

High-Grade Copper and Gold Intersected in Drilling Program at Bluebird

Gold-Copper focused exploration company, Blina Minerals NL (ASX: BDI) ("Blina" or the "Company") is pleased to announce the results of the Reverse Circulation (RC) drilling program that was completed at the Barkly Copper-Gold Project ("Barkly" or the "Project"), located in the Northern Territory of Australia.

The drilling program comprised seven (7) holes for 1,169.5m targeting Tennant Creek style copper-gold mineralisation at the advanced Bluebird Prospect.

Highlights:

- Multiple intersections of high-grade copper and gold mineralisation have been encountered by the RC drilling program at Bluebird
- Significant intersections include:
 - 6 BBRC019 intersected 15m @ 3.46% Cu, 0.61g/t Au from 172m
 - © BBRC015 intersected 20m @ 1.79g/t Au, 1.67% Cu from 156m
- Hole BBRC019 ended in gold mineralisation with 1m @ 3.9g/t Au and
 4.8% Cu end of hole
- Mineralisation remains open along strike to west and at depth from hole BBRC019
- A number of additional geophysical targets remain to be tested along the mineralised trend

BLINA MINERALS NL ASX ANNOUNCEMENT 18 March 2020

Board:

Mark Maine Non-Executive Chairman

Gino D'Anna Non-Executive Director

Matthew Driscoll Non-Executive Director

Neville Bassett Non-Executive Director

Capital Structure:

6.269 Billion Shares

904 Million Options @ 0.17c exp 31/10/2020

1.014 Billion Options @ \$0.002 exp 17/08/21

ASX Code: BDI

Barkly Gold-Copper Project

The Barkly Project is located approximately 45km east of the town of Tennant Creek in the Northern Territory and comprises two Exploration Licences, being EL 28620 (**Barkly Project**) and EL 30701 (**Babbler Project**) located in central Northern Territory, south of the Barkly Highway in the Northern Territory (*Error! Reference source not found.*).

The Barkly-Babbler Project is considered highly prospective for magnetite hosted gold-copper similar to other deposits found elsewhere in the Tennant Creek Goldfield.

Figure 1: Barkly Project location plan

The holes were drilled to in-fill and extend previous drilling that intersected high-grade copper-gold mineralisation within an ironstone unit on a west-northwest trending, steeply south dipping fault zone. Significant results from the drill program included:

BBRC0015	20m @ 1.79g/t Au, 1.67% Cu from 156m Incl. 10m @ 2.87g/t Au, 2.32% Cu
BBRC0019	15m @ 3.46% Cu, 0.61g/t Au from 172m Incl. 4m @ 6.28% Cu, 0.24g/t Au from 175m and 1m @ 4.80% Cu, 3.95g/t Au from 186 (finishing in mineralisation at end of hole)

Significantly, drill hole BBRC0019 was drilled below BBRC013 which was previously the deepest and most westerly hole drilled at Bluebird. The hole intersected strongly hematite altered siltstone and ironstone from 172m to 187m at which depth the hole was abandoned due to in-hole caving. The hole ended in mineralisation with the last metre containing 3.9g/t Au and 4.8% Cu. Several of the other holes were also abandoned due to in-hole caving prior to reaching the mineralised zone or target depth. The difficult drilling conditions are caused by brecciated ironstone in the fault zone in combination with high water in-flow rates.

The Bluebird Prospect has a prominent aeromagnetic and gravity anomaly along a west-north-west fault trend. At the surface the prospect is marked by an ironstone that forms a low hill with several shallow workings. At the surface the ironstone has low levels of gold and copper because of strong leaching that extends to a depth of over 100m. High copper and gold values have been intersected at a supergene enriched zone at a depth of approximately 120-150m vertical. Bluebird is one of several coincident magnetic and gravity anomalies along the fault. Previous drilling has been shallow reconnaissance style and is unlikely to have penetrated the strongly leached zone.

Figure 2: Bluebird prospect cross section 448360E

Further RC and diamond drilling has been planned at Bluebird in order to complete those holes which were abandoned prior to reaching the target mineralised zone due to in-hole caving and to extend the coppergold mineralisation along strike to the west. Drilling will also be conducted to test targets along the west north-west trending coincident magnetic and gravity anomaly.

About the Barkly Project

The Barkly Project comprises two granted Exploration Licences EL28620 and EL30701.

EL28620 was formerly subject to a farm-in Joint Venture Agreement between Colour Mineral's Pty Ltd and Meteoric Resources NL with Colour holding a 70% interest. In 2019, Colour Minerals acquired Meteoric's 30% interest in EL28620 after which Blina Resources NL executed a legally binding heads of agreement to acquire a 50% interest in Colour Minerals.

EL30701 was previously held by Meteoric Resources. In 2019, Colour Minerals acquired Meteoric's interest after which Blina Resources NL executed a legally binding heads of agreement to acquire a 50% interest in Colour Minerals.

Ground magnetic and gravity surveys followed by soil geochemistry focussed attention on the Bluebird prospect which is a small outcropping ironstone body pitted by historic mining and prospecting. RAB drilling programs were conducted in 2005 and 2006 intersecting hematite ironstone and hematite-chlorite alteration over a 600m strike length with anomalous copper, gold and bismuth. RC and diamond drilling programs were conducted between 2014-2016 by Blaze International Exploration. Significant intersections include: **20m @ 8.17g/t Au from 157m** in BBDD002 and **16m @ 3.02% Cu, 0.65g/t Au from 139m** in BBDD004¹.

ENDS

Contact and Authorisation

This release was authorised by the Board of BDI

For further information please contact:

Mark Maine *Non-Executive Chairman M*: +61 416 017 244

COMPETENT PERSON'S DECLARATION

The information in this report that relates to exploration results is based on information compiled or reviewed by Mr Martin Bennett, who is a consultant of Colour Minerals Pty Ltd and a member of the Australian Institute of Geoscientists. Mr Bennett has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Bennett consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

FORWARD-LOOKING STATEMENTS

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning the Colour Minerals Pty Ltd planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Colour Minerals Pty Ltd believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

¹ Blaze International Limited (ASX: BLZ) press release dated 9 December 2014: High grade copper sulphide intersection at Bluebird. The Company is not aware of any new information or data that materially effects the information included in this announcement.

APPENDIX 1

Bluebird RC Drilling Program RC Holes BBRC014 to BBRC020 Drill Hole Coordinates

Hole_ID	East	North	Hole_Type	Depth	Dip	Azimuth	Grid	Status
BBRC014	448380	7827650	RC	133	-60	0	GDA94 MGA Z53	Completed
BBRC015	448400	7827031	RC	179	-60	0	GDA94 MGA Z53	Failed to reach target.
BBRC016	448420	7827032	RC	162	-60	0	GDA94 MGA Z53	Failed to reach target.
BBRC017	448420	7827003	RC	253	-60	0	GDA94 MGA Z53	Completed
BBRC018	448380	7827028	RC	162.5	-60	0	GDA94 MGA Z53	Failed to reach target.
BBRC019	448360	7827021	RC	187	-60	0	GDA94 MGA Z53	Failed to reach target.
BBRC020	448378	7827119	RC	93	90	0	GDA94 MGA Z53	Completed

Bluebird RC Drilling Program RC Holes BBRC014 to BBRC020 Best Intersections

Hole ID	From	То	Au g/t	Cu %
BBRC0014	100	101	0.05	0.52
BBRC0014	101	102	0.02	0.13
BBRC0014	102	103	0.13	2.00
BBRC0014	103	104	0.53	2.00
BBRC0014	104	105	0.02	0.37
BBRC0014	105	106	0.03	0.10
BBRC0015	156	157	1.07	0.40
BBRC0015	157	158	1.99	0.39
BBRC0015	158	159	0.55	0.89
BBRC0015	159	160	0.71	0.21
BBRC0015	160	161	0.50	0.22
BBRC0015	161	162	4.70	1.25
BBRC0015	162	163	4.61	1.96
BBRC0015	163	164	1.13	0.82
BBRC0015	164	165	3.06	1.19
BBRC0015	165	166	4.05	0.68
BBRC0015	166	167	1.51	1.54
BBRC0015	167	168	0.34	0.75
BBRC0015	168	169	1.08	0.59
BBRC0015	169	170	6.46	4.00
BBRC0015	170	171	1.78	10.40
BBRC0015	171	172	0.25	1.10
BBRC0015	172	173	0.10	0.68
BBRC0015	173	174	0.35	1.64
BBRC0015	174	175	0.92	3.59
BBRC0015	175	176	0.69	1.14
BBRC0016	123	124	0.28	0.02
BBRC0016	124	125	0.07	0.01

BBRC0016	125	126	0.02	0.00
BBRC0016	126	127	0.00	0.01
BBRC0016	127	128	0.01	0.02
BBRC0016	128	129	0.02	0.04
BBRC0016	129	130	0.01	0.03
BBRC0016	130	131	0.01	0.01
BBRC0016	131	132	0.00	0.01
BBRC0016	132	133	0.00	0.01
BBRC0016	133	134	0.00	0.00
BBRC0016	134	135	0.00	0.03
BBRC0016	135	136	0.02	0.01
BBRC0016	136	137	0.02	0.02
BBRC0016	137	138	0.02	0.02
BBRC0016	138	139	0.03	0.04
BBRC0016	139	140	0.11	0.04
BBRC0016	140	141	0.12	0.11
BBRC0016	141	142	0.08	0.06
BBRC0016	142	143	0.09	0.07
BBRC0016	143	144	0.05	0.06
BBRC0016	144	145	0.05	0.07
BBRC0016	145	146	0.08	0.20
BBRC0016	146	147	0.03	0.33
BBRC0016	147	148	0.35	1.10
BBRC0016	148	149	0.46	2.00
BBRC0016	149	150	2.87	2.00
BBRC0016	150	151	2.98	2.00
BBRC0016	151	152	0.48	0.68
BBRC0016	152	153	0.25	0.47
BBRC0016	153	154	0.17	0.30
BBRC0017	149	150	2.22	0.85
BBRC0017	150	151	0.10	0.48
BBRC0017	151	152	0.10	0.42
BBRC0017	152	153	0.07	0.65
BBRC0017	153	154	0.21	2.00
BBRC0017	154	155	0.07	1.33
BBRC0017	155	156	0.03	1.63
BBRC0017	156	157	0.02	0.46
BBRC0017	157	158	0.12	0.40
BBRC0017	158	159	0.01	0.46
BBRC0017	159	160	0.07	1.79
BBRC0017	160	161	0.05	1.28
BBRC0017	161	162	0.01	0.27
BBRC0017	162	163	0.17	0.47
BBRC0017	163	164	0.05	0.03
BBRC0017	164	165	0.06	0.02
BBRC0017	165	166	0.01	0.00
BBRC0017	166	167	0.02	0.00

BBRC0017	167	168	0.01	0.00
BBRC0017	168	169	0.00	0.00
BBRC0017	169	170	0.00	0.06
BBRC0017	170	171	0.00	0.04
BBRC0017	171	172	0.00	0.01
BBRC0017	172	173	0.16	0.05
BBRC0017	173	174	0.01	0.04
BBRC0017	174	175	0.87	0.05
BBRC0017	175	176	0.01	0.01
BBRC0017	176	177	0.04	0.02
BBRC0017	177	178	0.01	0.03
BBRC0017	178	179	0.01	0.01
BBRC0017	179	180	0.00	0.00
BBRC0017	180	181	0.00	0.00
BBRC0017	190	191	0.00	0.02
BBRC0017	191	192	0.00	0.01
BBRC0017	192	193	0.00	0.00
BBRC0017	193	194	0.00	0.02
BBRC0017	194	195	0.01	0.01
BBRC0017	195	196	0.02	0.03
BBRC0017	196	197	0.12	0.04
BBRC0017	197	198	5.59	0.10
BBRC0017	198	199	0.59	0.40
BBRC0017	199	200	0.33	0.02
BBRC0018	137	138	1.59	0.09
BBRC0018	138	139	0.13	0.05
BBRC0018	139	140	0.03	0.01
BBRC0018	140	141	0.01	0.04
BBRC0018	141	142	0.00	0.01
BBRC0018	142	143	0.00	0.01
BBRC0018	143	144	0.00	0.01
BBRC0018	144	145	0.00	0.01
BBRC0018	145	146	0.01	0.01
BBRC0018	151	152	0.05	0.10
BBRC0018	152	153	0.20	0.35
BBRC0018	153	154	0.04	0.04
BBRC0018	154	155	0.23	0.56
BBRC0018	155	156	0.26	0.76
BBRC0019	172	173	0.14	3.13
BBRC0019	173	174	0.13	1.79
BBRC0019	174	175	0.12	1.29
BBRC0019	175	176	0.17	4.08
BBRC0019	176	177	0.29	6.61
BBRC0019	177	178	0.12	2.64
BBRC0019	178	179	0.41	11.83
BBRC0019	179	180	1.66	2.36
BBRC0019	180	181	0.44	0.82

BBRC0019	181	182	0.23	1.32
BBRC0019	182	183	0.05	0.81
BBRC0019	183	184	0.07	2.48
BBRC0019	184	185	0.61	5.00
BBRC0019	185	186	0.73	2.91
BBRC0019	186	187	3.95	4.81
BBRC0020	69	72	0.61	0.66
BBRC0020	72	75	1.63	1.52
BBRC0020	75	78	0.13	0.40
BBRC0020	78	81	0.23	0.71
BBRC0020	81	84	0.08	0.89
BBRC0020	84	87	0.04	0.35
BBRC0020	87	90	0.03	0.08
BBRC0020	90	93	0.02	0.06

Bluebird RC Drilling Program RC Holes BBRC014 to BBRC020 Selected Best Intersections

Hole_ID	Intercept		
BBRC0014	1m @ 0.53g/t Au from 103m		
BBRC0015	20m @ 1.79g/t Au from 156m		
BBRC0016	1m @ 0.28g/t Au from 123m	Hole ID	Intercept
BBRC0016	5m @ 1.43g/t Au from 147m	BBRC0014	5m @ 1.00% Cu from 100m
BBRC0017	1m @ 2.22g/t Au from 149m	BBRC0015	18m @ 1.84% Cu from 161m
BBRC0017	3m @ 2.17g/t Au from 197m	BBRC0016	8m @ 1.11% Cu from 146m
BBRC0018	1m @ 1.59g/t Au from 137m	BBRC0017	14m @ 0.89% Cu from 149m
BBRC0019	5m @ 0.58g/t Au from 176m	BBRC0018	4m @ 0.43%Cu from 152m
BBRC0019	3m @ 1.76g/t Au from 184m	BBRC0019	15m @ 3.46% Cu from 172m
BBRC0020	6m @ 1.12g/t Au from 69m	BBRC0020	18m @ 0.76% Cu from 69m

APPENDIX 2 JORC 2012 Edition - Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Exploration results are based on industry best practices, including sampling, assay methods, and appropriate quality assurance quality control (QAQC) measures. Reverse Circulation (RC): RC drill chips were collected at 1m intervals via a cone splitter in pre-numbered calico bags. The quantity of sample was monitored by the geologist during drilling. RC samples of between 3-4kg were sent to the laboratory where they were pulverised to at least 85% passing 75 microns. The pulp sample is then split to produce a sample for analysis.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 RC drilling was conducted using a 5¹/₄" face sampling hammer, with holes drilled a -60 degrees.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential 	 RC sample recovery is monitored by the field geologist. Low sample recoveries are recorded on the drill log. The geologist is present during drilling to monitor the sample recovery process. There were no significant sample recovery issues encountered during the drilling program.

Criteria	JORC Code explanation	Commentary		
	loss/gain of fine/coarse material.			
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All logging is completed according to industry best practice. RC chips are logged at 1m intervals using a representative sample of the drill chips. Logging records include lithology, alteration, mineralisation, colour and structure. 		
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled 	 For all sample types, the nature, quality and appropriateness of the sample preparation technique is considered adequate as per industry best practice. RC samples of 3-4kg are collected at 1m intervals using a cone splitter. The sample size is appropriate for the style of mineralisation and the grain size of the material being sampled. RC samples are dried at the laboratory and then pulverised to at least 85% passing 75 microns. 		
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 All samples are submitted to the Intertek Laboratories sample preparation facility at Alice Springs in the Northern Territory where a pulp sample is prepared. The pulp samples are then transported to Intertek in Perth Australia for analysis. Pulp sample(s) were digested with a mixture of four Acids including Hydrofluoric, Nitric, Hydrochloric and Perchloric Acids for a total digest. Cu, Pb, Ag, Bi, Co Ni, Sb have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry (MS-OES). 		

Criteria	JORC Code explanation	Commentary
		 Gold was analysed by Fire Assay with a 25g charge and a ICP-MS finish with a 1ppb Au detection limit. A Field Standard, Duplicate or Blank is inserted every 20 samples. The Laboratory inserts its own standards and blanks at random intervals, but several are inserted per batch regardless of the size of the batch.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	 All significant intercepts are reviewed and confirmed by at least two senior personnel before release to the market.
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No adjustments are made to the raw assay data. Data is imported directly to Datashed in raw original format.
		 All data are validated using the QAQCR validation tool with Datashed. Visual validations are then carried out by senior staff members.
Location of data points	• Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 All drill hole collars were located with a hand-held GPS with a accuracy of +/-5m. At the completion of the drilling program all holes will be surveyed by DGPS.
	 Specification of the grid system used. Quality and adequacy of topographic control. 	• Downhole surveys were taken at 30m intervals using a Reflex single shot camera. The camera records the azimuth and dip of the hole.
		• The survey co-ordinates are GDA94 MGA Zone 53.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data spacing and distribution used to determine geological continuity is dependent on the deposit type and style under consideration. Where a mineral resource is estimated, the appropriate data spacing and density is decided and reported by the competent person.

Criteria	JORC Code explanation	Commentary
		 For mineral resource estimations, grades are estimated on composited assay data. The composite length is chosen based on the statistical average, usually 1m. Sample compositing is never applied to interval calculations reported to market. A sample length weighted interval is calculated as per industry best practice.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Orientation of sampling is as unbiased as possible based on the dominating mineralised structures and interpretation of the deposit geometry. If structure and geometry is not well understood, sampling is orientated to be perpendicular to the general strike of stratigraphy and/or regional structure.
Sample security	• The measures taken to ensure sample security.	 All samples remain in the custody of company geologists and are fully supervised from point of field collection to laboratory drop-off.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 None yet undertaken for this dataset

JORC 2012 Edition - Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Company controls two contiguous Exploration Licences, EL 28620 and EL30701 located east of Tennant Creek. All tenure is in good standing at the time of reporting. There are no known impediments with respect to obtaining a licence to operate in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Several other parties have undertaken exploration in the area between the 1930s through to the present day including Posgold, Meteoric Resources and Blaze Resources.
Geology	• Deposit type, geological setting and style of mineralisation.	• The Barkly Project covers sediments of the Lower Proterozoic Warramunga Group that hosts all of the copper-gold mines and prospects in the Tennant Creek region. At the Bluebird prospect copper-gold mineralisation is hosted by an ironstone unit within a west north west striking fault. The ironstone cross cuts the sedimentary sequence that mostly comprises of siltstone.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth 	Refer to Appendix 1 of the ASX announcement.

	 hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All exploration results are reported by a length weighted average. This ensures that short lengths of high-grade material receive less weighting than longer lengths of low-grade material. No high-grade cut-offs are applied. A nominal low-grade cut-off of 0.25g/t Au and 0.3% Cu is used with a maximum of 1m of internal dilution.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Mineralisation at Bluebird is interpreted to be striking east-west true azimuth with a dip of 70-80 degrees towards 180 degrees true azimuth. All holes are drilled as perpendicular as practical to the orientation of the mineralised unit and structure. Intersection lengths are interpreted to be close to true thickness.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• Refer to Figure 1 and 2 of the ASX announcement.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading	 All background information is discussed in the announcement. Full drill results for copper and gold assays are shown in

	reporting of Exploration Results.	Appendix 2.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other data is material to this report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Additional drilling is planned to complete holes abandoned because of cavings and to extend mineralisation along strike and in particular to the west from BBRC019.