drilling completed at Tank has been carried out at approximately 40m x 40m spacing to an average depth of 200 vertical metres below surface.
Orientation of data in relation to geological structure	 The majority of RC and diamond drilling is orientated to intersect mineralisation as close to normal as possible. Analysis of assay results based on RC and diamond drilling direction show minimal sample and assay bias.
Sample security	 RC and diamond samples are sealed in calico bags, which are in turn placed in green mining bags for transport. Green mining bags are secured on metal crates and transported directly via road freight to the laboratory with a corresponding submission form and consignment note. Min-Analytical check the samples received against the submission form and notify Silver Lake Resources (SLR) of any discrepancies. Following analysis, the crushed 500g photon assay sample, pulp packets, pulp residues and coarse rejects are held in their secure warehouse. On request, the pulp packets are returned to the Silver Lake Resources (SLR) warehouse on secure pallets where they are documented for long term storage and retrieval.
Audits or reviews	• Field quality control and assurance has been assessed on a daily, monthly and quarterly basis.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
Mineral tenement and	• There are no known heritage or environmental impediments over the leases covering the Mineral Resource and Ore Reserve. The tenure is secure at the time of reporting. No known impediments exist to operate in the area.

Criteria	Commentary
land tenure status	
Exploration done by other parties	 Silver Lake tenements have a long history of exploration and mining activities. The tenements have been variously mapped, drilled and sampled and mined since the early 1900's Data from historic exploration is rigorously assessed prior to use in current exploration and development activities carried out by Silver Lake Resources. Erroneous and unsubstantiated data is excluded from datasets utilised for Silver Lake Resources exploration and development activities
Geology	• The Aldiss Area gold deposits lie within a north-trending ductile shear zone as the Karonie Main and West Zones, Spice, Atreides and Tank. It consists of a series of steeply west dipping, right-stepping; en echelon lenses. Foliation-parallel quartz veins (1-15 cm wide) are relatively common and include some late, flat-lying veins. Mineralisation tends to be flanked by pyroxene-bearing calc-silicate assemblages. Ore lenses tend to be biotitized (up to 40% biotite) and there is a consistent presence of biotite in ore zones.
Drill hole Information	• Tables containing drill hole collar, downhole survey and intersection data are included in the body of the announcement
Data aggregation methods	 All results presented are weighted average. No high-grade cuts are used. Reported diamond and RC drill results have been calculated using a 1g/t Au lower cut-off grade with a minimum intercept width of 0.2 m. A total up to 1.0 metres of internal waste can be included in the reported intersection. No metal equivalent values are stated.
Relationship between mineralisation widths and intercept lengths	 Unless indicated to the contrary, all results reported are down hole width. All RC and diamond drill holes are drilled 'normal' to the interpreted mineralisation.
Diagrams	• Appropriate diagrams have been provided the body of the announcement.
Balanced reporting	• Appropriate balance in exploration results reporting is provided.
Other substantive exploration data	• There is no other substantive exploration data associated with this announcement.
Further work	 Ongoing drilling, resource evaluation and modelling activities will be undertaken to support the development of mining operations at Tank