

Shallow gold mineralisation at Mulga Plum

- First pass shallow RC drilling at Ardea's Mulga Plum Gold prospect northeast of Menzies has shown significant shallow gold mineralisation close to surface.
- Results include:
 - o AJAR0009: 2 m at 8.84 g/t gold from 14 m
 - o AJAR0003: 2 m at 2.96 g/t gold from 42 m
 - o AJAR0011: 6 m at 1.22 g/t gold from 10 m
- Drill results complement Ardea rock chip sampling results that recorded veinhosted mineralisation of up to 17.1 g/t gold.
- Results show gold mineralisation associated with both flat lying and steep cross-cutting features. Geological interpretation and follow-up targeting continues.

Following on from the successful drilling campaign at Big Four Gold at Goongarrie (ASX release 26 February 2020), Ardea Resources Limited (Ardea or the Company) is pleased to announce early stage and successful intersection of shallow gold mineralisation at the Mulga Plum project, northeast of Menzies in the Eastern Goldfields of Western Australia (Figure 2).

First-pass drilling at Mulga Plum has shown that shallow gold mineralisation appears to be associated with both flat-lying and subvertical structures throughout the historic mining area, hosted within mainly potassic altered granite.

Historic workings at Mulga Plum (17 shafts and shallow pits at Mulga Plum prospect – Figure 1) coincide with surface gold mineralisation. Recent and historic rock chipping highlighted locally high-grade gold mineralisation in a series of veins and strongly altered host rocks.

Ardea's Managing Director, Andrew Penkethman, said:

"Ardea is in the enviable position of having a large and highly prospective nickel and gold tenement package in the Eastern Goldfields of Western Australia. The Kalgoorlie Nickel Project tenements have historically been explored for near surface nickel-cobalt mineralisation but have seen limited modern and systematic exploration for gold and this represents a prime opportunity to define new gold targets.

Ardea will continue to test the prospectivity of its large Eastern Goldfields land holding for gold and nickel sulphides."

ASX & Media Release

27 February 2020

ASX Symbol ARL

Ardea Resources Limited

Suite 2 / 45 Ord St West Perth WA 6005

PO Box 1433 West Perth WA 6872

Telephone

+61 8 6244 5136

Email ardea@ardearesources.com.au

Website

www.ardearesources.com.au

Directors

Katina Law Non-Executive Chair

Andrew Penkethman Managing Director & CEO

Ian Buchhorn Technical Executive Director

Wayne Bramwell Non-Executive Director

Executive Management

Sam Middlemas Company Secretary & CFO

Matt Painter General Manager Exploration

Issued Capital

Fully Paid Ordinary Shares 117,300,435

Directors/Employee Performance Rights 4,476,000

ABN 30 614 289 342

Gold mineralisation at Mulga Plum

Significant gold mineralisation has been confirmed at Mulga Plum at shallow levels (see Appendix 1 for full listing). Intercept calculation parameters were 0.5 g/t cutoff, minimum intercept thickness of 1 m, and maximum internal waste of 2 m.

The new shallow gold intercepts are all located at the Mulga Plum prospect (Figure 1). Significant intercepts include:

AJAR0003	2 m at 1.19 g/t gold from 20 m
and	2 m at 2.96 g/t gold from 42 m
AJAR0006	2 m at 1.00 g/t gold from 18 m
AJAR0007	2 m at 1.25 g/t gold from 38 m
AJAR0009	2 m at 8.84 g/t gold from 14 m
AJAR0011	6 m at 1.22 g/t gold from 10 m

These results complement and are consistent with the historic assay results that show common surface and shallow gold mineralisation at Mulga Plum. Ardea's rock chip sampling returned an average grade of 1.8g/t Au in a variety of silicified rock types and veins, with maximum grade of 17.1g/t in a grey, goethitic quartz vein (ASX release 25 November 2019). Additionally, much of the documented alteration and sulphide mineralisation seems to coincide with historically mined gold mineralisation. The full extent of this mineralisation and its relationships to alteration styles and structures is still being defined.

Further westward of these results from the Mulga Plum prospect, results from the Plum Pudding prospect did not deliver significant intercepts that warrant further evaluation.

Figure 1 – Drill collars and recent grab sample rock chip results from the Mulga Plum prospect, showing historic workings. Projection: MGA GDA94 Zone 51.

Limited program leaves potentially best areas untested

Access issues limited this drilling to certain areas with the most prospective portions of the prospect located in the heart of and on the southwestern side of the prospect. Drill holes were only collared where suitable drill pads could be safely defined without significant ground disturbance while the abundance of surface workings precluded access to many of the more favourable drill collar locations.

Ardea will assess the future ground works needed to access the most highly mineralised, historically worked sites so as to make them safely accessible for future drilling.

Figure 2 – Location of the Mulga Plum project, northeast of Menzies along the Goldfields Highway. Projection: MGA GDA94 Zone 51.

Further targeting

The geology of the Mulga Plum project area is very prospective and somewhat unusual for the Eastern Goldfields, with a flat-lying to shallow east-dipping bimodal volcanic package juxtaposed against granite and cross-cut by a series of dykes and faults. Logging of RC drill chips has confirmed widespread disseminated sulphides across several alteration zones (propylitic epidote and potassic biotite dominant). These new results are being incorporated into developing interpretive models of the Mulga Plum geology. Surface geological controls, mine working distributions, and uncommon geophysical signatures are being integrated with the results of drilling to maximise our understanding of the area. New targets are expected to result from this ongoing work.

Program parameters

Drilling was completed in late January 2020. A total of 25 RC holes for 1,518 metres was completed.

A total of 760 assays were taken from the 25 drill holes completed. All assay results are from 2 m composite samples. Drilling was aimed around the historic surface and shallow underground workings.

History

Historic mining is assumed to be from around the time of the Kookynie gold rush, around 1900-1910. There is no definitive historic data concerning timing or production. A previous explorer undertook a limited drill program of 10 drillholes in 2012, mostly on the periphery of the prospect area. Three other drill holes of uncertain origin were also drilled around this time, though no record seems to exist.

Figure 3 – Mulga Plum is located at the western end of the historic Niagara and Kookynie gold fields (yellow squares are gold occurrences and mines. Geology: pink = granite, green = mafic rocks, orange to yellow = felsic rocks, grey = (volcano-)sedimentary rocks, pale yellows = transported cover). Projection: MGA GDA94 Zone 51.

Regional setting

The Mulga Plum prospect is located at the western extremity of the historic Niagara and Kookynie goldfields in the Malcolm greenstone belt. Gold was discovered in the area by a number of prospectors in 1895, and several towns quickly established. At the height of productivity in the early 1900s, the goldfields supported around 7,000 people. Since the shutdown of most of these towns and mines in the 1920s, these goldfields have sporadically been home

to several gold mining operations, but the area has remained underexplored compared to nearby goldfields at Leonora and Menzies.

The Malcolm Greenstone Belt consists of bimodal rhyolite-basalt package and associated sedimentary rocks, intruded by numerous gabbroic to dolerite sills. Around Mulga Plum, the Jeedamya rhyodacite is associated with metabasalt, magnetic dolerite sills, and the mafic Niagara Gabbro Complex. Gold is typically found throughout these goldfields as epigenetic vein and lode style in three types:

- 1. moderate to high grade mineralisation in and around brittle structures that crosscut magnetic dolerite intrusives.
- 2. high grade quartz vein deposits associated with north-south trending fault-related structures within granite.
- 3. large tonnage, low grade deposits associated with quartz vein stockworks.

The area also hosts Volcanogenic Massive Sulphide (VMS) zinc-lead-copper-gold mineralisation at the Jeedamya project, which lies within Ardea's E40/350 tenement. VMS deposits have not been mined historically in the Niagara and Kookynie goldfields but are nearby at Jaguar to the northwest of Leonora.

About Ardea Resources

Ardea Resources (ASX:ARL) is an ASX-listed resources company, with a large portfolio of 100% controlled West Australian-based projects, focussed on:

- Development of the Goongarrie Nickel Cobalt Project, which is part of the Kalgoorlie Nickel Project, a globally significant series of nickel-cobalt deposits which host the largest nickel-cobalt resource in the developed world, coincidentally located as a cover sequence overlying fertile orogenic gold targets; and
- Advanced-stage exploration at WA nickel sulphide and gold targets within the Eastern Goldfields world-class nickel-gold province.

For further information regarding Ardea, please visit www.ardearesources.com.au or contact:

Ardea Resources:

Andrew Penkethman

Managing Director and Chief Executive Officer, Ardea Resources Limited Tel +61 8 6244 5136

CAUTIONARY NOTE REGARDING FORWARD-LOOKING INFORMATION

This news release contains forward-looking statements and forward-looking information within the meaning of applicable Australian securities laws, which are based on expectations, estimates and projections as of the date of this news release.

This forward-looking information includes, or may be based upon, without limitation, estimates, forecasts and statements as to management's expectations with respect to, among other things, the timing and amount of funding required to execute the Company's exploration, development and business plans, capital and exploration expenditures, the effect on the Company of any changes to existing legislation or policy, government regulation of mining operations, the length of time required to obtain permits, certifications and approvals, the success of exploration, development and mining activities, the geology of the Company's properties, environmental risks, the availability of labour, the focus of the Company in the future, demand and market outlook for precious metals and the prices thereof, progress in development of mineral properties, the Company's ability to raise funding privately or on a public market in the future, the Company's future growth, results of operations, performance, and business prospects and opportunities. Wherever possible, words such as "anticipate", "believe", "expect", "intend", "may" and similar expressions have been used to identify such forward-looking information. Forward-looking information is based on the opinions and estimates of management at the date the information is given, and on information available to management at such time.

Forward-looking information involves significant risks, uncertainties, assumptions and other factors that could cause actual results, performance or achievements to differ materially from the results discussed or implied in the forward-looking information. These factors, including, but not limited to, the ability to complete the Ardea spin-out of Godolphin Resources Limited on the basis of the proposed terms and timing or at all, fluctuations in currency markets, fluctuations in commodity prices, the ability of the Company to access sufficient capital on favourable terms or at all, changes in national and local government legislation, taxation, controls, regulations, political or economic developments in Australia or other countries in which the Company does business or may carry on business in the future, operational or technical difficulties in connection with exploration or development activities, employee relations, the speculative nature of mineral exploration and development, obtaining necessary licenses and permits, diminishing quantities and grades of mineral reserves, contests over title to properties, especially title to undeveloped properties, the inherent risks involved in the exploration and development of mineral properties, the uncertainties involved in interpreting drill results and other geological data, environmental hazards, industrial accidents, unusual or unexpected formations, pressures, cave-ins and flooding, limitations of insurance coverage and the possibility of project cost overruns or unanticipated costs and expenses, and should be considered carefully. Many of these uncertainties and contingencies can affect the Company's actual results and could cause actual results to differ materially from those expressed or implied in any forward-looking statements made by, or on behalf of, the Company. Prospective investors should not place undue reliance on any forward-looking information.

Although the forward-looking information contained in this news release is based upon what management believes, or believed at the time, to be reasonable assumptions, the Company cannot assure prospective purchasers that actual results will be consistent with such forward-looking information, as there may be other factors that cause results not to be as anticipated, estimated or intended, and neither the Company nor any other person assumes responsibility for the accuracy and completeness of any such forward-looking information. The Company does not undertake, and assumes no obligation, to update or revise any such forward-looking statements or forward-looking information contained herein to reflect new events or circumstances, except as may be required by law.

No stock exchange, regulation services provider, securities commission or other regulatory authority has approved or disapproved the information contained in this news release.

Competent Person Statement

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Dr Matthew Painter, a Competent Person who is a Member of the Australian Institute of Geoscientists. Dr Painter is a full-time employee of Ardea Resources Limited and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr Painter consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Appendix 1 – Collated intercepts

Parameters used to define gold intercepts at Mulga Plum

Parameter	Gold
Minimum cut-off	0.5 g/t
Minimum intercept thickness	1 m
Maximum internal waste thickness	2 m

Gold intercepts are defined using a 0.5 g/t Au cut-off on a minimum intercept of 1 m and a maximum internal waste of 2 m.

Drillhole	Interval	Gold intercept (0.5 g/t cutoff)
AJAR0003	20–22 m	2 m at 1.19 g/t gold from 20 m
and	42–44 m	2 m at 2.96 g/t gold from 42 m
AJAR0004	28–30 m	2 m at 0.59 g/t gold from 28 m
AJAR0005	10–12 m	2 m at 0.80 g/t gold from 10 m
AJAR0006	18–20 m	2 m at 1.00 g/t gold from 18 m
AJAR0007	38–40 m	2 m at 1.25 g/t gold from 38 m
AJAR0008	4–18 m	6 m at 0.95 g/t gold from 4 m
		and 2 m at 0.80 g/t gold from 16 m
AJAR0009	14–16 m	2 m at 8.84 g/t gold from 14 m
AJAR0010	16–18 m	2 m at 0.64 g/t gold from 16 m
AJAR0011	10–16 m	6 m at 1.22 g/t gold from 10 m
AJAR0020	24–26 m	2 m at 0.89 g/t gold from 24 m

Appendix 2 – Collar location data

New drill holes by Ardea Resources

Drill hole	Type	Depth	Tenement	Grid	Easting	Northing	RL	Dip	Azimuth
		(m)	E40/00250	MCA04 51	(ME)	(MN)	(MASL)	(č) 54	(°)
		00	E40/00000		225400.7	0744770.4	431.0	-54	220
AJARUUUZ	RU	75	E40/00350	MGA94_51	335190.7	0/44/92.1	432.2	-55	225
AJAR0003	RC	50	E40/00350	MGA94_51	335211.8	6744807.1	432.5	-54	225
AJAR0004	RC	58	E40/00350	MGA94_51	335226.7	6744822.5	432.2	-55	222
AJAR0005	RC	70	E40/00350	MGA94_51	335255.2	6744852.3	431.5	-57	225
AJAR0006	RC	50	E40/00350	MGA94_51	335266.8	6744864.1	431.0	-55	228
AJAR0007	RC	80	E40/00350	MGA94_51	335255.2	6744832.0	431.9	-57	223
AJAR0008	RC	60	E40/00350	MGA94_51	335240.6	6744792.4	432.2	-56	223
AJAR0009	RC	65	E40/00350	MGA94_51	335256.4	6744808.5	432.3	-57	223
AJAR0010	RC	50	E40/00350	MGA94_51	335279.7	6744817.6	431.7	-58	222
AJAR0011	RC	50	E40/00350	MGA94_51	335212.3	6744782.2	432.0	-58	224
AJAR0012	RC	50	E40/00350	MGA94_51	335185.8	6744751.5	431.7	-56	046
AJAR0013	RC	50	E40/00350	MGA94_51	335202.1	6744722.3	430.9	-59	045
AJAR0014	RC	50	E40/00350	MGA94_51	335220.6	6744724.4	430.7	-56	224
AJAR0015	RC	50	E40/00350	MGA94_51	335243.0	6744735.4	430.5	-58	222
AJAR0016	RC	50	E40/00350	MGA94_51	335235.9	6744748.3	430.9	-56	225
AJAR0017	RC	50	E40/00350	MGA94_51	335259.1	6744746.0	429.9	-57	223
AJAR0018	RC	50	E40/00350	MGA94_51	335271.0	6744757.4	429.7	-56	223
AJAR0019	RC	60	E40/00350	MGA94_51	335250.6	6744769.5	430.9	-56	224
AJAR0020	RC	70	E40/00350	MGA94_51	335049.2	6744829.6	433.4	-59	276
AJAR0021	RC	70	E40/00350	MGA94_51	335048.9	6744807.1	432.9	-60	268
AJAR0022	RC	80	E40/00350	MGA94_51	335007.1	6744799.0	434.2	-60	267
AJAR0023	RC	70	E40/00350	MGA94_51	335044.4	6744789.1	432.9	-60	270
AJAR0024	RC	70	E40/00350	MGA94_51	335001.3	6744849.3	434.5	-59	271
AJAR0025	RC	80	E40/00350	MGA94_51	335000.1	6744870.6	434.3	-59	270

Appendix 3 – Assay results from Mulga Plum

All assays from recent drilling program at Mulga Plum project.

Abbreviations used: Au – gold, Ag – silver, As – arsenic, Sb – antimony, S – sulphur, m – metre, g/t – grams per tonne, ppm – parts per million, b.d. – below detection.

Hole	From	To	Sample	Au	Ag	As	Sb	S
AJAR0001	(m) 0	(111)	AR029213	0.017	(g/t) b d	(ppm) b d	(ppm) 0.2	0.002
AJAR0001	2	4	AR029214	0.008	b.d.	b.d.	0.4	b.d.
AJAR0001	4	6	AR029215	0.013	b.d.	b.d.	0.6	0.007
AJAR0001	6	8	AR029216	0.005	b.d.	b.d.	0.5	0.007
AJAR0001	8	10	AR029218	0.004	0.1	b.d.	1	0.005
AJAR0001	10	12	AR029219	0.002	D.d.	D.d.	0.9	0.004
AJAR0001 A.IAR0001	12	14	AR029220	0.001	b.u. h.d	b.d.	1.6	0.014
AJAR0001	16	18	AR029222	0.004	b.d.	b.d.	0.3	0.013
AJAR0001	18	20	AR029223	0.007	0.1	b.d.	0.3	0.133
AJAR0001	20	22	AR029224	0.004	b.d.	b.d.	1.9	0.08
AJAR0001	22	24	AR029225	0.006	0.1	b.d.	0.4	0.081
AJAR0001	24	20	AR029226	0.002	D.O.	D.O.	0.2	0.034
AJAR0001	28	30	AR029229	0.001	b.d.	b.d.	0.3	0.023
AJAR0001	30	32	AR029230	b.d.	b.d.	b.d.	0.2	0.054
AJAR0001	32	34	AR029231	0.004	0.1	b.d.	0.2	0.056
AJAR0001	34	36	AR029232	0.002	b.d.	b.d.	0.2	0.089
AJAR0001	36	38	AR029233	0.003	D.d.	b.d.	0.2	0.03
AJAR0001 AJAR0001	40	40	AR029234	b.d. b.d	0.5	b.d.	0.1	0.000
AJAR0001	42	44	AR029236	b.d.	b.d.	b.d.	b.d.	0.148
AJAR0001	44	46	AR029238	b.d.	b.d.	b.d.	0.1	0.036
AJAR0001	46	48	AR029239	0.001	b.d.	b.d.	0.1	0.154
AJAR0001	48	50	AR029240	0.001	b.d.	b.d.	0.1	0.011
AJAK0001	52	52	AR029241 AR020242	D.d.	D.đ.	D.Cl.	0.1	0.025
AJAR0001	54	56	AR029242	0.002	0,1	b.d.	0.2	0.086
AJAR0001	56	58	AR029244	b.d.	b.d.	20	0.1	0.04
AJAR0001	58	60	AR029245	b.d.	b.d.	b.d.	0.1	0.014
AJAR0002	0	2	AR029246	0.013	b.d.	b.d.	b.d.	0.004
AJAR0002	2	4	AR029248	0.08	b.d.	b.d.	0.1	0.001
AJAR0002 A.IAR0002	4	8	AR029249 AR029250	0.177	b.d.	b.d.	0.1	b.d.
AJAR0002	8	10	AR029251	0.449	0.3	b.d.	0.1	0.022
AJAR0002	10	12	AR029252	0.032	b.d.	b.d.	b.d.	0.042
AJAR0002	12	14	AR029253	0.089	0.2	b.d.	b.d.	0.026
AJAR0002	14	16	AR029254	0.012	0.2	b.d.	0.7	0.03
AJAR0002	16	18	AR029255	0.006	D.d.	D.d.	0.2	0.016
AJAR0002 AJAR0002	20	20	AR029258	0.000	b.d. b.d	b.d.	0.2	0.018
AJAR0002	22	24	AR029259	0.005	b.d.	b.d.	1.3	0.147
AJAR0002	24	26	AR029260	0.003	b.d.	b.d.	0.9	0.11
AJAR0002	26	28	AR029261	0.015	b.d.	b.d.	1.3	0.132
AJAR0002	28	30	AR029262	0.016	b.d.	b.d.	1.5	0.189
AJAR0002 AJAR0002	30	34	AR029263	0.006	0.0.	b.d. h.d	0.5	0.155
AJAR0002	34	36	AR029265	0.056	b.d.	b.d.	0.9	0.099
AJAR0002	36	38	AR029266	0.004	b.d.	b.d.	0.4	0.067
AJAR0002	38	40	AR029268	0.002	b.d.	b.d.	0.4	0.035
AJAR0002	40	42	AR029269	0.008	0.2	b.d.	0.6	0.077
AJAR0002 A IAR0002	42	44	AR029270	0.002	b.d.	b.d.	0.3	0.001
AJAR0002	46	48	AR029272	0.001	b.d.	b.d.	0.7	0.048
AJAR0002	48	50	AR029273	0.001	b.d.	b.d.	0.6	0.103
AJAR0002	50	52	AR029274	0.001	b.d.	b.d.	0.7	0.02
AJAR0002	52	54	AR029275	b.d.	0.3	b.d.	1.5	0.004
AJAR0002	56	58	AR029270 AR029278	0.002	b d	b.d.	0.3	0.05
AJAR0002	58	60	AR029279	0.001	b.d.	b.d.	0.6	0.081
AJAR0002	60	62	AR029280	0.001	b.d.	b.d.	0.3	0.026
AJAR0002	62	64	AR029281	b.d.	0.2	b.d.	0.5	0.04
AJAR0002	64	66	AR029282	0.001	0.2	b.d.	0.5	0.011
AJAR0002	68	70	AR029203	h d	b d	b.d.	0.2	0.000
AJAR0002	70	72	AR029285	b.d.	b.d.	b.d.	0.2	0.009
AJAR0002	72	74	AR029286	b.d.	b.d.	b.d.	0.2	0.043
AJAR0002	74	75	AR029288	0.001	b.d.	b.d.	0.4	0.015
AJAR0003	0	2	AR029289	0.016	0.1	b.d.	0.3	0.006
AJAR0003 AJAR0003	2 	4	AR029290 AR029291	0.019	b.d.	b.a. h.d	0.1	0.001
AJAR0003	6	8	AR029292	0.014	b.d.	b.d.	b.d.	0.002
AJAR0003	8	10	AR029293	0.044	b.d.	b.d.	b.d.	0.001
AJAR0003	10	12	AR029294	0.017	b.d.	b.d.	0.3	b.d.
AJAR0003	12	14	AR029295	0.026	b.d.	b.d.	0.3	b.d.
AJAKUUU3 A.IAR0003	14	10	AR029296	0.11	0.1	0.0. h.d	0.5	b.a.
AJAR0003	18	20	AR029299	0.039	0.2	b.d.	0.5	0.103
AJAR0003	20	22	AR029300	1.19	0.3	b.d.	0.5	0.031
AJAR0003	22	24	AR029301	0.023	0.4	b.d.	0.3	0.035

Hole	From	То	Sample	Au	Ag	As	Sb	S
A 1AD0002	(m) 24	(m)	AD020202	(g/t)	(g/t)	(ppm)	(ppm)	(%)
AJARUUU3	24	20	AR029302	0.033	0.3	D.U.	0.2	0.021
AJAR0003	20	20	AR029303	0.006	0.0.	b.u.	0.3	0.032
AJAR0003	20	30	AR029304	0.000	0.2	b.u.	0.3	0.090
A IAR0003	32	3/	AR029306	0.003	0.5 h.d	b.u.	0.2	0.000
A.IAR0003	34	36	AR029308	0.003	b.d.	b.d.	0.0	0.002
AJAR0003	36	38	AR029309	0.023	b.d.	b.d.	0.1	0.042
AJAR0003	38	40	AR029310	0.004	b.d.	b.d.	0.2	0.055
AJAR0003	40	42	AR029311	0.016	0.2	b.d.	0.2	0.093
AJAR0003	42	44	AR029312	2.96	0.2	b.d.	0.2	0.107
AJAR0003	44	46	AR029313	0.014	b.d.	b.d.	0.2	0.012
AJAR0003	46	48	AR029314	0.009	b.d.	10	0.1	0.072
AJAR0003	48	50	AR029315	0.003	0.1	b.d.	0.1	0.144
AJAR0004	0	2	AR029316	0.027	b.d.	b.d.	0.2	0.003
AJAR0004	2	4	AR029318	0.032	b.d.	20	0.1	b.d.
AJAR0004	4	6	AR029319	0.03	b.d.	b.d.	b.d.	b.d.
AJAR0004	6	8	AR029320	0.021	b.d.	b.d.	b.d.	0.001
AJAR0004	8	10	AR029321	0.01	b.d.	b.d.	0.1	0.002
AJAR0004	10	12	AR029322	0.038	b.d.	b.d.	0.2	0.003
AJAR0004	12	14	AR029323	0.033	b.d.	b.d.	0.2	0.003
AJAR0004	14	16	AR029324	0.028	0.3	b.d.	0.2	0.059
AJAR0004	16	18	AR029325	0.026	0.1	b.d.	0.1	0.03
AJARUUU4	18	20	AR029326	0.012	0.2	D.d.	0.1	0.006
	20	22	AR029328	0.009	0.4	b.d.	0.1	0.015
	22	24	AR029329	0.035	0.1	D.d.	0.2	0.003
	24	20	ARU29330	0.022	0.2 b.d	b.d.	0.1	0.008
	20	20	AR029331	0.037	0.0.	b.d.	0.2 b.d	0.014
4.14R0004	30	32	AR020332	0.091	0.2	b.u. h.d	0.0.	0.000
	32	3/	AR029333	0.02	0.2	b.u.	0.1	0.144
A.IAR0004	34	36	AR029335	0.013	0.4	20	0.1	0.145
4.IAR0004	36	38	AR029336	0.005	b.d	h d	0.1	0.037
A.IAR0004	38	40	AR029338	0.004	b.d.	b.d. b.d	0.3	0.076
JAR0004	40	42	AR029339	0.007	b.d.	b.d.	0.2	0.257
JAR0004	42	44	AR029340	0.003	0.1	b.d.	0.3	0.054
JAR0004	44	46	AR029341	0.003	0.4	b.d.	0.2	0.123
AJAR0004	46	48	AR029342	0.003	0.2	b.d.	0.4	0.069
AJAR0004	48	50	AR029343	0.01	b.d.	b.d.	0.2	0.055
JAR0004	50	52	AR029344	0.002	b.d.	b.d.	0.2	0.061
JAR0004	52	54	AR029345	b.d.	b.d.	b.d.	0.2	0.055
AJAR0004	54	56	AR029346	0.002	b.d.	b.d.	0.2	0.033
AJAR0004	56	58	AR029348	0.002	b.d.	b.d.	0.7	0.057
AJAR0005	0	2	AR029349	0.068	0.1	b.d.	0.2	0.005
JAR0005	2	4	AR029350	0.042	b.d.	b.d.	0.2	0.006
JAR0005	4	6	AR029351	0.013	b.d.	b.d.	0.4	0.01
AJAR0005	6	8	AR029352	0.024	0.1	b.d.	0.2	0.012
JAR0005	8	10	AR029353	0.08	0.1	b.d.	0.6	0.006
AJAR0005	10	12	AR029354	0.801	b.d.	D.d.	0.7	0.002
AJAKUUU5	12	14	AK029355	0.037	D.d.	D.d.	0.3	0.002
AJAKUUU5	14	10	ARU29356	0.078	D.C.	D.đ.	0.5	0.075
N 10 D0005	10	10	ARU29358	0.007	D.Q.	0.0.	0.5	0.000
NJARUUU5	10	20	ARU29359	0.007	0.2	D.U.	0.4	0.017
N 10 D0005	20	24	ARU29300	0.020	0.1 b.d	0.0.	0.4	0.052
	22	24	AR029301	0.000	b.d.	b.d.	0.4	0.120
A.IAR0005	24	20	AR029363	0.030	h d	b.u. h.d	0.2	0.040
AJAR0005	28	30	AR029364	0.007	b.d.	b.d.	0.3	0.146
AJAR0005	30	32	AR029365	0.01	0.3	b.d.	0.2	0,186
AJAR0005	32	34	AR029366	0,006	b.d.	b.d.	0.3	0,096
AJAR0005	34	36	AR029368	0.013	0.7	b.d.	0.2	0.046
AJAR0005	36	38	AR029369	0.016	b.d.	b.d.	0.2	0.119
AJAR0005	38	40	AR029370	0.019	b.d.	b.d.	0.2	0.096
AJAR0005	40	42	AR029371	0.015	0.5	b.d.	0.3	0.16
AJAR0005	42	44	AR029372	0.013	b.d.	b.d.	0.2	0.046
AJAR0005	44	46	AR029373	0.15	b.d.	b.d.	0.2	0.089
AJAR0005	46	48	AR029374	0.358	0.1	b.d.	0.3	0.033
AJAR0005	48	50	AR029375	0.012	b.d.	b.d.	0.1	0.084
AJAR0005	50	52	AR029376	0.017	0.5	30	b.d.	0.101
AJAR0005	52	54	AR029378	0.006	0.3	b.d.	0.1	0.058
AJAR0005	54	56	AR029379	0.004	0.1	b.d.	b.d.	0.074
AJAR0005	56	58	AR029380	0.012	b.d.	b.d.	0.1	0.022
AJAR0005	58	60	AR029381	0.004	0.4	b.d.	b.d.	0.04
AJAR0005	60	62	AR029382	0.009	0.2	b.d.	0.1	0.042
AJAR0005	62	64	AR029383	0.004	0.2	b.d.	0.2	0.208
AJAR0005	64	66	AR029384	0.006	0.2	b.d.	0.1	0.095
AJAR0005	66	68	AR029385	0.004	0.5	b.d.	b.d.	0.097
AJAR0005	68	70	AR029386	0.004	0.3	b.d.	0.2	0.012
AJARU006	0	2	AR029388	0.007	b.d.	b.d.	0.1	0.005
AJARU006	2	4	AR029389	0.019	0.1	b.d.	1.1	0.003
AJARUU06	4	⊢ 6	AR029390	0.012	b.d.	b.d.	0.2	0.002

Hole	From (m)	To (m)	Sample number	Au (a/t)	Ag (a/t)	As (mag)	Sb (ppm)	S (%)
AJAR0006	6	8	AR029391	0.008	b.d.	b.d.	0.1	0.035
AJAR0006	8	10	AR029392	0.05	0.2	b.d.	0.1	0.005
AJAR0006	10	12	AR029393	0.028	0.1	b.d.	0.2	0.014
AJAR0006	12	14	AR029394	0.021	0.2	b.d.	0.1	0.026
AJAR0006	14	10	AR029395	0.008	D.O.	D.d.	0.2	0.074
AJAR0000	18	20	AR029398	1	0.3	b.d.	0.2	0.343
AJAR0006	20	22	AR029399	0.075	b.d.	b.d.	0.2	0.002
AJAR0006	22	24	AR029400	0.017	0.4	b.d.	0.2	0.009
AJAR0006	24	26	AR029401	0.01	b.d.	b.d.	0.2	0.007
AJAR0006	26	28	AR029402	0.016	b.d.	b.d.	0.1	0.034
AJAR0006	28	30	AR029403	0.012	0.1	b.d.	0.2	0.013
AJAR0000	30	34	AR029404	0.014	0.3 b.d	b.d.	0.1	0.003
AJAR0006	34	36	AR029406	0.066	0.3	b.d.	0.2	0.02
AJAR0006	36	38	AR029408	0.023	0.1	b.d.	0.2	0.021
AJAR0006	38	40	AR029409	0.077	0.2	b.d.	0.1	0.16
AJAR0006	40	42	AR029410	0.08	b.d.	b.d.	b.d.	0.074
AJAR0006	42	44	AR029411	0.03	0.7	b.d.	0.1	0.065
AJAR0006	44	40	AR029412 AR029413	0.012	0.2 h.d	b.d. b.d	0.2	0.130
AJAR0006	48	50	AR029414	0.003	0.2	b.d.	b.d.	0.044
AJAR0007	0	2	AR029415	0.089	b.d.	b.d.	0.1	0.004
AJAR0007	2	4	AR029416	0.134	0.1	b.d.	0.1	0.008
AJAR0007	4	6	AR029418	0.035	b.d.	b.d.	0.1	0.008
AJAR0007	6	8	AR029419	0.261	b.d.	b.d.	0.6	0.034
AJAR0007	8 10	10	AR029420 AR029421	0.192	D.0.	D.d.	1.2	0.013
AJAR0007	10	14	AR029421	0.025	b.d	b.d.	0.3	0.001
AJAR0007	14	16	AR029423	0.041	b.d.	b.d.	1.4	0.109
AJAR0007	16	18	AR029424	0.345	0.1	b.d.	0.3	0.522
AJAR0007	18	20	AR029425	0.119	0.2	b.d.	0.3	0.062
AJAR0007	20	22	AR029426	0.054	0.1	b.d.	0.7	0.101
AJAR0007	22	24	AR029428	0.009	D.d.	D.d.	0.8	0.144
AJAR0007 A.IAR0007	24	20	AR029429 AR029430	0.008	b.u.	b.d.	0.4	0.082
AJAR0007	28	30	AR029431	0.012	0.2	b.d.	0.3	0.068
AJAR0007	30	32	AR029432	0.018	0.2	b.d.	0.4	0.098
AJAR0007	32	34	AR029433	0.046	b.d.	b.d.	0.2	0.193
AJAR0007	34	36	AR029434	0.037	0.2	b.d.	0.6	0.076
AJAR0007	36	38	AR029435	0.084	b.d.	b.d.	0.6	0.055
AJAR0007	38	40	AR029436	1.25	0.2	D.d.	0.4	0.197
AJAR0007	40	42	AR029439	0.030	0.1	b.d.	0.4	0.241
AJAR0007	44	46	AR029440	0.04	0.2	b.d.	0.5	0.996
AJAR0007	46	48	AR029441	0.415	0.3	b.d.	0.3	0.34
AJAR0007	48	50	AR029442	0.019	0.1	b.d.	0.2	0.161
AJAR0007	50	52	AR029443	0.01	b.d.	b.d.	0.2	0.142
AJAR0007	52	54	AR029444	0.054	D.d.	D.d.	0.3	0.129
AJAR0007 A.IAR0007	56	58	AR029445 AR029446	0.030	0.4	b.d.	0.1	0.176
AJAR0007	58	60	AR029448	0.004	0.2	b.d.	0.2	0.024
AJAR0007	60	62	AR029449	0.015	b.d.	b.d.	0.1	0.166
AJAR0007	62	64	AR029450	0.004	b.d.	b.d.	0.3	0.084
AJAR0007	64	66	AR029451	0.002	0.3	b.d.	0.4	0.06
AJAR0007	66	68 70	AR029452	0.002	0.1	D.d.	0.2	0.133
AJAR0007	70	72	AR029454	0.001	b.d.	b.d.	0.4	0.189
AJAR0007	72	74	AR029455	0.005	0.3	b.d.	0.2	0.011
AJAR0007	74	76	AR029456	0.001	0.1	b.d.	0.2	0.039
AJAR0007	76	78	AR029458	0.001	b.d.	b.d.	0.2	0.016
AJAR0007	78	80	AR029459	b.d.	b.d.	b.d.	0.3	0.11
AJAR0008	0	2	AR029460	0.016	D.0.	D.d.	0.3	0.029
AJAR0008	4	6	AR029462	1.97	0.3	b.d.	1.9	0.005
AJAR0008	6	8	AR029463	0.243	0.1	b.d.	0.7	0.009
AJAR0008	8	10	AR029464	0.624	b.d.	b.d.	0.9	0.012
AJAR0008	10	12	AR029465	0.06	b.d.	b.d.	1.3	0.037
AJAR0008	12	14	AR029466	0.111	b.d.	b.d.	0.5	b.d.
AJAR0006 A.IAR0008	14	18	AR029460 AR029469	0.039	0.0.	b.d. h.d	0.0	0.001
AJAR0008	18	20	AR029470	0.215	0.1	b.d.	0.2	b.d.
AJAR0008	20	22	AR029471	0.022	0.1	b.d.	0.6	0.018
AJAR0008	22	24	AR029472	0.047	0.4	b.d.	0.4	0.069
AJAR0008	24	26	AR029473	0.058	0.1	b.d.	0.2	0.002
AJAR0008	26	28	AR029474	0.134	0.2	b.d.	0.5	0.012
AJAR0008	20	30	AR029475 AR029476	0.077	0.2	b.u. h.d	0.4	0.135
AJAR0008	32	34	AR029478	0.02	b.d.	b.d.	1	0.072
AJAR0008	34	36	AR029479	0.016	b.d.	b.d.	0.7	0.059
AJAR0008	36	38	AR029480	0.006	0.1	b.d.	0.7	0.113
AJAR0008	38	40	AR029481	0.011	0.3	b.d.	1.2	0.068
	40	42	AK029482	0.002	0.2	D.d.	1	0.151
AJAR0008	42	44	AR029483	0.003	0.0	b.u. h.d	14	0.127
AJAR0008	46	48	AR029485	0.009	0.1	b.d.	1.3	0.175
AJAR0008	48	50	AR029486	0.001	0.1	b.d.	0.9	0.03
AJAR0008	50	52	AR029488	0.001	b.d.	b.d.	1.3	0.058
AJAR0008	52	54	AR029489	0.014	b.d.	b.d.	2.1	0.103
AJAR0008	54	56	AR029490	0.006	b.d.	b.d.	1.1	0.084
AJAR0008	58	00	AR029491 AR029492	h d	U.J hd	b.u. h.d	0.9	0.031
AJAR0009	0	2	AR029493	0.075	0.2	b.d.	1.2	0.006

Hole	From (m)	To (m)	Sample	Au (a/t)	Ag (a/t)	As (ppm)	Sb (ppm)	S (%)
AJAR0009	2	4	AR029494	0.058	0.2	(ppm) b.d.	0.3	0.003
AJAR0009	4	6	AR029495	0.041	0.2	b.d.	0.9	0.029
AJAR0009	6	8	AR029496	0.023	0.1	b.d.	0.4	0.035
AJAR0009	8	10	AR029498	0.018	b.d.	b.d.	0.8	0.007
AJAR0009	10	12	AR029499	0.032	b.d.	b.d.	0.6	0.006
AJAR0009	12	14	AR029500	0.036	b.d.	b.d.	0.3	0.016
AJAR0009	14	10	AR029501	0.04	0.3	D.d.	0.0	0.049
AJAR0009	18	20	AR029503	0.103	0.1	b.d.	0.5	0.023
AJAR0009	20	22	AR029505	0.042	b.d.	b.d.	0.7	0.007
AJAR0009	22	24	AR029506	0.024	b.d.	b.d.	0.9	0.042
AJAR0009	24	26	AR029507	0.143	b.d.	b.d.	0.5	0.044
AJAR0009	26	28	AR029508	0.008	b.d.	b.d.	0.8	0.023
AJAR0009	28	30	AR029509	0.038	0.4	b.d.	0.6	0.005
	30	32	AR029510	0.042	0.1	b.d.	0.3	0.173
	3/	36	AR029511 AR029513	0.000	b.d.	b.d.	0.0	0.006
AJAR0009	36	38	AR029514	0.017	0.3	b.d.	0.7	0.156
AJAR0009	38	40	AR029515	0.061	0.1	b.d.	1.1	0.181
AJAR0009	40	42	AR029516	0.022	b.d.	b.d.	0.8	0.139
AJAR0009	42	44	AR029517	0.003	b.d.	b.d.	0.7	0.085
AJAR0009	44	46	AR029518	0.005	0.2	b.d.	1	0.045
AJAR0009	46	48	AR029519	b.d.	0.4	b.d.	1.2	0.104
	40	52	AR029520	0.015	b.d.	b.d.	0.0	0.129
AJAR0003	52	54	AR029523	0.013	b.u.	b.d.	1.5	0.230
AJAR0009	54	56	AR029524	b.d.	b.d.	b.d.	0.7	0.077
AJAR0009	56	58	AR029525	b.d.	0.4	b.d.	1.1	0.152
AJAR0009	58	60	AR029526	0.001	0.2	b.d.	1.1	0.199
AJAR0009	60	62	AR029527	0.006	0.2	b.d.	0.5	0.094
AJAR0009	62	64	AR029528	0.014	0.2	b.d.	0.6	0.065
AJAR0009	64	65	AR029529	b.d.	0.4	b.d.	0.3	0.039
	2	2	AR029530	0.032	0.1	D.d.	0.3	0.004
A.IAR0010	4	6	AR029533	0.002	b.d	b.d.	0.2	0.002
AJAR0010	6	8	AR029534	0.000	b.d.	b.d.	0.2	0.000
AJAR0010	8	10	AR029535	b.d.	b.d.	b.d.	0.5	0.006
AJAR0010	10	12	AR029536	0.058	b.d.	b.d.	0.5	0.033
AJAR0010	12	14	AR029537	0.05	0.2	b.d.	0.2	0.002
AJAR0010	14	16	AR029538	0.018	b.d.	b.d.	0.3	0.002
AJAR0010	16	18	AR029539	0.643	0.2	b.d.	0.2	b.d.
	18	20	AR029540	0.032	0.1	D.d.	0.1	D.d.
	20	22	AR029541	0.000	0.2	b.d.	0.2	0.031
AJAR0010	24	26	AR029544	0.003	0.2	b.d.	0.2	0.043
AJAR0010	26	28	AR029545	0.039	0.2	b.d.	0.3	0.139
AJAR0010	28	30	AR029546	0.135	0.2	b.d.	0.3	0.227
AJAR0010	30	32	AR029547	0.059	0.5	b.d.	0.1	0.438
AJAR0010	32	34	AR029548	0.336	b.d.	b.d.	0.3	0.18
	34	30	AR029549	0.04	D.d.	D.d.	0.2	0.147
AJAR0010 A.IAR0010	38	30 40	AR029550 AR029551	0.05	b.d.	b.d.	0.0.	0.090
AJAR0010	40	42	AR029553	b.d.	b.d.	b.d.	0.1	0.083
AJAR0010	42	44	AR029554	0.004	b.d.	b.d.	0.1	0.091
AJAR0010	44	46	AR029555	0.024	b.d.	b.d.	0.2	0.16
AJAR0010	46	48	AR029556	0.014	b.d.	b.d.	0.2	0.166
AJAR0010	48	50	AR029557	0.08	0.2	b.d.	0.3	0.173
AJAR0011	0	2	AR029558	0.024	0.1	b.d.	b.d.	0.004
	2	4	AR029559	0.022	D.d.	b.d.	0.1	D.d.
AJAR0011	6	8	AR029561	0.028	b.u.	b.d.	0.2	0.001
AJAR0011	8	10	AR029563	0.038	b.d.	b.d.	0.2	0.002
AJAR0011	10	12	AR029564	1.43	0.2	b.d.	1.5	0.003
AJAR0011	12	14	AR029565	1.47	0.2	b.d.	0.5	0.002
AJAR0011	14	16	AR029566	0.76	0.4	b.d.	0.5	0.003
AJAR0011	16	18	AR029567	0.09	0.2	b.d.	0.7	0.001
	18	20	AR029568	0.012	0.1	b.d.	0.4	0.009
A.IAR0011	20	22	AR029309	0.014	0.0.	b.u. h.d	0.0	0.010
AJAR0011	24	26	AR029571	0.016	0.1	b.d.	0.3	0.109
AJAR0011	26	28	AR029573	0.006	0.2	b.d.	0.5	0.073
AJAR0011	28	30	AR029574	0.077	0.2	b.d.	0.3	0.158
AJAR0011	30	32	AR029575	0.014	0.2	b.d.	0.2	0.107
AJAR0011	32	34	AR029576	0.007	b.d.	b.d.	0.4	0.083
AJAR0011	34	36	AR029577	0.002	b.d.	b.d.	0.2	0.128
AJARUU11	36	38	AR029578	0.005	0.1 b.d	D.d.	0.2	0.357
AJARUUTT AJAR0011	38 <u>4</u> 0	40 42	AR029579 AR029580	0.035	b.d.	b.d.	0.2	0.085 0 107
AJAR0011	42	44	AR029581	0.001	0.1	b.d.	0.2	0.044
AJAR0011	44	46	AR029583	0.002	0.4	b.d.	0.2	0.055
AJAR0011	46	48	AR029584	b.d.	0.1	b.d.	0.2	0.062
AJAR0011	48	50	AR029585	0.005	b.d.	b.d.	0.2	0.077
AJAR0012	0	2	AR029586	0.035	0.2	b.d.	0.1	0.002
AJAR0012	2	4	AR029587	0.071	0.5	b.d.	0.1	0.01
AJAR0012	4	6	AR029588	0.024	0.3	b.d.	0.3	0.012
AJAR0012	6	8	AR029589	0.011	0.2	b.d.	0.4	0.011
AJAKUU12	0 10	10	AR029590	0.017	0.2	0.0. b.d	0.9	0.011
AJAR0012	10	14	AR029593	0.000	0.2	h d	0.5	0.014
AJAR0012	14	16	AR029594	0.063	0.2	b.d.	0.8	b.d.
AJAR0012	16	18	AR029595	0.017	0.2	b.d.	1.1	0.07
AJAR0012	18	20	AR029596	0.015	0.2	b.d.	0.5	0.042
AJAR0012	20	22	AR029597	0.005	hd	hd	0.8	0.008

Hole	From (m)	To (m)	Sample number	Au (a/t)	Ag (a/t)	As (mag)	Sb (ppm)	S (%)
AJAR0012	22	24	AR029598	b.d.	b.d.	b.d.	0.7	0.019
AJAR0012	24	26	AR029599	b.d.	b.d.	b.d.	0.6	0.033
AJAR0012	26	28	AR029600	0.012	b.d.	b.d.	0.5	0.14
AJAR0012	28	30	AR029601	0.005	D.d.	D.d.	0.4	0.199
AJAR0012 A.IAR0012	30	34	AR029003	0.013	h d	b.d.	0.4	0.244
AJAR0012	34	36	AR029605	0.007	b.d.	b.d.	0.4	0.07
AJAR0012	36	38	AR029606	0.001	b.d.	b.d.	0.2	0.095
AJAR0012	38	40	AR029607	b.d.	b.d.	b.d.	0.3	0.111
AJAR0012	40	42	AR029608	0.004	0.3	b.d.	0.2	0.075
AJAR0012	42	44	AR029609	0.002	0.1	b.d.	0.1	0.139
AJAR0012	44	40	AR029610	0.005	0.2	D.d.	0.4	0.05
AJAR0012	48	50	AR029613	b.d.	0.2	b.d.	0.2	0.101
AJAR0013	0	2	AR029614	0.009	0.2	b.d.	0.2	0.003
AJAR0013	2	4	AR029615	0.006	b.d.	b.d.	0.1	0.001
AJAR0013	4	6	AR029616	0.041	b.d.	b.d.	0.2	0.012
AJAR0013	6	8	AR029617	0.005	0.1	b.d.	0.2	0.006
AJAR0013 A IAR0013	0	10	AR029010	0.004	b.d.	b.d.	0.5	0.003
AJAR0013	10	14	AR029620	0.038	0.1	b.d.	0.3	0.01
AJAR0013	14	16	AR029621	0.005	0.5	b.d.	0.3	0.02
AJAR0013	16	18	AR029623	0.026	0.2	b.d.	0.2	0.052
AJAR0013	18	20	AR029624	0.012	b.d.	b.d.	0.3	0.065
AJAR0013	20	22	AR029625	0.015	0.3	b.d.	0.3	0.017
AJAR0013	22	24	AR029626	0.035	D.O.	D.d.	0.2	0.038
AJAR0013	24	28	AR029628	b.d.	b.d.	b.d.	0.1	0.036
AJAR0013	28	30	AR029629	b.d.	b.d.	b.d.	0.2	0.078
AJAR0013	30	32	AR029630	0.004	b.d.	b.d.	0.2	0.054
AJAR0013	32	34	AR029631	0.004	b.d.	b.d.	0.1	0.068
AJAR0013	34	36	AR029633	0.002	0.2	b.d.	0.1	0.158
AJAR0013	30	38	AR029634	0.001	D.d.	D.d.	0.1	0.067
AJAR0013	40	40	AR029636	b.d.	b.d.	b.d.	0.1	0.023
AJAR0013	42	44	AR029637	b.d.	b.d.	b.d.	0.2	0.017
AJAR0013	44	46	AR029638	0.002	b.d.	b.d.	0.2	0.035
AJAR0013	46	48	AR029639	0.003	0.1	b.d.	0.2	0.077
AJAR0013	48	50	AR029640	b.d.	b.d.	b.d.	0.2	0.053
AJAR0014	0	2	AR029641	0.028	b.d.	b.d.	b.d.	0.003
AJAR0014 A.IAR0014	4	6	AR029043	0.024	b.u.	b.d.	0.1 h.d	0.056
AJAR0014	6	8	AR029645	0.042	b.d.	b.d.	0.2	0.015
AJAR0014	8	10	AR029646	b.d.	0.3	b.d.	0.3	0.022
AJAR0014	10	12	AR029647	0.017	0.1	b.d.	0.1	0.01
AJAR0014	12	14	AR029648	0.003	b.d.	b.d.	b.d.	0.002
AJAR0014	14	10	AR029649	0.071	D.d.	D.d.	D.d.	0.011
AJAR0014	18	20	AR029651	0.010	b.d	b.d.	b d	0.003
AJAR0014	20	22	AR029653	0.006	0.3	b.d.	b.d.	0.014
AJAR0014	22	24	AR029654	0.034	b.d.	b.d.	0.2	0.028
AJAR0014	24	26	AR029655	0.019	0.1	b.d.	0.1	0.041
AJAR0014	26	28	AR029656	0.001	0.3	b.d.	0.1	0.033
AJAR0014	28	30	AR029657	0.001	D.Q.	D.d.	0.1	0.00
AJAR0014	32	34	AR029659	0.013	0.2	b.d.	0.1	0.02
AJAR0014	34	36	AR029660	0.003	0.1	b.d.	0.1	0.01
AJAR0014	36	38	AR029661	0.002	b.d.	b.d.	b.d.	0.024
AJAR0014	38	40	AR029663	0.003	0.1	b.d.	0.1	0.008
AJAR0014	40	42	AR029664	0.001	b.d.	b.d.	0.2	0.011
AJAR0014	42	44	AR029665	D.0.	0.2	D.d.	0.2	0.029
AJAR0014	46	48	AR029667	b.d.	b.d.	b.d.	0.2	0.027
AJAR0014	48	50	AR029668	b.d.	0.2	b.d.	0.2	0.038
AJAR0015	0	2	AR029669	0.016	0.1	b.d.	b.d.	0.003
AJAR0015	2	4	AR029670	0.015	b.d.	b.d.	b.d.	0.003
AJAKUU15 AJAR0015	4	0 8	AR0290/1 AR029673	0.016	b.d.	0.a. h.d	b.d	0.002
AJAR0015	8	10	AR029674	0.017	0.2	b.d.	0.1	0.003
AJAR0015	10	12	AR029675	0.038	0.1	b.d.	0.1	0.003
AJAR0015	12	14	AR029676	0.029	0.2	b.d.	b.d.	0.01
AJAR0015	14	16	AR029677	0.077	0.1	b.d.	b.d.	0.002
AJAR0015	16	18	AR029678	0.012	b.d.	b.d.	0.1	0.006
AJAR0015 AJAR0015	20	20	AR029679 AR029680	0.005	0.0.	b.d. b.d	b.d	0.002
AJAR0015	22	24	AR029681	0.083	0.2	b.d.	0.2	0.037
AJAR0015	24	26	AR029683	0.011	b.d.	b.d.	0.2	0.072
AJAR0015	26	28	AR029684	0.005	b.d.	b.d.	0.1	0.042
AJAR0015	28	30	AR029685	0.006	b.d.	b.d.	0.2	0.063
AJAK0015	30	32	AR029686	D.d.	D.d.	D.d.	0.2	0.015
AJAR0015	34	36	AR029688	0.014	b.d.	b.d.	0.2	0.025
AJAR0015	36	38	AR029689	0.011	b.d.	b.d.	0.2	0.057
AJAR0015	38	40	AR029690	b.d.	b.d.	b.d.	0.1	0.016
AJAR0015	40	42	AR029691	0.015	b.d.	b.d.	0.3	0.062
AJAR0015	42	44	AR029693	0.005	b.d.	b.d.	b.d.	0.457
AJAK0015	44	46	AR029694	0.022	D.d.	D.d.	0.2	0.051
AJAR0015	48	50	AR029696	0.002	b.d.	b.d.	0.2	0.058
AJAR0016	0	2	AR029697	0.042	0.1	b.d.	0.1	0.003
AJAR0016	2	4	AR029698	0.054	0.1	b.d.	0.1	0.002
AJAR0016	4	6	AR029699	0.181	b.d.	b.d.	0.6	0.003
AJAR0016	6	8	AR029700	0.024	b.d.	b.d.	0.3	b.d.

Hole	From (m)	To (m)	Sample number	Au (g/t)	Ag (a/t)	As (nnm)	Sb (ppm)	S (%)
AJAR0016	8	10	AR029701	0.035	0.1	b.d.	0.6	0.001
AJAR0016	10	12	AR029703	0.019	b.d.	b.d.	1.2	0.001
AJAR0016	12	14	AR029704	0.031	0.1	b.d.	0.5	0.004
AJAR0016	14	16	AR029705	0.097	0.1	b.d.	0.3	0.001
AJAR0016	16	18	AR029706	0.054	b.d.	b.d.	0.5	0.001
AJAR0016	18	20	AR029707	0.032	b.d.	b.d.	0.3	0.035
AJAR0016	20	22	AR029708	0.02	b.d.	b.d.	0.3	0.093
AJAR0016	22	24	AR029709	0.026	b.d.	b.d.	0.3	0.042
AJAR0016	24	26	AR029710	0.016	b.d.	b.d.	0.3	0.028
AJAR0016	26	28	AR029711	0.019	D.d.	b.d.	0.4	0.025
AJAR0016	20	20	AR029713	0.019	D.U.	0.0.	0.4	0.055
AJAR0010	30	34	AR029714	0.015	b.d.	b.u.	0.3	0.112
A IAR0016	3/	36	AR029715	0.033	b.d.	b.d.	0.3	0.043
AJAR0016	36	38	AR029717	0.055	b.d.	b.d.	0.0	0.032
AJAR0016	38	40	AR029718	0.01	b.d.	b.d.	0.2	0.094
AJAR0016	40	42	AR029719	0.018	0.1	b.d.	0.3	0.2
AJAR0016	42	44	AR029720	b.d.	b.d.	b.d.	0.1	0.063
AJAR0016	44	46	AR029721	0.003	b.d.	b.d.	0.1	0.033
AJAR0016	46	48	AR029723	0.001	b.d.	b.d.	0.3	0.024
AJAR0016	48	50	AR029724	0.013	b.d.	b.d.	0.1	0.049
AJAR0017	0	2	AR029725	0.03	b.d.	b.d.	b.d.	0.004
AJAR0017	2	4	AR029726	0.031	b.d.	b.d.	b.d.	b.d.
AJAR0017	4	6	AR029727	0.01	b.d.	b.d.	0.2	0.002
AJAR0017	6	8	AR029728	0.007	b.d.	b.d.	0.1	0.001
4JAR0017	8	10	AR029729	0.005	b.d.	b.d.	0.3	0.001
AJAR0017	10	12	AR029730	0.017	b.d.	b.d.	0.5	0.001
AJAR0017	12	14	AR029731	0.015	b.d.	b.d.	0.1	b.d.
	14	16	AR029733	0.012	D.d.	D.d.	0.1	b.d.
AJARUU17	16	18	AR029734	0.007	D.d.	D.d.	b.d.	b.d.
	18	20	AKU29735	0.005	D.Cl.	D.đ.	0.1	0.001
4JAKUU1/	20	22	AKU29/36	0.016	D.Cl.	D.đ.	0.1	0.008
1JAKUU1/	22	24	ARU29/3/	0.230	D.C.	0.0.	U.2	0.001
10MRUUI/	24	20	ARU29/30	0.047	b.d.	D.U.	0.0.	0.001
	20	20	AR029739	0.045	0.0.	0.0.	0.1	0.005
	20	30	AR029740	0.000	0.1 b.d	b.u.	0.1	0.107
	30	3/	ΔR029741	0.02	b.d.	b.d.	0.1	0.002
10R0017	3/	36	AR029743	0.001	0.0.	b.d.	b.d	0.123
Δ IΔR0017	36	38	AR029744	0.013	0.1	b.d.	b.d.	0.133
A.IAR0017	38	40	AR029746	0.042	b.d	b.d.	0.0.	0.124
AJAR0017	40	40	AR029747	0.004	b.d.	b.d.	0.1	0.141
A.IAR0017	42	44	AR029748	0.001	b.d.	b.d.	0.1	0.06
AJAR0017	44	46	AR029749	0.001	b.d.	b.d.	0.1	0.072
AJAR0017	46	48	AR029750	0.007	b.d.	b.d.	0.1	0.029
AJAR0017	48	50	AR029751	b.d.	0.1	b.d.	b.d.	0.005
AJAR0018	0	2	AR029753	0.02	0.1	b.d.	0.1	0.003
AJAR0018	2	4	AR029754	0.016	b.d.	b.d.	0.1	0.012
AJAR0018	4	6	AR029755	0.013	b.d.	b.d.	0.5	0.002
AJAR0018	6	8	AR029756	0.004	b.d.	b.d.	0.3	0.01
AJAR0018	8	10	AR029757	0.028	b.d.	b.d.	0.1	0.001
AJAR0018	10	12	AR029758	0.008	b.d.	b.d.	0.7	0.002
AJAR0018	12	14	AR029759	b.d.	b.d.	b.d.	0.3	b.d.
AJAR0018	14	16	AR029760	0.004	D.d.	b.d.	0.2	D.d.
AJAR0018	16	18	AR029761	0.041	D.d.	b.d.	0.5	D.d.
AJAR0018	18	20	ARU29763	0.006	D.C.	D.0.	0.2	0.001
	20	22	AR029704	0.001	b.d.	b.d.	0.3	0.000
A 1A D0018	22	24	AR023703	0.02	b.d.	b.d.	0.2	0.00
4.JAR0010	24	20	AR029767	0.020	b.u.	b.u. h.d	0.2	0.00
JAR0018	20	30	AR029768	0.020	b.d.	b.u. h.d	0.3	0.000
AJAR0018	30	32	AR029769	0 147	b.d.	h d	0.0	0.004
AJAR0018	32	34	AR029770	0.011	0.3	b.d.	0.2	0.073
AJAR0018	34	36	AR029771	0.02	b.d.	b.d.	0.2	0.11
AJAR0018	36	38	AR029773	0.006	b.d.	b.d.	0.1	0.07
AJAR0018	38	40	AR029774	0.051	b.d.	b.d.	0.2	0.057
AJAR0018	40	42	AR029775	0.022	0.1	b.d.	0.2	0.167
AJAR0018	42	44	AR029776	0.012	0.1	b.d.	0.2	0.165
AJAR0018	44	46	AR029777	0.006	b.d.	b.d.	0.1	0.081
AJAR0018	46	48	AR029778	0.012	b.d.	b.d.	0.2	0.082
AJAR0018	48	50	AR029779	0.009	b.d.	b.d.	b.d.	0.091
AJAR0019	0	2	AR029780	0.034	b.d.	b.d.	0.1	0.017
AJAKUU19	2	4	AKU29781	0.032	0.1	D.d.	0.1	0.008
AJAKUU19	4	0	AKU29/83	0.012	D.d.	D.d.	D.d.	0.001
A LABOO10	0	0 10	ARU29/84	0.011	ט.d.	0.d.	D.C.	0.001
A 14R0019	10	10	ARU29/00	0.021	b.d.	b.d.	0.4	0.005
A.IAR0019	10	1/	AR029/00	0.010	b.d.	b.d.	1.3	b.u.
A.IAR0010	14	16	AR020788	0.061	h d	h d	12	h d
A.IAR0019	16	18	AR029789	0.014	h d	b.d.	0.4	0.01
AJAR0019	18	20	AR029790	0.036	b.d.	b.d.	0.7	0.002
AJAR0019	20	22	AR029791	0.052	þ.d	b.d	0.6	0.012
AJAR0019	22	24	AR029793	0.02	þ.d	b.d	0.4	0.003
AJAR0019	24	26	AR029794	0.028	b.d.	b.d.	0.4	0.007
AJAR0019	26	28	AR029795	0.29	0.1	b.d.	0.4	0.033
AJAR0019	28	30	AR029796	0.006	0.3	b.d.	0.4	0.026
AJAR0019	30	32	AR029797	0.006	b.d.	b.d.	0.4	0.071
AJAR0019	32	34	AR029798	0.022	b.d.	b.d.	0.5	0.122
AJAR0019	34	36	AR029799	0.005	b.d.	b.d.	0.5	0.114
AJAR0019	36	38	AR029800	0.002	b.d.	b.d.	0.3	0.001
AJAR0019	38	40	AR029801	0.005	b.d.	b.d.	0.4	0.034
A 1AD0010	40	42	AR029803	b.d.	b.d.	b.d.	0.3	0.043
AJARUU 19								

Hole	From (m)	To (m)	Sample number	Au (a/t)	Ag (a/t)	As (pom)	Sb (ppm)	S (%)
AJAR0019	44	46	AR029805	0.009	b.d.	b.d.	0.3	0.073
AJAR0019	46	48	AR029806	0.005	b.d.	b.d.	0.4	0.055
AJAR0019	48	50	AR029807	0.006	b.d.	b.d.	0.2	0.025
AJAR0019	50	52	AR029808	b.d.	0.1	b.d.	0.3	0.027
AJAR0019	52	54	AR029809	0.029	D.Q.	D.O.	0.3	0.119
AJAR0019	56	58	AR029811	0.001	b.d.	b.d.	0.2	0.003
AJAR0019	58	60	AR029813	0.006	0.7	b.d.	0.2	0.007
AJAR0020	0	2	AR029814	0.039	b.d.	b.d.	0.1	0.041
AJAR0020	2	4	AR029815	0.003	b.d.	b.d.	0.2	0.02
AJAR0020	4	6	AR029816	0.008	b.d.	b.d.	0.8	0.022
AJAR0020	6	8	AR029817	0.01	b.d.	b.d.	0.4	0.007
AJAR0020 A IAR0020	0	10	AR029010	0.029	b.d.	b.d.	0.0	0.179
AJAR0020	10	14	AR029820	0.245	b.d.	b.d.	0.6	0.003
AJAR0020	14	16	AR029821	0.008	b.d.	b.d.	0.4	0.014
AJAR0020	16	18	AR029823	0.005	b.d.	b.d.	0.3	0.003
AJAR0020	18	20	AR029824	0.016	b.d.	b.d.	0.1	0.004
AJAR0020	20	22	AR029825	0.03	b.d.	b.d.	0.2	0.02
AJAR0020 A.IAR0020	22	24	AR029626 AR029827	0.007	b.d.	b.d.	0.2 h.d	0.056
AJAR0020	24	28	AR029828	0.018	0.1	b.d.	0.1	0.319
AJAR0020	28	30	AR029829	0.049	0.1	b.d.	0.2	0.675
AJAR0020	30	32	AR029830	b.d.	b.d.	b.d.	0.2	0.077
AJAR0020	32	34	AR029831	0.007	b.d.	b.d.	b.d.	0.079
AJAR0020	34	36	AR029833	0.01	b.d.	b.d.	b.d.	0.036
AJAKUU20	30	38	AKU29834	0.031	D.d.	0.0. h.d	0.1 b.d	0.164
AJAR0020	40	42	AR029836	0.051	b.d.	b.d.	0.1	0.062
AJAR0020	42	44	AR029837	0.028	0.1	b.d.	b.d.	0.242
AJAR0020	44	46	AR029838	0.018	0.1	b.d.	b.d.	0.356
AJAR0020	46	48	AR029839	0.003	0.1	b.d.	b.d.	0.347
AJAR0020	48	50	AR029840	0.001	b.d.	b.d.	b.d.	0.081
AJAR0020	50	52	AR029841	b.d.	b.d.	b.d.	0.1	0.026
AJAR0020 A IAR0020	5/	56	AR029043	0.013 h.d	b.d.	b.d.	b.d.	0.200
AJAR0020	56	58	AR029845	b.d.	b.d.	b.d.	0.1	0.045
AJAR0020	58	60	AR029846	0.001	0.1	b.d.	0.3	0.104
AJAR0020	60	62	AR029847	0.003	b.d.	b.d.	0.2	0.221
AJAR0020	62	64	AR029848	b.d.	b.d.	b.d.	b.d.	0.018
AJAR0020	64	66	AR029849	b.d.	b.d.	b.d.	0.3	0.031
AJAR0020	66	68 70	AR029850	0.001	D.d.	D.d.	D.d.	0.166
AJAR0020 A.IAR0021	00	2	AR029651	0.008	0.0.	b.d.	0.1	0.024
AJAR0021	2	4	AR029854	0.017	0.2	b.d.	0.1	0.005
AJAR0021	4	6	AR029855	0.033	b.d.	b.d.	1.8	0.039
AJAR0021	6	8	AR029856	0.013	b.d.	b.d.	1.2	0.334
AJAR0021	8	10	AR029857	0.003	b.d.	b.d.	2.6	0.036
AJAR0021	10	12	AR029858	D.d.	D.d.	D.d.	2.4	0.047
AJAR0021 A.IAR0021	12	14	AR029659	0.001	0.0.	b.d.	2.4	0.045
AJAR0021	16	18	AR029861	b.d.	0.1	b.d.	1.1	0.059
AJAR0021	18	20	AR029863	b.d.	b.d.	b.d.	1.6	0.066
AJAR0021	20	22	AR029864	0.012	b.d.	b.d.	2.7	0.062
AJAR0021	22	24	AR029865	0.002	0.4	b.d.	2	0.061
AJAR0021	24	26	AR029866	D.d.	D.d.	D.d.	2.2	0.033
AJAR0021	28	30	AR029868	0.001	0.1	b.d.	3.2	0.114
AJAR0021	30	32	AR029869	0.004	0.1	b.d.	2.1	0.19
AJAR0021	32	34	AR029870	0.088	b.d.	b.d.	3.6	0.358
AJAR0021	34	36	AR029871	0.167	0.4	b.d.	1.4	1.01
AJAR0021	36	38	AR029873	0.035	b.d.	b.d.	1.2	0.306
AJAR0021	38	40	AR029874	0.005	D.Q.	D.Q.	1.7	0.044
AJAR0021	44	46	AR029877	0.01	b.d.	b.d.	1.8	0.177
AJAR0021	46	48	AR029878	0.002	b.d.	b.d.	0.8	0.118
AJAR0021	48	50	AR029879	0.004	0.3	b.d.	1.1	0.463
AJAR0021	50	52	AR029880	0.014	0.3	b.d.	0.5	0.671
AJAKUU21 AJAR0021	52 5/	56	ARU29881	D.Q. 0.001	ม.d. 5.0	0.0. h.d	0.5	0.15/
AJAR0021	56	58	AR029884	0.001	0.6	b.d.	0.3	0.048
AJAR0021	58	60	AR029885	0.002	0.4	b.d.	0.5	0.064
AJAR0021	60	62	AR029886	b.d.	0.1	b.d.	0.3	0.104
AJAR0021	62	64	AR029887	b.d.	0.2	b.d.	0.3	0.144
AJAR0021	64	66	AR029888	b.d.	0.2	b.d.	0.3	0.118
AJAR0021	00	70	AR029889	0.002	0.2	D.Q.	0.3	0.120
AJAR0021	0	2	AR029891	b.d.	b.d.	b.d.	0.2	0.02
AJAR0022	2	4	AR029893	b.d.	1.1	b.d.	0.9	0.003
AJAR0022	4	6	AR029894	b.d.	b.d.	b.d.	2.3	0.016
AJAR0022	6	8	AR029895	0.015	b.d.	b.d.	3.3	0.055
AJAR0022	8	10	AR029896	0.013	b.d.	b.d.	1.6	0.107
AJAKUU22 AJAR0022	10	12	AR029897	0.024	b.d.	0.0. h d	2.4	0.155
AJAR0022	14	16	AR029899	0.046	b.d.	b.d.	2	0.344
AJAR0022	16	18	AR029900	0.014	0.2	b.d.	1.6	0.112
AJAR0022	18	20	AR029901	0.04	b.d.	b.d.	1.2	0.101
AJAR0022	20	22	AR029903	0.04	b.d.	b.d.	2.4	0.04
AJAR0022	22	24	AR029904	0.026	0.1	b.d.	3	0.114
AJAKUU22 AJAR0022	24	20	AR029905 AR029906	0.013	0.2	0.0. h d	17	0.118
AJAR0022	28	30	AR029907	0.037	b.d.	b.d.	2.3	0.116
AJAR0022	30	32	AR029908	0.04	0.2	b.d.	1	0.24

Hole	From	To	Sample	Au	Ag	As	Sb	S (0()
AJAR0022	(m) 32	(m) 34	AR029909	(<u>q</u> /t) 0 032	(<u>q/t)</u> 1 2	(ppm) h d	(ppm) 2 1	(%)
AJAR0022	34	36	AR029910	0.006	0.8	10	1.5	0.094
AJAR0022	36	38	AR029911	0.003	0.1	b.d.	0.6	0.035
AJAR0022	38	40	AR029913	0.002	b.d.	b.d.	2.7	0.101
AJAR0022	40	42	AR029914	0.007	b.d.	b.d.	3	0.031
AJAR0022	42	44	AR029915	0.009	b.d.	b.d.	1.1	0.226
AJAR0022	44	46	AR029916	0.007	0.3	b.d.	2.4	0.061
AJARUUZZ	40	48	AR029917	0.002	0.2	D.d.	2.7	0.102
AJAR0022	40	52	AR029910	0.003	0.3	b.d.	1.6	0.190
AJAR0022	52	54	AR029920	0.018	0.4	b.d.	1.1	0.088
AJAR0022	54	56	AR029921	0.006	0.2	b.d.	0.7	0.058
AJAR0022	56	58	AR029923	0.004	0.8	b.d.	0.9	0.081
AJAR0022	58	60	AR029924	0.004	0.3	b.d.	0.9	0.064
AJAR0022	60	62	AR029925	0.004	b.d.	b.d.	0.6	0.18
AJAR0022	62	64	AR029926	0.002	b.d.	b.d.	0.4	0.106
AJAR0022	64	60	AR029927	0.006	D.d.	b.d.	0.4	0.152
AJAR0022	68	70	AR029920	0.000	b.d.	b.d.	0.3	0.071
AJAR0022	70	72	AR029930	0.002	0.0.	b.d.	0.2	0.179
AJAR0022	72	74	AR029931	0.001	b.d.	b.d.	0.2	0.078
AJAR0022	74	76	AR029933	0.004	0.1	b.d.	0.3	0.187
AJAR0022	76	78	AR029934	0.002	0.1	b.d.	0.4	0.094
AJAR0022	78	80	AR029935	0.003	b.d.	b.d.	0.2	0.065
AJAR0023	0	2	AR029936	0.018	0.1	b.d.	0.2	0.005
AJAR0023	2	4	AR029937	0.011	0.3	b.d.	0.9	0.007
AJAR0023	4	6	AR029938	0.006	1.5	D.d.	0.7	0.007
AJAR0023	0 8	0	AR029939	0.017	U.Z	b.d.	0.0	0.003
AJAR0023	10	12	AR029940	0.005	0.3	b.u. h.d	0.0	0.000
AJAR0023	12	14	AR029943	0.004	0.2	b.d.	0.3	0.081
AJAR0023	14	16	AR029944	0.006	0.3	b.d.	0.5	0.1
AJAR0023	16	18	AR029945	0.002	b.d.	b.d.	0.3	0.054
AJAR0023	18	20	AR029946	0.003	b.d.	b.d.	0.2	0.029
AJAR0023	20	22	AR029947	0.006	b.d.	b.d.	0.2	0.157
AJAR0023	22	24	AR029948	0.004	0.1	b.d.	0.2	0.061
AJAR0023	24	26	AR029949	0.005	b.d.	b.d.	0.1	0.159
AJAR0023	20	20	AR029950 AD020051	0.007	0.1 b.d	b.d.	0.3	0.255
AJAR0023	30	32	AR029953	0.027	0.0.	b.d.	0.2	0.473
AJAR0023	32	34	AR029954	0.02	0.5	b.d.	0.2	1.1
AJAR0023	34	36	AR029955	0.005	b.d.	b.d.	b.d.	0.02
AJAR0023	36	38	AR029956	0.018	b.d.	b.d.	b.d.	0.203
AJAR0023	38	40	AR029957	0.023	b.d.	b.d.	b.d.	0.053
AJAR0023	40	42	AR029958	0.006	b.d.	b.d.	b.d.	0.223
AJAR0023	42	44	AR029959	0.03	0.2	b.d.	0.1	0.456
AJAR0023	44	40	AR029960	0.024	0.1	D.d.	0.2	0.071
AJAR0023	40	40 50	AR029901	0.020	1.7	b.d.	0.2	0.329
AJAR0023	50	52	AR029964	0.013	0.2	b.d.	0.2	0.185
AJAR0023	52	54	AR029965	0.004	0.1	b.d.	0.2	0.178
AJAR0023	54	56	AR029966	0.006	0.1	b.d.	0.2	0.109
AJAR0023	56	58	AR029967	0.004	0.2	b.d.	b.d.	0.317
AJAR0023	58	60	AR029968	0.002	b.d.	b.d.	0.2	0.11
AJAR0023	60	62	AR029969	0.021	0.8	b.d.	b.d.	0.476
AJAR0023	62	64	AR029970	0.015	0.2	b.d.	0.2	0.268
AJAKUU23	64	90	ARU299/1	0.006	0.3	D.đ.	0.2	0.122
A.IAR0023	68	70	AR029973	0.015	0.3	b.u. h.d	0.1	0.203
AJAR0024	0	2	AR029975	0.006	b.d.	b.d.	0.1	0.009
AJAR0024	2	4	AR029976	0.011	b.d.	b.d.	0.1	0.002
AJAR0024	4	6	AR029977	0.006	b.d.	b.d.	0.2	0.011
AJAR0024	6	8	AR029978	0.006	b.d.	b.d.	0.4	0.037
AJAR0024	8	10	AR029979	0.006	b.d.	b.d.	0.3	0.109
AJAR0024	10	12	AR029980	0.003	D.d.	D.d.	0.2	0.133
AJAKUU24	12	14	AKU29981	0.007	D.d.	D.d.	D.d.	0.381
AJAR0024	14	10	AR029983	0.007	b.d.	b.d. h.d	0.2	0.347
AJAR0024	18	20	AR029985	0.003	b.d.	b.d.	0.1	0.094
AJAR0024	20	22	AR029986	0.007	b.d.	b.d.	0.1	0.073
AJAR0024	22	24	AR029987	0.059	0.2	b.d.	0.2	0.457
AJAR0024	24	26	AR029988	0.025	0.1	b.d.	b.d.	0.216
AJAR0024	26	28	AR029989	0.005	0.1	b.d.	b.d.	0.204
AJAR0024	28	30	AR029990	0.006	b.d.	b.d.	b.d.	0.636
AJAR0024	30	32	AR029991	0.022	0.2	D.d.	U.1	0.398
A 14R0024	3/	94 36	ARU29993	0.011	0.0	b.d.	0.0.	0.005
AJAR0024	36	38	AR029995	0.028	b.d	b.d. b.d	b d	0.088
AJAR0024	38	40	AR029996	0.014	0.1	b.d.	0.1	0.13
AJAR0024	40	42	AR029997	0.018	0.1	b.d.	0.1	0.088
AJAR0024	42	44	AR029998	0.006	0.1	b.d.	0.2	0.37
AJAR0024	44	46	AR029999	0.006	0.3	b.d.	b.d.	1.1
AJAR0024	46	48	AR030000	0.005	0.1	b.d.	0.2	0.288
AJAR0024	48	50	AR030001	0.009	0.1	b.d.	0.2	0.349
AJARU024	50	52	AR030002	0.012	0.1	D.d.	0.1	0.436
A 1A D0024	52	54	ARU30003	0.003	D.U.	0.0.	0.3	0.168
A.IAR0024	56	58	AR030004	0.004	U.Z	b.d.	0.0	0.101
AJAR0024	58	60	AR030006	0.01	b.d.	b.d.	1.6	0.129
AJAR0024	60	62	AR030007	0.001	b.d.	b.d.	0.7	0.033
AJAR0024	62	64	AR030009	0.002	b.d.	b.d.	2.3	0.068
AJAR0024	64	66	AR030010	0.003	b.d.	b.d.	6	0.061
A.IAR0024	66	68	AR030011	0.002	hd	hd	5.4	0.049

Hala	From	То	Sample	Au	Ag	As	Sb	S
поне		(m)	number	(g/t)	(g/t)			(%)
AJAR0024	68	70	AR030012	0.017	b.d.	b.d.	2.4	0.112
AJAR0025	0	2	AR030013	0.004	b.d.	b.d.	1.1	0.005
AJAR0025	2	4	AR030014	0.009	0.1	b.d.	0.3	0.007
AJAR0025	4	6	AR030015	0.003	b.d.	b.d.	1.2	0.015
AJAR0025	6	8	AR030016	0.002	b.d.	b.d.	1	0.01
AJAR0025	8	10	AR030017	0.014	b.d.	b.d.	1.3	0.004
AJAR0025	10	12	AR030019	0.016	b.d.	b.d.	0.7	0.005
AJAR0025	12	14	AR030020	0.029	b.d.	b.d.	0.4	0.003
AJAR0025	14	16	AR030021	0.009	b.d.	b.d.	1.4	0.007
AJAR0025	16	18	AR030022	0.009	b.d.	b.d.	0.9	0.033
AJAR0025	18	20	AR030023	0.009	b.d.	b.d.	0.5	0.04
AJAR0025	20	22	AR030024	0.003	b.d.	b.d.	0.9	0.007
AJAR0025	22	24	AR030025	0.013	b.d.	b.d.	0.7	0.008
AJAR0025	24	26	AR030026	0.002	b.d.	b.d.	0.4	0.107
AJAR0025	26	28	AR030027	0.014	0.1	b.d.	0.6	0.062
AJAR0025	28	30	AR030029	0.009	b.d.	b.d.	0.6	0.029
AJAR0025	30	32	AR030030	0.003	b.d.	b.d.	0.3	0.063
AJAR0025	32	34	AR030031	0.004	b.d.	b.d.	0.5	0.126
AJAR0025	34	36	AR030032	0.004	b.d.	b.d.	0.6	0.046
AJAR0025	36	38	AR030033	0.007	0.4	b.d.	0.2	0.173
AJAR0025	38	40	AR030034	0.004	0.1	b.d.	0.3	0.576
AJAR0025	40	42	AR030035	0.007	b.d.	b.d.	0.4	0.199

Hole	From	То	Sample	Au	Ag	As	Sb	S
THORE	(m)	(m)	number	(g/t)	(g/t)	(ppm)	(ppm)	(%)
AJAR0025	42	44	AR030036	0.003	b.d.	b.d.	0.2	0.087
AJAR0025	44	46	AR030037	0.012	b.d.	b.d.	0.2	0.11
AJAR0025	46	48	AR030039	0.042	b.d.	b.d.	0.2	0.174
AJAR0025	48	50	AR030040	0.009	b.d.	b.d.	0.2	0.244
AJAR0025	50	52	AR030041	0.047	b.d.	b.d.	0.2	0.458
AJAR0025	52	54	AR030042	0.007	b.d.	b.d.	0.3	0.266
AJAR0025	54	56	AR030043	0.009	0.1	b.d.	0.2	0.55
AJAR0025	56	58	AR030044	0.012	b.d.	b.d.	0.2	0.075
AJAR0025	58	60	AR030045	0.004	b.d.	b.d.	0.2	0.049
AJAR0025	60	62	AR030046	0.007	0.2	b.d.	0.2	0.138
AJAR0025	62	64	AR030047	0.007	0.2	b.d.	0.3	0.067
AJAR0025	64	66	AR030049	0.003	0.1	b.d.	0.2	0.068
AJAR0025	66	68	AR030050	0.029	b.d.	b.d.	0.1	0.162
AJAR0025	68	70	AR030051	0.007	b.d.	b.d.	0.2	0.204
AJAR0025	70	72	AR030052	0.006	b.d.	b.d.	0.2	0.199
AJAR0025	72	74	AR030053	0.006	b.d.	b.d.	0.1	0.052
AJAR0025	74	76	AR030054	0.004	b.d.	b.d.	0.2	0.084
AJAR0025	76	78	AR030055	0.016	b.d.	b.d.	0.2	0.111
AJAR0025	78	80	AR030056	0.009	b.d.	b.d.	0.2	0.046

Appendix 4 – JORC Code, 2012 Edition, Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 All holes were sampled on a 2 metre down hole interval basis, with exceptions being made for end of hole final-lengths. All sampling lengths were recorded in ARL's standard sampling record spreadsheets. Sample condition, sample recovery and sample size were recorded for all drill-core samples collected by ARL. The drill spacing was nominally 20x20m, but was <i>ad hoc</i> as dictated by access to drill pad locations as limited by the distributions of historic workings. As such, the nominal drill spacing was rarely achieved, and substantial gaps are present in the data generated. Industry standard practice was used in the processing of samples for assay, with 2m intervals of RC chips collected in green plastic bags. Assay of samples utilised standard laboratory techniques with standard ICP-AES undertaken on 50 gram samples for Au, Pt and Pd, and lithium borate fused-bead XRF analysis used for the remaining multi-element suite. Further details of lab processing techniques are found in Quality of assay data and laboratory tests below.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 In this program, Ardea drilled the Mulga Plum gold project with 25 reverse circulation (RC) drill holes . Most holes were drilled towards a nominal 55-60°-225°. Several were drilled towards 55-60°-045° to intercept interpreted structures. RC drilling was performed with a face sampling hammer (bit diameter between 4½ and 5¼ inches) and samples were collected by either a cone (majority) or riffle splitter using 2 metre composites. Sample condition, sample recovery and sample size were recorded for all drill samples collected by ARL.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC chip sample recovery was recorded by visual estimation of the reject sample, expressed as a percentage recovery. Overall estimated recovery was high. RC Chip sample condition recorded using a three code system, D=Dry, M=Moist, W=Wet. A small proportion of samples were moist or wet (11.5%), with the majority of these being associated with soft goethite clays, where water injection has been used to improve drill recovery. Measures taken to ensure maximum RC sample recoveries included maintaining a clean cyclone and drilling equipment, using water injection at times of reduced air circulation, as well as regular communication with the drillers and slowing drill advance rates when variable to poor ground conditions are encountered.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drilling was undertaken for confirmation of historic results and gap infill. The level of logging detail utilised supports future potential resource estimation and was as follows: Visual geological logging was completed for all drilling both at the time of drilling (using standard Ardea logging codes), and later over relevant met-sample intervals with a metallurgical-logging perspective. Geochemistry from historic data was used together with logging data to validate logged geological horizons. Visual geological logging was completed for all RC drilling on 1 metre intervals. Logging was performed at the time of drilling, and planned drill hole target lengths adjusted by the geologist during drilling. The geologist also oversaw all sampling and drilling. A small selection of representative chips were also collected for every 1 metre interval and stored in chip-trays for future reference. In total, 1518 m were drilled during the program, with the chips generated during entire program logged in detail.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or 	 2 metre composite samples were recovered using a 15:1 rig mounted cone splitter or trailer mounted riffle splitter during drilling into a calico sample bag. Sample target weight was between 2 and 3kg. In the case of wet clay samples, grab samples taken from sample return pile, initially into a calico sample bag. Wet samples were stored

Ardea Resources Limited

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 separately from other samples in plastic bags and riffle split once dry. QAQC was employed. A standard, blank or duplicate sample was inserted into the sample stream 10 metres on a rotating basis. Standards were quantified industry standards. Every 30th sample a duplicate sample was taken using the same sample sub sample technique as the original sub sample. Sample sizes are appropriate for the nature of mineralisation. All Ardea samples were submitted to Kalgoorlie Bureau Veritas (BV) laboratories and transported to BV Perth, where they were pulverised. The samples were sorted, wet weighed, dried then weighed again. Primary preparation has been by crushing and splitting the sample with a riffle splitter where necessary to obtain a sub-fraction which has then been pulverised in a vibrating pulveriser. All coarse residues have been retained. The samples have been cast using a 66:34 flux with 4% lithium nitrate added to form a glass bead. Al, As, Ba, Ca, Cl, Co, Cr, Cu, Fe, Ga, K, Mg, Mn, Na, Ni, P, Pb, S, Sc, Si, Sr, Ti, V, Zn, Zr have been determined by X-Ray Fluorescence (XRF) Spectrometry on oren dry (105:C) sample unless otherwise stated. A fused bead for Laser Ablation MS was created to define Ag_LA, Be_LA, Bt_LA, Cd_LA, Ce_LA, Ce_LA, Cs_LA, Dy_LA, Er_LA, Eu_LA, Gd_LA, Ge_LA, Ht_LA, Ho_LA, In_LA, La, LA, Mo_LA, Nb_LA, Nb_LA, Nt_LA, Nb_LA, Th_LA, Th_LA, Th_LA, Th_LA, Th_LA, W, W_LA, Y, LA, Yb, LA, which have been determined by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Loss on Ignition results have been determined gravimetrically. BV routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. Ardea also inserted QAQC samples into the sample sub very high sulphide and metal contents. This is thave been determined gravimetrically. BV routinely inserts analytical blanks, standards and duplicates into the client sample batches for
Verification of sampling	• The verification of significant intersections by	BV routinely inserts analytical blanks, standards and duplicates into the client sample
and assaying	 either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 batches tor laboratory QAQC performance monitoring. Ardea also inserted QAQC samples into the sample stream at a 1 in 20 frequency, alternating between duplicates splits, blanks (industrial sands) and standard reference materials. All of the QAQC data has been statistically assessed. Ardea has undertaken its own further in-house review of QAQC results of the BV routine standards, 100% of which returned within acceptable QAQC limits. This fact combined with the fact that the data is demonstrably consistent has meant that the results are considered to be acceptable and suitable for reporting.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys). 	 All drill holes are to be surveyed using an RTK DGPS system with either a 3 or 7 digit accuracy. The coordinates are stored in the exploration database referenced to the
	 trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All holes drilled as part of the Mulga Plum program were angled and were surveyed down hole at 30 m intervals and at EOH. The grid system for all models is GDA94. Where historic data or mine grid data has been used it has been transformed into GDA94 from its original source grid via the appropriate transformation. Both original and transformed data is stored in the digital database. A DGPS pickup up of drill collar locations is considered sufficiently accurate for reporting of resources, but is not suitable for mine planning and reserves.
Data spacing and	 Data spacing for reporting of Exploration Results. 	 The drill spacing was nominally 20x20m, but was ad hoc as dictated by access to drill pad locations as limited by the distributions of historic workings. As such, the nominal

Criteria	JORC Code explanation	Commentary
distribution	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 drill spacing was rarely achieved, and substantial gaps are present in the data generated. The spacing is not considered sufficient for the definition of Mineral Resources. Samples were composited over 2 m for the entire drill program.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 All drill holes in this program were angled. They were designed to parallel historic holes for twinning, and were drilled at a nominal 60°→245°. The only exception was ABFR0276 (60°→066°) as the preferred collar location was inaccessible due to historic mine workings. Without diamond drilling, the orientation of mineralised structures is unknown. At surface, several orientations are evident, but it is not apparent in RC chips. Geological interpretation of the geology of Mulga Plum continues, but presently there is sufficient uncertainty to preclude definition of sampling bias or not.
Sample security	 The measures taken to ensure sample security. 	 All samples were collected and accounted for by ARL employees/consultants during drilling. All samples were bagged into calico plastic bags and closed with cable ties. Samples were transported to Kalgoorlie from logging site by ARL employees/ consultants and submitted directly to BV Kalgoorlie. The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were submitted to the laboratory. Any discrepancies between sample submissions and samples received were routinely followed up and accounted for.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No audit or review beyond normal operating procedures has yet been undertaken on the Mulga Plum dataset. ARL has periodically conducted internal reviews of sampling techniques relating to resultant exploration datasets, and larger scale reviews capturing the data from multiple drilling programs. Internal reviews of the exploration data included the following: Unsurveyed drill hole collars (less than 1% of collars). Drill Holes with overlapping intervals (0%). Drill Holes with no logging data (less than 2% of holes). Sample logging intervals beyond end of hole depths (0%). Samples with no assay data (from 0 to <5% for any given project, usually related to issues with sample recovery from difficult ground conditions, mechanical issues with drill rig, damage to sample in transport or sample preparation). Assay grade ranges. Collar coordinate ranges Valid hole orientation data. The BV Laboratory was visited by ARL staff in 2017, and the laboratory processes and procedures were reviewed at this time and determined to be robust.

Section 2 - Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The tenements on which the Mulga Plum drilling was undertaken is M40/350. ARL, through its subsidiary companies, is the sole holder of the tenement. Heritage surveys were not carried out prior to application for the Program of Works to undertake the program. However, all works were undertaken over previously disturbed ground.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The Mulga Plum prospect has been subject to limited historic mining and exploration. Near-surface historic mining occurred around the 1900s to 1910s at the time of the Kookynie gold rush. The Company is not aware of any records of mining from this time. Rubicon Resources undertook a limited drill program of 10 drillholes in 2012, mostly on the periphery of the prospect area. Three other drill holes of uncertain origin were also drilled around this time, though no record seems to exist.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The geology of the Mulga Plum project area is very interesting and somewhat unusual for the Eastern Goldfields, with a flat-lying to shallow east-dipping bimodal volcanic package juxtaposed against granite and cross-cut by a series of dykes and faults. Logging of RC drill chips has confirmed widespread disseminated sulphides across several alteration zones (propylitic epidote and potassic biotite dominant). Insufficient data exists at this stage to define the vertical and flat-lying structure, or indeed whether other orientations are present. Macro controls on the development of the gold mineralisation in this location are presently unknown.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	 All holes drilled in this most recent program are listed in "Appendix 2 – Collar location data".
Drill hole Information	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 All assay data relating to the metals of interest at Mulga Plum, namely gold and associated tracefinder elements arsenic, antimony, silver and sulphur, are listed in "Appendix 3 – Assay results from Mulga Plum". Other elements were assayed but have not been reported here. They are of use and of interest from a scientific and metallurgical perspective, but are not considered material and their exclusion does not detract from the understanding of this report.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Most drill hole samples have been collected over 2 m down hole intervals. Gold intercepts at Mulga Plum are defined using a 0.5 g/t cut-off on a minimum intercept of 1 m and a maximum internal waste of 2 m. All assay samples were composited over 2 m. No metal equivalent calculations have been used in this assessment.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 All drill holes in this program were angled. Without diamond drilling, the orientation of mineralised structures is unknown. At surface, several orientations are evident, but it is not apparent in RC chips. Geological interpretation of the geology of Mulga Plum continues, but presently there is sufficient uncertainty to preclude definition of sampling bias or not.

Criteria	JORC Code explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate maps are shown in the body of the document. It is inappropriate to include sections at this early stage as drill spacing is irregular and the Company does not have sufficient understanding of the geology in section.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Not applicable to this report. All results are reported either in the text or in the associated appendices.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other data are, at this stage, known to be either beneficial or deleterious to recovery of the metals reported.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further drilling is required at Mulga Plum but has not yet been defined. Further drilling could include infill drilling, and extension of programs to the north and south along strike, or down-plunge to the north. Metallurgical assessment of all metals of interest at Mulga Plum will be undertaken prior to progression to a Pre-Feasibility Study (PFS) should such a study be warranted.