

17 February 2020

Pursuit Enters into Option and Purchase Agreement for Three Highly Prospective Nickel Sulphide Projects in the Tier One Country of Norway

Highlights

- Pursuit has entered into a 12-month Option Agreement, with the ability to subsequently purchase a 100% interest, in a package of three highly prospective, advanced nickel sulphide projects in Norway, which are geologically analogous to the giant Voisey's Bay nickel deposit in Canada
- The package of advanced nickel sulphide projects comprises the Espedalen, Sigdal and Hosanger projects in southern and west-central Norway:
- The Espedalen Project, currently contains the following two nickel deposits:
 - Stormyra deposit comprising 1.16Mt @ 1% Ni, 0.42% Cu & 0.04% Co and classified as Inferred in accordance with JORC (2012)
 - Dalen deposit comprising 7.8Mt @ 0.3% Ni, 0.12% Cu & 0.02% Co and classified as Inferred in accordance with JORC (2012)
- The Stormyra Mineral resource is open at depth. Drilling will be undertaken, to determine if the Mineral Resource can be expanded and to further investigate encouraging drill intersections including:
 - o 21.1m @ 1.75% Ni, 0.66% Cu & 0.06% Co from 64m in hole ES2005-20
 - o 7.1m @ 2.68% Ni, 1.26% Cu & 0.08% Co from 29.3m in hole ES2005-22
 - o 14.6m @ 1.74% Ni, 0.79% Cu & 0.06% Co from 80.4m in hole ES2004-09
- In addition to the Stormyra and Dalen nickel deposits, the Espedalen Project contains 10 prospects containing nickel intersections of at least 5m @ >1% Ni which warrant follow up drilling
- The Sigdal Project contains a geophysical conductor associated with historical mine workings, which has only been tested with two short drill holes, returning gold grades over 10g/t with encouraging nickel and copper mineralisation including:
 - 1.48m @ 0.36% Ni, 0.43% Cu, 10.1g/t Au, & 2.9g/t Ag from 22.6m in hole ER2006-13
- The Hosanger Project contains the historical Litland nickel mine which produced 460,000t of nickel ore grading 1.05% Ni, 0.35% Cu and 0.05% Co from 1915¹ and which remains open at depth

¹ See Norway Geological Survey website http://geo.ngu.no/kart/mineralressurser_mobil/?lang=eng

Pursuit Minerals Limited ACN 128 806 977

% + 61 7 3854 2388

Level 14, 167 Eagle Street Brisbane QLD 4000

PO Box 5807 Brisbane QLD 4000

www.pursuitminerals.com.au

- Norway has a long history of nickel mining, producing 75% of the worlds nickel at the commencement of the 1900's, while the Bruvann Ni-Cu-Co mine operated between 1989-2002¹
- Glencore operate the Nikkelverk nickel refinery at Kristiansand in southern Norway, which has been refining nickel concentrate and exporting nickel products since 1910²
- Securing the option over the Espedalen, Sigdal and Hosanger projects expands Pursuit's exposure to "Battery Metals" which are increasingly important in Europe as the continent rapidly transitions to clean energy sources and electric vehicles, which is requiring a massive increase in battery production and deployment and subsequent increased consumption of battery metals including nickel
- Pursuit is required to pay US\$25,000 cash, issue 20 million shares and incur exploration expenditure of US\$250,000 in 12 months to become entitled to exercise the option to acquire 100% of the projects

Pursuit Minerals Limited (ASX:PUR) is pleased to announce the Company has entered into a 12 month Option Agreement, with the ability to subsequently purchase 100% interests in the Espedalen, Sigdal and Hosanger advanced nickel sulphide projects in southern and west-central Norway (the **Projects**). The Projects are currently owned by Eurasian Minerals Sweden AB (**Eurasian**), a wholly owned subsidiary of EMX Royalty Corporation (**EMX**).

Nickel mining and refining has been conducted in Norway for over 140 years and is home to Glencore's Nikkelverk nickel refinery, demonstrating Norway's long and continuing history with the nickel industry.

Pursuit Mineral's Chairman, Peter Wall, said that the Espedalen, Sigdal and Hosanger nickel projects comprise a highly prospective portfolio of nickel sulphide projects, given that high-grade nickel mineralisation has been confirmed by previous drilling on all three projects, and Inferred Mineral Resources already occur at the Stormyra and Dalen prospects on the Espedalen Project.

"Pursuit is extremely pleased to have entered into the Option and Purchase agreement with EMX for the Espedalen, Sigdal and Hosanger Nickel Projects in Norway, as these three high quality projects expand the Company's existing portfolio of battery metal related projects in Europe, which is fast transitioning to clean energy sources and electric vehicles.

"The transaction structure that has been negotiated is relatively non-dilutive to existing shareholders, with only a very modest number of shares being issued upfront. This was an important factor in proceeding with the transaction in order to preserve and maximise shareholder value.

"As Europe rapidly expands its capacity to produce batteries for both energy storage and use in electric vehicles, our goal at Pursuit is to quickly be in a position to supply European battery manufacturers with the key metals they require to greatly expand their battery production capacity and battery deployment.

¹ See Norway Geological Survey website http://geo.ngu.no/kart/mineralressurser_mobil/?lang=eng ² See Glencore website https://www.nikkelverk.no/en/about-us/Pages/home.aspx

Pursuit Minerals Limited ACN 128 806 977

61 7 3854 2388

Level 14, 167 Eagle Street Brisbane QLD 4000

PO Box 5807 Brisbane QLD 4000

Figure 1 – Norway Nickel Projects Locations

Pursuit Minerals Limited

ACN 128 806 977

- **•** + 61 7 3854 2388
- Level 14, 167 Eagle Street Brisbane QLD 4000
- PO Box 5807 Brisbane QLD 4000

www.pursuitminerals.com.au

There are a limited number of quality nickel sulphide projects available worldwide and Pursuit is now in the enviable position of being one of a handful of ASX listed companies with interests in an advanced portfolio in this space. Pursuit will rapidly move to define and test nickel drill targets with the goal of expanding the known nickel deposits and discover new nickel systems. Pursuit is fully funded to complete these exploration programs this year", Mr Wall said.

Norway Nickel Industry

Norway has had a long term and ongoing involvement with the nickel industry. Nickel mining in Norway began at Espedalen, approximately 3 hours' drive north of Oslo, in 1849. During the period 1874-1876 Norway was the world's leading producer of nickel³. By the turn of century, Norway had over 40 nickel mines in production and produced approximately 75% of the world's nickel. Production from this first phase of nickel mining completed in 1946. Nickel mining re-commenced in 1989 with the commissioning of the Bruvann nickel mine in northern Norway. Production from Bruvann continued until 2002.

An important component of the nickel industry in Norway is Glencore's Nikkelverk nickel refinery located at Kristiansand in southern Norway. Since 1910, Nikkelverk has produced, refined and exported nickel and other metals. From 1910 until 1946, Nikkelverk refined nickel concentrates produced from nickel mines located in southern Norway. Since 1929, stable supplies of nickel concentrates from Canada's Sudbury nickel mines have been processed at Nikkelverk, allowing expansion of the nickel refinery to its current production capacity of 92,000 tonnes.

Espedalen Project

The Espedalen Project is located approximately 50km north-west of Lillehammer in southern central Norway, 3 hours' drive north of Oslo. The project is well served with transport infrastructure being accessible by tarmac roads and is close to rail links to ports in southern Norway and to Glencore's Nikkelverk nickel refinery located 350km to the south.

The known nickel mineralisation on the Espedalen Project is hosted within differentiated mafic and ultramafic bodies which have intruded anorthositic country rocks. The mafic and ultramafic rocks are collectively referred to as the "Espedalen Complex" and range in age from 1698 – 1250 Ma. This age range is similar to the age of the rocks hosting the giant Voisey's Bay nickel deposit in Labrador, Canada. Further evidence supporting the analogy between Espedalen and Voisey's Bay are tectonic plate reconstructions which place southern Norway and Labrador in relatively close proximity during the time of formation of Voisey's Bay and with the two regions undergoing similar tectonic developments.

Mining in the Espedalen area dates from 1666 when copper was discovered in the Espedalen valley and mined intermittently until 1750. Nickel mining occurred in the region between 1848 and 1918 from several small mines. The Veslegruva mine, from which approximately 3,500t of nickel ore was extracted, is located in the south west of the Espedalen Project area and is accessible today. Total production from the Espedalen region is estimated at 100,000 @ 1.0% Ni, 0.4% Cu and 0.6% Co⁴.

The next phase of exploration at Espedalen commenced in 1960 and continued through until 1980. Sulfidmalm and Norsk Hydro drilled 44 holes following up on targets generated from a helicopter magnetic / electromagnetic survey and geological mapping.

^{3,4}Boyd, R. & Nixon, F. (1985) Norwegian nickel deposits: a review. In Nickel-copper Deposits of the Baltic Shield and Scandinavian Caledonies, ed. H. Papunen & G. I. Gorbunov, Geol. Surv. Finland. Bull. Vol. 333, pp 363-94

Pursuit Minerals Limited ACN 128 806 977

61 7 3854 2388

Level 14, 167 Eagle Street Brisbane QLD 4000

PO Box 5807 Brisbane QLD 4000

In 2003, Falconbridge Limited was granted tenements in the Espedalen valley following which ground and airborne electromagnetic surveys were undertaken, generating numerous drill targets. In 2004, Falconbridge concluded a joint venture agreement with Blackstone Ventures Limited. Between 2004 and 2008, Blackstone drilled 134 drill holes across the Espedalen project area, defining significant accumulations of nickel sulphides at the Stormyra and Dalen prospects and generating numerous other quality prospects.

In 2009, Blackstone published an NI 43-101 report detailing Mineral Resources at the Stormyra and Dalen prospects. Following the fallout from the Global Financial Crisis, Blackstone relinquished the Espedalen Project in 2011. ASX listed Drake Resources Limited (now renamed Ragnar Metals Limited) acquired the Espedalen Project in 2012 by pegging open ground. Drake undertook a detailed assessment of all previous work including re-estimating the Mineral Resources at Stormyra and Dalen prospects in accordance with JORC (2012).

The Mineral Resource at the Stormyra prospect was defined as 1.16Mt @ 1% Ni, 0.42% Cu, 0.04% Co, at a US\$100/t gross metal value cut-off and was classified as Inferred in accordance with JORC (2012).

The Mineral Resource at Dalen prospect has been defined at 7.8Mt @ 0.28% Ni, 0.12% Cu, 0.02% Co, at a US\$40/t gross metal value cut-off and was classified as Inferred in accordance with JORC (2012).

The Stormyra and Dalen Mineral Resources were calculated from drilling and assay data generated by diamond drilling campaigns undertaken during the period 2004 - 2008 by Blackstone Ventures. The drill programs at the Stormyra and Dalen prospects were completed with a muskeg mounted Diamec 251 Type standard diamond drilling rig. Diamond drill core diameters ranged from 35.2 mm to 42 mm, which is approximately standard BQ (35.5 mm) and BQTW (47.6 mm) core. Core recoveries were high and there appear to be no sampling or recovery factors which would materially influence the accuracy of the drilling results. Samples of the diamond drill core were taken from core cut in half longitudinally. Sample intervals were based upon lithological units and generally ranged from 0.3 – 1.5m. Standards or blanks samples were inserted every 20 samples and a blank inserted at the end of mineralised zone. Drill core samples analysed at ALS Chemex were first prepared at the ALS preparation lab in Pitea, Sweden. Each entire sample was fine crushed to better than 70% -2mm. A split off 250-gram sample was then pulverized to better than 85% passing 75 microns. ALS Chemex then analysed for Ni, Cu, Co, Ag and S by peroxide fusion and ICP-AES; Pt, Pd and Au by fire assay with an ICP-AES finish on a 30-gram nominal sample weight. Drill core samples analysed at Omac Laboratories Limited were shipped to Galway, Ireland from Norway where samples were prepared and analysed. Samples were dried, jaw and coned crushed total to <2 mm, riffled 1 kg and pulverized to 100 microns. Omac Laboratories then analysed for Ni, Cu, Co, Ag and S by oxidising digestion with final solution in aqua regia and ICP-AES; Pt, Pd and Au by 30-gram lead fire assay with an ICP finish. Certified reference samples and blank samples were added regularly to the sample stream sent to the geochemical laboratories. Field duplicates, in the form of 1/4 split core did not form part of the Quality Control program. The geochemical standards used consisted of two Ni-sulphide standards, named CRG-B and CRG-C, made up by Falconbridge and used during the drilling campaigns in 2005, 2006 and 2007.

The Stormyra Mineral Resource estimate was calculated using Surpac software v 6.4.1, on a block model using ordinary kriging on a rotated model in -60 azimuth and -45 dip 20mY x 20mX x 2.5mY blocks with no sub-blocking and with drill spacing ranging from $25m \times 50m$ to $100m \times 150m$. The maximum search distance was 80m for all elements, based on variogram analysis. Each element (Ni%, Cu%, Co%) was estimated independently into one of four 3D wireframe models of the mineralized domains.

Pursuit Minerals Limited ACN 128 806 977

61 7 3854 2388

Level 14, 167 Eagle Street Brisbane QLD 4000

PO Box 5807 Brisbane QLD 4000

The Dalen Mineral Resource was calculated from drilling and assay data generated solely from diamond drill holes. A total of 33 drill holes for 5018m were included in the Dalen prospect database and 27 of these drill holes used in the mineral resource estimate. The drill holes were mostly on a nominal 25m x 50m spaced pattern for the central area, extending to 50m x 100m and 200m x 400m in the distal areas of the Dalen prospect. The Dalen Mineral Resource Estimate was performed using Surpac software v 6.4.1, on a block model methodology using ordinary kriging on 20mY x 20mX x 10mY blocks sub-blocking to 20mY x 20mX x 2.5mZ, with drill spacing ranging from 50m x 50m to 200m x 400m. The maximum search distance was 70m for all elements, based on variogram analysis. Each element (Ni%, Cu%, Co%) was estimated independently into one of six 3D wireframe model of the mineralized lithology units.

The Stormyra and Dalen Mineral Resource estimates were reported to a Gross Metal Value (GMV), in which no recovery assumptions are made. No deleterious elements were considered in the mineral resource estimates or their reporting.

It has been assumed that mining of the Stormyra Mineral Resource would be via a selective underground mining scenario due to the mostly narrow true widths and moderate dip of the mineralisation. It has been assumed that the Dalen Mineral Resource would likely be a bulk mining scenario. The extensive true widths and lateral extents are amenable for such operations.

No metallurgical work has been undertaken to date on the Stormyra and Dalen Mineral Resources and no assumptions have been made regarding processing methodologies. However, limited metallurgical test work has been completed on two samples from the nearby Megrund prospect. This test work was carried out by Lakefield in Canada in the 1970's. The best results obtained from this work produced a concentrate assaying 15% Ni and 5.3% Cu, with recoveries in the range 75-79%. Metallurgical results can be expected to improve with further test work.

The Stormyra and Dalen Mineral Resources, above their respective cut-off's of US\$100/t GMV and US\$40/t GMV, have been classified as Inferred, in accordance with JORC (2012), due to the wide spaced drilling, uncertainty in bulk density determinations, and the incomplete sampling of available drill core. The gross metal value calculation for the cut-offs, used to estimate the Stormyra and Dalen Mineral Resources, utilised metal prices of US\$7.71/lb for Ni, US\$2.2/lb for Cu and US\$7.71 for Co. Pursuit is planning to re-estimate the Mineral Resources utilising current metal prices as that will influence the overall size and grade of the mineralisation above an economic cut-off.

In addition to defining JORC (2012) compliant mineral resources at Stormyra and Dalen, Drake identified 10 prospects where drilling by Blackstone had intersected at least 5m @ >1% Ni and that these prospects had not been followed up with further drilling. Prior to drill testing either the potential extensions of the Mineral Resources at Stormyra and Dalen, or drill testing any of the prospects of >5m @ >1% Ni, Drake dropped the Espedalen project tenements in 2015. These 10 quality targets warrant follow up drilling.

EMX were granted tenements covering the Espedalen Project in February 2018 and undertook a detailed compilation of all the past mineral exploration and drilling data. EMX recognised that the Stormyra Mineral Resource is not closed off and a number of intersections warrant follow up drilling, to determine if the Mineral Resource can be expanded, including:

- o 21.1m @ 1.75% Ni, 0.66% Cu & 0.06% Co from 64m in hole ES2005-20
- o 7.1m @ 2.68% Ni, 1.26% Cu & 0.08% Co from 29.3m in hole ES2005-22
- o 14.6m @ 1.74% Ni, 0.79% Cu & 0.06% Co from 80.4m in hole ES2004-09

Pursuit Minerals Limited ACN 128 806 977

- **%** + 61 7 3854 2388
- Level 14, 167 Eagle Street Brisbane QLD 4000
- PO Box 5807 Brisbane QLD 4000

Figure 2 – Espedalen Project Location

Pursuit Minerals Limited ACN 128 806 977

ACN 128 806 977

- **•** + 61 7 3854 2388
- Level 14, 167 Eagle Street Brisbane QLD 4000
- PO Box 5807 Brisbane QLD 4000

The Stormyra Mineral Resource contains a high-grade core, with drill intersections of up to 2.9% Ni. The high-grade core is not fully defined by drilling. Additional investigation of this high-grade core is warranted along with drill testing a ground geophysical conductor, directly associated with the nickel mineralisation, which extends 500m to the south-east of the currently defined limits of the Stormyra Mineral Resource.

At the Megrund prospect, nine holes were previously drilled, a number of which justify follow up drilling including:

- o 117m @ 0.31% Ni & 0.12% Cu (Hole ES 07 101)
- o 56m @ 0.72% Ni & 0.22% Cu (Hole 17)
- o 54m @ 0.36% Ni & 0.14% Cu (Hole 25)
- 36m @ 0.57% Ni & 0.24% Cu (Hole 6)

On the Espedalen Project, Pursuit will focus its assessment and exploration activities on the following:

- Assess the potential to expand the high-grade core of the Stormyra Inferred Mineral Resource
- Test a number of the targets of >5m @ >1% Ni
- Assess the potential to define a maiden Inferred Mineral Resource from the existing drill holes at the Megrund prospect

Sigdal Project

The Sigdal Project comprises two exploration licences granted in April 2018, covering the historical nickel occurrences of Grågalten and Ramstad.

The Ramstad Ni-Cu deposit consists of minor historical mine workings over a strike length of around 1 km in a north-south direction, approximately 4 km north of the town of Prestfoss. The historical mine was operated in the years 1874-1877, and approximately 1200-1300t of nickel ore with a total amount of 7t nickel were produced⁵. The nickel mineralisation is hosted within a metagabbro intrusion which most probably comprises several lenses within a granitic gneiss. The metagabbro lenses are several meters thick and some tens of meters long. The granitic gneiss is intersected by a major fracture zone. The main historical mine workings comprise a 25m long by 5-10m wide, north-south orientated open pit in a metagabbro containing disseminated mineralisation of pyrrhotite and chalcopyrite.

In 2006, Blackstone Ventures completed a ground EM survey which located a prospective conductor associated with the known sites of historical nickel production at Grågalten and Ramstad. Blackstone tested the ground EM conductor with two relatively short drill holes completed in 2006, confirming the presence of nickel mineralisation at the two historical prospects.

Drill hole ER2006-13 drilled on the north side of the historical prospects returned highly anomalous assay values for Ni, Cu and Au grades up to 10g/t at drill depths of 22 metres and 36 metres as follows:

- o 22.62m 24.10m (1.48m) @ 0.36% Ni, 0.43% Cu, 10.1g/t Au, & 2.9g/t Ag
- o 35.55 36.00m (0.45m) @ 0.94% Ni, 0.88% Cu, 0.05g/t Au & 4.0g/t Ag

⁵Poulsen, A. O., 1942. Nikkelforekomsteri Sigdal; Norges geologiske undersokelse; FAGRAPPORT; Bergarkivet; No. BA 64

Pursuit Minerals Limited ACN 128 806 977

- **\$** + 61 7 3854 2388
- Level 14, 167 Eagle Street Brisbane QLD 4000
- PO Box 5807 Brisbane QLD 4000

www.pursuitminerals.com.au

Figure 3 – Sigdal Project Location

Pursuit Minerals Limited ACN 128 806 977

- **•** + 61 7 3854 2388
- Level 14, 167 Eagle Street Brisbane QLD 4000
- PO Box 5807 Brisbane QLD 4000

www.pursuitminerals.com.au

Mineralization is associated with mafic to ultra-mafic rocks intruded by granites and then complexly folded. Coarse-grained sulphide recrystallization occurred due to a high-grade metamorphic overprint during the Svecogegnian Orogeny (1600-1450 Ma). The nickel mineralization includes accumulations of nickel and copper sulphides, with the mineralisation remobilize into pods and elongate bodies of semi-massive and massive sulphides. The nickel sulphides are structurally controlled along shear zones and within tight centimetre to meter scale folds.

The geophysical conductor is coincident with the old mine workings and the mineralized horizon hosting these shallow, anomalous Ni-Cu-Au drill intersections. Based on the encouraging results from the Blackstone drilling from 2006, and considering that only two holes have been drilled to test the EM conductor with which nickel and gold mineralisation is directly associated, further drill testing of the conductor is justified to determine the thickness and extent of the mineralised horizon down-dip and along strike.

Hosanger Project

The Hosanger project is located 22km north-east of the regional town of Bergen on the west coast of Norway, in an area of excellent infrastructure. The project tenements were granted in April 2018.

The Hosanger project area contains several historical nickel-copper deposits hosted by the lower parts of a pervasively deformed body of norite, the Hosanger intrusion, belonging to the Lindås Nappe. The first nickel deposit was discovered in 1875, and mining continued intermittently within the project area until 1945, including at the historical Litland nickel mine. Nickel mineralisation was discovered at Litland in 1899 and was first mined in 1915. Blackstone Ventures (2010) stated that past production from the Litland mine totalled 462,000t grading 1.05 % Ni, 0.35 % Cu and 0.05 % Co, with grades of up to 3% Ni reported during some periods of production^{6,7}.

In addition to the historical Litland mine, 50 exploration drill holes have been completed within the Hosanger project area, testing targets generated from airborne electromagnetic and magnetic data.

Pursuit will undertake a full evaluation of the previous drilling and also the Litland mine, which contains nickel mineralisation open at depth, and select targets for follow up drilling.

Transaction Consideration

On execution of the Agreements, Pursuit is obligated to pay the following consideration to Eurasian:

- i. Cash consideration of US\$25,000.
- ii. 20 million fully paid ordinary shares in Pursuit. 10 million shares are to be voluntarily escrowed for a period of 3 months and 10 million shares are to be escrowed for six months (together the **Initial Consideration**).

Subject to Pursuit having paid the Initial Consideration and having incurred exploration expenditure totalling US\$250,000 across the Projects prior to the first anniversary of the execution date of the Agreements (Initial Work Commitment), Pursuit will have earned the right to exercise the option to acquire 100% ownership of the Projects or Eurasian (to be determined by the Parties).

⁶Bjørlykke H., 1949. Hosanger Nikkelgruve, NGU publication Nr. 172, pp.10. ⁷Eilu, P. (ed.) 2012. Mineral deposits and metallogeny of Fennoscandia. Geological Survey of Finland, Special Paper 53.

Pursuit Minerals Limited ACN 128 806 977

\$ + 61 7 3854 2388

- Level 14, 167 Eagle Street Brisbane QLD 4000
- PO Box 5807 Brisbane QLD 4000

Figure 4 – Hosanger Project Location

Pursuit Minerals Limited ACN 128 806 977

- **•** + 61 7 3854 2388
- Level 14, 167 Eagle Street Brisbane QLD 4000
- PO Box 5807 Brisbane QLD 4000

If Pursuit exercises the option to acquire 100% of the Projects or of Eurasian, it shall be obligated to do the following:

- i. On or before 13 February 2021, and subject to any required shareholder approvals, Pursuit shall issue to Eurasian, or its nominee, the lesser of:
 - (a) 20 million fully paid ordinary shares in Pursuit. For the purposes of the Agreement, the Established Value of these shares will be 20 million shares multiplied by the 5-day VWAP for Pursuit's shares; and
 - (b) That number of fully paid ordinary shares in Pursuit required to cap Eurasian's aggregate holdings of Pursuit shares at 9.9% of the total number of Pursuit fully paid shares on issue on that date.
- ii. On or before 13 February 2022, Pursuit shall pay Eurasian US\$75,000 being an Annual Advanced Royalty to Eurasian. Pursuit may elect to settle this payment in cash or through the issue of fully paid ordinary shares in Pursuit.
- iii. On or before 13 February 2022, Pursuit shall expend a further US\$500,000 in exploration expenditures on the Projects.
- iv. On or before 13 February 2022 and subject to shareholder approval, Pursuit shall issue to Eurasian, or its nominee, the lesser of:
 - (a) That number of fully paid ordinary shares in Pursuit that is equal to the Established Value of the shares issued to Eurasian on or before 13 February 2021 divided by the 5 day VWAP of Pursuit's shares at the time the shares are issued; and
 - (b) That number of fully paid ordinary shares in Pursuit required to cap Eurasian's aggregate holdings of Pursuit shares at 9.9% of the total number of Pursuit fully paid shares on issue on that date.
- v. Commencing on 13 February 2023, Pursuit shall pay to Eurasian an Annual Advance Royalty. The first such payment shall be in the amount of US\$75,000 and may be settled by Pursuit in either cash or fully paid ordinary shares in Pursuit. Subsequent Annual Advance Royalty payments shall increase by US\$5,000 each year and are payable in cash.
- vi. Commencing 13 February 2023 and ceasing on the date on which Pursuit commissions a Pre-Feasibility Study on any one of the Projects, Pursuit is to complete one thousand metres of drilling on each Project every calendar year (pro-rated for part years). Any drilling undertaken by Pursuit in excess of one thousand metres on an individual project in a calendar year may be carried forward and applied against the drilling commitment in the following year.
- vii. Upon Pursuit completing each of the following it shall make a Development Milestone payment of US\$500,000 payable in cash, to Eurasian:
 - (a) A preliminary economic analysis that includes any part of the area occupied by the Projects.
 - (b) A positive Feasibility Study on any part of the area occupied by the Projects.

Pursuit Minerals Limited ACN 128 806 977

- **%** + 61 7 3854 2388
- Level 14, 167 Eagle Street Brisbane QLD 4000
- PO Box 5807 Brisbane QLD 4000

Notwithstanding the above, should Pursuit complete a positive Feasibility Study or achieve commercial production from any of the properties, both Development Milestone payments (totalling US\$1 million) shall be payable to Eurasian.

Royalties

Pursuit and Eurasian have executed a Royalty Interest Conveyance and Agreement pursuant to which Pursuit will pay Eurasian a 3% net smelter royalty (Royalty) after commercial production from any of the properties has been achieved. Annual Advance Royalties (refer ii. and v. above) shall be offset against royalties payable on production returns.

On or before the fifth anniversary of Pursuit exercising its option to acquire 100% ownership of the Projects, Pursuit may elect to buy back up to 1% of the Royalty as follows:

- i. Pursuit may purchase 0.5% of the royalty on each project by making a payment of US\$250,000 to Eurasian.
- ii. Pursuit may purchase a further 0.5% of the royalty on each project by making a payment of US\$750,000 to Eurasian.

Conditions Precedent

There are no material conditions precedent for the Option Agreement to become effective. Pursuit is required to pay the Initial Consideration and fulfill the Initial Work Commitment to be entitled to exercise the option to acquire the Projects.

Termination

The Agreement may be terminated in the following circumstances:

- i. If Pursuit does not validly exercise the option to acquire the Projects on or before 13 February 2021.
- ii. If prior to the exercise of the option by Pursuit, the parties agree in writing to terminate the Agreement.
- iii. By Eurasian if Pursuit fails to meet any of its obligations to make any payment due to Eurasian or to meet any work commitment under the Agreement.

In the event of termination, Eurasian shall retain all payments, shares and other compensation received from Pursuit prior to the termination.

Authorisation

This announcement was authorised for release by the Board of Directors of Pursuit Minerals Limited.

For further information contact Stephen Kelly, Company Secretary on +61 7 3854 2388.

Pursuit Minerals Limited ACN 128 806 977

+ 61 7 3854 2388

Level 14, 167 Eagle Street Brisbane QLD 4000

PO Box 5807 Brisbane QLD 4000

www.pursuitminerals.com.au

About Pursuit Minerals

Pursuit Minerals (ASX:PUR) listed on the ASX in August 2017 following the completion of acquisition of a portfolio of projects from Teck Australia Pty Ltd, which remains Pursuit's largest shareholder. Led by a Board and Management team with a wealth of experience from all sides of minerals transactions, Pursuit Minerals understands how to generate and capture the full value of minerals resource projects. From local issues to global dynamics, Pursuit Minerals knows how to navigate project development and deliver returns to shareholders and broader stakeholders.

Pursuit's project portfolio is focussed on the "Battery Metals", nickel and vanadium. In 2018, through compilation and interpretation of historical data, Pursuit applied for and was subsequently granted Exploration Tenements in Sweden and Finland, covering projects with historical deposits of vanadium and extensive confirmed areas of vanadium mineralisation. Finland has in the past produced up to 10% of the world's vanadium. Sweden has a long mining history and culture and was the second country in the world where vanadium was recognised as a metal. With its Sweden and Finland projects very well positioned to take advantage of Scandinavia's world-class infrastructure, cost effective power and stable legislative frameworks, Pursuit is looking to accelerate assessment and potential development of its quality vanadium project portfolio.

In February 2020, Pursuit expanded its portfolio of "Battery Metals" related projects through an Option agreement, with the ability to purchase 100% interests, in the Espedalen, Sigdal and Hosanger projects in Norway. Norway has a long and ongoing history in the nickel industry, being the world's largest producer of nickel in the early 1900's and with the Bruvann nickel mine operating between 1989 and 2002. Since 1910 Glencore's Nikkelverk nickel refinery at Kristiansand in southern Norway, has been refining nickel concentrate and exporting nickel products.

With Europe rapidly transforming its energy grid to renewable energy and encouraging the swap over of its vehicle fleet to battery electric vehicles, the regions' consumption of "Battery Metals" should substantially increase and Pursuit's projects are well placed to participate in the energy revolution underway in Europe.

For more information about Pursuit Minerals and its projects, visit:

www.pursuitminerals.com.au

Competent Person's Statement

Statements contained in this announcement relating to exploration results, are based on, and fairly represents, information and supporting documentation prepared by Mr. Jeremy Read, who is a member of the Australian Institute of Mining & Metallurgy (AusIMM), Member No 224610. Mr. Read is a Non-Executive Director of the Company and has sufficient relevant experience in relation to the mineralisation style being reported on to qualify as a Competent Person for reporting exploration results, as defined in the Australian Code for Reporting of Identified Mineral Resources and Ore Reserves (JORC) Code 2012. Mr Read consents to the use of this information in this announcement in the form and context in which it appears.

Statements contained in this announcement relating to the Mineral Resources at the Stormyra and Dalen prospects, are based on, and fairly represent, information and supporting documentation prepared by Mr. Bruce Armstrong, who is a member of the Australian Institute of Geoscientists (AIG), Member No 3271. Mr. Armstrong is an independent consultant to the Company and has sufficient relevant experience in relation to

Pursuit Minerals Limited ACN 128 806 977

61 7 3854 2388

Level 14, 167 Eagle Street Brisbane QLD 4000

PO Box 5807 Brisbane QLD 4000

the mineralisation style being reported on to qualify as a Competent Person for reporting exploration results, as defined in the Australian Code for Reporting of Identified Mineral Resources and Ore Reserves (JORC) Code 2012. Mr Armstrong consents to the use of this information in this announcement in the form and context in which it appears.

Forward Looking Statements

Disclaimer: Forward-looking statements are statements that are not historical facts. Words such as "expect(s)", "feel(s)", "believe(s)", "will", "may", "anticipate(s)" and similar expressions are intended to identify forward-looking statements. These statements include, but are not limited to statements regarding future production, resources or reserves and exploration results. All of such statements are subject to certain risks and uncertainties, many of which are difficult to predict and generally beyond the control of the Company, that could cause actual results to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. These risks and uncertainties include, but are not limited to: (i) those relating to the interpretation of drill results, the geology, grade and continuity of mineral deposits and conclusions of economic evaluations, (ii) risks relating to possible variations in reserves, grade, planned mining dilution and ore loss, or recovery rates and changes in project parameters as plans continue to be refined, (iii) the potential for delays in exploration or development activities or the completion of feasibility studies, (iv) risks related to commodity price and foreign exchange rate fluctuations, (v) risks related to failure to obtain adequate financing on a timely basis and on acceptable terms or delays in obtaining governmental approvals or in the completion of development or construction activities, and (vi) other risks and uncertainties related to the Company's prospects, properties and business strategy. Our audience is cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and we do not undertake any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.

Pursuit Minerals Limited ACN 128 806 977

• + 61 7 3854 2388

Level 14, 167 Eagle Street Brisbane QLD 4000

PO Box 5807 Brisbane QLD 4000

www.pursuitminerals.com.au

JORC Code, 2012 Edition – Table 1 Report - Stormyra Prospect

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate the minerals under investigation, such as down hole gamma sondes, handheld XRF instruments, etc). These examples should not be take as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such a where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules may warrant disclosure of detailed information. 	 Stormyra mineral resource was estimated using diamond drill core only, drilled on a nominal 50m x 50m spaced pattern for the central area, extending to 100m x 150m in the distal areas of the prospect. A total of 54 drill holes for 8609m drilled are in the database, with 47 drill holes used in the estimate. Holes were generally drilled to the south west at -60 dip or greater to intersect moderately NE dipping strata. Drill core was cut longitudinally with a diamond blade core saw at Blackstone Venture's core cutting facility in Tyristrand, Norway, with half of the core placed in bags and sent to accredited labs at SGS Lakefield Research Limited in Lakefield Ontario in 2006 and ALS Chemex (Pitea, Sweden Preparation Facility and Vancouver, B.C. Analytical Laboratory) and Omac Laboratories Limited in Galway, Ireland in 2007 and 2008.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple standard tube, depth of diamond tails, face-sampling bit or other type whether core is oriented and if so, by what method, etc). 	 2007 and 2008 drill programs on the Espedalen project were via a muskeg mounted Diamec 251 Type standard drilling rig. It is not known the exact type of drill rigs used in the earlier programs in 2004 to 2006. Core diameters include a variety ranging from 35.2 mm to 42 mm, which is close to standard BQ (35.5 mm) and BQTW (47.6 mm). Drill core at all drill sites was placed in wooden boxes, the boxes labelled according to drill hole number and metres and closed for transport
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and the sample recovery and the sample recovery and the sample recovery and	 As almost all core recovery was of a high percentage of recovered core, there appear to be no sampling or recovery factors that could materially impact the accuracy or reliability of the sampling results.

Criteria	JORC Code explanation	Commentary
	whether sample bias may have occurred due to preferential loss/gain fine/coarse material.	of
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Miner Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or coste channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All core was logged at the core shack on the project site, where major lithological units, structure, alteration, and mineralogy were recorded using text, numeric codes, or percentages and entered into DHLogger daily. Prior to being sampled, significant mineralized core sections were photographed using a digital camera and the photos were downloaded to the main office computer. The final logs included a header sheet with collar coordinates and down hole survey data. Produced from DHLogger in Sudbury There has been no geotechnical testing completed on the diamond core.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core take If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Technicians sawed the core in half longitudinally using core saws with a diamond blade at Blackstone's (BLV's) core cutting facility in Tyristrand, Norway. Sample lengths were based on lithologic units and generally range from 0.30m to 1.5m. Standards or blanks were inserted for every 20 samples and a blank was inserted at the end of mineralised zones. Drill core samples analysed at SGS Lakefield were weighed and dried before up to 4 kilograms of samples was crushed to 10 mesh then a 250 gram split was pulverized to 150 mesh. Cleaning of crushers and pulverizers was completed after every 20 samples. Drill core samples analysed at ALS Chemex were first prepared at ALS' preparation lab in Pitea, Sweden. There samples were logged in their tracking system, then weighed and the entire sample was fine crushed to better than 70% -2mm. A split off 250 gram sample was then pulverized to better than 85% passing 75 microns. These pulps were then shipped to Vancouver, B.C by commercial aircraft for completion of analytical work. Drill core samples analysed at Omac Laboratories Limited were shipped to Galway, Ireland from Norway where samples were prepared and analysed. Samples were dried, jaw and coned crushed total to <2 mm, riffled 1 kg and pulverized to 100 microns. All fractions were retained.
Quality of assay data and	 The nature, quality and appropriateness of the assaying and laborato procedures used and whether the technique is considered partial or total. 	 Lab procedure analyses performed at SGS Lakefield, ALS Chemex and Omac Laboratories were as follows: SGS Lakefield: Ni, Cu, Co, S, Ag were analysed using sodium peroxide fusion, ICP-MS analysis

Criteria JORC Code explanation Cor	nmentary
 Iaboratory tests For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 (assayed at SGS-Toronto); Pt, Pd and Au by fire assay, ICP-OES. ALS Chemex: analysis for Ni, Cu, Co, Ag and S by peroxide fusion and ICP-AES; Pt, Pd and Au by fire assay and ICP-AES finish (30 gram nominal sample weight). Omac Laboratories: analysis for Ni, Cu, Co, Ag and S by oxidising digestion with final solution in aqua regia and ICP-AES; Pt, Pd and Au by 30 gram lead fire assay/ICP finish. Quality Assurance/Quality Control (QA\QC) was implemented at the beginning of drilling in 2006 whereby standards were routinely inserted into the sample stream with at least one standard sample inserted per sample batch submitted to the laboratory. The program was further strengthened in 2007 with the introduction of blank samples and a more routine insertion of standards; i.e., one blank or standard every 20 samples. Once received, analytical results were imported into BLV's central database using commercial software, DHLogger (Century Systems) which provides quality control charting. Sample batches containing samples with analytical deviations of more than 5% were flagged, evaluated and batches re-assayed as needed. RCI reviewed the results of the various QA/QC programs and concluded that the historical and recent sampling were acceptable for the purpose of resource estimation. Property standards, certified reference materials and blank material were added regularly to the sample stream. Field duplicates, in the form of ¼ split core did not form part of the QC Program. The Property Standards consisted of two Ni-sulphide standards, named CRG-B and CRG-C, made up by Falconbridge and used throughout the drilling in 2005, 2006 and 2007. All characterization data were supplied by Blackstone and examined by the author of this Table One. The characterizations were well done with an average of 165 assays from four different labs used to determine the mean and standard deviation for each element. The certified reference material consisted of standards named LBE-1 and LBE-2 which were certifie

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verificat data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Four samples were selected by the independent consultants RCI in 2009, from two different drill holes, ¼ sawn by the technician and placed into sample bags which were sealed with tape and placed in a rice bag. Sulphides in the drill core ranged from net textured to semi massive. These were assayed at Activation Laboratories in Ancaster, Ontario for analysis. All samples were analyzed for Ni, Cu, Co, Au, Pd and Pt. Bulk densities on drill core, as well as densities measured on the pulps using a pycnometer were also performed. The verification sample results compare favourably with the results obtained by Blackstone for the three elements. Assay results for samples and quality assurance/quality control (QA/QC) materials are entered into DHLogger when received. All assay and QA/QC results are received electronically and uploaded. No adjustment of assay data, nor twinned holes were undertaken.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations us in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Collar locations for all drill holes were established using a total station differential handheld Global Positioning System (GPS) with an accuracy of less than one meter. Collar locations were picked up immediately after completion of the drill hole. Drill casing was left in the ground for most holes. A Reflex survey instrument was utilized for surveying deviations of drill holes. Surveys were taken typically at 50 metres increments down the hole. In the cases where there are no surveys, these holes were blocked at the time the surveys were being completed. Drill hole collar location are surveyed in Universal Transverse Mercator (UTM) coordinates, WGS84 UTM Zone 32N. Although topographic data are available, the GPS data recorded in the field were used for drill collar locations.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish th degree of geological and grade continuity appropriate for the Minera. Resource and Ore Reserve estimation procedure(s) and classification applied. Whether sample compositing has been applied. 	 Drill hole spacing varied from 25m x 50m in the central area of the prospect, to 100m x 150m in the outermost portions. The Mineral Resource Estimate (MRE) Resource Category reflects the drill spacing at the project in relation to grade and lithology continuity. Simple length weighted compositing, using best fit to 1m, +/- 25% tolerance, was performed on the assay results for the estimation process. These intervals are diluted in unsampled portions.
Orientation of data in	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering	• The mineralized zones in are moderately NE dipping and are generally intercepted by -60 steep drill holes. It appears that the true

Criteria	JORC Code explanation	Commentary
relation to geological structure	 the deposit type. If the relationship between the drilling orientation and the orientation key mineralised structures is considered to have introduced a sampli bias, this should be assessed and reported if material. 	width of the mineralized zones for both these properties is on average 80% of the core lengths.
Sample security	• The measures taken to ensure sample security.	 During Blackstones drilling operations, the procedure was for one half of the core which was bagged for analysis and the bag secured with a zip tie. Cut and bagged samples were placed in sealed plastic transport boxes and secured on pallets ready for transport. The samples were stored in the core cutting facility typically until two or more pallets are ready for shipping. Pallets were picked up by TNT Transport and delivered to Oslo airport for SAS air cargo shipping to laboratories for analysis
Audits or reviews	The results of any audits or reviews of sampling techniques and data	 Consulting firm RCI undertook verification sampling of the mineralized intervals and found the Ni, Cu and Co values to be acceptable in comparison to the original assay value.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Matters relating to tenure ownership, environmental matters, surface rights and third party agreements are outside the scope and expertise of the Resource Estimate. Data provided by EMX Royalties Inc is that tenure for the Espedalen Project area was granted 23rd February 2018 for an initial three-year period, which can be renewed for a further three years.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Project is currently owned by EMX Royalties Inc. Previous operators were Drake Resources who were issued tenure in 2012. No drilling of the project was undertaken. Prior, Blackstone Ventures Inc (TSX) in joint venture with a subsidiary of Xstrata Nickel of Canada (previously Falconbridge) explored the Espedalen Project and discovered the Dalen and Stormyra prospects in 2004/5 using airborne EM and magnetics, ground UTEM follow up surveying and then diamond drilling. Reddick Consulting Inc (RCI), an independent geological consultant performed a resource estimation to 43-101 standards on the project which was released in 2009.

Criteria	JORC Code explanation	Commentary
		 Nickel mining in the area was intermittently active during the period 1848 to 1918 with approximately 100,000T of nickel ore produced @ 1.0% Ni, 0.4% Cu and 0.6% Co. Records of work prior to 1960 are incomplete. Regional exploration from 1960 to 1980 has included geophysics, mapping and the drilling of 44 diamond drillholes on showings in areas located elsewhere on the property that are not in the immediate vicinity of the Stormyra and Dalen deposits. In the period from 2003 to 2008 Falconbridge, Sulfidmalm and Blackstone completed 1,398 km of airborne geophysics, 229km of ground geophysics and 167 diamond drillholes on the entire Espedalen property. There have been 54 diamond drillholes on the Stormyra deposit totalling 8,609m and 33 diamond drillholes on the Dalen deposit totalling 5,018m.
Geology	Deposit type, geological setting and style of mineralisation.	 The Stormyra, Dalen nickel sulphide deposits are magmatic sulphide accumulations with tectonic, structural, and geological similarities to well documented Ni-Cu mines. Comparison of the regional geological setting and nickel sulphide mineralisation occurrence between Norway and Voisey's Bay in Labrador indicates analogies which have not previously been investigated by exploration in Norway. A reconstruction of the tectonic palaeoplate position shows that, at the time of the Voisey's Bay intrusion, south Norway and Labrador were in relative close proximity and were undergoing similar tectonic development. Comparison of the suite of mafic rock types which host the mineralisation in Norway with Voisey's Bay show various similarities, such as the presence of troctolites (as in the Ertelien area) and association with anorthosite complexes (as at Espedalen), both of which were previously unrecognised as nickel sulphide targets. The Espedalen area is underlain by metamorphosed syenites, norites, anorthosites, gabbros, pyroxenites and peridotites ranging in age from 1698-1250 Ma. These rocks in the Espedalen area are considered to be part of a nappe emplaced in its current position during the Caledonide Orogeny c. 400 Ma ago. Economic concentrations of nickel are associated with magmatic sulphide accumulations and weathered products of mafic-ultramafic rocks as lateritic nickel ores. The Stormyra nickel sulphide deposit is all magmatic sulphide accumulations with tectonic, structural, and geological similarities to documented, large Ni-Cu deposits. Nickel

Criteria	JORC Code explanation	Commentary
		 and copper are economic commodities contained in sulphide-rich ores that are associated with differentiated mafic sills and stocks and ultramafic volcanic (komatiitic) flows and sills. The nickel-copper mineralised zones are found in a wide variety of host rocks including gabbro, norite, pyroxenite and peridotite which commonly have a significantly greater extent. Mineralisation (pyrrhotite, pentlandite, and chalcopyrite ± pyrite) is found as massive to net textured and disseminated sulphide zones. The mineralisation in the Stormyra deposit occurs in a suite of ultramafic rocks and in a more disseminated manner than the other deposits. It may be that Ni mineralisation in Stormyra is similar to Ni deposit such as Mt. Keith in Australia, which is classified as a type IIb Ni deposit in the classification of Lesher and Keays, 2002. At Mt. Keith Fe-Ni-(Cu) sulphides occur interstitial to former olivine grains with an average abundance of 3 to 5 volume percent
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Table A details all drill intersections used to inform the Mineral Resource Estimate. These intersections have been composited on length weighted basis, diluted for missing sample intervals.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No top cuts have been applied to Table A, and the composite grades are simple length weighted averages.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 It appears that the true width of the mineralized zone is on average 80% of the core lengths
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	9' 20'E 10' 40'E 10' 40'E 10' 40'E 61' 40'N Espedalen Project 0' 40'E 0' 40'E 10' 10'E 10' 40'E 0' 40'E 0' 40'E 10' 10'E 10' 10'E 0' 10'E 0' 10'E 10' 10'E 10'E 0' 10'E 0'E 0'E 10' 10'E 10'E 0'E 0'E 0'E 0'E 10' 10'E 10'E 10'E 0'E 0'E 0'E 10' 10'E 10'E 10'E 10'E 10'E 0'E 10'E 10'E 10'E 10'E 10'E 10'E

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All informing sample intervals are reported in Table A.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 There has been no metallurgical testing of the mineralisation for the properties covered in this report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 A detailed review of geology and mineralisation is required to identify and prioritise areas of potential resource extension drilling at Stormyra.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	• The database used in the estimation was taken from RCI project, which undertook extensive checking of database entries against the original assay reports. The significant intercepts from this estimate were visually checked against the original lab reports to validate the data entry.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	• John Reddick and Tracey Armstrong undertook a two-day site visit for the 2009 mineral resource estimate for which they acted as "qualified person" under Canadian reporting standards. During their visit independent sampling of core was performed to verify the assay results obtained by the exploration operators. Since this mineral resource estimate is based on the same data set and geological assumptions, no site visit could be justified.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. 	• The MRE is based on assayed values within an ultramafic suite, with a minimum of 2m down hole width. Original lithological logging appears to be of a high quality, with supporting geological surface mapping opportunities abundant in the area. Within a context of the drill spacing the geological model would be considered good, with

Criteria	JORC Code explanation	Commentary
	 The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 limited feasible alternative geometric interpretations available. Continuity was projected down dip or along strike to sub-mineralised intersections to provide gradational boundaries to the mineralisation. However, due to the drill hole spacing on the eastern portion of domain 1 the solids were extended to a maximum of 50m in either dip direction which is less than half the distance to the next drill intersection. The lithological units were found to have a natural domain cut-off of about \$100/t GMV during exploratory data analysis. Grade continuity is good with a moderate nugget factor of about 30%. Assessment of continuity of the resource was curtailed by the artifact of incomplete sampling, which has been assigned a zero elemental concentration for the purposes of this estimate.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The project has strike of about 1150m, dip extent of about 400m slope distance, and vertical extent of 275m, extending from near surface to 230m below surface.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if 	 The MRE was performed using Surpac software v 6.4.1, on a block model methodology using ordinary kriging on a rotated model in -60 azimuth and -45 dip 20mY x 20mX x 2.5mY blocks with no subblocking, with drill spacing ranging from 25m x 50m to 100m x 150m. Interpolation parameters are tabled in Table B, with maximum search distance 80m for all elements, based on variogram analysis. Each element (Ni%, Cu%, Co%) was estimated independently into one of four 3D wireframe model of the mineralized domains. Composites were generated on a 1m downhole, best-fit basis, consequently there are no residuals. Intervals in which no sample data is available were composited as a zero value. This is based on the likelihood that visual control on mineralisation is possible, and hence unsampled intervals are therefore poorly mineralized. Variographic analysis of each element was undertaken on the main domains only due to the low sample count, with these results assumed for smaller domains in which variography is prevented by low sample population. No assumptions were made in regard to elemental correlation during the estimation process. The estimate is reported to a gross metal value (GMV), the parameters are given in Table C, and in which no recovery assumptions are made. No deleterious elements were considered in

Criteria	JORC Code explanation	Commentary
	available.	 the estimate or its reporting. Top cuts were applied to some domains and some elements, as seen fit to restrict the influence of high grades outside the domain populations as identified by various statistical means. Most domains did not require top cutting. Full details are given in Table D. Reconciliation of the estimate was via visual checks on estimated grade to the informing composites, with average composite grade to blockmodel grade reconciled in 100m wide easting bins, and on a domain by domain basis. The final block model was peer reviewed by an independent geologist to check for gross errors in estimation. No previous mining data is available to reconcile against.
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The model is estimated using dry specific gravity values.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 The GMV value of USD\$100/t was used based on a selective underground mining scenario. The GMV details are provided in Table C.
Mining factors or assumptions	• Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 The project is interpreted as a likely selective mining scenario. The mostly narrow true widths and moderate dip are amenable for such operations.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	 No metallurgical work has been undertaken to date, and no assumptions made regarding processing methodologies.
Environmen- tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of 	 No assumptions have been made. As this is a very early stage project an environmental policy for the project has not been drafted.

Criteria	JORC Code explanation	Commentary
	potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Most of the rock mass is fresh, unbroken rock. Bulk density is based on twelve samples taken by RCI for both bulk density measurement, these bulk density measurements were reconciled against pycnometer readings. No details are available of methodologies for bulk density determination.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The mineral resource above USD\$100/t GMV has been classified as Inferred due to the wide spaced drilling, uncertainty in bulk density determinations, and the incomplete sampling of available drill core. The Mineral Resource estimate appropriately reflects the view of the Competent Person.
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	 This MRE follows a maiden MRE published in 2009 by Blackstone Resources, and to which this MRE reconciles against when the different modeling assumptions are considered. The previous MRE is displayed in Table E. This MRE was peer reviewed in which the estimation process was validated.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local 	 The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource as per the guidelines of the 2012 JORC Code. This MRE was undertaken using ordinary kriging which not a probabilistic method, hence no quantitative confidence can be given. The Inferred category reflects the good grade continuity within a context of the current drill spacing and incomplete sampling, and low sample count of density measurements. This Inferred Resource is confined within drill hole intersections in the strike and down-dip directions, and as such the Resource is wholly

Criteria	JORC Code explanation	Commentary
	 estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 interpolated rather than extrapolated beyond the limits of drilling. This MRE is a global resource estimate. No production data is available to reconcile this estimate with.

	-80	230	218.91	957	535,917	6,800,850	0.024	0.32	0.76	2.35	56.35	54.00	ES2006-55	1
unsampled interval	-51	230	247.9	954	535,258	6,801,341		1	,	2.00	129.59	127.59	ES2006-54	2
unsampled interval	-51	230	247.9	954	535,258	6,801,341	- 0.010			2.37	152.52	150.15	ES2006-54	1
	- 70	230	271.2	961 076	535,917	6,800,958	0.059	0.38	1.46	4.57 2.06	2000 21	306.35	ES2006-52	4
	-65	230	249	962	535,572	6,801,083	0.013	0.06	0.15	7.34	105.39	98.05	ES2006-51	1
	-04.3 -64.3	229.8	120 128	968 906	535,233	6,801,254	0.010	0.06	0.29	3.00	67.60	64.60	ES2005-33	т Т
	-64.3	229.8	128	968	535,233	6,801,254	0.023	0.15	0.51	3.15	89.35	86.20	ES2005-33	- 1
	-62.08	229.5	155.3	965	535,454	6,801,179	0.021	0.19	0.60	3.26	124.51	121.25	ES2005-32	1
	-59.6	229.4	131.53	696	535.422	6.801.152	0.023	0.36	0.59	3.21	43.37 95.91	92.70	ES2005-31	1
	-65.01	229.95	88.2 00 0	960	535,879	6,800,882	0.018	0.08	0.16	2.20	58.70	56.50	ES2005-29	
	- 70.09	231.79	105.8	961	535,783	6,800,933	0.023	0.37	0.63	3.38	74.83	71.45	ES2005-28	1
	- 71.43	222.21	134	961	535,703	6,800,996	0.025	0.42	0.71	5.09	98.24	93.15	ES2005-27	1
	- 70. 15	220.8 217.6	131.5	961	535.620	6.801.057	0.021	0.33	0.42	4.13 4.61	105.29	100.68	ES2005-25	1
	-59.9	229.8	134.55	067 760	535,438	6,801,166	0.045	0.42	1.18	8.91 1 1 5	113.67	104.76	ES2005-24	
	-47.23	232.7	61.3	066	535,023	6,801,339	0.018	0.19	0.46	3.00	28.52	25.52	ES2005-23	1
	-43.8	233.5	77.75	983	535,113	6,801,285	0.083	1.27	2.68	7.15	36.50	29.35	ES2005-22	1
disampied interval	-46	230	86 oc	696	535,221	6,801,243	0.027	0.26	0.52	2.45	54.10	51.65	ES2005-21	2
	-46	230	86	020 696	535,221	6,801,243	0.045	0.63	1.09	5.85	63.45	57.60	ES2005-21	د
unsampled interval	-64.99	238.15	132.4	969	535,221	6,801,244		•		2.00	57.40	55.40	ES2005-20	2
	-64.99	238.15	132.4	969	535,221	6,801,244	0.093	0.78	2.71	2.86	85.06	82.20	ES2005-20	1
	-64.99	238.15	132.4	969	535,221	6,801,244	0.071	0.95	2.39	12.18	76.18	64.00	ES2005-20	1
unsampled interval	-80.23	247.69	172.32	974	535,292	6,801,174	U.U33	-	- ct 'T	1 76	59.27	57 50 57 50	FS2005-19	с т
unsampled interval	-81	230	171	720	535,336	6,801,210	-		· ·	2.00	94.39	92.39	ES2005-18	2
unsampled interval	-81	230	171	967	535,336	6,801,210		•		2.00	121.28	119.28	ES2005-18	1
	-76.5	220.4	139.2	969	535,309	6,801,193	0.010	0.08	0.27	2.35	74.85	72.50	ES2004-09	2
	-76.5	220.4	139.2	696	535,309	6,801,193	0.064	0.79	1.74	14.60	95.00	80.40	ES2004-09	1
insampled interval	-43	238.4	85.3	978	535,129	6 801 300	U.U68	1.05	1.81	3.20 1 18	59.50 45.77	56.30 44 59	FS2004-08	c T
unsampled interval	-61.3	229.1	147.91	982	535,064	6,801,375				2.00	96.00	94.00	ES07-59	1
	-53	226.6	125.31	986	535,036	6,801,352	0.029	0.22	0.82	4.40	51.50	47.10	ES07-58	1
unsampled interval	-55.8	235.8	170.2	967	535,178	6,801,333		•	•	1.46	106.92	105.46	ES07-57	2
unsampled interval	-22.0	235.2	170 2	967	535,178	6 801 333	- -		- - -	2.20	135 42	132 64	FSU1-20	1
	-51.5	236.5	152	075 075	535,141	6,801,310	0.020	0.18	0.48	2.00	87.00	63 ED	ES07-56	د د
	-60	230	250.01	960	535,508	6,801,203	0.012	0.00	0.08	2.40	179.55	177.15	ES07-129	1
	-65	230	124.61	975	535,381	6,801,127	0.044	0.58	1.19	2.40	66.80	64.40	ES07-128	1
unsampled interval	-60	230	188.81	953	535,447	6,801,229		1		2.00	144.74	142.74	ES07-127	1
	- 79	230	147.01	968	535,374	6,801,174	0.047	0.56	1.07	6.30	105.50	99.20	ES07-126	1
	- 76	230	151.71	977	535.338	6.801.147	0.038	0.61	1.20	2.47	66.05	63.58	ES07-124	2
unsampled interval	-80	230	181.51	968	535,370	6,801,240			- 10	2.00	156.79	154.79	ES07-124	ר נ
	- 75	230	121.45	978	535,278	6,801,162	0.025	0.27	0.64	2.00	53.60	51.60	ES07-123	1
	- 70	230	121.91	966	535,284	6,801,232	0.022	0.21	0.54	2.53	66.67	64.14	ES07-122	2
	- 70	230	121.91	996	535.284	6.801.232	0.017	0.37	0.41	7.50	94.67	87.17	ES07-122	1
	- /3	230	120.71	971 971	535,260	6,801,211 6 801 211	0.020	0.19	0.45	2.03	58 80	57.03	ES07-121 FS07-121	2 1
	-50	230	140.26	971	535,260	6,801,211	0.003	0.13	0.03	1.83	50.63	48.80	ES07-120	2
	-50	230	140.26	971	535,260	6,801,211	0.086	0.98	2.57	2.32	56.54	54.22	ES07-120	1
	-50	230	91.77	979	535,240	6,801,195	0.009	0.08	0.16	2.31	46.91	44.60	ES07-119	1
unsampled interval	-65 C0-	230	148.01 148.01	961 196	535.254	6.801.272		-	-	2.08 1.91	103.05 84.02	82.11	ES07-118	2 T
unsampled interval	-50	230	109.39	979	535,197	6,801,219				1.55	31.81	30.26	ES07-117	4 2
unsampled interval	-50	230	109.39	979	535,197	6,801,219	-			4.03	40.81	36.78	ES07-117	1
unsampled interval	-50	230	139.22	974	535,178	6,801,274				2.68	63.30	60.62	ES07-116	2
unsampled interval	-50	230	139.22	974	535,178	6,801,274	-			3.20	68.60	65.40	ES07-116	1
	-50	230	107.67	9/4	535,178	6,801,2/4	0.026	0.56	0.61	3.20	63 30	60.63	ES07-115	c I
unsampled interval	-50	230	86.83	981	535,150	6,801,250	-) 1	2	2.00	30.09	28.09	ES07-114	2
	-50	230	86.83	981	535,150	6,801,250	0.017	0.19	0.51	2.29	34.11	31.82	ES07-114	1
	-60	230	81.1	866 000	535,075	6,801,328	0.009	0.31	0.44	2.31	45.40	43.09	ES07-113	2
unsampled interval	- 80	230	33.21 81 1	800 066	535,000	6 801 378	- 1	- 1 18	אצ ג י	3.40 2 29	50.02 60.64	20.00 58.05	ESU7-112	1
	-50	230	65.67	006	535,066	6,801,311	0.010	0.06	0.15	2.01	28.82	26.81	ES07-111	ם נ
	-50	230	77.83	991	534,978	6,801,370	0.018	0.15	0.47	2.31	36.08	33.77	ES07-110	1
	degrees	degrees	(m)	(m)	(m)	(m)	(%)	(%)	(%)	(m)	(m)	(m)		
comment	dip	azi	depth	z	×	Y	Co	Cu	Ni	Int	to	from	hole_id	domair

Table A: Drill hole intersections used in the mineral resource estimate at Stormyra prospect.

Table B: Interpolation parameters used for Stormyra Mineral Resource Calculation

					variogra	m model			model			Direction		ra	tio 1		Sample No)
element	domain	Ref #	log varian	nugget	sill1	sill 2	total	range 1	range 2	max range	plunge	strike	dip	maj-sm	maj-minor	Min	Max	Max / DH
Ni	1-4	1	1.22	0.30	0.70		1.00	80		80	-7	113	47	1.3	2.3	2	24	
Cu	1-4	2	1.22	0.37	0.63		1.00	85		80	-10	110	45	2.1	3	2	24	
Со	1-4	3	1.22	0.26	0.74		1.00	80		80	-9	111	45	2.1	3	2	24	

Table C: Gross metal value calculation

	Ni	Cu	Со
USD\$/lb	7.71	2.2	7.71
USD\$/t	16,993	4,849	16,993

Given by equation: ((Ni%*16993)+(Cu%*4849)+(Co%*16993))/100

		Undiluted	Composites			-	Diluted (Composite	S			Block Mo	odel
Domain	Variable	Number of samples	Mean	Number of samples	Minimum value	Maximum value	Mean	Median	Standard Deviation	Coefficient of variation	Skewness	tonnes	ave %
1	со	147	0.039	167	-	0.210	0.034	0.019	0.04	1.21	2.10	1,501,200	0.029
2	со	23	0.018	44	-	0.071	0.009	0.002	0.02	1.63	2.13	190,800	0.009
3	со	6	0.052	8	-	0.200	0.039	0.010	0.06	1.62	2.03	21,600	0.032
4	со	5	0.059	5	0.03	0.110	0.059	0.049	0.03	0.50	0.78	46,800	0.063
1	cu	147	0.50	167	-	2.60	0.44	0.18	0.55	1.27	1.70	1,461,600	0.36
2	cu	23	0.18	44	-	0.59	0.09	0.01	0.16	1.65	1.92	190,800	0.09
3	cu	6	0.41	8	-	1.87	0.31	0.06	0.60	1.94	2.12	21,600	0.26
4	cu	5	0.38	5	0.21	0.81	0.38	0.29	0.22	0.59	1.40	46,800	0.39
1	ni	147	1.08	167	-	7.75	0.95	0.39	1.40	1.47	2.53	1,810,800	0.68
2	ni	23	0.41	44	-	1.67	0.21	0.00	0.38	1.79	2.15	216,000	0.18
3	ni	6	1.38	8	-	6.72	1.03	0.06	2.18	2.11	2.14	21,600	0.62
4	ni	5	1.46	5	0.55	3.94	1.46	0.98	1.25	0.86	1.43	57,600	1.56

Table D: Average composite values and top cuts applied reconciled against interpolated block model averages (no lower cut applied to block model).

Table E: 2009 MRE, Stormyra Prospect Mineral Resource

	Tonnes	Ni	Cu	Со
	Mt	%	%	%
Inferred	1.0	1.09	0.48	0.04

TADIE F. Stormyra Frospect Drill Flore Intersections (1/0)	Table	F: Storm	ra Prospec	t Drill Hole	Intersections	(1/6)
--	-------	----------	------------	--------------	---------------	-------

507-115 507-115 507-115 507-115 507-115 507-115 507-115 507-115 507-115 507-115 507-115 507-117 507-117 507-117 507-117 507-117 507-117 507-117 507-117 507-118 507-118 507-118 507-118 507-118 507-118 507-118 507-118	6507-114 6507-114 6507-114 6507-114 6507-115 6507-115 6507-115 6507-115 6507-115 6507-115 6507-115 6507-115 6507-115 6507-115 6507-115 6507-115 6507-115	507-113 507-113 507-113 507-113 507-113 507-113 507-113 507-113 507-113 507-113 507-113 507-114 507-114 507-114 507-114 507-114 507-114	507-113 507-113	HOLE ID ESOT-110 ESOT-110 ESOT-110 ESOT-110 ESOT-110 ESOT-110 ESOT-110 ESOT-110 ESOT-110 ESOT-110 ESOT-110 ESOT-111 ESOT-113 ESOT-11
63.8 66.7 66.7 66.7 67.2 67.2 68.3 68.3 68.4 68.6 68.6 68.6 68.6 68.6 69.63 69.63 59.64 59.65 59.65 59.65 59.65 59.65 59.65 59.65 59.65 59.65 59.65 59.65 59	33.62 34.11 35.06 36 36 36 36 36 58.94 60.04 60.04 60.62 61 61 61 62 63 63 63 63 63	63.05 64.01 64.89 65.39 65.29 65.21 67.21 67.21 67.21 67.21 67.21 67.21 67.21 67.21 69.31 69.31 69.31 69.31 69.31 17.05 17.05 17.05 17.55	44,778 448,51 448,51 448,51 449,51 51,53 52,233 52,75 57,75 58,6 58,65 58,65 58,95 59,77 60,24 60,24 60,64 61,14	FROM (m) 28.8 29.5 30.05 30.05 30.05 30.05 31.77 34.74 35.57
64.6 66.2 66.2 66.2 66.3 66.3 66.3 66.3 66	34,11 35,06 37 15 16 17 60,04 60,04 61,5 61,5 62,3 62,3 63,3 63,8	64.01 64.89 65.69 65.69 65.69 66.22 67.91 67.91 67.91 67.91 67.91 67.91 67.91 67.93 69.11 67.93 69.11 67.93 69.11 67.93 770.33 17.55 18.50 9 32.82 33.33 33.62	44,7,0 48,21 48,21 49,5 50,53 52,23 52,23 52,23 52,23 52,23 52,23 52,23 53,83 54,83 54,83 55,53 55,83 55,555 55,83 55,555 55,83 55,555 55,8355 55,5555 55,835555555555	Tofm 228.26 29.26 30.05 31.05
0.8 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.98 0.5 1 0.98 1.0 0.98 1.0 0.98 1.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.49 0.95 0.94 1 1 1 1 1 1 1 1 0.5 0.38 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.56 0.88 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.43 0.43 0.3 0.43 0.43 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.	Interval (m) 0.46 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
PG05581 PG05583 PG05583 PG05588 PG05586 PG05586 PG05586 PG05588 PG05588 PG05589 PG05591 PG05593 PG05593 PG05593 PG05593 PG05593 PG05593 PG05593 PG05593 PG05593 PG05593 PG05593 PG05593 PG05593 PG05593 PG05593	PG05564 PG05565 PG05567 PG05567 PG05568 PG05570 PG05570 PG05571 PG05573 PG05575 PG05575 PG05575 PG05576 PG05577 PG05577 PG05577 PG05577 PG05577	PG05545 PG05546 PG05548 PG05548 PG05549 PG05554 PG05554 PG05555 PG05555 PG05555 PG05558 PG05558 PG05558 PG05561 PG05561 PG05561	PG05525 PG05527 PG05527 PG05527 PG05523 PG05523 PG05531 PG05533 PG05534 PG05534 PG05534 PG05534 PG05534 PG05541 PG05543 PG05543 PG05543	Sample Number PG05502 PG05503 PG05503 PG05505 PG05506 PG05506 PG05506 PG05506 PG05516 PG05511 PG05511 PG05511 PG05515 PG05515 PG05515 PG05515 PG05515 PG05515 PG05515 PG05515 PG05515 PG05515 PG05515 PG05515 PG05515 PG05515 PG05522 PG05522 PG05522
0.0556 0.2124 0.214 0.567 0.567 0.567 0.0048 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.0	0.026 0.002 0.0050	0.002 0.006 0.044 0.209 0.007 0.007 0.036 0.007 0.036 0.005 0.005 0.006 1.006 1.006 0.005 0.005 0.005 0.005 0.005 0.002 0.002 0.002 0.002 0.002 0.002	0,008 0,008 0,008 0,005 0,031 0,031 0,031 0,031 0,031 0,031 0,011 0,011 0,011 0,011 0,011 0,011 0,011 0,013 0,013 0,015 0,0000000000	Nr (6) 0.009 0.001 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.008 0.008 0.008 0.008 0.008 0.008 0.015 0.025
0.061 0.053 0.158 0.158 0.263 0.203 0.203 0.203 0.112 0.203 0.002 0.003	0.025 0.011 0.014 0.014 0.01 0.009 0.009 0.009 0.009 0.009 0.009 0.021 0.021 0.032 0.032 0.684 0.684 0.681 0.681 0.681 0.684 0.684	0.008 0.007 0.037 0.148 0.042 0.008 0.042 0.002 0.299 0.299 0.299 0.011 0.01 0.01 0.01 0.01 0.01 0.01 0	0.002 0.003 0.003 0.003 0.007 0.151 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.002 0.003	Cu (54) 0.025 0.035 0.035 0.039 0.039 0.059 0.057 0.057 0.0170000000000
0.004 0.021 0.013 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.012 0.003	0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.042 0.042 0.042 0.042 0.042 0.042 0.042	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.001 0.001 0.001 0.001 0.001 0.005	0.004 0.007 0.007 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.0050	Co (%) 0.004 0.003 0.003 0.005
0.002 0.002 0.00100000000	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.001 0.001	0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	0.001 0.001 0.001 0.006 0.006 0.000 0.000 0.000 0.000 0.0001 0.00100000000	0.001 0.001 0.007 0.007 0.007 0.00100000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
0.0012 0.00222 0.00222 0.00222 0.00222 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.00200000000	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0011 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025	0.0025 0.00025 0.0005 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025	PF(g/t) 0.003
0.001 0.00100000000	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001 0.001 0.001 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	Pd(g(t) 0.001 0.00

507-123 507-123 507-123 507-123 507-123 507-123 507-123 507-123 507-123 507-123 507-124 507-124 507-124 507-124 507-124 507-124 507-124 507-124 507-124 507-125 507-125 507-125 507-125 507-125 507-125 507-125 507-125 507-125	ES07 422 ES07 423 ES07 423 ES07 423 ES07 423 ES07 423 ES07 423	E907 421 E907 422 E907 422 E907 422 E907 422 E907 422 E907 422	0.007-120 0.007-120	HOLE D HOLE D SOLVALIA SOLVALI
52.5 52.5 53 53 53 53 53 53 53 53 53 53 53 53 53	87,17 87,96 87,96 88,87 90,88 90,88 90,88 90,88 90,88 90,88 90,63 90,63 90,63 91,37 92,31 92,31 92,31 92,31 92,31 93,51 94,67 94,67 94,67 94,67 94,67 94,67 94,67 94,67 94,67 94,67 94,67 94,67 94,67 95,16 94,67 95,16 94,67 95,16 94,67 95,16 94,67 95,16 94,67 95,16 94,67 95,16 94,67 95,16 94,17 95,16 94,17 95,16 94,17 95,16 94,17 95,16 94,17 95,16 94,17 95,17 95,17 94,17 95,17 94,17 95,175	62203 62233 62281 6281 6281 6241 6473 6541 654 654 654 654 644 655 65465 65465 65465 65465 65465 65465 65465 65465 65465 65465 65465 65465 65465 65465 65465 65465 65475 65575 65575 65575 6557575 65575757575	52.271 53.271 54.22 54.53 54.53 54.53 55.42 55.42 55.42 55.42 55.64 56.64 57.04 57.04 57.04 57.04 57.04 57.04 58.5 58.5 58.5 58.5 58.5 58.5 58.5 58.	942.87 (m) 992.87 (m) 993.45 100.46 100.97 101.27 101.27 101.27 102.24 103.05 43.6 43.6 43.6 43.6 43.6 43.6 43.6 43.6
52.2 52.2 53.3 53.3 54.11 55.1 54.11 55.1 55.6 55.6 55.6 55.6 55.6 64 64 64 64 64 65.5 65.5	87,48 87,48 87,48 89,47 90,38 90,38 90,37 91,73 91,73 91,73 91,73 91,73 91,73 92,6 92,5 92,5 92,6 92,5 94,41 93,5 94,41 94,41 94,45 94,65 95,16 96,16 96,16 96,16 96,16 96,16 96,17 94,45 96,17 94,45 96,17 94,45 96,17 94,45 96,17 94,45 96,17 92,5 92,5 92,5 92,5 92,5 92,5 92,5 92,5	62.33 62.81 62.81 64.05 64.05 65.41 65.41 65.41 66.9 66.9 66.9 66.9 66.4 67.89 64.14 65.18 65.18 65.18 65.518 65.518 65.518 65.518	53.71 54.22 54.83 54.83 54.83 55.42 55.42 55.72 55.72 55.72 55.72 55.72 55.72 55.72 55.654 57.04 58.04 58.04 58.04 58.04 58.55 58.55 58.55 58.55 59.35 59.35 50.33 50.33 50.33 50.33 50.33 50.33 50.33 50.33 50.35 50.55 50 50 50.55	93.37 93.37 100.46 100.27 101.27 101.57 102.54 102.54 102.54 102.54 102.54 102.54 103.05 104.05 104.05 104.05 104.05 104.05 104.05 104.05 104.05 105.14 105.14 105.14 105.14 105.14 105.15 105.
0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.51 0.95 0.96 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.3 0.48 0.948 0.948 0.67 0.69 0.69 0.69 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1 0.51 0.31 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	101 0.5 0.5 0.5 0.3 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
PG05591 PG05593 PG05593 PG05594 PG05594 PG05595 PG05595 PG05595 PG055703 PG05703 PG05703 PG05703 PG05704 PG05704 PG05705 PG05704 PG05701 PG05711 PG05713	PG05570 PG05571 PG05573 PG05573 PG05575 PG05575 PG05575 PG05575 PG05575 PG05588 PG05588 PG05588 PG05588 PG05588 PG05588 PG05588 PG05588 PG05588 PG05588	PG03565 PG03565 PG03565 PG03565 PG03565 PG03565 PG03565 PG03566 PG03566 PG03566 PG03566 PG03566 PG03566 PG03566 PG03566 PG03566 PG03566 PG03566 PG03566	PG05633 PG05633 PG05635 PG05635 PG05637 PG05638 PG05641 PG05641 PG05644 PG05644 PG05644 PG05644 PG05645 PG05645 PG05645 PG05645 PG05645 PG05645 PG05645 PG05645 PG05645 PG05645	Pc03505 Pc03505 Pc03505 Pc035067 Pc035607 Pc035610 Pc035611 Pc035612 Pc035613 Pc035621 Pc035623 Pc035623 Pc035623 Pc035623 Pc035623 Pc035623 Pc035623
0.884 0.551 0.551 0.095 0.095 0.014 0.015 0.014 0.016 0.0000000000	3,746 0,007 0,007 0,480 0,4900	0.595 0.174 0.027 0.027 0.113 0.113 0.113 0.016 0.05 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.005 0.005 0.005 0.0174 0.0156 0.0174 0.0156 0.0174 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0157 0.0056 0.0157 0.0056 0.0057 0.0056 0.00570000000000	0.004 0.004 1.739 1.879 4.387 4.387 4.387 4.387 4.387 4.52 2.759 0.011 0.001 0.005 0.055 0.055 0.005 0.025 0.027	W(%) 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.025 0
0.349 0.367 0.307 0.146 0.146 0.008 0.002 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0002 0.0002 0.0002 0.0002 0.0000 0.0020	0.98 0.012 0.012 0.002 0.028 0.028 0.028 0.028 0.012 0.011 0.011 0.011 0.011 0.011 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.055 0.012 0.0100 0.0120000000000	0.15 0.075 0.021 0.025 0.107 0.107 0.006 0.027 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.002 0.002 0.002 0.002 0.005 0.005 0.005	0.002 0.002 1.328 1.279 1.188 1.279 1.188 1.277 1.277 1.277 1.377 0.015 0.015 0.015 0.015 0.015 0.015 0.005 0.002 0.002 0.002	Curies 0.0246 0.221 0.221 0.028 0.028 0.028 0.028 0.023 0.023 0.025 0.055 0.05
0.03 0.027 0.05 0.05 0.005 0.005 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.005 0.0	0.121 0.004 0.004 0.02 0.004 0.02 0.02 0.02 0	0.03 0.014 0.003 0.003 0.006 0.006 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.092 0.094 0.002 0.094 0.004	0.001 0.001 0.001 0.013 0.131 0.135 0.135 0.135 0.135 0.135 0.014 0.004 0.003 0.003 0.003 0.003 0.001 0.001 0.001 0.001	Co (%) 0.002 0.002 0.002 0.006 0.006 0.004 0.009 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.004 0.005 0.004 0.003 0.003 0.003 0.003 0.003 0.003
0.097 0.028 0.027 0.027 0.028 0.028 0.024 0.00100000000	0.011 0.001 0.001 0.001 0.002 0.008 0.008 0.008 0.008 0.008 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.0050	100 0 100 0 10	0.001 0.001 0.016 0.019 0.019 0.021 0.019 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	Augert 0.004 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
		ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω	w w w w w w w w w w w w w w w w w w w	
0.008 0.012 0.023 0.061 0.00100000000	0.0056 0.001 0.001 0.001 0.001 0.001 0.005 0.005 0.007 0.007 0.007 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.007 0.001 0.0001 0.0000 0.000100000000	0.001 0.002 0.002 0.001 0.003 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001 0.001 0.031 0.055 0.034 0.034 0.034 0.035 0.021 0.001 0.001 0.001 0.001 0.001 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.001	PF (60) 0.003 0.002 0.002 0.001 0.005 0.005 0.005 0.000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.014 0.012 0.013 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.013 0.023 0.023 0.023 0.023	0.059 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.003	0.002 0.001 0.001 0.005 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	Parenty 0,001 0,001 0,001 0,005 0,005 0,005 0,007 0,007 0,007 0,007 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,005 0,00

Table F: Stormyra Prospect Drill Hole Intersections (2/6)

Table F: Stormy	ra Prospect Drill Hole	Intersections ((3/6)
-----------------	------------------------	-----------------	-------

ES08-132 ES08-132 ES08-132 ES08-132 ES08-132 ES08-134 ES08-134 ES08-134 ES08-134 ES08-134 ES08-134 ES08-134 ES08-134 ES08-134 ES08-134 ES08-134	507-58 507-58 507-58 507-58 507-58 507-58 507-58 507-58 507-58 507-58 508-131 508-132 508-1208-1208-1208-1208-1208-1208-1208-1	507-55 507-57 507-57 507-57 507-58 507-59 507-50 507-50 507-50 507-50 507-50 507-50 507-50 507-50 507-50 507-50 507-50 507-50 507-50 507-50 507-50 507-50 500-50 500-50 500-500 500-500 500-500 500-500 500-500 500-500 500	ES07-129 ES07-129 ES07-129 ES07-129 ES07-129 ES07-129 ES07-129 ES07-56 ES07-56 ES07-56 ES07-56 ES07-56 ES07-56 ES07-56 ES07-56	<u>ES07-126</u> <u>ES07-126</u> <u>ES07-126</u> <u>ES07-126</u> <u>ES07-126</u> <u>ES07-128</u> <u>ES07-128</u> <u>ES07-128</u> <u>ES07-128</u> <u>ES07-128</u> <u>ES07-128</u> <u>ES07-128</u> <u>ES07-128</u> <u>ES07-128</u> <u>ES07-128</u> <u>ES07-128</u> <u>ES07-128</u> <u>ES07-128</u> <u>ES07-128</u>	HOLE ID ES07-12.6 ES07-12.
170.155 170.65 170.65 171.1 59.93 59.95 60.83 61.95 62.85 62.85 62.85 62.85 62.85 62.85 62.85 62.35	54 55.3 55.6 55.5 55.5 55.5 55.5 55.5 55.5	87 26.5 26.5 26.5 26.5 46.6 46.6 47.5 47.5 47.5 48.03 49.5 50 50.5 50.5 50.5 51.5 52	177.6 178.15 178.15 179.1 179.5 62.55 62.55 62.55 62.55 64.62 64.62 64.62 64.63 64.63 84 85 85 85 85 85 85 85 85 85 4 85	108.4 109.85 109.85 110.45 110.45 110.45 110.5 110.5 111.35 63.7 63.7 63.7 63.7 63.7 63.6 65.5 65.5 65.5 65.6 65.6 66.8 66.8 66	FROM (m) 98.7 99.2 99.5 99.5 99.85 99.85 99.85 99.85 100.15 100.7 102.6 102.6 102.6 102.6 102.6 102.8 103.7 104.3 104.3 104.3 105.5
100.6 170.65 171.1 171.6 59.95 60.83 61.95 61.95 61.95 61.95 61.95 63.85 63.85 64.52 65.85	55.3 55.6 55.5 56.5 57 98.7 99.08 99.38 99.38 100.73 102.9 102.9 103.9 100.9 1	88 265 268 275 275 275 275 268 275 275 267 288 267 275 275 275 288 288 288 288 288 288 287 287 287 287	178.15 178.6 179.1 179.5 199.55 189.2 63.5 63.5 63.5 64.9 85 65.7 64.9 85 65.7 64.9 85 85.5 85.5 85.5 85.5 85.5 85.7 85.7 8	108.85 110.45 110.45 110.75 110.75 111.35 111.35 63.7 64.4 65.5 65.5 66.4 66.4 66.4 66.4 66.4	To (m 99.7 99.2 99.5 99.5 100.17 100.7 101.7 102.8 102.8 103.7 104 104.3 103.7 104.3 105.5 105.5 107.9 107.9
0.55 0.5 0.5 0.5 0.62 0.62 0.62 0.62 0.62 0.37 0.37 0.37 0.37 0.51 0.51 0.51 0.51 0.51 0.53	$\begin{array}{c} 1.3\\ 0.3\\ 0.6\\ 0.6\\ 0.5\\ 0.5\\ 1\\ 1\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 0.3\\ 1.1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1$	1 03 03 05 05 05 043 043 043 05 04 05 04 05 04 05 05 05 05 05	0.55 0.5 0.5 0.45 0.65 0.65 0.65 0.65 0.65 0.1 1.12 0.3 0.3 0.3 0.45 0.45 0.45 0.3	0.45 1 0.6 0.5 0.7 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Interval (m) 0.6 0.3 0.3 0.3 0.3 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
PG05770 PG05771 PG05771 PG05772 PG05773 PG05775 PG05775 PG05775 PG05779 PG05778 PG05781 PG05783	PG07032 PG07033 PG07035 PG07035 PG07035 PG07035 PG07035 PG05753 PG05755 PG05755 PG05765 PG05765 PG05765 PG05765 PG05766	PG07013 PG07014 PG07014 PG07016 PG07016 PG07018 PG07018 PG07022 PG07023 PG07023 PG07025 PG07025 PG07025 PG07026 PG07028 PG07028 PG07028	PG05753 PG05755 PG05755 PG05755 PG07012 PG07001 PG07003 PG07005 PG07005 PG07005 PG07005 PG07005 PG07005 PG07005 PG07005 PG070103 PG070112	PG05735 PG05736 PG05738 PG05738 PG05741 PG05741 PG05741 PG05742 PG05744 PG05745 PG05746 PG05746 PG05746 PG05746 PG05748 PG05748 PG05751 PG05751	Sample Number PG05714 PG05715 PG05716 PG05717 PG05717 PG05721 PG05722 PG05722 PG05725 PG05725 PG05725 PG05726 PG05726 PG05726 PG05727 PG05727 PG05731 PG05731 PG05733 PG05733
0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002	0.007 0.04 2.255 0.037 0.037 0.037 0.036 0.006 0.003 0.003 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.007	0.072 0.013 0.013 0.001 0.001 0.001 0.005 0.005 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178 0.0132 0.053 0.053	0.086 0.087 0.087 0.074 0.074 0.074 0.075 0.007 0.007 0.007 0.007 0.015 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.014 0.001 0.001 0.001 0.001 0.007 0.007 0.001 0.007 0.011 0.007 0.011 0.007 0.011 0.007 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.017 0.0000000000	0745 0014 0008 0008 0008 0001 0001 0001 1286 0099 0992 0992 0992 0992 0992 0992 099	Ni (%) 0.003 0.343 0.343 0.343 0.343 0.042 0.042 0.042 0.039 2.674 0.156 0.351 0.056 0.056 0.056 0.056 0.056 0.058 0.005 0.005 0.005 0.058 0.005 0.003 0.042 0.042 0.042 0.042 0.042 0.043 0.042 0.042 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.042 0.043 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.043 0.042 0.042 0.042 0.045 0.042 0.045 0.055 0.045 0.055
0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.008 0.008 0.008 0.008 0.001 0.01 0.034 0.034 0.034 0.002 0.002	0.014 0.056 0.508 0.071 0.027 0.002 0.002 0.002 0.002 0.002 0.002 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.12 0.002 0.002 0.002 0.002 0.261 0.261 0.261 0.261 0.261 0.261 0.261 0.261 0.261 0.261 0.261 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	0.002 0.006 0.006 0.006 0.002 0.002 0.002 0.002 0.006 0.0002 0.0015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.023 0.015	0.322 0.0019 0.0019 1.665 1.665 0.002 0.002 0.002 0.002 0.454 0.932 0.454 0.932 0.454 0.932 0.454 0.932 0.454 0.932 0.454 0.932	Cur(%) 0.002 0.022 0.264 1.144 0.144 0.144 0.367 0.367 0.367 0.367 0.367 0.369 0.059 0.059 0.041 0.041 0.041 0.041 0.041 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.052
0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.004 0.005 0.005 0.004 0.005 0.004	0.005 0.003 0.108 0.005 0.001 0.001 0.001 0.001 0.001 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.005 0.003 0.005 0.001 0.001 0.004 0.184 0.004 0.184 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.005	0.013 0.012 0.012 0.011 0.003	0.031 0.002 0.002 0.035 0.035 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.052	G. (%) 0.001 0.016 0.016 0.016 0.013 0.013 0.013 0.013 0.013 0.0143 0.0143 0.0143 0.0143 0.0143 0.0143 0.0143 0.0143 0.0143 0.0143 0.0143 0.015 0.012 0.0150
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001 0.012 0.012 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.022 0.022 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.003 0.001 0.001 0.001 0.004 0.004 0.004 0.001 0.001 0.001 0.001 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.008	0.017 0.012 0.001 0.001 0.001 0.001 0.001 0.001 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.011 0.011 0.011 0.011 0.011	Au (g/t) 0.003 0.004 0.004 0.004 0.004 0.005 0.0
ω ω ω ω ω ω ω ω ω ω ω ω ω			ω ω ω ω ω ω ω ω ω ω ω ω ω ω ω		Ag (g/t)
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001 0.001 0.043 0.003 0.003 0.003 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001 0.001 0.001 0.001 0.003 0.003 0.003 0.001 0.001 0.013 0.045 0.045 0.045 0.045 0.045 0.045	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	1000 1000 1000 1000 1000 1000 1000 100	Pt (g/t) 0.001 0.003 0.008 0.008 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
100 0 100 0	0.001 0.031 0.031 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001 0.001 0.001 0.001 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.001 0.00100000000	Pd(g/t) 0.001 0.001 0.003 0.013 0.005 0.004 0.004 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002

			2512 2522 2522 2522 2522 2522 2522 2522
$\begin{array}{c} 0.05 & 20\\ 0.05 & 20\\ 0.05 & 20\\ 0.05 & 20\\ 0.05 & 20\\ 0.05 & 20\\ 0.05 & 20\\ 0.05 & 20\\ 0.05 & 20\\ 0.05 & 20\\ 0.05 & 20\\ 0.05 & 21\\ 0.05$	004-09 004-09 005-19 005-19 005-19 005-19 005-19 005-19 005-19 005-19 005-19 005-20 0000000000	004-08 004-08 004-08 004-08 004-09 004-09 004-09 004-09 004-09 004-09 004-09 004-09 004-09 004-09 004-09 004-09 004-09 004-09 004-09 004-08	8-134 8-
$\begin{array}{c} 75.6\\ 77.618\\ 77.418\\ 77.618\\ 77.618\\ 77.84\\ 77.9\\ 81.4\\ 82.2\\ 82.2\\ 82.2\\ 82.5\\ 85.6\\ 51.65\\ 51.65\\ 51.65\\ 51.65\\ 51.65\\ 51.65\\ 51.65\\ 51.65\\ 51.65\\ 51.65\\ 51.65\\ 55.6\\ 55.$	93 94 94 94 95 95 95 95 95 95 95 95 95 95 95 95 95	57 58 59 59 59 59 59 59 59 59 59 71 55 71 55 71 55 71 55 71 55 71 55 71 55 71 55 71 55 71 55 71 55 71 55 71 55 71 55 71 55 55 71 55 55 71 55 55 71 55 55 71 55 55 71 55 55 71 55 55 71 55 55 71 75 5 71 55 71 55 71 55 71 75 5 71 55 75 75 55 71 55 75 75 75 75 75 75 75 75 75 75 75 75	FROM (m) FROM (m) 65.85 66.37 67.57 67.57 68.05 68.05 68.05 70.5 71.28 72.1 69.53 70.5 71.28 72.1 69.53 75.25
7618 789 789 812 822 8395 8395 5165 5185 52.8 52.1 60.1 62.1	93.1 94 95 95 96 66.75 66.75 66.75 68.1 71 68.5 71 95.15 95.515 95.515 95.53 66.75 66.75 66.75 66.75 66.75 66.75 66.75 66.75 66.75 70.5 70.5 72.70 75.6	58 585 595 60.4 73.5 73.5 74.85 75.6 80.4 81.4 81.4 81.4 81.4 81.4 81.4 81.4 81	To (m) 67 67 67 67 68 68 70 68 71 68 71 70 71 71 72 73 73 73 73 73 73 73 73 75 86.05 52 52 52 52 52 54 52 5
0.58 1.27 1.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	$\begin{array}{c} 1.1\\ 0.9\\ 1\\ 1\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 0.83\\ 1.4\\ 1.4\\ 1.4\\ 1.4\\ 1.4\\ 1.4\\ 1.4\\ 1.4$	1 05 05 05 05 05 05 135 135 05 05 05 05 05 05 05 0 1 1 1 1 1 1 1 1	Interval (m) 0.52 0.63 0.63 0.64 0.65 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.72 0.55 0.72 0.55 0.72 0.55
PEG03776 PEG03777 PEG03777 PEG03777 PEG03777 PEG03776 PEG03776 PEG03778 PEG03778 PEG03778 PEG03781 PEG03782 PEG03783 PEG03783 PEG03785 PEG03785 PEG03786 PEG03787 PEG03787 PEG03780 PEG03780 PEG03780 PEG03781 PEG03780 PEG03781 PEG03780 PEG03783	PG00242 PG00243 PG00245 PG00245 PG03751 PG03751 PG03753 PG03754 PG03755 PG03755 PG03755 PG03755 PG03755 PG03756 PG03756 PG03756 PG03756 PG03766 PG03767 PG03766 PG03767	PG00227 PG00228 PG00228 PG00230 PG03107 PG03107 PG03107 PG03107 PG03107 PG00231 PG00231 PG00231 PG00233 PG00234 PG00234 PG00234 PG00234 PG00240 PG00241 PG00294 PG03096	Sample Number PE05:784 PE05:785 PE05:785 PE05:785 PE05:789 PE05:791 PE05:791 PE05:791 PE05:791 PE05:793 PE05:793 PE05:793 PE05:795 PE05:795 PE05:795 PE05:795 PE05:795 PE05:795 PE05:801 PE05:801 PE05:803 PE05:80
0.23 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.12 0.12 0.11 0.11 0.11 0.12 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.14 0.025 0.14 0.03 0.025 0.00	0.035 0.56 7.22 0.06 0.24 0.25 0.22 0.02 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.14 0.22 0.035 0.15 0.22 0.035 0.035 0.035 0.035	3.32 3.32 1.65 0.41 0.13 0.025	NI(%)
0.15 0.025 0.035 0.025 0.035 0	0.025 1.67 2.23 0.12 0.05 0.12 0.05 0.12 0.05	2.01 0.69 0.02 0.025 0.0	Cu (%) 0.002
0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.21 0.21 0.01 0.01 0.01 0.01 0.01	0.12 0.05 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.01	Co (%) 0.007 0.007 0.007 0.007 0.007 0.007 0.006 0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.003 0.001 0.005 0.003
0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.05 0.06 0.06 0.01 0.01 0.01 0.01 0.01 0.01	0041 0011 0011 0011 0011 0011 0011 0011	Au (g/t) 0.00100000000
0.11100001001010101010000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ag (g/t) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.05 0.04 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01	Pt (g/t) 0.001 0.0
0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01	0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01	0.06 0.03 0.03 0.03 0.01 0.01 0.01 0.01 0.01	Pd(g/t) 0.001 0.00

Table F: Stormyra Prospect Drill Hole Intersections (4/6)

ES2005-30 ES2005-30 ES2005-30 ES2005-30 ES2005-30 ES2005-30 ES2005-31 ES2005-31 ES2005-31 ES2005-31 ES2005-31 ES2005-31 ES2005-31 ES2005-31 ES2005-32	ES2005-277 ES2005-277 ES2005-277 ES2005-277 ES2005-277 ES2005-277 ES2005-277 ES2005-277 ES2005-277 ES2005-277 ES2005-277 ES2005-278 ES2005-288	652005-24 652005-25 652005-25 652005-25 652005-25 652005-25 652005-25 652005-25 652005-25 652005-25 652005-26 652005	HOLE ID ES2005-22 ES2005-22 ES2005-22 ES2005-22 ES2005-22 ES2005-22 ES2005-22 ES2005-22 ES2005-22 ES2005-22 ES2005-22 ES2005-22 ES2005-22 ES2005-23 ES2005-23 ES2005-24 ES2005-2
4735 4785 48,7 48,7 48,7 48,7 49,7 91,7 92,7 92,7 92,7 92,7 92,7 92,9 94,030,03 94,0	425 9315 9421 9421 9524 9524 9524 9704 9704 9704 9704 9704 9704 9824 7145 7145 7145 7145 7325 7325 7354 7435 548 576 575 575	11367 59 59 1055 1055 1055 10645 1063 10835 10965 10965 10965 10965 10965 10965 10068 10068 10068 10068 10068 10059 102 10333 10434 10554	FROM (m) 63.45 63.45 27.65 27.55 27.55 27.55 27.55 27.55 31.3 34 35.02 37.5 27.27 25.52 25.7 25.7 35.3 37.5 27.27 25.25 25.7 103 104.5 105.41 105.44 110.84 111.18
47.85 48.4 48.7 49.97 51 52.45 93.15 93.15 93.15 94.03 94.03 94.03 94.03 94.03 95.51 95.51 95.51 95.51 113.25 113.25 113.25 113.25 122.28 122.28	44 94,21 94,21 95,24 96,35 97,36 98,24 99,52 98,24 99,52 71,108 71,20,	115 60.5 62.5 106.42 106.43 108.7 108.7 108.7 108.7 108.5 109.65 109.65 109.65 111.5 100.65 100.65 100.65 100.65 100.65 100.65 100.5 100.65 100.5 100.65 100.5 100	To (m 63.45 2.85 2.9.35 3.2.3 3.2.3 3.2.3 3.2.3 3.3 3.1.3 3.2.3 3.3 3.2.3 3.3 3.3 3.5.0 3.3 3.5.0 3.3 3.5.00 3.5.00 3.5.00 3.5.00 3.5.00 3.5.00 3.5.00 3.5.00 3.5.00 3.5
$\begin{array}{c} 0.5\\ 0.3\\ 0.3\\ 1.27\\ 1.27\\ 1.45\\ 0.55\\ 0.55\\ 0.46\\ 0.48\\ 0.46\\ 1.08\\ 0.46\\ 0.48\\ 0.45\\ 1.0\\ 1.25\\ 1.0\\ 1.25\\ 1.0\\ 1.25\\ 1.0\\ 1.5\\ 1.5\\ 1.0\\ 1.5\\ 1.0\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5$	1.5 1.16 1.03 1.03 1.03 0.69 0.32 0.69 0.32 0.32 0.32 0.32 0.33 0.33 0.48 0.33 0.33 0.48 0.33 0.48 0.33 0.48 0.33 0.33 0.3 1.17	1.33 1.5 0.95 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.3	Interval (m) 0.85 0.45 0.55 0.45 0.45 0.55 0.55 0.45 0.55
PGG39307 PGG3930 PGG39310 PGG39310 PGG39311 PGG39312 PGG38373 PGG38373 PGG38373 PGG38374 PGG38374 PGG38375 PGG38376 PGG38376 PGG38378 PGG38378 PGG38379 PGG38391 PGG38391 PGG38391 PGG38391	PG0384 PG03851 PG03851 PG03851 PG03855 PG03855 PG03855 PG03855 PG03855 PG03855 PG03855 PG03855 PG03855 PG03861 PG03861 PG03865 PG03865 PG03865 PG03865 PG03865 PG03865 PG03865	PG03827 PG03827 PG03828 PG03830 PG03831 PG03831 PG03831 PG03833 PG03835 PG03835 PG03835 PG03835 PG03835 PG03841 PG03841 PG03843 PG03845 PG03845 PG03845	Sample Number PG03795 PG03795 PG03799 PG03799 PG03801 PG03801 PG03803 PG03803 PG03803 PG03805 PG03805 PG03805 PG03805 PG03805 PG03805 PG03811 PG03812 PG03811 PG03812 PG03812 PG03812 PG03812 PG03812 PG03812 PG03812 PG03812 PG03821 PG03821 PG03821 PG03822 PG03822 PG03822 PG03824 PG0382
1.63 0.055 3.68 0.39 0.025 0.025 0.025 0.025 0.025 0.014 0.14 1.43 0.072 0.025 0.039 0.039 0.039 0.039 0.039 0.039 0.025 0.039 0.035 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.0	0.025 0.025 0.16 0.16 0.12 0.42 0.42 0.42 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	NI(%) 1.41 0.025 0.025 0.025 0.025 0.25 0
0.4 0.58 0.34 0.025 0.05 0.05 0.05 0.05 0.05 0.025 0.0	0.025 0.025 1.01 0.07 0.07 0.21 0.21 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025	Cu (%) 1.25 0.025 0.025 0.025 0.025 0.025 0.24 2.43 2.43 1.39 0.29 0.1 0.29 0.1 0.29 0.1 0.25 0.025 0.
0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01	001 001 001 001 001 001 001 001 001 001	0.1 0.01 0.01 0.01 0.01 0.06 0.00 0.01 0.01	Co (%) 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02
100 100 100 100 100 100 100 100 100 100	0.01 0.03 0.03 0.01 0.01 0.01 0.01 0.01	001 001 001 001 002 002 002 003 003 003 001 001 001 001 001 001 001	Au (g/t) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0
00+00000000000000000000000	000404050000040000000000000000	0000-000-0000000-0000000000000000000000	
0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0 001 0 000 0 000000	Pr(g/t) 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03
0.04 0.09 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Pd(gr) 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.02

Table F: Stormy	ra Prospect Drill Hole	Intersections (6/6)
-----------------	------------------------	-----------------	------

0.01	0.01	00	0.01	0.02	0.025	0.025	PG04004 PG04005	0.3 1.07	169.49 170.56	169.19 169.49	ES2006-55
0.01	0.01	0	0.01	0.01	0.025	0.025	PG04003	0.3	169.19	168.89	ES2006-55
0.0	0.02	0	0.01	0.02	0.025	0.05	PG04002	0.3	168.89	168.59	ES2006-55
0.0	0.01	00	0.01	0.01	0.025	0.025	PG04001	1.09	168.59	167.5	ES2006-55
0.0	0.02	0	0.01	0.01	0.53	0.69	PG00498	0.45	56.35	55.9	ES2006-55
0.0	0.02	1	0.01	0.11	1.44	4.36	PG00497	0.33	55.9	55.57	ES2006-55
0.0	0.02	0	0.01	0.01	0.025	0.025	PG00496	1.57	55.57	54	ES2006-55
0.0	0.06		0.01	0.01	0.025	0.025	PG00494	1.42	209.31	207.89	ES2006-53
0.0	0.01	0	0.01	0.01	0.025	0.025	PG00493	1.34	207.59	206.25	ES2006-53
0.0	0.01	0	0.01	0.01	0.025	0.025	PG00449	0.6	187.05	186.45	ES2006-52
0.0	0.01	0	0.02	0.03	0.025	0.025	PG00448	0.3	186.45	186.15	ES2006-52
0.0	0.01		0.01	0.01	0.025	0.025	PG00492	1	186.15	185.49	ES2006-52
0.0	0.01	0	0.01	0.01	0.025	0.025	PG00491	0.28	168.49	168.21	ES2006-52
0.0	0.01	0	0.01	0.01	0.025	0.025	PG00490	0.42	168.21	167.79	ES2006-52
0.0	0.01	0	0.01	0.01	0.025	0.025	PG00489	0.79	167.79	167	ES2006-52
0.0	0.08	0	0.01	0.01	0.025	0.025	PG00488	0.76	167	166.24	ES2006-52
0.0	0.01		0.01	0.01	0.025	0.025	PG00480	1	166.24	165.74	ES2006-52
0.0	0.01		0.01	0.01	0.025	0.025	PG00485	0.9	86.78	87.08	ES2006-52
0.0	0.01	0	0.01	0.01	0.06	0.17	PG00484	0.5	87.08	86.58	ES2006-52
0.0	0.01	0	0.01	0.01	0.05	0.08	PG00483	1.1	86.58	85.48	ES2006-52
0.0	0.01	0	0.01	0.01	0.025	0.06	PG00482	0.5	85.48	84.98	ES2006-52
0.0	0.01	0	0.01	0.07	0.13	0.73	PG00481	0.5	84.98	84.48	ES2006-52
0.0	0.01	0	0.03	0.07	0.42	0.83	PG00480	1	84.48	83.48	ES2006-52
0.0	0.01	0 +	0.05	0.01	0.05	0.05	PG00479	0.51	83.48	82.97	ES2006-52
0.0	1 7 4	-	0.01	0.01	0.023	2.05	PG00477	0.65	20 28	87 22 01./	ES2000-32
0.0	0.1		0.01	0.09	0.54	2.91	PG00476	0.3	81.7	81.4	ES2006-52
0.0	0.06		0.01	0.01	0.18	0.26	PG00474	0.48	81.4	80.92	ES2006-52
0.2	0.08	1	0.01	0.19	1.31	6.86	PG00473	0.51	80.92	80.41	ES2006-52
0.0	0.01	0	0.01	0.01	0.025	0.025	PG00472	0.9	80.41	79.51	ES2006-52
0.0	0.01	0	0.01	0.01	0.025	0.025	PG00471	0.58	79.51	78.93	ES2006-52
0.0	0.01	0	0.01	0.01	0.025	0.025	PG00470	0.31	193.85	193.54	ES2006-51
0.0	0.02	0	0.01	0.01	0.025	0.025	PG00469	0.81	193.54	192.73	ES2006-51
0.0	0.02	0	0.01	0.01	0.025	0.025	PG00468	0.52	192.73	192.33	FS2006-51
0.0	0.02		0.01	0.01	0.025	0.025	PG00400	0.50	192 33	191 81	ES2000-31
0.0	0.02		0.02	0.01	0.05	0.05	PG00465	0.32	101 01	101 72	ES2006 E1
0.0	0.08	0	0.03	0.01	0.025	0.025	PG00464	0.41	190.91	190.5	ES2006-51
0.0	0.13	0	0.02	0.01	0.025	0.05	PG00463	0.31	190.5	190.19	ES2006-51
0.0	0.01	0	0.01	0.01	0.025	0.025	PG00462	1.34	190.19	188.85	ES2006-51
0.0	0.01	0	0.01	0.01	0.025	0.025	PG00461	0.37	188.85	188.48	ES2006-51
0.0	0.01	0 0	0.01	0.01	0.025	0.025	PG00460	1.41	188.48	187.07	ES2006-51
0.0	0.01	0	0.01	0.01	0.025	0.025	PG00459	0.4	187.07	186.67	ES2006-51
0.0	0.01		0.01	0.01	0.025	0.025	PGUU457		185.//	105 77	ES2006 E1
0.0	0.01	0	0.01	0.01	0.025	0.025	PG00456	1	184.77	183.77	ES2006-51
0.0	0.01	0	0.01	0.01	0.025	0.025	PG00455	0.4	183.77	183.37	ES2006-51
0.0	0.01	0	0.01	0.01	0.025	0.025	PG00454	0.5	183.37	182.87	ES2006-51
0.0	0.01	0	0.01	0.01	0.025	0.025	PG00453	1	182.87	181.87	ES2006-51
0.0	0.01	0 0	0.02	0.01	0.025	0.025	PG00452	0.95	181.87	180.92	ES2006-51
0.0	0.01		0.01	0.01	0.025	0.025	PGUU440	1 44	120 02	170 / 2	ES2006-51
0.0	0.01	1	0.04	0.07	0.58	2.32	PG00445	0.3	105.39	105.09	ES2006-51
0.0	0.01	0	0.04	0.01	0.025	0.025	PG00444	0.65	105.09	104.44	ES2006-51
0.0	0.01	0	0.03	0.01	0.025	0.025	PG00443	0.3	104.44	104.14	ES2006-51
0.0	0.01	0	0.01	0.01	0.025	0.025	PG00442	1.19	104.14	102.95	ES2006-51
0.0	0.02	0	0.01	0.01	0.025	0.025	PG00441	0.4	102.95	102.55	ES2006-51
0.0	0.03	0	0.01	0.01	0.025	0.025	PG00440	1.44	102.55	101.11	ES2006-51
0.0	0.08	0	0.01	0.01	0.025	0.025	PG00439	0.28	101.11	100.83	ES2006-51
0.0	0.03	0	0.01	0.01	0.025	0.025	PG00438	0.35	100.83	100.48	ES2006-51
	0.04		0.03	0.01	0.20	0.40	PG00430	0.55	100.48	99.00	ES2006-51
0.0	0.01		0.01	0.01	0.025	0.025	PG00435	1.18	55.66	98.3/	ES2006-51
0.0	0.01	0	0.02	0.01	0.025	0.22	PG00434	0.32	98.37	98.05	ES2006-51
0.0	0.01	0	0.01	0.01	0.025	0.025	PG00433	1.06	98.05	96.99	ES2006-51
0.0	0.01	0	0.02	0.01	0.025	0.025	PG00413	1.18	329	327.82	ES2005-48
0.0	0.01	0	0.01	0.01	0.07	0.025	PG00412	0.3	327.82	327.52	ES2005-48
0.0	0.01	0	0.02	0.01	0.025	0.025	PG00411	1.35	327.52	326.17	ES2005-48
0.0	0.01	0	0.01	0.01	0.025	0.025	PG03895	1.35	93.65	92.3	ES2005-33
0.0	0.01	-10	0.01	0.01	C 20.0	C 20.0	PG03894	5 U	5 Cb	97 97	ES2005-33
0.0	0.01		0.01	0.01	0.06	0.025	PG03892	1.3	90.65	89.35	ES2005-33
0.0	0.01	1	0.03	0.01	0.1	0.11	PG03891	1.3	89.35	88.05	ES2005-33
0.0	0.01	0	0.01	0.08	0.23	1.98	PG03890	0.35	88.05	87.7	ES2005-33
0.0	0.01	0	0.01	0.01	0.025	0.07	PG03889	0.33	87.7	87.37	ES2005-33
0.0	0.01	0	0.01	0.01	0.025	0.025	PG03888	0.5	87.37	86.87	ES2005-33
0.0	0.02	1	0.01	0.05	0.54	1.81	PG03887	0.37	86.87	86.5	ES2005-33
0.0	0.01		0.01	0.01	0.020	0.21	PG03886	1.1/	86.5	86.7	ES2005-33
0.0	0.01		0.01	0.01	0.025	0.12	PGU3884	1.3	6/.b	05 02	ES2005-33
0.0	0.03	0	0.01	0.07	0.32	1.68	PG03883	0.4	66.3	65.9	ES2005-33
0.0	0.01	0 0	0.01	0.01	0.025	0.025	PG03882	1.3	65.9	64.6	ES2005-33
0.0	0.02	0	0.01	0.01	0.025	0.025	PG03905	1.49	126	124.51	ES2005-32
0.0	0.01	1	0.01	0.01	0.21	0.6	PG03904	0.54	124.51	123.97	ES2005-32
Pd	Pt (g/t)	Ag (g/t)	Au (g/t)	Co (%)	Cu (%)	Ni (%)	Sample Number	Interval (m)	To (m_	FROM (m)	HOLE ID
-					-	10.1			-		

Falconbridge	Stormyra	-80.00	230.00	218.91	957.43	535917	6800850	ES2006-55
Falconbridge	Stormyra	-71.00	230.00	247.90	953.99	535258	6801341	ES2006-54
Falconbridge	Stormyra	-70.00	230.00	274.39	946.00	535501	6801284	ES2006-53
Falconbridge	Stormyra	-80.00	230.00	271.20	961.44	535917	6800958	ES2006-52
Falconbridge	Stormyra	-78.00	230.00	249.00	961.56	535572	6801083	ES2006-51
Falconbridge	Stormyra NW	-50.00	231.50	330.25	991.61	534804	6801800	ES2005-48
Falconbridge	Stormyra NW	-60.00	230.00	334.20	1001.70	534666	6801686	ES2005-47
Falconbridge	Stormyra	-65.18	226.58	128.00	967.98	535233	6801254	ES2005-33
Falconbridge	Stormyra	-59.99	233.00	155.30	964.79	535454	6801179	ES2005-32
Falconbridge	Stormyra	-56.94	232.00	131.53	968.98	535422	6801152	ES2005-31
Falconbridge	Stormyra	-65.00	230.00	88.90	956.92	535965	6800824	ES2005-30
Falconbridge	Stormyra	-64.63	232.60	88.20	959.56	535879	6800882	ES2005-29
Falconbridge	Stormyra	-69.67	232.50	105.80	960.72	535783	6800933	ES2005-28
Falconbridge	Stormyra	-69.46	228.60	134.00	961.05	535703	9660089	ES2005-27
Falconbridge	Stormyra	-69.82	225.70	131.50	960.97	535620	6801057	ES2005-26
Falconbridge	Stormyra	-64.24	230.70	138.40	962.44	535533	6801114	ES2005-25
Falconbridge	Stormyra	-59.44	233.90	134.55	966.86	535438	6801166	ES2005-24
Falconbridge	Stormyra	-44.83	232.77	61.30	990.06	535023	6801339	ES2005-23
Falconbridge	Stormyra	-43.65	233.20	77.50	983.15	535113	6801285	ES2005-22
Falconbridge	Stormyra	-46.00	230.00	98.00	969.48	535221	6801243	ES2005-21
Falconbridge	Stormyra	-64.79	235.25	132.40	969.48	535221	6801244	ES2005-20
Falconbridge	Stormyra	-81.38	243.59	125.35	974.09	535292	6801174	ES2005-19
Falconbridge	Stormyra	-81.00	230.00	171.00	967.98	535337	6801209	ES2005-18
Falconbridge	Stormyra	-78.68	208.95	139.20	979.13	535309	6801193	ES2004-09
Falconbridge	Stormyra	-43.95	234.75	85.30	970.74	535129	6801300	ES2004-08
Falconbridge	Stormyra	-43.00	238.40	85.30	978.00	535129	6801300	ES2004-08
Blackstone	Stormyra	-61.30	229.10	147.91	982.00	535064	6801375	ES07-59
Blackstone	Stormyra	-53.00	226.60	125.31	986.00	535036	6801352	ES07-58
Blackstone	Stormyra	-55.80	235.80	170.20	967.00	535178	6801333	ES07-57
Blackstone	Stormyra	-51.50	236.50	152.00	975.00	535141	6801310	ES07-56
Blackstone	Stormyra	-60.00	230.00	250.01	960.00	535508	6801203	ES07-129
Blackstone	Stormyra	-65.00	230.00	124.61	975.00	535381	6801127	ES07-128
Blackstone	Stormyra	-60.00	230.00	188.81	953.00	535447	6801229	ES07-127
Blackstone	Stormyra	-79.00	230.00	147.01	968.00	535374	6801174	ES07-126
Blackstone	Stormyra	-76.00	230.00	151.71	977.00	535338	6801147	ES07-125
Blackstone	Stormyra	-80.00	230.00	181.51	968.00	535370	6801240	ES07-124
Blackstone	Stormyra	-75.00	230.00	121.45	978.00	535278	6801162	ES07-123
Blackstone	Stormyra	-70.00	230.00	121.91	966.00	535284	6801232	ES07-122
Blackstone	Stormyra	-73.00	230.00	120.71	971.00	535260	6801211	ES07-121
Blackstone	Stormyra	-50.00	230.00	140.26	971.00	535260	6801211	ES07-120
Blackstone	Stormyra	-50.00	230.00	91.77	979.00	535240	6801195	ES07-119
Blackstone	Stormyra	-65.00	230.00	148.01	961.00	535254	6801272	ES07-118
Blackstone	Stormyra	-50.00	230.00	109.39	979.00	535197	6801219	ES07-117
Blackstone	Stormyra	-50.00	230.00	139.22	974.00	535178	6801274	ES07-116
Blackstone	Stormyra	-50.00	230.00	107.67	974.00	535178	6801274	ES07-115
Blackstone	Stormyra	-50.00	230.00	86.83	981.00	535150	6801250	ES07-114
Blackstone	Stormyra	-60.00	230.00	81.10	998.00	535075	6801328	ES07-113
Blackstone	Stormyra	-80.00	230.00	33.21	990.00	535066	6801311	ES07-112
Blackstone	Stormyra	-50.00	230.00	65.67	990.00	535066	6801311	ES07-111
Blackstone	Stormyra	-50.00	230.00	77.83	991.00	534978	6801370	ES07-110
Company	Prospect	Dip	Azimuth	Depth	Elevation	Zone 32N	Zone 32N	Hole ID
)	,	2	•	,	1	WGS84 UTM	WGS84 UTM	;
						Easting	Northing	

Table G: Stormyra Prospect Drill Hole Locations

0.24	0.57	7.00	49.00	42.00	MG26-77
0.12	0.31	1.00	42.00	41.00	MG26-77
0.16	0.65	2.00	41.00	39.00	MG26-77
0.12	0.29	4.00	39.00	35.00	MG26-77
0.21	0.61	17.00	35.00	18.00	MG26-77
0.14	0.30	2.00	18.00	16.00	MG26-77
0.18	0.63	4.00	16.00	12.00	MG26-77
0.19	0.56	12.00	74.00	62.00	MG25-77
0.14	0.34	18.00	62.00	44.00	MG25-77
0.19	0.43	3.00	44.00	41.00	MG25-77
0.09	0.24	12.00	41.00	29.00	MG25-77
0.17	0.52	1.00	29.00	28.00	MG25-77
0.13	0.27	8.00	28.00	20.00	MG25-77
0.14	0.32	8.00	75.00	67.00	MG24-77
0.17	0.43	3.00	67.00	64.00	MG24-77
0.11	0.29	1.00	64.00	63.00	MG24-77
0.28	0.83	18.00	63.00	45.00	MG24-77
0.12	0.32	15.00	45.00	30.00	MG24-77
0.12	0.31	5.00	22.00	17.00	MG23-76
0.16	0.41	6.00	17.00	11.00	MG23-76
0.21	0.45	2.00	67.00	65.00	MG22-76
0.13	0.31	3.00	65.00	62.00	MG22-76
60 U	96.0	31.00	56.00	25.00	MG22-26
0.12	0.33	10.00	20.00	10.00	MG22-76
0.10	0.24	4.00	44.00	40.00	MG20-76
0.18	0.27	2.00	37.00	35.00	MG20-76
0.22	0.77	1.00	22.00	21.00	MG20-76
0.13	0.23	1.00	15.00	14 00	MG20-76
0.28	0.92	35.00	68 00	33.00	MG17-76
0.11	0.30	16.00	33.00	17.00	MG17-76
0.15	0.47	5.00	17.00	12.00	MG17-76
0 15	0.46	1 00	54 00	53 00	MG14-76
80.0	0.20	2 00	53.00	51 00	MG14-76
0 06	80.0	1 00	50.00	49 NN	MG14-76
0.22	0.00	1 00	55.00	54 00	MG13-76
0.22	0 66	00 6	54 00	45.00	MG13-76
0.10	0.13	1 00	41 00	40 00	MG13-76
0.10	0.25	15 00	45 00	30.00	MG12-76
0 10	0 20	4 00	30.00	26.00	MG10-76
0.11	0.38	2.00	8.00	6.00	MG10-75
70 N	0.21	3 00	5 00 A	3 00	MG10-75
0.40	0.04	2 00	148 00	146 00	MG09-75
0.09	0.14 0.64	2.00	61 DD	59.00	
0.10	0 1 /	00.c			
0.40	0.51	3.00	54.00	51.00	MG06-75
0.10	0.29	3.00	51.00	48.00	MG06-75
0.41	1.11	11.00	48.00	37.00	MG06-75
0.12	0.25	2.00	37.00	35.00	MG06-75
0.17	0.45	1.00	35.00	34.00	MG06-75
0.09	0.27	7.00	34.00	27.00	MG06-75
0.20	0.55	2.00	27.00	25.00	MG06-75
0.15	0.42	2.75	26.75	24.00	MG05-75
0.30	0.69	2.70	5.00	2.30	MG05-75
0.05	0.20	1.00	94.00	93.00	MG04-75
0.08	0.20	1.00	92.00	91.00	MG04-75
0.16	0.38	8.10	18.10	10.00	MG03-75
0.14	0.52	4.00	10.00	6.00	MG03-75
0.21	0 38 U	4 00	6 00	2 00	MG03-75
0.10	0.49	2 00	30.20	2.00	
Cu (%)	Ni (%)	Length (m)	רס (m)	From (m)	Hole ID
	/2/1				;

Table H: Megrund Prospect Drill Hole Intersections (1/2)

0.03	0.03	1.00	/2.00	/1.00	52005-50
0.03	0.03	1.06	71.00	69.94	ES2005-50
0.03	0.03	0.94	69.94	69.00	ES2005-50
0.03	0.03	0.97	69.00	68.03	ES2005-50
0.03	0.03	1.23	68.03	66.80	ES2005-50
0.03	0.03	1.03	66.80	65.77	ES2005-50
0.03	0.03	1.00	65.77	64.77	ES2005-50
0.03	0.03	1.27	64.77	63.50	ES2005-50
0.03	0.03	1.00	60.50	59.50	ES2005-49
0.03	0.03	1.11	59.50	58.39	ES2005-49
0.03	0.03	0.57	58.39	57.82	ES2005-49
0.06	0.03	1.12	57.82	56.70	ES2005-49
0.03	0.03	0.92	56.70	55.78	ES2005-49
0.06	0.03	0.33	55.78	55.45	ES2005-49
£0.0	50.0 50.0	0.95	55 45	54 50	FS2005-49
0.03	0.03	1.17	46.81	45.64	ES2005-49
0.03	0.03	0.84	45.64	44.80	ES2005-49
50 U	0 03	1 15	44 80	43 65	FS2002-7 /
0 11	0 32	11 70	102 20	91 NN	MG36-77
0 14	0.31	16 85	22.00	6 00	MG32-77
0.13	0.34	1.00	م .uu	2 00	
0.17	0.41	1.00	67 00	66 00	MC34-//
0.08	0.33	1.00	65.00	64.UU	MG34-//
0.10	0.29	7.00	63.00	56.00	MG34-77
0.10	0.29	3.00 - 00	53.00	50.00	IVIG34-//
0.19	0.42	1.00	50.00	49.00	MG34-//
0.09	0.28	2.40	49.00	46.60	MG34-77
0.07	0.32	6.15	81.15	75.00	MG33-77
0.07	0.23	1.00	74.00	73.00	MG33-77
0.09	0.30	3.00	71.00	68.00	MG33-77
0.10	0.42	2.00	68.00	66.00	MG33-77
6 1 0	0.29	3.00	66.00	63.00	MG33-//
0.08	0.31	2.00	58.00	56.00	MG33-77
0.20	0.40	1.00	56.00	55.00	MG33-77
0.15	0.28	3.00	55.00	52.00	MG33-77
0.17	0.38	10.00	52.00	42.00	MG33-77
0.19	0.45	2.25	42.00	39.75	MG33-77
0.25	0.85	1.00	106.00	105.00	MG32-77
0.13	0.20	1.00	105.00	104.00	MG32-77
0.08	0.23	1.00	103.00	102.00	MG32-77
0.09	0.20	1.00	101.00	100.00	MG32-77
0.09	0.20	1.00	97.00	96.00	MG32-77
0.12	0.28	3.00	90.00	87.00	MG32-77
0.15	0.47	2.00	87.00	85.00	MG32-77
0.12	0.25	3 00	85 00	00 28	MG32-77
0.12	0.27	5 00	40.00 87 00	43.00 77 NN	MG32-77
01.0	0.43	1.00	43.00	42.00	N-0201//
0.11	0.27	2.00	42.00	40.00	1/-0550
1.58	0.60	1.00	40.00	00.65 00.65	MG30-77
0.28	0.35	3.00	39.00	36.00	MG30-77
0.14	0.27	2.00	28.00	26.00	MG29-77
0.18	0.29	1.00	11.00	10.00	MG29-77
0.10	0.25	2.00	9.00	7.00	MG29-77
0.13	0.30	9.00	30.00	21.00	MG28-77
0.24	0.71	15.00	60.00	45.00	MG27-77
0.17	0.40	3.00	60.00	57.00	MG26-77
0.21	0.62	3.00	57.00	54.00	MG26-77
0.15	0.33	5.00	54.00	49.00	MG26-77
Cu (%)	Ni (%)	Length (m)	To (m)	From (m)	Hole ID

Table H: Megrund Prospect Drill Hole Intersections (2/2)

	Northing	Easting				
Hole ID	WGS84 UTM	WGS84 UTM	Elevation (m)	Dip	Azimuth	Year
	Zone 32N	Zone 32N				
MG01-75	6807321	528678	1114.57	-45	270	1975
MG02-75	6807292	528710	1118.67	-45	270	1975
MG03-75	6807387	528662	1104.90	-80	270	1975
MG04-75	6807344	528597	1134.78	-90	0	1975
MG05-75	6807173	528703	1141.29	-90	0	1975
MG06-75	6806979	528909	1117.21	-90	0	1975
MG07-75	6806988	529119	1100.64	-90	0	1975
MG08-75	6806961	529077	1106.04	-90	0	1975
MG09-75	6807364	528617	1135.63	-75	53	1975
MG10-75	6807304	528544	1142.29	-90	0	1975
MG11-75	6807654	528407	1109.16	-90	0	1975
MG12-76	6806964	528889	1123.64	-90	0	1976
MG13-76	6806956	528876	1127.28	-90	0	1976
MG14-76	6806948	528865	1129.53	-90	0	1976
MG15-76	6806994	528929	1115.70	-90	0	1976
MG16-76	6806954	528898	1123.11	-50	48	1976
MG17-76	6807124	528804	1116.79	-90	0	1976
MG18-76	6807280	528758	1100.14	-90	0	1976
MG19-76	6807282	528772	1093.35	-90	0	1976
MG20-76	6807041	528861	1123.60	-90	0	1976
MG21-76	6807036	528852	1124.70	-90	0	1976
MG22-76	6807119	528796	1118.83	-90	0	1976
MG23-76	6807111	528786	1124.56	-90	0	1976
MG24-77	6807109	528784	1126.32	-55	51	1977
MG25-77	6807109	528784	1126.32	-70	51	1977
MG26-77	6807132	528813	1115.92	-90	0	1977
MG27-77	6807122	528833	1113.32	-65	270	1977
MG28-77	6807132	528813	1115.92	-60	51	1977
MG29-77	6807050	528870	1120.86	-90	0	1977
MG30-77	6807063	528816	1129.98	-60	51	1977
MG31-77	6806988	528855	1127.87	-55	51	1977
MG32-77	6807152	528741	1130.35	-60	51	1977
MG33-77	6807280	528758	1100.14	-45	270	1977
MG34-77	6807280	528758	1100.14	-65	270	1977
MG35-77	6807389	528656	1104.85	-60	50	1977
MG36-77	6807389	528656	1104.85	-80	50	1977
MG37-77	6807186	529245	1092.68	-90	0	1977
MG38-77	6806841	528713	1163.10	-90	0	1977
ES2005-49	6807004	529016	1099.49	-70	230	2005
ES2005-50	6807042	529062	1095.42	-69	231	2005

Table J: Sigdal Project Drill Hole Intersections

Project	Hole ID	Year	From (m)	To (m)	Interval (m)	Ni (%)	Cu (%)	Co (%)	Pt (g/t)	Pd (g/t)	Au (g/t)	Ag (g/t)
Sigdal	ER2006-13	2006	22.62	24.1	1.48	0.36	0.43	0.04	0.06	0.05	10.1	2.9
	Including		23.44	24.26	0.82	0.15	0.24	0.02	0.07	0.06	15.4	2.4
Sigdal	ER2006-14	2006	No Significant Resuts									

Table K: Sigdal Drill Hole Locations

Project	Hole ID	Year	Northing WGS84 UTM Zone 32N	Easting WGS84 UTM Zone 32N	Elevation (m)	Azimuth	Azimuth	Length	Hole size
Sigdal	ER2006-13	2006	6653648	533811	663	-45	282	74.25	TT46
Sigdal	ER2006-14	2006	6653531	533771	656	-45	282	77.8	TT46

APPENDIX 2 - JORC Code, 2012 Edition – Table 1 – Dalen Prospect

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate the minerals under investigation, such as down hole gamma sondes, handheld XRF instruments, etc). These examples should not be take as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such a where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules may warrant disclosure of detailed information. 	 Dalen mineral resource was estimated using diamond drill core only, drilled mostly on a nominal 25m x 50m spaced pattern for the central area, extending to 50m x 100m and 200m x 400m in the distal areas of the prospect. A total of 33 drill holes for 5018m drilled are in the database, of which 27 drill holes were used in the Mineral Resource Estimate (MRE). Holes were generally drilled to the south west at -80 dip to intersect shallow, NE dipping strata. Drill core was cut longitudinally with a diamond blade core saw at Blackstone's core cutting facility in Tyristrand, Norway, with half of the core placed in bags and sent to accredited labs at SGS Lakefield Research Limited in Lakefield Ontario in 2006 and ALS Chemex (Pitea, Sweden Preparation Facility and Vancouver, B.C. Analytical Laboratory) and Omac Laboratories Limited in Galway, Ireland in 2007 and 2008.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple standard tube, depth of diamond tails, face-sampling bit or other type whether core is oriented and if so, by what method, etc). 	 2007 and 2008 drill programs on the Dalen project were via a muskeg mounted Diamec 251 Type standard drilling rig. It is not known the exact type of drill rigs used in the earlier programs in 2004 to 2006. Core diameters include a variety ranging from 35.2 mm to 42 mm, which is close to standard BQ (35.5 mm) and BQTW (47.6 mm). Drill core at all drill sites were placed in wooden boxes, the boxes labelled according to drill hole number and metres and closed for transport
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade an whether sample bias may have occurred due to preferential loss/gain fine/coarse material. 	• As almost all core recovery appeared to be at a high percentage, and there appear to be no sampling or recovery factors that could materially impact the accuracy or reliability of the sampling results and drill hole intersections.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mine Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or cost channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All core was logged at the core shack on the project site, where major lithological units, structure, alteration, and mineralogy is recorded using text, numeric codes, or percentages and entered into DHLogger daily. Prior to being sampled, significant mineralized core sections were photographed using a digital camera and the photos downloaded to the main office computer. The final logs include a header sheet with collar coordinates and down hole survey data. Produced from DHLogger in Sudbury There has been no geotechnical testing completed on the diamond core.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core take If non-core, whether riffled, tube sampled, rotary split, etc and wheth sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Technicians sawed the core in half longitudinally using core saws with a diamond blade at Blackstone's core cutting facility in Tyristrand, Norway. Sample lengths were based on lithologic units and generally ranged from 0.30m to 1.5m. Standards or blanks are inserted for every 20 samples and a blank is inserted at the end of mineralised zones. Drill core samples analysed at SGS Lakefield were weighed and dried before up to 4 kilograms of samples was crushed to 10 mesh then a 250 gram split was pulverized to 150 mesh. Cleaning of crushers and pulverizers was completed after every 20 samples. Drill core samples analysed at ALS Chemex were first prepared at ALS' preparation lab in Pitea, Sweden. There samples were logged in their tracking system, then weighed and the entire sample was fine crushed to better than 70% -2mm. A split off 250 gram sample was then pulverized to Vancouver, B.C by commercial aircraft for completion of analytical work. Drill core samples analysed at Omac Laboratories Limited were shipped to Galway, Ireland from Norway where samples were prepared and analysed. Samples were dried, jaw and coned crushed total to <2 mm, riffled 1 kg and pulverized to 100 microns. All fractions were retained.
Quality of assay data and	 The nature, quality and appropriateness of the assaying and laborate procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, et the parameters used in determining the analysis including instrument 	 Lab procedure analyses performed at SGS Lakefield, ALS Chemex and Omac Laboratories were as follows: SGS Lakefield: Ni, Cu, Co, S, Ag were analysed using sodium peroxide fusion, ICP-MS analysis (assayed at SGS-Toronto); Pt, Pd and Au by fire assay, ICP-OES. ALS Chemex: analysis for Ni, Cu, Co, Ag and S by peroxide fusion

Criteria	JORC Code explanation	Commentary
laboratory tests	 make and model, reading times, calibrations factors applied derivation, etc. Nature of quality control procedures adopted (eg standard duplicates, external laboratory checks) and whether accept accuracy (ie lack of bias) and precision have been establis 	 d and their and ICP-AES; Pt, Pd and Au by fire assay and ICP-AES finish (30 gram nominal sample weight). Omac Laboratories: analysis for Ni, Su banks, Cu, Co, Ag and S by oxidising digestion with final solution in aqua regia and ICP-AES; Pt, Pd and Au by 30 gram lead fire assay/ICP finish. Quality Assurance/Quality Control (QA\QC) was implemented at the beginning of drilling in 2006 whereby standards were routinely inserted into the sample stream with at least one standard sample inserted per sample batch submitted to the laboratory. The program was further strengthened in 2007 with the introduction of blank samples and a more routine insertion of standards; i.e., one blank or standard every 20 samples. Once received, analytical results were imported into Blackstone Venture's central database using commercial software, DHLogger (Century Systems) which provided quality control charting. Sample batches containing samples with analytical deviations of more than 5% were flagged, evaluated and batches re-assayed as needed. Consultant firm RCI reviewed the results of the various QA/QC programs and concluded that the historical and recent sampling were acceptable for the purpose of resource estimation. Geochemical Standards, certified reference materials and blank material were added regularly to the sample stream. Field duplicates, in the form of ¼ split core did not form part of the QC Program. The Geochemical Standards consisted of two Ni-sulphide standards, named CRG-B and CRG-C, made up by Falconbridge and used throughout the drilling in 2005, 2006 and 2007. All characterization data were supplied by Blackstone and examined by the authors. The characterizations were well done with an average of 165 assays from four different labs used to determine the mean and standard deviation for each element. The certified reference material consisted of standards named LBE-1 and LBE-2 which were certified by WCM Minerals in Vancouver, British Columbia. The characterization for the

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verificat data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Four samples were selected by the independent consultants RCI in 2009, from two different drill holes, ¼ sawn by the technician and placed by the authors into sample bags which were sealed with tape and placed in a rice bag. Sulphides in the drill core ranged from net textured to semi massive. These were assayed at Activation Laboratories in Ancaster, Ontario for analysis. All samples were analyzed for Ni, Cu, Co, Au, Pd and Pt. Bulk densities on drill core, as well as densities measured on the pulps using a pycnometer were also performed. The verification sample results compare favourably with the results obtained by Blackstone for the three elements. Assay results for samples and quality assurance/quality control (QA/QC) materials were entered into DHLogger when received. All assay and QA/QC results are received electronically and uploaded. No adjustment of assay data, nor twinned holes were undertaken.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations us in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Collar locations for all drill holes were established using a total station differential handheld Global Positioning System (GPS) with an accuracy of less than one meter. Collar locations were picked up immediately after completion of the drill hole. Drill casing was left in the ground for most holes. A Reflex survey instrument was utilized for surveying deviations of drill holes. Surveys were taken typically at 50 metres increments down the hole. In the cases where there are no surveys, these holes were blocked at the time the surveys were being completed. Drill hole collar locations were surveyed in Universal Transverse Mercator (UTM) coordinates, WGS84 UTM Zone 32N. Although topographic data are available, the GPS data recorded in the field were used for drill collar locations.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish th degree of geological and grade continuity appropriate for the Minera Resource and Ore Reserve estimation procedure(s) and classification applied. Whether sample compositing has been applied. 	 Drill hole spacing varied from 50m x 50m in the central area of the prospect, to 200m x 400m in the outermost portions. The MRE Resource Category reflects the wide drill spacing at the project. Good grade and lithology continuity is demonstrated where drill spacing is close. Compositing of the assay results was performed for the estimation process. These intervals were diluted in unsampled portions.
Orientation of data in relation to	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	• The mineralized zones in are flat lying and are generally intercepted by fairly steep drillholes. It appears that the true width of the mineralized zones for both these properties is on average 80% to

Criteria	JORC Code explanation	Commentary
geological structure	 If the relationship between the drilling orientation and the orientation key mineralised structures is considered to have introduced a sample bias, this should be assessed and reported if material. 	of 100% of the core lengths.
Sample security	• The measures taken to ensure sample security.	 During Blackstones drilling operations, the procedure was for one half of the core which was bagged for analysis and the bag secured with a zip tie. Cut and bagged samples are placed in sealed plastic transport boxes and secured on pallets ready for transport. The samples are stored in the core cutting facility typically until two or more pallets are ready for shipping. Pallets are picked up by TNT Transport and delivered to Oslo airport for SAS air cargo shipping to laboratories for analysis
Audits or reviews	The results of any audits or reviews of sampling techniques and data	 RCI undertook verification sampling of the mineralized intervals and found the Ni, Cu and Co values to be acceptable in comparison to the original assay value.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Matters relating to tenure ownership, environmental matters, surface rights and third party agreements are outside the scope and expertise of the Resource Estimate. Data provided by EMX Royalties Corporation is that tenure for the Espedalen Project area was granted 23rd February 2018 for an initial three year period, which can be renewed for a further three years.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Project is currently owned by EMX Royalties Inc. Previous operators were Drake Resources who were issued tenure in 2012. No drilling of the project was undertaken. Prior to issue of the claims to Drake in 2012, Blackstone Ventures Inc (TSX) in joint venture with a subsidiary of Xstrata Nickel of Canada (previously Falconbridge) explored the Espedalen Project and discovered the Dalen and Stormyra prospects in 2004/5 using airborne EM and magnetics, ground UTEM follow up surveying and then diamond drilling. Reddick Consulting Inc (RCI), an independent geological consultant performed a resource estimation to 43-101 standards on the project which was released in 2009.

Criteria	JORC Code explanation	Commentary
		 Drake had been able to secure Reddick's NI 43-101 report and data used to produce it. Drake was unable to obtain any written reports on work conducted by Blackstone for the period from 2006 to 2009 when resource drillouts were conducted at both Stormyra and Dalen, however drill logs and collar and survey data and the core are stored at the NGU's Lokkken core library. Nickel mining in the area was intermittently active during the period 1848 to 1918 with approximately 100,000T of nickel ore produced @ 1.0% Ni, 0.4% Cu and 0.6% Co. Records of work prior to 1960 are incomplete. Regional exploration from 1960 to 1980 has included geophysics, mapping and the drilling of 44 diamond drillholes on showings in areas located elsewhere on the property that are not in the immediate vicinity of the Stormyra and Dalen deposits. In the period from 2003 to 2008 Falconbridge, Sulfidmalm and Blackstone have completed 1,398 km of airborne geophysics, 229km of ground geophysics and 167 diamond drillholes on the entire Espedalen property. There have been 54 diamond drillholes on the Stormyra deposit totalling 8,609m and 33 diamond drillholes on the Dalen deposit totalling 5,018m.
Geology	Deposit type, geological setting and style of mineralisation.	 The Stormyra, Dalen nickel sulphide deposits are magmatic sulphide accumulations with tectonic, structural, and geological similarities to documented Ni-Cu mines. Comparison of the regional geological setting and nickel sulphide mineralisation occurrence between Norway and Voisey's Bay in Labrador indicates analogies which have not previously been investigated by exploration in Norway. A reconstruction of the tectonic palaeoplate position shows that, at the time of the Voisey's Bay intrusion, south Norway and Labrador were in relative close proximity and were undergoing similar tectonic development. Comparison of the suite of mafic rock types which host the mineralisation in Norway with Voisey's Bay show various similarities, such as the presence of troctolites (as in the Ertelien area) and association with anorthosite complexes (as at Espedalen), both of which were previously unrecognised as nickel sulphide targets. The Espedalen area is underlain by metamorphosed syenites, norites, anorthosites, gabbros, pyroxenites and peridotites ranging in age from 1698-1250 Ma. These rocks in the Espedalen area are

Criteria	JORC Code explanation	Commentary
		 considered to be part of a nappe emplaced in its current position during the Caledonide Orogeny c. 400 Ma ago. Economic concentrations of nickel are associated with magmatic sulphide accumulations and weathered products of mafic-ultramafic rocks as lateritic nickel ores. The Dalen nickel sulphide deposit is all magmatic sulphide accumulations with tectonic, structural, and geological similarities to documented, large Ni-Cu deposits. Nickel and copper are economic commodities contained in sulphide-rich ores that are associated with differentiated mafic sills and stocks and ultramafic volcanic (komatiitic) flows and sills. The nickel-copper mineralised zones are found in a wide variety of host rocks including gabbro, norite, pyroxenite and peridotite which commonly have a significantly greater extent. Mineralisation (pyrrhotite, pentlandite, and chalcopyrite ± pyrite) is found as massive to net textured and disseminated sulphide zones. The mineralisation in the Dalen deposit occurs in a suite of ultramafic rocks and in a more disseminated manner than the other deposits. It may be that Ni mineralisation in Dalen is similar to large low-grade Ni deposits such as Mt. Keith in Australia, which is classified as a type IIb Ni deposit in the classification of Lesher and Keays, 2002. At Mt. Keith Fe-Ni-(Cu) sulphides occur interstitial to former olivine grains with an average abundance of 3 to 5 volume percent
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Table A details all drill intersections used to inform the MRE. These intersections have been composited on length weighted basis, diluted for missing sample intervals.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade 	 No top cuts have been applied to Table A, and the composite grades are simple length weighted averages.

Criteria	JORC Code explanation	Commentary
	 results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 It appears that the true width of the mineralized zone is on average 80% to 100% of the core lengths

Criteria	JORC Code explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	BY 407 Heidal BY 407 H By 207 E BY 207 E B
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All informing sample intervals are reported in Table A.
Other substantive	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and 	 Various geophysical (electromagnetic and magnetic) surveys over Dalen indicate the deposit remains open in several directions. Limited metallurgical testwork was completed on two samples from

Criteria	JORC Code explanation	Commentary
exploration data	method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 the Megrundtjern prospect approximately 6kms west of Dalen, by Lakefield in Canada in the 1970s and indicated that "concentrate grades and recoveries are good". The best results obtained in this work provided a concentrate assaying 15 per cent nickel and 5.3 per cent copper with potential recovery in the range 75-79 per cent. Results can be expected to improve with further testwork. No metallurgical work was conducted on either Stormyra or Dalen, to the authors knowledge.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 A detailed review of geology and mineralisation is required to identify and prioritise areas of potential resource extension drilling at Dalen.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	• The database used in the estimation was taken from RCI project, which undertook extensive checking of database entries against the original assay reports. The significant intercepts from this estimate were visually checked against the original lab reports to validate the data entry.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	• John Reddick and Tracey Armstrong undertook a two day site visit for the 2009 mineral resource estimate for which they acted as "qualified person" under Canadian reporting standards. During their visit independent sampling of core was performed to verify the assay results obtained by the exploration operators. Since this mineral resource estimate is based on the same data set and geological assumptions, no site visit could be justified.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. 	• The MRE is based on logged lithological domains of ultramafic, pyroxenite, and peridotite, with minor anorthite with a minmum of 2m downhole width. Original lithological logging appears to be of a high quality, with supporting geological surface mapping opportunities abundant in the area. Within a context of wide spaced drilling the

Criteria	JORC Code explanation	Commentary
	 The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 geological model would be considered good, with limited feasible alternative interpretations available. The lithological units were found to have a natural domain cut-off of about \$40/t GMV during exploratory data analysis. Grade continuity is good with a low nugget factor. Continuity of the resource has been curtailed by the artifact of incomplete sampling, which has been assigned a zero elemental concentration for the estimate.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	• The project has strike of about 1500m, dip extent of about 600m, and vertical extent of 190m, extending from near surface to 180m below surface.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 The MRE was performed using Surpac software v 6.4.1, on a block model methodology using ordinary kriging on 20mY x 20mX x 10mY blocks sub-blocking to 20mY x 20mX x 2.5mZ, with drill spacing ranging from 50m x 50m to 200m x 400m. Interpolation parameters are tabled in Table B, with maximum search distance 70m for all elements, based on variogram analysis. Each element (Ni%, Cu%, Co%) was estimated independently into one of six 3D wireframe model of the mineralized lithology units. Composites were generated on a 1m downhole, best-fit basis, consequently there are no residuals. Intervals in which no sample data is available were composited as a zero value. This is based on the likelihood that visual control on mineralisation is possible, and hence unsampled intervals are therefore poorly mineralized. Variographic analysis of each element was undertaken on the main domains only due to the low sample count, with these results assumed for smaller domains in which variography is prevented by low sample population. No assumptions were made in regard to elemental correlation during the estimate is reported to a gross metal value (GMV), the parameters are given in Table C, and in which no recovery assumptions are made. No deleterious elements were considered in the estimate or its reporting. Top cuts were applied to some domains and some elements, as seen fit to restrict the influence of high grades outside the domain populations as identified by various statistical means. Most domains populations as identified by various statistical means. Most domains

Criteria	JORC Code explanation	Commentary
		• Reconciliation of the estimate was via visual checks on estimated grade to the informing composites, with average composite grade to blockmodel grade reconciled in 100m wide northing bins, and on a domain by domain basis. The final block model was peer reviewed by an independent geologist to check for gross errors in estimation. No previous mining data is available to reconcile against.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	The model is estimated using dry specific gravity values.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 The GMV value of USD\$40/t was used based on a likely bulk mining, open pit mining scenario. The GMV details are provided in Table C.
Mining factors or assumptions	• Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 The project is interpreted as a likely bulk mining, open pit scenario. The extensive true widths and lateral extents are amenable for such operations.
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	• Only limited test work has been completed to date on two samples. from the nearby Megrundtjern prospect. This was carried out by Lakefield in Canada in the 1970s and indicated that "concentrate grades and recoveries are good". The best results obtained in this work provided a concentrate assaying 15 per cent nickel and 5.3 per cent copper with potential recovery in the range 75-79 per cent. Results can be expected to improve with further testwork. No metallurgical work was conducted to the authors knowledge on either Stormyra or Dalen directly.
Environmen- tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with 	 No assumptions have been made

Criteria	JORC Code explanation	Commentary
	an explanation of the environmental assumptions made.	
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Most of the rock mass is fresh, unbroken rock. Bulk density is based on four samples taken by RCI for both bulk density measurement, these bulk density measurements were reconciled against pycnometer readings. No details are available of methodologies for bulk density determination.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The mineral resource above USD\$40/t GMV has been classified as inferred due to the wide spaced drilling, uncertainty in bulk density determinations, and the incomplete sampling of available drill core. The Mineral Resource estimate appropriately reflects the view of the Competent Person.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 This MRE follows a maiden MRE published in 2009 by Blackstone Resources, and to which this MRE reconciles against when the different modeling assumptions are considered. The previous MRE is displayed in Table E. This MRE was peer reviewed in which the estimation process was validated.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate 	 The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource as per the guidelines of the 2012 JORC Code. This MRE was undertaken using ordinary kriging which not a probabilistic method, hence no quantitative confidence can be given. The Inferred category reflects the good lithological and grade continuity within a context of the current wide drill spacing and incomplete sampling, and low sample count of density measurements. The proportion of Inferred resource which is extrapolated beyond a polygon outlining the outermost drill intersections is 5.8Mt @ 0.29% Ni, 0.12% Cu, 0.024% Co for about 75% of tonnes, 77% of Ni, 75% Cu, and 78% of contained Co. The maximum extrapolation distance is 70m, which is the maximum distance of grade continuity identified

Criteria	JORC Code explanation	Commentary
	should be compared with production data, where available.	in variography of the composite data.This MRE is a global resource estimate.No production data is available to reconcile this estimate with.

domain	hole_id	from (m)	to (m)	int	Ni%	Cu%	Co%	У	x	z	depth (m)	azi grid	dip	comment
dal_2	ES08-108	35.15	53.85	18.7	0.33	0.12	0.03	6,804,681	534,418	727	200.01	230	-90	
dal_2	ES08-109	40.1	45.25	5.15	0.14	0.07	0.01	6,804,672	534,475	725	130.01	230	-60	
dal_4	ES08-135	9.05	41.52	32.47	0.47	0.20	0.04	6,805,064	533,865	728	176.61	230	-90	
dal_2	ES08-137	95.1	98.5	3.4	0.30	0.10	0.02	6,804,831	534,285	724	212.71	230	-80	
dal_2	ES08-137	106.22	178.11	71.89	-	-	-	6,804,831	534,285	724	212.71	230	-80	unsampled
dal_3	ES08-138	64.16	79.6	15.44	-	-	-	6,804,897	534,151	723	204.21	230	-80	unsampled
dal_2	ES08-138	96.13	103.2	7.07	0.13	0.04	0.01	6,804,897	534,151	723	204.21	230	-80	
dal_4	ES08-140	15	87.44	72.44	0.17	0.07	0.02	6,805,130	533,931	732	183.51	230	-88.3	
dal_4	ES08-141	20	77.75	57.75	0.40	0.15	0.03	6,805,168	533,903	734	199.51	236.8	-78.7	
dal_5	ES08-141	83.6	125	41.4	0.15	0.05	0.02	6,805,168	533,903	734	199.51	236.8	-78.7	
dal_4	ES08-142	20.8	35.2	14.4	0.15	0.07	0.01	6,804,994	533,948	723	138.01	230	-80	
dal_6	ES08-142	42.7	46.3	3.6	0.36	0.27	0.03	6,804,994	533,948	723	138.01	230	-80	
dal_6	ES08-143	52.4	53.5	1.1	1.17	0.42	0.09	6,804,949	533,998	722	137.11	230	-80	
dal_2	ES08-143	77	86.4	9.4	-	-	-	6,804,949	533,998	722	137.11	230	-80	unsampled
dal_4	ES08-144	13.5	35.05	21.55	0.38	0.12	0.03	6,805,033	533,901	726	99.21	230	-80	
dal_4	ES08-145	49.7	56.7	7	-	-	-	6,805,087	533,979	729	116.01	230	-80	unsampled
dal_4	ES08-146	15	62	47	0.17	0.08	0.02	6,804,995	533,860	724	92.51	235	-80	
dal_4	ES08-147	18	34.5	16.5	0.22	0.10	0.02	6,805,011	533,801	724	66.91	249	-80.9	
dal_4	ES08-148	10.5	39	28.5	0.20	0.08	0.02	6,805,068	533,795	717	162.11	209.3	-81	
dal_5	ES08-148	59	60	1	0.53	0.18	0.04	6,805,068	533,795	717	162.11	209.3	-81	
dal_5	ES08-148	79	84.5	5.5	0.30	0.11	0.02	6,805,068	533,795	717	162.11	209.3	-81	
dal_4	ES08-149	16.9	43	26.1	0.29	0.15	0.02	6,805,360	533,494	738	209.61	200	-80	
dal_5	ES08-149	102.65	144.15	41.5	-	-	-	6,805,360	533,494	738	209.61	200	-80	unsampled
dal_2	ES08-150	34.6	87.17	52.57	-	-	-	6,804,380	534,175	745	133.71	230	-80	unsampled
dal_1	ES08-150	92.2	133.7	41.5	-	-	-	6,804,380	534,175	745	133.71	230	-80	unsampled
dal_2	ES08-151	7	121.2	114.2	0.01	0.00	0.00	6,804,274	534,345	745	179.31	230	-80	
dal_1	ES08-151	127.7	132.35	4.65	-	-	-	6,804,274	534,345	745	179.31	230	-80	unsampled
dal_3	ES08-155	17.6	29.65	12.05	-	-	-	6,804,587	534,009	724	215.51	50	-52	unsampled
dal_2	ES08-155	41.7	128.1	86.4	-	-	-	6,804,587	534,009	724	215.51	50	-52	unsampled
dal_4	ES08-162	42	78.9	36.9	0.26	0.11	0.02	6,805,212	533,872	737	197.31	232.7	-78.9	
dal_5	ES08-162	81	117.22	36.22	0.17	0.08	0.02	6,805,212	533,872	737	197.31	232.7	-78.9	
dal_4	ES08-163	98.2	103.64	5.44	0.26	0.09	0.02	6,805,238	533,971	751	160.91	218.7	-77.3	
dal_5	ES08-163	118.11	138.5	20.39	0.21	0.08	0.02	6,805,238	533,971	751	160.91	218.7	-77.3	
dal_4	ES08-164	78.25	107.65	29.4	0.27	0.10	0.03	6,805,273	533,948	753	148.54	234.5	-77.1	
dal_5	ES08-164	126.46	140.5	14.04	0.13	0.05	0.01	6,805,273	533,948	753	148.54	234.5	-77.1	
dal_4	ES08-165	98.2	115.6	17.4	0.22	0.34	0.02	6,805,313	533,909	757	170.61	233.6	-74.9	
dal_4	ES08-167	130	138.06	8.06	0.27	0.09	0.02	6,805,283	534,037	766	205.71	234.6	-79	
dal_4	ES2004-05	8.8	55	46.2	0.38	0.16	0.03	6,805,040	533,840	727	119.4	230	-79	
dal_4	ES2004-06	15.6	47	31.4	0.22	0.11	0.02	6,805,105	533,827	728	62.4	229	-75	
dal_4	ES2004-07	18.3	39.4	21.1	0.13	0.07	0.01	6,805,142	533,804	732	72.4	231	-75	

Table A: Drill hole intersections used in the mineral resource estimate at Dalen prospect.

Table B: Interpolation parameters used

				variogra	m model		model			Direction			ratio 1		Sample No		
element	domain	Ref #	nugget	sill1	sill 2	total	range 1	range 2	max range	plunge	strike	dip	maj-sm	maj-minor	Min	Max	Max / DH
Ni	1-6	1	0.03	0.97		1.00	70		70	0	100	10	1	1.05	2	24	
Cu	1-6	2	0.07	0.93		1.00	80		70	0	113	5	1	1.7	2	24	
Со	1-6	3	0.04	0.96		1.00	70		70	0	108	10	1	1.4	2	24	

Table C: Gross metal value calculation

	Ni	Cu	Со
USD\$/lb	7.71	2.2	7.71
USD\$/t	16,993	4,849	16,993

Given by equation: ((Ni%*16993)+(Cu%*4849)+(Co%*16993))/100

	Undiluted Composites					Diluted Composites							top cuts			Block model	
Domain	Variable	Number of composites	Minimum value	Maximum value	Mean	Number of composites	Minimum value	Maximum value	Mean	Median	Standard Deviation	Coefficient of variation	topcut	count cut	mean	tonnes	% ave.
1	со					46	-	-	-	-	-	-				1,753,750	-
2	со	38	0.005	0.041	0.021	368	-	0.041	0.002	-	0.007	3.22				14,502,750	0.002
3	со					27	-	-	-	-	-	-				1,000,400	-
4	со	383	0.002	0.063	0.022	518	-	0.063	0.022	0.020	0.012	0.54				8,860,250	0.020
5	со	105	0.004	0.094	0.019	160	-	0.044	0.013	0.015	0.010	0.75	0.040	2	0.013	3,592,900	0.011
6	со	5	0.006	0.094	0.044	5	0.006	0.094	0.044	0.041	0.033	0.76				54,900	0.045
1	си					46	-	-	-	-	-	-				1,738,500	-
2	cu	38	0.01	0.24	0.09	368	-	0.24	0.01	-	0.03	3.41				14,386,850	0.01
3	cu					27	-	-	-	-	-	-				1,000,400	-
4	си	383	0.01	0.61	0.11	518	-	0.40	0.11	0.10	0.07	0.65	0.4	8	0.11	8,823,650	0.11
5	cu	105	0.01	0.42	0.07	160	-	0.25	0.05	0.04	0.05	0.96	0.2	1	0.05	3,586,800	0.04
6	си	5	0.06	0.47	0.30	5	0.06	0.47	0.30	0.33	0.15	0.51				54,900	0.30
1	ni					46	-	-	-	-	-	-				1,753,750	-
2	ni	38	0.06	0.50	0.25	368	-	0.50	0.03	-	0.09	3.27				14,777,250	0.03
3	ni					27	-	-	-	-	-	-				1,003,450	-
4	ni	383	0.00	0.88	0.27	518	-	0.88	0.27	0.23	0.16	0.61				8,875,500	0.24
5	ni	105	0.01	1.17	0.19	160	-	0.54	0.13	0.13	0.11	0.86	0.4	4	0.13	3,617,300	0.12
6	ni	5	0.04	1.17	0.52	5	0.04	1.17	0.52	0.47	0.42	0.81				54,900	0.53

Table D: Average composite values and top cuts applied reconciled against interpolated block model averages (no lower cut applied to block model).

Table E: 2009 Mineral Resource Estimate, Dalen Prospect

Grand Total	10.00	0.27	0.11	0.02
Inferred	5.4	0.25	0.11	0.02
Indicated	4.6	0.29	0.12	0.02
	(Mt)	(%)	(%)	(%)
Resource Category	Tonnes	Ni	Cu	Со
2009: reported to US	SD\$40/t GMV			

Hole ID	Northing WGS84 UTM Zone 32N	Easting WGS84 UTM Zone 32N	Elevation (m)	Depth (m)	Azimuth	Dip
ES08-108	6804681	534418	727.00	200.01	0	230
ES08-109	6804672	534475	725.00	130.01	0	230
ES08-137	6804831	534285	724.00	212.71	0	230
ES08-138	6804897	534151	723.00	204.21	0	230
ES08-140	6805130	533931	732.00	183.51	0	230
ES08-141	6805168	533903	734.00	199.51	0	236.8
ES08-142	6804994	533948	723.00	138.01	0	230
ES08-143	6804949	533998	722.00	137.11	0	230
ES08-144	6805033	533901	726.00	99.21	0	230
ES08-145	6805087	533979	729.00	116.01	0	230
ES08-147	6805011	533801	724.00	66.91	0	249
ES08-148	6805068	533795	717.00	162.11	0	209.3
ES08-149	6805360	533494	738.00	209.61	0	200
ES08-150	6804380	534175	745.00	133.71	0	230
ES08-151	6804274	534345	745.00	179.31	0	230
ES08-155	6804587	534009	724.00	215.51	0	50
ES08-162	6805212	533872	737.00	197.31	0	232.7
ES08-163	6805238	533971	751.00	160.91	0	218.7
ES08-164	6805273	533948	753.00	148.54	0	234.5
ES08-165	6805313	533909	757.00	170.61	0	233.6
ES08-167	6805283	534037	766.00	205.71	0	234.6
ES2004-05	6805040	533840	727.00	119.40	0	230
ES2004-06	6805105	533827	728.00	62.40	0	229
ES2004-07	6805142	533804	732.00	72.40	0	231
ESO8-135	6805064	533865	728.00	176.61	0	230
ESO8-146	6804995	533860	724.00	92.51	0	235
ESO8-163	6805238	533971	751.00	160.91	0	218.7
ESO8-164	6805273	533948	753.00	148.54	0	234.5