

ASX ANNOUNCEMENT

2 April 2020

RRL1667D

Youanmi Exploration Update – Grace Prospect Continues to Deliver High Grades

Highlights:

Recent assays from the Grace Prospect include:

RXRC151: 71	n @ 54.6g/t Au from 8m
RXRC152: 1 I	n @ 29.7g/t Au from 23m
RXRC153: 6I	n @ 5.7g/t Au from 24m
RXRC154: 4	n @ 4.5g/t Au from 9m,
and 3	m @ 5.32g/t Au from 53m

Australian gold and nickel company, Rox Resources Limited ("Rox" or "the Company") (ASX: RXL), in conjunction with its joint venture partner Venus Metals Corporation Limited (ASX: VMC) is pleased to report further results (Tables 1 and 2) from its early 2020 drilling program undertaken at Youanmi.

During this year assay turnaround has been slower than normal due to the heavy workload at Western Australian assay laboratories and, more recently, the effects of COVID-19. To date assay results have been received for 31 RC holes drilled at Grace with results for <u>78 RC holes remaining outstanding</u> (Figure 1).

The Company's drilling has defined a significant very high-grade zone of mineralisation (greater than 30 gram-metres) extending from surface, open to the north and which lies within a broader wide zone of mineralisation. It is currently interpreted as a northerly plunging high-grade, gold mineralised body; In places multiple shoots are present. Results from the northerly lines of holes are still outstanding.

Managing Director Alex Passmore Commented: "The Grace prospect is emerging as an exciting high-grade deposit with one of the better recent intersections returned from hole RXRC151 being a spectacular **7m** @ **54.6** g/t Au from 8m. This newly discovered mineralisation has all the hallmarks needed to bring it into early production-it is close to surface, lies near to existing pits and sits within a granted mining lease which already has substantial infrastructure."

Figure 2 shows the central shoot within the Grace prospect and clearly shows the plunge of the mineralisation. Grace is located in a general NNW/SSE trending line of load which includes the Airstrip and Youanmi South prospects as well (Figure 3).

ROX RESOURCES LIMITED

ASX: RXL

Rox Resources Limited (ASX: RXL) is an Australian listed company with advanced gold and nickel projects in Western Australia: the Youanmi Gold Project, Mt Fisher Gold project, and the Fisher East and Collurabbie Nickel projects.

DIRECTORS

Mr Stephen Dennis Chairman

Mr Alex Passmore Managing Director

Mr Brett Dickson Finance Director

Dr John Mair Non-Executive Director

Shares on Issue	1,458m
Share Price	\$0.017
Market Cap.	\$24.8m
Cash & Receivables	\$7.5m
(as at 31/12/19)	

Level 1, 34 Colin Street, West Perth WA 6005

+61 8 9226 0044

admin@roxresources.com.au

www.roxresources.com.au

¹See ASX 10/04/2019. RXL and VMC are in a 50/50 JV. RXL has the ability to increase to 70%

As a result of the evolving COVID-19 pandemic and to ensure the health and safety of our employees and contractors the drilling program has paused. The Company will utilise this hiatus in drilling to interrogate data received from the airborne magnetic survey completed in January this year, 250 holes drilled since July last year, as well as the extensive inherited data base to continue the search for and delineation of high grade near surface deposits at Youanmi.

Figure 1 – Grace & Youanmi South Plan

Figure 2 – Grace Prospect Long Section

Figure 3 – Long Section showing Grace Prospect and Airstrip Prospect

Figure 4 – Long Section through Main Lode at Youanmi (i.e west of Grace section) showing historical workings and interpreted northerly plunging very high-grade shoots within steep south plunging ore zone

Geological Interpretation

From historical data at Youanmi a series of high grade northerly plunging shoots exist within an overall steep southerly plunging ore zone (Figure 4).

The Company's current interpretation for Grace and Airstrip Prospects is that these may represent the near surface expressions of similar high grade shoots. Importantly, these shoots are open down plunge to the north and there is potential for repetition at depth.

The Company looks forward to updating on further results in the coming weeks as further assay results are received. While field programs have had to be curtailed, preliminary mineralisation and resource modelling has commenced and will be ongoing.

Authorised for release to ASX by Alex Passmore, Managing Director

*** ENDS ***

For more information:

Alex Passmore Managing Director Rox Resources Limited Tel: +61 8 9226 0044 admin@roxresources.com.au Matt Hogan Managing Director Venus Metals Corporation Limited Tel: +61 8 9321 7541

Competent Person Statements

Exploration Results

The information in this report that relates to Data and Exploration Results is based on information compiled and reviewed by Mr Gregor Bennett a Competent Person who is a Member of the Australian Institute Geoscientists (AIG) and Exploration Manager at Rox Resources. Mr Bennett has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he has undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Bennett consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Where reference is made to previous releases of exploration results in this announcement, the Company confirms that it is not aware of any new information or data that materially affects the information included in those announcements and all material assumptions and technical parameters underpinning the exploration results included in those announcements continue to apply and have not materially changed.

The information in this report that relates to previous Exploration Results, was either prepared and first disclosed under the JORC Code 2004 or under the JORC Code 2012 and has been properly and extensively cross-referenced in the text to the date of original announcement to ASX. In the case of the 2004 JORC Code Exploration Results and Mineral Resources, they have not been updated to comply with the JORC Code 2012

Resource Statements

The information in this report that relates to gold Mineral Resources for the Youanmi Project was reported to the ASX on 17 April 2019 (JORC 2012). Rox confirms that it is not aware of any new information or data that materially affects the information included in the announcement of 17 April 2019, and that all material assumptions and technical parameters underpinning the estimates in the announcement of 17 April 2019 continue to apply and have not materially changed.

The information in this report that relates to gold Mineral Resources for the Mt Fisher project was reported to the ASX on 11 July 2018 (JORC 2012). Rox confirms that it is not aware of any new information or data that materially affects the information included in the announcement of 11 July 2018, and that all material assumptions and technical parameters underpinning the estimates in the announcement of 11 July 2018 continue to apply and have not materially changed.

The information in this report that relates to nickel Mineral Resources for the Fisher East project was reported to the ASX on 5 February 2016 (JORC 2012). Rox confirms that it is not aware of any new information or data that materially affects the information included in the announcement of 5 February 2016, and that all material assumptions and technical parameters underpinning the estimates in the announcement of 5 February 2016 continue to apply and have not materially changed.

The information in this report that relates to nickel Mineral Resources for the Collurabbie project was reported to the ASX on 18 August 2017 (JORC 2012). Rox confirms that it is not aware of any new information or data that materially affects the information included in the announcement of 18 August 2017, and that all material assumptions and technical parameters underpinning the estimates in the announcement of 18 August 2017 continue to apply and have not materially changed.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Rox Resources Limited planned exploration program(s) and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward looking statements.

About Rox Resources

Rox Resources Limited is an emerging Australian minerals exploration company. The company has a number of key assets at various levels of development with exposure to gold, nickel, copper and platinum group elements (PGE's). The 1.2Moz Youanmi Gold Project and the Fisher East Nickel Project (78kt Ni) being the most advanced projects with exploration ongoing at the Mt Fisher Gold Project and the Collurabbie Nickel-Copper-PGE Project.

Youanmi Gold Project (Youanmi Gold Mine 50% and option to increase to 70%, Regional JV's 50% earn-in)

The Youanmi Gold Mine is located 480 km to the northeast of Perth, Western Australia. The Youanmi Mining Centre has produced an estimated 667,000 oz of gold (at 5.47 g/t Au) since discovery in 1901 during three main periods: 1908 to 1921, 1937 to 1942, and 1987 to 1997.

The project is situated in the Youanmi Greenstone Belt, within the Southern Cross Province of the Archaean Yilgarn Craton in Western Australia. The structure of the Youanmi Project is dominated by the north-trending Youanmi Fault Zone. Most of the gold mineralisation seen at the project is hosted within north-northwest splays off the north-northeast trending Youanmi Fault.

Fisher East Nickel Project (100%)

The Fisher East nickel project is located in the North Eastern Goldfields region of Western Australia and hosts several nickel sulphide deposits. The total project area is ~350km2.

Discovery of, and drilling at the Camelwood, Cannonball and Musket nickel prospects has defined a JORC 2012 Mineral Resource (ASX:RXL 5 February 2016) of 4.2Mt grading 1.9% Ni reported at 1.0% Ni cut-off (Indicated Mineral Resource: 3.7Mt grading 1.9% Ni, Inferred Mineral Resource: 0.5Mt grading 1.5% Ni) comprising massive and disseminated nickel sulphide mineralisation, and containing 78,000 tonnes of nickel. Higher grade mineralisation is present in all deposits (refer to ASX announcement above) and is still open at depth beneath each deposit. Additional nickel sulphide deposits continue to be discovered (e.g. Sabre) and these will add to the resource base. Exploration is continuing to define further zones of potential nickel sulphide mineralisation.

Collurabbie Gold-Nickel Project (100%)

The Collurabbie project is located in the highly prospective North Eastern Goldfields region of Western Australia and is prospective for gold and nickel. The project area of ~123km2 hosts the Olympia nickel sulphide deposit and a number of other prospects for nickel sulphide mineralisation. A JORC 2012 Inferred Mineral Resource of 573,000t grading 1.63% Ni, 1.19% Cu, 0.082% Co, 1.49g/t Pd, 0.85g/t Pt has been defined at Olympia (ASX: RXL 18 August 2017). The style of nickel sulphide mineralisation is different to that at Fisher East, with a significant copper and PGE component at Collurabbie, and has been compared to the Raglan nickel deposits in Canada (>1Mt contained nickel). In addition, there is potential for gold mineralisation, with several strong drilling intersections including 2m @ 2.4g/t Au from the Naxos prospect.

Mt Fisher Gold Project (100%)

The Mt Fisher gold project is located in the North Eastern Goldfields region of Western Australia, adjacent to the Fisher East nickel project, and hosts several gold deposits. The total project area is ~220km2.

Drilling by Rox has defined numerous high-grade gold targets and a JORC 2012 Measured, Indicated and Inferred Mineral Resource (ASX:RXL 11 July 2018) of 1.0 million tonnes grading 2.7 g/t Au reported at a 0.8 g/t Au cut-off exists for 89,000 ounces of gold (Measured: 170,000 tonnes grading 4.1 g/t Au, Indicated: 220,000 tonnes grading 2.7 g/t Au, Inferred: 630,000 tonnes grading 2.3 g/t Au) aggregated over the Damsel, Moray Reef and Mt Fisher deposits.

Table 1 – Significant Intersections

Hole ID	from	to	Interval	Au g/t	Au g.m
RXRC142	0	2	2	0.68	1.36
RXRC142	33	39	6	0.91	5.46
RXRC143	0	5	5	0.93	4.65
RXRC144	0	2	2	0.65	1.3
RXRC144	42	48	6	0.7	4.2
RXRC144	66	69	3	1	3
RXRC145	0	2	2	0.64	1.28
RXRC145	12	13	1	1.14	1.14
RXRC146	0	3	3	2.67	8.01
RXRC146	20	21	1	1.3	1.3
RXRC147	0	2	2	0.77	1.54
RXRC147	58	59	1	0.54	0.54
RXRC148	0	2	2	1.56	3.12
RXRC148	44	45	1	1.19	1.19
RXRC149	0	2	2	0.74	1.48
RXRC149	39	40	1	0.73	0.73
RXRC149	42	43	1	1.56	1.56
RXRC149	50	51	1	0.55	0.55
RXRC150	0	1	1	0.67	0.67
RXRC150	43	44	1	0.82	0.82
RXRC151	0	1	1	0.59	0.59
RXRC151	8	15	7	54.56	381.92
Including	8	11	3	125.86	377.58
RXRC151	31	33	2	0.56	1.12
RXRC152	23	24	1	29.73	29.73
RXRC152	27	28	1	0.89	0.89
RXRC152	41	42	1	1.27	1.27
RXRC152	50	54	4	0.85	3.4
RXRC152	57	62	5	0.67	3.35
RXRC153	0	1	1	1.15	1.15
RXRC153	18	21	3	2.25	6.75
RXRC153	24	30	6	5.66	33.96
Including	26	28	2	14.07	28.14

RXRC153	40	41	1	0.86	0.86
RXRC153	61	64	3	1.43	4.29
RXRC153	67	68	1	0.82	0.82
RXRC153	73	75	2	0.9	1.8
RXRC153	78	79	1	0.68	0.68
RXRC153	83	85	2	0.65	1.3
RXRC153	91	95	4	1.2	4.8
RXRC154	9	13	4	4.53	18.12
Including	10	12	2	6.29	12.58
RXRC154	47	49	2	0.63	1.26
RXRC154	53	56	3	5.32	15.96
Including	53	55	2	6.83	13.66
RXRC154	58	63	5	1.16	5.8
RXRC154	67	68	1	0.77	0.77
RXRC154	70	71	1	0.54	0.54
RXRC154	73	76	3	0.54	1.62
RXRC155	32	33	1	0.56	0.56
RXRC155	36	37	1	0.57	0.57
RXRC155	46	47	1	0.6	0.6
RXRC156	8	9	1	0.69	0.69
RXRC156	20	21	1	0.74	0.74
RXRC156	28	30	2	6.33	12.66
RXRC156	46	47	1	0.69	0.69
RXRC156	50	51	1	0.6	0.6
RXRC156	64	65	1	1.14	1.14
RXRC157	0	4	4	1.29	5.16
RXRC157	46	51	5	1.32	6.6
RXRC157	72	75	3	0.76	2.28
RXRC157	82	83	1	0.57	0.57
RXRC158	20	21	1	0.55	0.55
RXRC158	24	25	1	1.57	1.57
RXRC158	28	32	4	69.47	277.88
Including	29	31	2	137.75	275.5
RXRC158	49	57	8	0.82	6.56
RXRC159	18	19	1	8.54	8.54

RXRC159	50	51	1	0.66	0.66
RXRC159	69	73	4	0.58	2.32
RXRC159	77	78	1	0.53	0.53
RXRC159	86	88	2	1.91	3.82
RXRC160	0	4	4	0.57	2.28
RXRC161	0	4	4	1.92	7.68
RXRC162	45	53	8	0.54	4.3
RXRC162	56	67	11	1.13	12.43
RXRC163	0	4	4	0.71	2.84
RXRC164	0	4	4	3.56	14.22
RXRC165	0	4	4	1.78	7.13
RXRC166	0	3	3	0.56	1.68
RXRC166	19	20	1	2.02	2.02
RXRC166	32	33	1	0.69	0.69
RXRC166	40	41	1	0.96	0.96
RXRC166	49	50	1	0.53	0.53
RXRC166	54	57	3	0.63	1.89
RXRC167	0	2	2	0.88	1.76
RXRC167	42	43	1	0.50	0.5
RXRC168	0	2	2	0.52	1.03
RXRC168	9	10	1	1.86	1.86
RXRC168	62	63	1	2.10	2.1
RXRC168	73	74	1	0.62	0.62
RXRC168	86	87	1	3.86	3.86
RXRC168	122	123	1	1.37	1.37
RXRC169	0	2	2	0.90	1.79
RXRC169	37	41	4	0.91	3.64
RXRC169	45	62	17	1.05	17.85
RXRC170	1	2	1	0.82	0.82
RXRC171	16	20	4	1.39	5.57
RXRC171	64	65	1	2.31	2.31
RXRC171	76	77	1	0.58	0.58
RXRC171	92	96	4	1.31	5.25
RXRC172	20	21	1	0.63	0.63
RXRC172	39	41	2	0.83	1.65

RXRC172	52	53	1	0.72	0.72
RXRC172	91	99	8	0.77	6.12

 Table 2 - Collar Locations and Drilling Details

RXRC1	42	Grace	RC	680120	6833680	460	84	-60	65	
RXRC1	43	Grace	RC	680145	6833647	459	80	-60	65	
RXRC1	44	Grace	RC	680200	6833674	460	78	-60	65	
RXRC1	45	Grace	RC	680180	6833665	460	80	-60	65	
RXRC1	46	Grace	RC	680163	6833656	460	80	-60	65	
RXRC1	47	Grace	RC	680181	6833687	460	80	-60	65	
RXRC1	48	Grace	RC	680163	6833678	460	80	-60	65	
RXRC1	49	Grace	RC	680170	6833703	461	80	-60	65	
RXRC1	50	Grace	RC	680160	6833720	461	80	-60	65	
RXRC1	51	Grace	RC	680143	6833713	461	88	-60	65	
RXRC1	52	Grace	RC	680156	6833740	461	84	-60	65	
RXRC1	53	Grace	RC	680108	6833696	460	102	-80	65	
RXRC1	54	Grace	RC	680138	6833731	461	84	-60	65	
RXRC1	55	Grace	RC	680120	6833721	461	84	-60	65	
RXRC1	56	Grace	RC	680099	6833713	460	100	-75	65	
RXRC1	57	Grace	RC	680106	6833715	460	96	-60	65	
RXRC1	58	Grace	RC	680148	6833757	462	80	-60	65	
RXRC1	59	Grace	RC	680121	6833767	461	90	-60	65	
RXRC1	60	Grace	RC	680162	6833589	459	80	-60	65	
RXRC1	61	Grace	RC	680200	6833607	459	84	-60	65	
RXRC1	62	Grace	RC	680139	6833775	462	72	-60	65	
RXRC1	63	Grace	RC	680308	6833657	461	84	-60	65	
RXRC1	64	Grace	RC	680272	6833640	461	80	-60	65	
RXRC1	65	Grace	RC	680235	6833623	460	96	-60	65	
RXRC1	66	Grace	RC	680118	6833657	459	130	-90	0	
RXRC1	67	Grace	RC	680122	6833660	459	100	-80	65	
RXRC1	68	Grace	RC	680101	6833671	459	130	-85	65	
RXRC1	69	Grace	RC	680103	6833673	459	100	-72	65	
RXRC1	70	Grace	RC	680087	6833690	460	130	-80	65	
RXRC1	71	Grace	RC	680112	6833741	461	100	-60	65	
RXRC1	72	Grace	RC	680103	6833759	461	100	-60	65	
RXRC1	73	Grace	RC	680112	6833808	462	80	-60	65	Assays Pending
RXRC1	74	Grace	RC	680077	6833789	461	80	-60	65	Assays Pending
RXRC1	75	Grace	RC	680271	6833773	463	50	-60	65	Assays Pending

RXRC176	Grace	RC	680309	6833791	463	50	-60	65	Assays Pending
RXRC177	Grace	RC	680255	6833810	463	60	-60	65	Assays Pending
RXRC178	Grace	RC	680290	6833832	464	50	-60	65	Assays Pending
RXRC179	Grace	RC	680238	6833844	463	90	-60	65	Assays Pending
RXRC180	Grace	RC	680294	6833865	464	50	-60	65	Assays Pending
RXRC181	Grace	RC	680220	6833884	464	80	-60	65	Assays Pending
RXRC182	Grace	RC	680270	6833904	464	50	-60	65	Assays Pending
RXRC183	Grace	RC	680209	6833919	464	50	-60	65	Assays Pending
RXRC184	Grace	RC	680240	6833936	465	50	-60	65	Assays Pending
RXRC185	Grace	RC	680187	6833955	464	50	-60	65	Assays Pending
RXRC186	Grace	RC	680223	6833972	465	50	-60	65	Assays Pending
RXRC187	Grace	RC	680017	6833919	462	60	-60	65	Assays Pending
RXRC188	Grace	RC	680053	6833936	463	60	-60	65	Assays Pending
RXRC189	Grace	RC	680086	6833952	463	60	-60	65	Assays Pending
RXRC190	Grace	RC	680132	6833979	464	60	-60	65	Assays Pending
RXRC191	Grace	RC	680172	6833992	465	50	-60	65	Assays Pending
RXRC192	Grace	RC	680207	6834009	465	72	-60	65	Assays Pending
RXRC193	Grace	RC	680118	6834010	464	50	-60	65	Assays Pending
RXRC194	Grace	RC	680155	6834028	464	50	-60	65	Assays Pending
RXRC195	Grace	RC	680065	6834029	463	50	-60	65	Assays Pending
RXRC196	Grace	RC	680104	6834048	463	50	-60	65	Assays Pending
RXRC197	Grace	RC	680137	6834064	464	50	-60	65	Assays Pending
RXRC198	Grace	RC	680015	6834052	462	50	-60	65	Assays Pending
RXRC199	Grace	RC	680047	6834066	463	50	-60	65	Assays Pending
RXRC200	Grace	RC	680083	6834084	465	50	-60	65	Assays Pending
RXRC201	Grace	RC	680119	6834099	466	50	-60	65	Assays Pending
RXRC202	Grace	RC	679995	6834086	464	50	-60	65	Assays Pending
RXRC203	Grace	RC	680029	6834102	466	50	-60	65	Assays Pending
RXRC204	Grace	RC	680067	6834119	466	50	-60	65	Assays Pending
RXRC205	Grace	RC	680103	6834136	466	50	-60	65	Assays Pending
RXRC206	Grace	RC	679976	6834121	466	50	-60	65	Assays Pending
RXRC207	Grace	RC	680013	6834139	465	50	-60	65	Assays Pending
RXRC208	Grace	RC	680049	6834155	465	50	-60	65	Assays Pending
RXRC209	Grace	RC	680086	6834173	465	50	-60	65	Assays Pending
RXRC210	Grace	RC	679962	6834159	465	50	-60	65	Assays Pending
RXRC211	Grace	RC	680072	6834210	465	50	-60	65	Assays Pending
RXRC212	Grace	RC	679945	6834195	466	50	-60	65	Assays Pending
RXRC213	Grace	RC	679979	6834211	466	50	-60	65	Assays Pending

RXRC214	Grace	RC	680017	6834227	465	50	-60	65	Assays Pending
RXRC215	Grace	RC	680052	6834244	465	50	-90	0	Assays Pending
RXRC216	Grace	RC	680094	6833712	460	130	-72	65	Assays Pending
RXRC217	Grace	RC	680083	6833748	461	138.5	-78	65	Assays Pending
RXRC218	Airstrip	RC	680419	6833355	458	80	-60	65	Assays Pending
RXRC219	Grace	RC	680091	6833731	461	160	-60	65	Assays Pending
RXRC220	Grace	RC	680147	6833625	459	90	-60	65	Assays Pending
RXRC221	Grace	RC	680291	6833737	462	80	-60	65	Assays Pending
RXRC222	Grace	RC	680218	6833702	461	80	-60	65	Assays Pending
RXRC223	Grace	RC	680324	6833709	462	80	-60	65	Assays Pending
RXRC224	Grace	RC	680254	6833720	462	80	-60	65	Assays Pending
RXRC225	Grace	RC	680288	6833692	462	80	-60	65	Assays Pending
RXRC226	Grace	RC	680252	6833676	461	80	-60	65	Assays Pending
RXRC227	Grace	RC	680088	6833750	461	120	-50	65	Assays Pending
RXRC228	Grace	RC	680250	6833675	461	6	-60	65	Abandoned
RXRC229	Airstrip	RC	680345	6833321	458	60	-60	65	Assays Pending
RXRC230	Airstrip	RC	680383	6833339	458	60	-60	65	Assays Pending
RXRC231	Airstrip	RC	680301	6833300	457	60	-60	65	Assays Pending
RXRC232	Airstrip	RC	680389	6833474	459	70	-50	65	Assays Pending
RXRC233	Airstrip	RC	680312	6833530	460	120	-50	65	Assays Pending
RXRC234	Airstrip	RC	680360	6833505	460	100	-50	65	Assays Pending
RXRC235	Airstrip	RC	680304	6833567	460	100	-60	65	Assays Pending
RXRC236	Hill End E	RC	680037	6834369	466	60	-60	65	Assays Pending
RXRC237	Hill End E	RC	680001	6834352	467	60	-60	65	Assays Pending
RXRC238	Hill End E	RC	679965	6834335	467	60	-60	65	Assays Pending
RXRC239	Hill End E	RC	679930	6834321	467	60	-60	65	Assays Pending
RXRC240	Hill End E	RC	680037	6834502	467	60	-60	65	Assays Pending
RXRC241	Hill End E	RC	680001	6834485	468	60	-60	65	Assays Pending
RXRC242	Hill End E	RC	679964	6834468	468	60	-60	65	Assays Pending
RXRC243	Hill End E	RC	679929	6834452	468	60	-60	65	Assays Pending
RXRC244	Hill End E	RC	679891	6834434	469	60	-60	65	Assays Pending
RXRC245	Hill End E	RC	680084	6834392	466	60	-60	65	Assays Pending
RXRC246	Hill End E	RC	680428	6833492	459	100	-50	65	Assays Pending
RXRC247	PZ Mag	RC	679443	6835490	469	80	-60	65	Assays Pending
RXRC248	PZ Mag	RC	679402	6835478	469	80	-60	65	Assays Pending
RXRC249	PZ Mag	RC	679390	6835555	469	80	-60	65	Assays Pending
RXRC250	PZ Mag	RC	679347	6835535	469	80	-60	65	Assays Pending

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sonder, or	RC hole diameter was 5.5" (140 mm) reverse circulation percussion (RC). Sampling of RC holes was undertaken by collecting 1m cone split samples at intervals.
	handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Drill holes were generally angled at -65 ⁰ towards grid northeast (but see Table for individual hole dips and azimuths) to intersect geology as close to perpendicular as possible.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	Drillhole locations were picked up by differential GPS. Logging of drill samples included lithology, weathering, texture, moisture and contamination (as applicable). Sampling protocols and QAQC are as per industry best practice procedures.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to	RC drillholes were sampled on 1m intervals using a cone splitter.
	obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	Samples were sent to Intertek Genalysis in Perth, crushed to 10mm, dried and pulverised (total prep) in LM5 units (Some samples > 3kg were split) to produce a sub-sample. The pulps were analysed by 50g Fire Assay with ICP-OES (Intertek code FA50/OE).
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Drilling technique was Reverse Circulation (RC). The RC hole diameter was 140mm face sampling hammer. Hole depths reported range from 70m to 160m.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed	RC drill recoveries were high (>90%).
	Measures taken to maximise sample recovery and ensure representative nature of the samples	RC samples were visually checked for recovery, moisture and contamination and notes made in the logs.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no observable relationship between recovery and grade, and therefore no sample bias.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Detailed geological logs have been carried out on all RC drill holes, but no geotechnical data have been recorded (or is possible to be recorded due to the nature of the sample). The geological data would be suitable for inclusion in a Mineral Resource estimate.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging of RC chips recorded lithology, mineralogy, mineralisation, weathering, colour, and other sample features. RC chips are stored in plastic RC chip trays.
	The total length and percentage of the relevant intersections logged	All holes were logged in full.

JORC Table 1 - Section 1 Data and Sampling Techniques

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	N/A
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were collected on the drill rig using a cone splitter. If any mineralised samples were collected wet these were noted in the drill logs and database.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sample preparation followed industry best practice. Fire Assay samples were dried, coarse crushing to ~10mm, followed by pulverisation of the entire sample in an LM5 or equivalent pulverising mill to a grind size of 85% passing 75 micron.
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	Field QC procedures involve the use of Certified Reference Materials (CRM's) as assay standards, along with duplicates and blank samples. The insertion rate of these was approximately 1:20.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second- half sampling.	For RC drilling field duplicates were taken on a routine basis at an approximate 1:20 ratio using the same sampling techniques (i.e. cone splitter) and inserted into the sample run.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered more than adequate to ensure that there are no particle size effects relating to the grain size of the mineralisation which lies in the percentage range.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique involved Fire Assay 50g.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical or portable analysis tools were used to determine assay values stored in the database.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Internal laboratory control procedures involve duplicate assaying of randomly selected assay pulps as well as internal laboratory standards. All of these data are reported to the Company and analysed for consistency and any discrepancies.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Senior personnel from the Company (Managing Director and Exploration Manager) have visually inspected mineralisation within significant intersections.
	The use of twinned holes.	No twin holes have been completed by Rox at the Grace Prospect.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data was collected using a standard set of Excel templates on Toughbook laptop computers in the field. These data are transferred to Geobase Pty Ltd for data verification and loading into the database.
	Discuss any adjustment to assay data.	No adjustments or calibrations have been made to any assay data.

Criteria	JORC Code explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	A DGPS has been used to determine collar locations.
	Specification of the grid system used.	The grid system is MGA_GDA94, zone 50 for easting, northing and RL.
	Quality and adequacy of topographic control.	The topography of the mined open pits is well defined by historic monthly survey pickups
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The drill hole spacing is approximately 20-40 metres between drill sections.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Data spacing and distribution are sufficient to establish the degree of geological and grade continuity appropriate for JORC(2012) classifications applied.
	Whether sample compositing has been applied.	For RC samples, sample compositing occurred over 4 metre intervals.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The mineralisation strikes generally NW-SE and dips to the west at approximately -60 degrees. The drill orientation was 065 degrees and -60 to -90 dip. Drilling is believed to be generally perpendicular to strike.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sampling bias is believed to have been introduced.
Sample security	The measures taken to ensure sample security.	Sample security is managed by the Company. After preparation in the field samples are packed into polyweave bags and despatched to the laboratory. For a large number of samples these bags were transported by the Company directly to the assay laboratory. In some cases the sample were delivered by a transport contractor the assay laboratory. The assay laboratory audits the samples on arrival and reports any discrepancies back to the Company. No such discrepancies occurred.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have yet been completed.

JORC Table 1 - Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Rox Resources Ltd has entered into a Joint Venture Agreement with Venus Metals Corporation Ltd to to acquire an initial 50% interest in the Youanmi Gold Mine Joint Venture (OYG Joint Venture). Tenements in the JV consist of the following mining leases: M 57s /10, 51,76,97,109, 135, 160A, 164, 165, 166 and 167.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Significant previous exploration has been carried out throughout the project by various companies, including AC/RAB, RC drilling and diamond drilling 1971-1973 WMC: RAB, RC and surface diamond drilling 1976 Newmont: 10 surface diamond drilling (predominantly targeting base metals). 1980-1986 BHP: RAB, RC and surface diamond drilling (predominantly targeting base metals). 1986-1993 Eastmet: RAB, RC and surface diamond drilling. 1993-1997 Goldmines of Australia: RAB, RC and surface diamond drilling. Underground mining and associated underground diamond drilling. 2000-2003 Aquila Resources Ltd: Shallow RAB and RC drilling 2004-2005 Goldcrest Resources Ltd: Shallow RAB and RC drilling; data validation. 2007- 2013 Apex Minerals NL: 9 diamond holes targeting extensions to the Youanmi deeps resource.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	The Youanmi Project straddles a 40km strike length of the Youanmi Greenstone Belt, lying within the Southern Cross Province of the Archaean Yilgarn Craton in Western Australia. The greenstone belt is approximately 80km long and 25km wide, and incorporates an arcuate, north-trending major crustal structure termed the Youanmi Fault Zone. This structure separates two discordant greenstone terrains, with the stratigraphy to the west characterised by a series of weakly deformed, layered mafic complexes (Windimurra, Black Range, Youanmi and Barrambie) enveloped by strongly deformed, north-northeast trending greenstones. Gold mineralisation is developed semi-continuously in shear zones over a strike length of 2,300m along the western margin of the Youanmi granite. The Youanmi gold lodes are invariably associated with a high pyrite and arsenopyrite content and the primary ore is partially to totally refractory. There are a series of major fault systems cutting through the Youanmi trend mineralisation that have generated some significant off-sets. The Youanmi Deeps project area is subdivided into three main areas or fault blocks by cross-cutting steep south-east trending faults; and these are named Pollard, Main, and Hill End from south to north respectively. Granite hosted gold mineralisation occurs at several sites, most notably the Plant Zone Prospect, located immediately north-northeast of the Main Pit and processing plant. Gold mineralization occurs as free particles within the sulphide- poor stockwork quartz veining, controlled by shallow west dipping shear zones, within a deeply weathered granite host. Mineralised envelopes extend over a strike length of at least 1,200m. The Commonwealth-Connemarra mineralised trend is centred 4km northwest of the Youanmi plant. The geology comprises a sequence of folded mafic and felsic volcanic rocks intercalated with BIF and intruded by granite along the eastern margin. Gold mineralisation is developed over a 600m strike length, associated with a north trending and steeply wes
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Refer to drill results Table/s and the Notes attached thereto.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	All reported assay intervals have been length weighted. No top cuts have been applied. A lower cut-off of 0.5g/t Au was applied. See Notes to Table/s.

Criteria	JORC Code explanation	Commentary
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Mineralisation over 0.5g/t Au has been included in aggregation of intervals.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values have been used or reported.
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results.	
widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	No definite relationships between mineralisation widths and intercept lengths are known from this drilling due to the highly weathered nature of the material sampled.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Table in the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Representative reporting of both low and high grades and widths is practiced.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful and material information has been included in the body of the announcement.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	Further work (RC and diamond drilling) is justified to locate extensions to mineralisation both at depth and along strike.