
Positioning Greenland To Be A Major International Rare Earth Supplier

ASX: GGG

Important Notice

This presentation contains only a brief overview of Greenland Minerals and Energy Ltd (Greenland Minerals) and its respective activities and operations. The contents of this presentation may rely on various assumptions and subjective interpretations which are not possible to detail in this presentation and which have not been subject to any independent verification.

This presentation contains a number of forward looking statements. Known and unknown risks and uncertainties, as well as factors outside of Greenland Minerals' control, may cause the actual results, performance and achievements of Greenland Minerals to differ materially from those expressed or implied in this presentation.

To the maximum extent permitted by law, Greenland Minerals and its officers, employees and advisers are not liable for any loss or damage (including, without limitation, any direct, indirect or consequential loss or damage) suffered by any person directly or indirectly as a result of relying on this presentation or otherwise in connection with it.

The information contained in this presentation is not a substitute for detailed investigation or analysis of any particular issue and has been prepared without consideration of your objectives and needs and financial position. Current and potential investors and shareholders should seek independent advice before making any investment decision in regard to Greenland Minerals or its activates.

JORC Code (2012) Competent Person Statement – Mineral Resources and Ore Reserves

The information in this report that relates to Mineral Resources is based on information compiled by Mr Robin Simpson, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Simpson is employed by SRK Consulting (UK) Ltd ("SRK"), and was engaged by Greenland Minerals and Energy Ltd on the basis of SRK's normal professional daily rates. SRK has no beneficial interest in the outcome of the technical assessment being capable of affecting its independence. Mr Simpson has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Robin Simpson consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in the statement that relates to the Ore Reserves Estimate is based on work completed or accepted by Mr Damien Krebs of Greenland Minerals and Energy Ltd and Mr Scott McEwing of SRK Consulting (Australasia) Pty Ltd.

Damien Krebs is a Member of The Australasian Institute of Mining and Metallurgy and has sufficient experience that is relevant to the type of metallurgy and scale of project under consideration, and to the activity he is undertaking, to qualify as Competent Persons in terms of The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 edition). The Competent Persons consent to the inclusion of such information in this report in the form and context in which it appears.

Scott McEwing is a Fellow and Chartered Professional of The Australasian Institute of Mining and Metallurgy and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the activity he is undertaking, to qualify as Competent Persons in terms of The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 edition). The Competent Persons consent to the inclusion of such information in this report in the form and context in which it appears.

The mineral resource estimate for the Kvanefjeld Project was updated and released in a Company Announcement on February 12th, 2015. The ore reserves estimate was released in a Company Announcement on June 3rd, 2015. There have been no material changes to the mineral resource estimate, or ore reserves estimate since the release of these announcements.

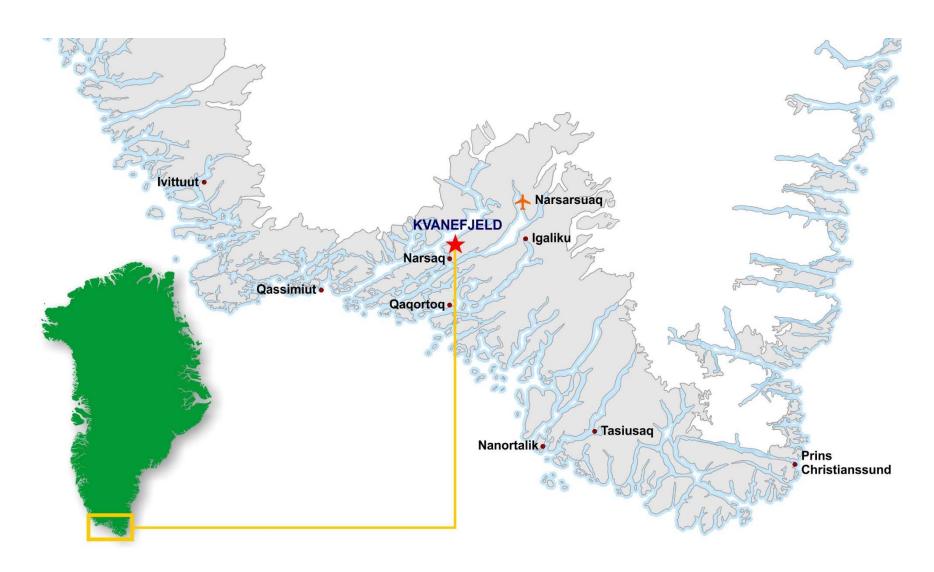
- Operating in Greenland for over 10 years; well positioned to become a globally significant supplier of rare earth materials
- Rare earths are critical to electrification of transport systems and energy efficiency through rare earth magnets [Nd, Pr, Tb, Dy]
- Rare earth sector undergoing substantial restructure, with major near-term demand growth due to the roll-out of EV's – a global agenda
- 100% owned Kvanefjeld Project one of the most significant, advanced rare earth projects globally: well-positioned for development window
- Working closely with major RE international supplier Shenghe Resources to establish fully integrated supply chains to global end-users

Rare Earth Sector:

Change is Approaching

- Rare earth metals and oxides are produced via multiple processing steps
- China leads in the downstream area of separation both technology and capacity
- Production restrictions applied to RE mine supply in China
- New ex-China mines needed to meet massive demand surge for magnet metals
- Successful integration with downstream processing is key
- Greenland Shenghe working collaboratively for 3 years, successful cooperation
- Shenghe is focussed on growth through moving into international supply
- Greenland well-placed to work with Shenghe to establish new fully integrated rare earth supply business – full proficiency from mine to separated product

Kvanefjeld ProjectStart Point of Major New Rare Earth Supply



>1 billion tonne multi-element JORC resource, 108 Mt JORC ore reserve Initial 37 year mine life, scope for significant extension, expansion Close to existing infrastructure with year-round direct shipping access Simple configuration and processing, low technical risk Globally significant supplier of Nd, Pr, Dy, Tb, with U, Zn by-product credits Highly competitive economic metrics – long life, lowest cost quartile production Optimised by sector leader and major shareholder Shenghe Resources

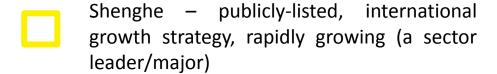
Kvanefjeld Project Setting – Southern Greenland

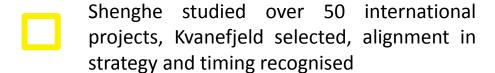
Kvanefjeld is located near existing infrastructure in southern Greenland, with year-round direct shipping access, airport nearby, and a mild climate; an optimal location

Kvanefjeld Project Setting – Narsaq Valley

- Direct shipping access to a world class ore body provides a major logistical advantage
- New industry and economic growth important to southern Greenland municipality

Project Components:


- Mine and concentrator (flotation circuit): REE mineral con, zinc con, fluorspar
- Atmospheric acid leach circuit & impurity removal: intermediate REE product, U byproduct



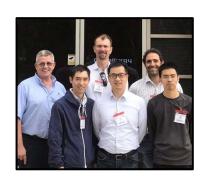
Rare Earth Value Chain Integration

Greenland	Minerals	has	been	engaging	
China's RE i	ndustry gro	oups s	ince 20	12	

In 2016, Shenghe invested in Greenland Minerals and commenced collaboration

Successful optimisation, now developing downstream processing strategy, off-take and marketing

Looking to strengthen ties with European Industry - a major new demand centre for REE's



Shenghe founder Mr Wang Quangen, and John Mair, October 2017 Shenghe HQ, Chengdu

Kvanefjeld Project:Optimised With Specialist Guidance

Test work programs conducted in both China and Australia

Flotation improvements generate a higher-grade, low-volume RE mineral concentrate

SHENGHE

TEST WORK

IMPROVEMENTS

FLOTATION

REFINING

Guided by Shenghe, draws on world-leading rare earth processing technology

Major improvements developed to both flotation and refinery circuits

Single stage atmospheric leach circuit (refinery circuit)

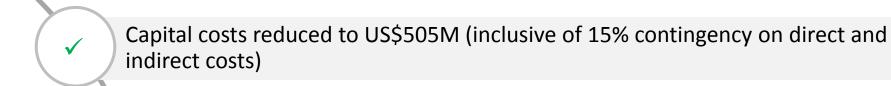
RESULTS

Improved recoveries, 40% reduction in annual operating costs
Unit costs of <US\$4/kg of REO, net of by-product credits

(lowest of undeveloped REE projects in ASX-listed companies)

Engineering Optimisation

A team of leading international engineering firms visited Kvanefjeld in August 2018 for collaborative onsite surveys/studies


Nuna Logistics, Tetra Tech, PDN Engineers, China-CCC

Follow-up studies have resulted in a **44% reduction** in civil construction costs to US \$175M – including indirect costs and contingencies

Major reductions in civil construction costs accompany cost reductions achieved through metallurgical optimisation to reduce overall capital costs substantially

Optimised Feasibility Study - 2019

- Rare earth production of 32,100t/a REO in intermediate product
 - ✓ Inclusive of 5,692 t NdPr oxide, 270 t Dy oxide, 44t Tb oxide
 - ✓ Initial 37 year mine life based on 108 Mt ore reserve
- ✓ Simplest flow sheet of emerging RE projects low technical risk
 - Lowest operating costs and capital intensity of emerging RE projects

Rare Earth Value Chain Integration – Path to Market

- Shenghe Chairman Mr Hu Zesong presented at the 2019
 Confederation of Danish Industry's Greenland Conference
- GML Shenghe updated Greenland, Danish governments on project status and development strategy
- With technical optimisation complete focus on commercial development – Europe strategy

Advanced Permitting Status

Social Impact Assessment

Reviewed, updated and accepted for public consultation

Environmental Impact Assessment

Reviewed, additional supporting studies on track for completion in March 2020

Thorough and rigorous approach to impact assessments:

Environmental Impact Assessment

GHD (International), Orbicon (Denmark/Greenland), KCB, Arcadis, Danish Hydraulic Institute, Environmental Resource Management, DTU, Blue Water Shipping, Wood Group

Social Impact Assessment

Shared Resources (International), NIRAS (Denmark)

Community

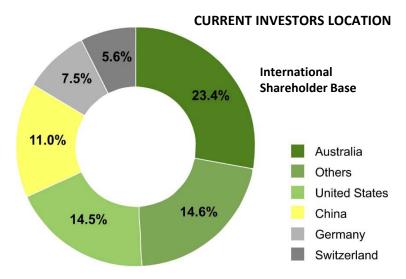
Kvanefjeld Project is located in Kommune Kujalleq (Southern Greenland Municipality), behind the town of Narsaq Over 10 years of stakeholder engagement in the local community, including important input into project 'Terms of Reference', approved in 2015

In March 2019 MoU
entered with
municipality and
local business
council to negotiate
a participation
agreement to cover
community
involvement and
capacity
development

Stakeholder
meetings with
specialist
consultants and
company
representatives
conducted in June,
presentation of
impact assessments
to municipality

Strong Foundation Set for Development Success

>1 billion tonne multi-element resource, largest REO inventory under JORC code
Project optimised in conjunction with major shareholder and industry leader
Highly efficient processing, lowest cost quartile production costs
Regulatory framework in legislated by Greenland and Danish governments
Permitting advanced, EIA soon to be finalised (Q1 2020)
Developing a downstream processing strategy with Shenghe Resources
Well-positioned for upcoming development window to meet RE demand surge



Appendix

Corporate Snapshot

Board

Non-Executive Chairman	Tony Ho
Managing Director	Dr John Mair
Non-Executive Director	Simon Cato
Non-Executive Director	Xiaolei Guo
Top Shareholders	
Shenghe Resources Holdings	125M shares
Tracor Limited	53M shares

Capital Structure

Shares outstanding	1,190 M
Market capitalization	A\$120M (@10 cents)

Kvanefjeld Project Ownership - 100%

Regulatory Framework & Permitting Process

IAEA Director General visits Kvanefjeld - May 2017

Jakob Rohmann Hard (Chief of Protocol, Foreign Department, Greenland), Liselotte Plesner (Danish Ambassador, Vienna), Nuka Møller (Greenland Business), Jørn Skov Nielsen (Deputy Minister, Industry Trade and Labour, Greenland), Kim Kielsen (Greenland Premier), John Mair (MD, GMEL), Yukiya Amano (Director General, IAEA)

The Governments of Greenland and Denmark have worked to establish a regulatory framework to manage the	Enabling legislation passed by both respective parliaments to implement safeguards and export controls in
production and export of uranium from Greenland	accordance with IAEA and EURATOM
In September 2016, Greenland formalised status as signatory to IAEA conventions	Routine site inspection conducted by IAEA in August 2018, with all in good order

Statement of Identified Mineral Resources (JORC – Code Compliant 2012)

Multi-Element Resources Classification, Tonnage and Grade											Contained Metal						
Cut-off	Classification	M tonnes	TREO ²	U_3O_8	LREO	HREO	REO	Y_2O_3	Zn	TREO	HREO	Y_2O_3	U_3O_8	Zn			
(U ₃ O ₈ ppm) ¹		Mt	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Mt	Mt	Mt	M lbs	Mt			
Kvanefjeld - Fe	bruary 2015																
150	Measured	143	12,100	303	10,700	432	11,100	978	2,370	1.72	0.06	0.14	95	0.34			
150	Indicated	308	11,100	253	9,800	411	10,200	899	2,290	3.42	0.13	0.28	172	0.7			
150	Inferred	222	10,000	205	8,800	365	9,200	793	2,180	2.22	0.08	0.18	100	0.4			
150	Grand Total	673	10,900	248	9,600	400	10,000	881	2,270	7.34	0.27	0.59	368	1.53			
200	Measured	111	12,900	341	11,400	454	11,800	1,048	2,460	1.43	0.05	0.12	83	0.2			
200	Indicated	172	12,300	318	10,900	416	11,300	970	2,510	2.11	0.07	0.17	120	0.4			
200	Inferred	86	10,900	256	9,700	339	10,000	804	2,500	0.94	0.03	0.07	49	0.2			
200	Grand Total	368	12,100	310	10,700	409	11,200	955	2,490	4.46	0.15	0.35	252	0.9			
250	Measured	93	13,300	363	11,800	474	12,200	1,105	2,480	1.24	0.04	0.10	75	0.2			
250	Indicated	134	12,800	345	11,300	437	11,700	1,027	2,520	1.72	0.06	0.14	102	0.3			
250	Inferred	34	12,000	306	10,800	356	11,100	869	2,650	0.41	0.01	0.03	23	0.0			
250	Grand Total	261	12,900	346	11,400	440	11,800	1,034	2,520	3.37	0.11	0.27	199	0.6			
300	Measured	78	13,700	379	12,000	493	12,500	1,153	2,500	1.07	0.04	0.09	65	0.2			
300	Indicated	100	13,300	368	11,700	465	12,200	1,095	2,540	1.34	0.05	0.11	82	0.2			
300	Inferred	15	13,200	353	11,800	391	12,200	955	2,620	0.20	0.01	0.01	12	0.0			
300	Grand Total	194	13,400	371	11,900	471	12,300	1,107	2,530	2.60	0.09	0.21	159	0.4			
350	Measured	54	14,100	403	12,400	518	12,900	1,219	2,550	0.76	0.03	0.07	48	0.1			
350	Indicated	63	13,900	394	12,200	505	12,700	1,191	2,580	0.87	0.03	0.07	54	0.1			
350	Inferred	6	13,900	392	12,500	424	12,900	1,037	2,650	0.09	0.00	0.01	6	0.0			
350	Grand Total	122	14,000	398	12,300	506	12,800	1,195	2,570	1.71	0.06	0.15	107	0.3			

Statement of Identified Mineral Resources (JORC – Code Compliant 2012)

Multi-Element Resources Classification, Tonnage and Grade											Contained Metal					
Cut-off	Classification	M tonnes	TREO ²	U ₃ O ₈	LREO	HREO	REO	Y_2O_3	Zn	TREO	HREO	Y_2O_3	U ₃ O ₈	Zn		
$(U_3O_8 ppm)^1$		Mt	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Mt	Mt	Mt	M lbs	Mt		
Sørensen - Ma	rch 2012															
150	Inferred	242	11,000	304	9,700	398	10,100	895	2,602	2.67	0.10	0.22	162	0.63		
200	Inferred	186	11,600	344	10,200	399	10,600	932	2,802	2.15	0.07	0.17	141	0.52		
250	Inferred	148	11,800	375	10,500	407	10,900	961	2,932	1.75	0.06	0.14	123	0.43		
300	Inferred	119	12,100	400	10,700	414	11,100	983	3,023	1.44	0.05	0.12	105	0.36		
350	Inferred	92	12,400	422	11,000	422	11,400	1,004	3,080	1.14	0.04	0.09	85	0.28		
Zone 3 - May 2	2012															
150	Inferred	95	11,600	300	10,200	396	10,600	971	2,768	1.11	0.04	0.09	63	0.26		
200	Inferred	89	11,700	310	10,300	400	10,700	989	2,806	1.03	0.04	0.09	60	0.25		
250	Inferred	71	11,900	330	10,500	410	10,900	1,026	2,902	0.84	0.03	0.07	51	0.20		
300	Inferred	47	12,400	358	10,900	433	11,300	1,087	3,008	0.58	0.02	0.05	37	0.14		
350	Inferred	24	13,000	392	11,400	471	11,900	1,184	3,043	0.31	0.01	0.03	21	0.07		
Project Total																
150	Measured	143	12,100	303	10,700	432	11,100	978	2,370	1.72	0.06	0.14	95	0.34		
150	Indicated	308	11,100	253	9,800	411	10,200	899	2,290	3.42	0.13	0.28	172	0.71		
150	Inferred	559	10,700	264	9,400	384	9,800	867	2,463	6.00	0.22	0.49	326	1.38		
150	Grand Total	1010	11,000	266	9,700	399	10,100	893	2,397	11.14	0.40	0.90	593	2.42		

¹There is greater coverage of assays for uranium than other elements owing to historic spectral assays. U₃O₈ has therefore been used to define the cutoff grades to maximise the confidence in the resource calculations.

Note: Figures quoted may not sum due to rounding.

²Total Rare Earth Oxide (TREO) refers to the rare earth elements in the lanthanide series plus yttrium.