Penny South Ground Magnetics JORC Table ASX Announcement 24 March 2020 ASX Code: ARN Board Rhod Grivas Non-Executive Chairman Dr Caedmon Marriott Managing Director Joshua Letcher Non-Executive Director #### **Capital Structure** Shares: 52.86m Options (@22.5c): 2.0m Share Price: \$0.082 Market Cap: \$4.33m Cash (31/12/19): \$2.95m Aldoro Resources Limited ("Aldoro" or "Company") provides the attached JORC Table to accompany the results of the recent ground magnetic survey extension presented in ASX release *Exploration Activity Update, 20 March 2020*. This Announcement has been approved for release by: Caedmon Marriott Managing Director # **Penny South Ground Magnetic Extension Survey** ### JORC Code, 2012 Edition - Table 1 #### **Section 1: Sampling Techniques and Data** | Criteria | JORC Code explanation | Commentary | |------------------------|---|---| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Ground magnetic survey undertaken using industry standard processes and equipment | | Drilling
techniques | • Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | • NA | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | • NA | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | • NA | | Criteria | JORC Code explanation | Commentary | |--|--|--| | Sub-sampling
techniques and
sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | • NA | | Quality of assay
data and
laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | Ground magnetic survey undertaken by Nomad
Exploration Pty Ltd using a GEM Systems
GSM-19WV Overhauser walking magnetometer
and a GEM Systems GSM-19T Proton
magnetometer as a base station to record and
correct for diurnal variation. Walking
magnetometer readings were collected at 1
second intervals whilst base station readings
were taken at 20 second intervals | | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | Ground magnetic survey data collected on site
and validated by geophysical technician daily.
Raw data sent to consultant geophysicist for
review, quality control and processing All data stored in electronic format | | Location of data points Data spacing and distribution | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. | Walking magnetometer used inbuilt GPS unit with accuracy of +/-0.6m Coordinates are in GDA94 Zone 50. Survey lines in E-W orientation with 50m spacing between lines | | Orientation of
data in relation
to geological
structure | Whether sample compositing has been applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Survey orientation approximately orthogonal to
possible structure | | Sample security | The measures taken to ensure sample security. | • NA | | Criteria | JORC Code explanation | Commentary | |-------------------|---|---| | Audits or reviews | • The results of any audits or reviews of sampling techniques and data. | Data reviewed by independent consultant | # **Section 2: Reporting of Exploration Results** | Criteria | JORC Code explanation | Commentary | |--|--|--| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | Tenement E57/1045 (4 graticular blocks) Held by Altilium Metals Limited GSR to original tenement holder | | Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | Gold Mines of Australia (GMA) undertook extensive exploration in the period 1989 -1996 with extensive soil sampling returning disappointing results and angled RAB drilling generating some encouraging results in the regolith. Two anomalous intercepts of 2 m@ 33.98 g/t Au (95PSR0673;38-40m) and 1m@ 1.04 g/t Au (PSR0100;28-29m) were tested by very limited RC drilling however the majority regolith anomalies were untested. Lach Drummond Resources (2002-2004); Follow-up aircore drilling of the GMA generated regolith anomalies with better results including 6m@ 1.27 g/t Au (PWAC062; 29-35m) and 1m@ 1.04 g/t Au (PWAC092; 33-34m) Beacon Minerals (2014-15); 34 angled aircore holes totalling 1820m were undertaken to test the historical regolith anomalies. Results were moderate with follow up RC drilling proposed for significant aircore results. | | Geology | Deposit type, geological setting and style of mineralisation. | The Penny South Project is located at the southern end of the Youanmi greenstone belt, dominated by metamorphosed mafic extrusives and intrusives, minor BIF, intrusive felsic porphyries and some felsic volcanic rocks. The Youanmi intrusive complex is made up of layered mafic and ultramafic rocks and occurs to the immediate west of the main greenstone sequence. Anomalous gold occurs in a favourable structural setting close to the Youanmi Fault, a major structure known to host or control gold mineralisation in the district. | | Criteria | JORC Code explanation | Commentary | |---|--|--| | Drill hole
information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | practice for that time. | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | • NA | | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | • NA | | Diagrams | Appropriate maps and sections (with scales) and
tabulations of intercepts should be included for any
significant discovery being reported. These should
include, but not be limited to a plan view of drill hole
collar locations and appropriate sectional views. | Image of RTP 1VD presented in the body of text | | Balanced reporting | Where comprehensive reporting of all Exploration
Results is not practicable, representative reporting of
both low and high grades and/or widths should be
practiced to avoid misleading reporting of Exploration
Results. | • NA | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | • NA | | Criteria | JORC Code explanation | Commentary | |--------------|---|--| | Further work | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | drilling • Exploration is at an early stage and future drilling areas will depend on interpretation of future results |